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The concept of “identity” of a complex network system is proposed based
on the method of the gauge field theory. The system is assumed to consist
of many elements interacting with each other. The interaction weight is
treated as a gauge potential. Change in the external environment sur-
rounding the system is assumed to induce a unitary transformation of the
state vector of the system, which is regarded as a gauge transformation.
The identity is defined by the fact that the system has some invariant
quantities under gauge transformation. Here the total hamiltonian of the
whole system is assumed to be that of the invariant quantities represent-
ing the identity. The invariance of the identity is conserved by changing
the gauge potential according to the given external environment. Some
invariant functionals are obtained by introducing the noncommutative
gauge field derived from the gauge potential of mutual interaction. Based
on the concept of identity, new learning dynamics written in a covariant
form are presented as a field equation of the gauge field, which is utilized
to realize the state requisite for adaptation to a given new external envi-
ronment. The learning dynamics are extended to the case of nonlinear
interaction among the elements.

1. Introduction

A complex biological system is generally composed of many functional
elements, like neurons in the brain. The interaction weight between
the functional elements is organized flexibly so that elements can adapt
to the given external environment. The invariant characteristics of
the system in the adaptive process can be regarded as representing an
“identity” of the system. In other words, the invariant characteristics
guarantee that the system continues to conserve its identity while it
adapts to changing external environments.

In the present paper, we propose a field theoretical approach to the
conservation of the identity of a complex network system. The system
is assumed to be composed of many discretely distributed elements with
internal freedom. The elements interacting with each other play a sim-
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ilar role to neurons in the brain. An actual complex biological system
is generally composed of many functional elements with a hierachical
structure of their functional roles. However, in the present paper, we
confine ourselves to the simplest case of a system composed of elements
of only one kind interacting with each other. The interaction of connec-
tion weights between the elements is treated as a gauge field potential.
Hence, we call it the “connection gauge field.” The system is able to
learn the input initially given from the external environment or to realize
the requisite state necessary for adaptation to the external environment,
by organizing the connection field among the elements [1, 2]. In other
words, the connection field is organized in the system itself in order
to adapt to changes of the external environment. Here the change is
assumed to induce unitary transformation of the state vector of the sys-
tem. The identity of the system is defined by the fact that the system
conserves its characteristics while it interacts with changing external
environments. Some invariant characteristic functionals are derived by
taking into account the adaptive change of the gauge field.

Based on the concept of identity, new covariant learning dynamics
of the system are presented as a field equation of the noncommutative
gauge field. The learning process enables the systems to realize the
state necessary for adaptation to changes of the external environment.
The learning dynamics are extended to the case of nonlinear interaction
among the elements [3].

2. Complex network system

Let us consider a complex network system that is composed of many el-
ements. Each element is assumed to have internal freedom characterized
by a state vector Ψi(t), i � 1, 2, . . . , N. The units are assumed to interact
with each other with the weight matrix W � �Wi,j�, i, j � 1, 2, . . . , N,
and the external environment is assumed to be represented by the in-
put force vector S(t) � �Si(t), i � 1, 2, . . . , N�, where Si(t) stands for an
additive input force on element i.

In analogy with a spin system under an external magnetic field, we
define the total hamiltonian � of the whole network system as

� � Ψ�WΨ � Ψ�W�Ψ � Ψ�S � S�Ψ, (1)

where Ψ(t) is a state vector whose ith component Ψi, i � 1, 2, . . . , N,
represents the state vector of the ith element and Ψ�(t) (or S�(t)) is the
conjugate transpose of Ψ(t) (or S(t)).

Let us assume that an input force S	(t) representing a different external
environment is given by the unitary transformation of S(t),

S	(t) � U(t)S(t), (2)

where U(t) is a time-dependent unitary matrix satisfying U�(t)U(t) �
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U(t)U(t)� � 1 and equation (2) ensures a normalization condition for
the intensity of the external force:

S	�(t)S	(t) � S�(t)S(t). (3)

Equation (2) is interpreted to represent a change of the external en-
vironment.

Now we introduce a postulate that the total hamiltonian� is invari-
ant to the change of the external environment:

Ψ	�W	Ψ	 � Ψ	�W	�Ψ	 � Ψ	�S	 � S�	Ψ	 �

Ψ�WΨ � Ψ�W�Ψ � Ψ�S � S�Ψ, (4)

where Ψ	 is a state vector under external force S	(t). In other words, we
confine ourselves to the change of external force under which the total
hamiltonian � of the whole network system is conserved. Then, from
equations (2) and (3), we have

Ψ	(t) � U(t)Ψ(t) (5)

W	 �W	� � U(W �W�)U�. (6)

Equation (5) shows that the state vector Ψ changes following the same
transformation rule as equation (2) of the external force S(t). Note that
we can use equation (5) as the first starting assumption to define the
change of the state of the system caused by the change of the external
environment. Furthermore, equation (5) gives rise to the invariance of
the norm of the state vector:

Ψ	�(t)Ψ	(t) � Ψ�(t)Ψ(t). (7)

3. Identity of the network system

Let us introduce the concept of “identity” of the network system based
on the fact that there exist invariant quantities in the process of the
interaction with the external environment. From this consideration, the
total hamiltonian � of the network system is already assumed to be an
invariant quantity, as shown in equation (4).

Now we study other invariant quantities in the dynamical process
of the network system. For this purpose, we regard equation (5) as a
gauge transformation and also the weight matrix W as a gauge potential
which follows the transformation rule:

W	 � U



t

U� �UWU�. (8)

Then it is easily shown from equation (8) that equation (6) is automati-
cally satisfied by using the equality UU� � U�U � 1.
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Furthermore, using equations (5) and (8), we can derive

D	Ψ	 � � 


t
�W	�Ψ	 � U � 



t
�W�Ψ � UDΨ, (9)

where

D � � 


t
�W�Ψ or D	 � � 



t
�W	�Ψ	

means a covariant derivative of Ψ or Ψ	. Iterating equation (9) n times
will yield

D	nΨ	 � UDnΨ. (10)

A gauge field G is introduced from the gauge potential W. Using
equation (8), we have

G	 �



t

(W	 �W	�) � [W	, W	�]

� U � 


t

(W �W�) � [W, W�]�U� � UGU�, (11)

where [A, B] means a communication bracket, [A, B] � AB�BA. Defin-
ing the covariant derivative D or D	 of the potential A as

DA �



t

A � [W, A] (12)

D	A	 �



t

A	 � [W	, A	], (13)

we can write G and G	 as

G � D(W �W�) (14)

G	 � D	(W	 �W
	�) (15)

and can derive (see appendix A)

D	n(W	 �W	�) � UDn(W �W�)U�. (16)

Now we can present some invariant functionals using the transfor-
mation rules given by equations (6), (10), and (14). As a typical one,
we have

� � �[Ψ�Ψ,Ψ�DΨ, (DΨ)�DΨ,Ψ�(W �W�)jΨ,

Tr(D
k(W �W�)Dl(W �W�) . . . Dm(W �W�)),

Det(I �Dn(W �W�)),Ψ�S, S�Ψ, S�(W �W�)S], (17)

where j, l, k, m, and n are positive integers, 0, 1, 2, 3, . . . , and I is a unit
matrix. Tr(M) and Det(M) respectively mean the trace and determinant
of matrix M.
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In conclusion, identity is defined by the existence of the invariant
functional written in terms of state vector Ψ, gauge potential W, and
their covariant derivatives DΨ and DW. The invariant functional is
conserved during adaptation to the change of the external environment,
if the gauge field W is reorganized in the system itself as equation (8).

4. Learning dynamics of the network system

In this section we study a temporal evolution of the network system
based on the idea that the evolution equations take invariant forms un-
der transformation equations (2), (5), and (6). The evolution equations
themselves can be regarded as the invariant characteristics that represent
the identity of the system itself, because they take invariant forms in any
environment given by unitary transformation. In other words, they are
covariant equations in the sense that they have invariant forms even in
different environments. The evolution equations are derived by taking
the transformation rules summarized in equation (17) into account. A
typical simple evolution equation is given by

� 


t
�W�Ψ � ΛS � 0 (18)




t

(W �W�) � [W, W�] � Η(�Ψ � Ψ� �M) � 0, (19)

where Λ and Η are constants, � denotes a direct product, � means the
complex conjugate, and M is introduced as an external excitation source
of the field W which is assumed to be transformed as M	 � UMU�. A
simple example of M is given by S� S�, because S� S� is shown to have
the same transformation rule as that of Ψ � Ψ� (appendix B)

Ψ	 � Ψ	� � UΨ � Ψ�U� (20)

S	 � S	� � US� S�U�, (21)

which are the same as those of the remaining terms on the left-hand side
of equation (19), given by equation (11).

A simple stationary solution of equations (18) and (19) for the case
when the source M is given by M � S� S becomes

Ψ � S (22)

W � ΛS� S, (23)

where S is assumed to be a real constant vector satisfying �S�2 � 1. This
is easily shown as follows. Wi,j � ΛSiSj, so that (WΨ) � Λ(S� S)S � ΛS,
and furthermore, we note that W � W� and Ψ � Ψ� � S � S. Then
equations (18) and (19) are automatically satisfied.

Noting the covariant property of equations (22) and (23), we can
derive a time-dependent solution of equations (18) and (19) under the
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external force S	(t) � U(t)S and M	(t) � S	(t)� S	(t)

Ψ	(t) � U(t)Ψ(t) � S	(t) (24)

W	(t) � U(t)



t

U�(t) � ΛUS� SU�. (25)

They are easily shown to satisfy

� 


t
�W	�Ψ	 � ΛS	 � 0 (26)

and



t
�W	 �W	�� � [W	, W	�] � 0, (27)

where we used equation (24) with

Ψ	 � Ψ	� � M	 � S	(t)� S�	(t). (28)

Equation (27) means the condition of zero field, G	 � 0, that is,
pure gauge potential. Equation (24) shows that the external force S	(t)
is reflected directly in the state vector Ψ	(t). In other words, the state
vector Ψ	 forms a mirror image of the external force S	(t).

Equations (18) and (19) are written in the covariant forms in the
sense that they are invariant under gauge transformation equations (5)
and (8). We may regard equation (18) as the Langevin equation with
a stochastic force ΛS; then equations (18) and (19) compose learning
dynamics having an extended form from that of the Synergetic computer
[3]. Here the excitation force M may be interpreted to represent the
final condition of the direct product Ψ � Ψ which must be realized for
the adaptation to a new external environment. In other words, the
learning dynamics are interpreted to describe an adaptation process of
the system to a new external environment. Furthermore, we note that
various nonlinear terms with respect to Ψ and W �W� can be included
on the left-hand sides of equations (18) and (19). For example,

� 


t
�W�Ψ � ΛS � F(�Ψ�2)Ψ � 0 (29)




t

(W �W�) � [W, W�] � Η(�Ψ � Ψ� �M) �
�

�
n�1

an(W �W�)n � 0, (30)

where an, n � 1, 2, 3, . . . are arbitrary constants and F(�Ψ�2) means an ar-
bitrary function of �Ψ�2. The nonlinear terms of W�W	 in equation (30)
will generally cause a phase change in the connection gauge field W.

5. Electromagnetic-like connection field

In this section we consider that each network element is subject to the
local unitary transformation, Ψ	j � UjΨj, j � 1, 2, . . . , N, where Uj is a
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unitary transformation acting on the state of the element at position j,
and Ψj represents the internal state of the element situated at position j.
Then the global unitary transformation U takes the diagonal form:

U �

�������������������������
�

U1, 0, 0, . . . , 0,

0, U2, 0, . . . , 0,

� � � � �

0, 0, 0, . . . , Un,

�������������������������
�

. (31)

Transformation rule equation (8) of the weight matrix W is decoupled
as

W	
ij � UiWijU

�
j (32)

for i � j and

V	i � Ui



t

U�
i �UiViU

�
i (33)

for Wij � Vi.
The field transformations follow from equations (32) and (33):




t

W	
ij � V	i W

	
ij �W	

ijV
	
j � Ui � 

tWij � ViWij �WijVj�U�

j (34)

V	i � V	�i � Ui(Vi � V�i )U�
i (35)

and



t

(V	i � V	�i ) � [V	i , V	�i ] � Ui � 

t (Vi � V�i ) � [Vi, V�i ]�U�
i . (36)

Using these transformation rules, we can express gauge invariant
dynamics of Ψi, Wij, and Vi.

As a typical case, we have

� 


t
� Vi�Ψi ��

i�j

WijΨj � F(�Ψ�2)Ψi �H(�Ψi�
2)Ψi (37)




t

Wij � ViWij �WijVj � aWij � bΨi � Ψ
�
j (38)




t

(Vi � V�i ) � [Vi, V�i ] � p(Vi � V�i ) � qΨi � Ψ
�
i , (39)

where �Ψ�2 � ΨΨ�, �Ψi�
2 � Ψ�Ψ�, F, and H are arbitrary functions of �Ψ�2

and �Ψi�
2, respectively, and a, b, p, and q are constant coefficients.

Furthermore, if the local unitary transformation is given by a phase
transformation,

Uj � e�iΘj , (40)
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Vk and Wik become scalar complex quantities and equations (33) and
(34) reduce to

W	
jk � Wjke�i(Θj�Θk ) (41)

V	k � i



t
Θk � Vk (42)

from which the following invariant equations are derived:

�



t

ln W	
jk � V	j � V	k � �




t

ln Wjk � Vj � Vk (43)

and

ln W	
jk � ln W	�

kj � ln Wjk � ln W�
kj. (44)

Analogous to the gauge transformation of electromagnetic potential
with a transformation function iΘk, we can regard Vk in equation (42)
as a scalar potential at position k and ln Wkj in equation (43) as the line
integral of a vector potential from position k to j.

This idea gives rise to the interpretation that equations (43) and (44)
show the invariant property of an “electric field” �
/
t ln W	

jk � (V	(j)�
V	(k)) and a “magnetic flux” ln Wjk � ln W�

kj, respectively. It is worth
noting that the magnetic flux vanishes when the connection field W
becomes hermitian, W � W�.

In the case of phase transformation, the dynamics presented by equa-
tions (37), (38), and (39) reduce to

� 


t
� Vi�Ψi ��

i�j

WijΨj � F(�Ψ�2)Ψi �H(�Ψi�
2)Ψi (37	)




t

Wij � (Vi � Vj)Wij �Wij � ΨiΨ
�
j (38	)




t

(Vi � V�i ) �
1
2

(Vi � V�i ) � ΨiΨ
�
i , (39	)

where we used the fact that Wij and Vi became complex functions and
assumed a � b � q � 1 and p � 1/2 in equations (37), (38), and (39).

A steady-state solution of equations (37	), (38	), and (39	) under the
assumption of uniform potential Vi � Vj is given by

Wij � ΨiΨ
�
j (45)

Vi � Wii � �Ψi�
2 (46)

�Ψ�2 � F(�Ψ�2) � H(�Ψi�
2) (47)

for a nonzero solution of Ψ. Here, the first assumption of uniform poten-
tial is satisfied because equation (47) shows that the nonzero solutions
of Ψ are all equal,

�Ψi�
2 � �Ψ0�

2, (48)
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so that we have the uniform scalar potential,

Vi � �Ψ0�
2. (49)

The quantity �Ψ0�
2 is determined by

m�Ψ0�
2 � F(m�Ψ0�

2) � H(�Ψ0�
2), (47	)

where m is the number of nonzero solutions of Ψ among Ψ1,Ψ2, . . ., and
ΨN. The line integral of the “vector potential” becomes

ln Wij � ln �Ψ0�
2 � i(Θi � Θj), (50)

where we write Ψi � Ψ0eiΘi . The magnetic flux defined by ln Wij � ln W�
ji

is found, from equation (44), to become zero, together with the electric
field defined by equation (43), so that V(i) and Wij compose a pure
gauge field.

6. Nonlinear network system

We consider learning dynamics with a nonlinear interaction terms of Ψ
on the right-hand side of equation (18). Here we confine ourselves to a
typical nonlinear term �Ψ� � Ψ � Ψ, which is equivalent to taking into
account the fourth-order interaction energy,

Ψ� � Ψ�Ψ� � Ψ � Ψ�i Ψj�(j,i)(l,k)Ψ
�
kΨl, (51)

where the four-dimensional matrix � has the components �(i,j)(l,k) , i, j,
k, l � 1, 3, . . . , N and is assumed, for simplicity, to be hermitian, �(i,j)(l,k) �
��(j,i)(k,l) .

Assuming also the invariant property of the fourth-order energy term,

Ψ	� � Ψ	�	 � Ψ�	 � Ψ	 � Ψ� � Ψ� � Ψ� � Ψ, (52)

we derive a transformation rule of � (see appendix D):

�	(i,j)(k,l) � UixUkΜ�(Λ,Μ)(Ν,Θ)U
�
ΜjU

�
Θl. (53)

Furthermore, using equation (53), we derive the transformation rule
(see appendix D)




t
�	 � [W	,�	] � U �U � 



t
� [W,�]�U� �U�, (54)

where [W,�] is an abbreviated notation in which the (i, j)(k, l) compo-
nent is defined by

[W,�](i,j)(k,l) �

WiΑ�(Α,j)(k,l) � �(i,Α)(k,l)WΑj �WkΑ�(i,j)(Α,l) � �(i,j)(k,Α)WΑl. (55)
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Equations (53) and (54) are comparable to equations (6) and (11).
Taking equation (B.3) into account, we have a symbolically written

set of covariant learning dynamics including a nonlinear interaction
of Ψ:

� 


t
�W�Ψ � �Ψ � Ψ� � Ψ � ΛS � 0 (56)




t

(W �W�) � [W, W�] � Η(�Ψ � Ψ� �M) � 0 (57)

�̇ � [W,�] � Ζ(�Ψ � Ψ� � Ψ � Ψ� �Q) � 0 (58)

where Ζ is a constant and Q is introduced as an excitation source of
field �, having the same transformation rule as equation (54). A simple
example for Q is given by Q � S�S� �S�S�. Equations (56), (57), and
(58) are also written in the covariant forms under the unitary transfor-
mation of equation (5), as in the case of equations (18) and (19), and
are also understood to be the learning process of the state to be realized
for adaptation to the new external environment. Here the field sources
M and Q represent the requisite final states of the direct products Ψ�Ψ�

and Ψ � Ψ� � Ψ � Ψ� for adaptation to the given external environment,
and the source S plays the role of stochastic force [3].

7. Composite adaptive system

We discuss here a composite adaptive system composed of the two kinds
of elements, Ψ(1) and Ψ(2), which are assumed to be disconnected in the
initial state. That is, the initial connection field W is assumed to take
the block diagonal form:

W � � W1 0
0 W2

� , (59)

where W �W� is assumed for simplicity.
Now we consider a composite environment represented by the unitary

transformation

U(t) �
1�

1 � ��(t)�2
� I Ε(t)I
�Ε�(t)I I � , (60)

where I is the unit matrix and �(t) is an interaction parameter with
the initial value �(0) � 0. The connection field potential under the
composite environment takes the form

W	 �W	� � U(W �W�)U�

�
2

1 � ��(t)�2
�������
�

W(1) � ���2W(2) Ε(W(2) �W(1))

Ε�(W(2) �W(1)) W(2) � ���2W(1)

�������
�

, (61)
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where we used W� � W in equation (6). The two kinds of elements
begin to interact at time t � 0 through the connection gauge field equa-
tion (61). Here, an additive invariant quantity is shown to be given by

tr(I �W	 �W	�) � tr(I �W �W�)

� tr(I �W1 �W�
1 ) � tr(I �W2 �W�

2 ), (62)

and a multiplicative invariant quantity by

Det(I �W	 �W	�) � Det(I �W1 �W�
1 )Det(I �W2 �W�

2 ). (63)

Note that these invariant quantities are written in the forms without
mutual interaction. In other words, these quantities are conserved in
the interacting evolution process from noninteracting initial states.

8. An adaptive network system

In this section, we propose a simple model of an adaptive network system
whose state is changeable depending upon external requirements.

The state vector Ψ of the system is assumed to obey




t
Ψ(t) �W(t)Ψ(t) � 0 (64)

where W(t) is, in general, a time-dependent connection weight matrix.
The system is assumed to be in a state Ψ0 at initial time t0.
Now we suppose that a state transition of the system is required for

some reason. In other words, a new state Ψs at time t1 is required to be
achieved, which is in general different from the state Ψ(t1) determined
from equation (64).

The problem we must solve is how to realize the state transition from
the original state Ψ0 to the new state Ψs under the same connection
weight W(t).

For this purpose let us introduce an external force term ��(t) on the
right-hand side of equation (64):




t
Ψ(t) �W(t)Ψ � ��(t). (65)

Here �(t) is a state vector of the adjoint system which obeys

�



t
�(t) �W�(t)�(t) � 0. (66)

The adjoint equation (66) is derived from equation (64) through
the time-inversion (t  �t) followed by the transpose of the weight
matrix W(t). The time-reversed property of equation (67) enables us to
incorporate the final desired condition Ψs as an initial condition of the
external force ��(t) of equation (65).
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Introducing the fundamental matrix K(t, t0) which satisfies




t

K(t, t0) �W(t)K(t, t0) � 0 (67)

with the initial condition,

K(t0, t0) � I (68)

we have the solution of equation (64) written as

Ψ(t) � K(t, t0)Ψ(t0). (69)

Here are the properties of the fundamental matrix:

K(t, t0) � K(t, Τ)K(Τ, t0) (70)

and

K(Τ, t) � K(t, Τ)�1. (71)

Further, the solution of the adjoint equation (66) is also written as

�(t) � K�(t0, t)�(t0). (72)

The innerproduct ��Ψ is shown from equations (65) and (66) to
satisfy




t

(��Ψ) � ����. (73)

Integrating equation (73) and substituting equation (72) into the re-
sultant equation, we have

��(t0)K(t0, t)Ψ(t) � ��(t0)Ψ0 � ��
�(t0)L(t)�(t0) (74)

where L(t, t0) represents the Gram matrix:

L(t, t0) � �
t

t0

dΤK(t0, Τ)K�(t0, Τ). (75)

Further, if we choose the initial condition of �0 as

�(t0) � L�1(t1, t0)(Ψ0 � K(t0, t1)Ψs) (76)

then we have

��(t0)K(t0, t1)Ψ(t)(t1) � ��(t0)K(t0, t1)Ψs (77)

which yields the desired result:

Ψ(t1) � Ψs. (78)

Note that the initial condition of equation (76) coincides with that
derived from the controllability problem in control theory [4]. However,
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the point to be stressed here is that the external force on the right-hand
side of equation (66) is given by the adjoint state vector �(t) to the
original one Ψ(t).

Finally, we note the fact that the covariant property of the system of
equations (65) and (66) under the unitary transformation U(t) is also
retained:

Ψ	(t) � U(t)Ψ(t) (5)

W	(t) � U(t)



t

U�(t) �U(t)W(t)U�(t) (8)

�	(t) � U(t)�(t) (79)

K	(t, t0) � U(t)K(t, t0)U�(t) (80)

These covariant properties assure an identity of the adaptive system
following equations (65) and (66).

9. Conclusion

A field theory of the identity of a complex network system was devel-
oped. The change of the external environment was assumed to induce
unitary gauge transformation of the state of the system. The identity
was defined as the invariance of the system under gauge transformation.
The interaction weight between the elements of the complex system was
treated as a gauge field and the invariance of the identity was main-
tained by reorganizing the gauge field according to the given external
environment.

Covariant learning dynamics were presented as a process of adapta-
tion to a given external environment. Finally, we note that the funda-
mental idea developed here can be extended to a more general change
of the system represented by

Ψ	 � AΨ, (81)

where A is a general transformation matrix having a generalized inverse
A�1. Equation (81) plays the role of equation (5), where the unitary
matrix U is replaced by matrix A and the inverse of A is made to
correspond to the hermitian conjugate U� of U.
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Appendix

A. Transformation of the gauge field

Let the transformation of matrix Z be

Z	 � UZU�. (A.1)

Then the covariant derivation D	Z	 defined by equation (12) becomes

D	Z	 �



t

Z	 � [W	, Z	]

�



t

(UZU�) � �U
U�


t
�UWU�, UZU�	

�



t

UZU� �U

Z

t

U� �UZ



t

U� �U

U�


t
UZU�

�UZU�U

U�


t
�UWU�UZU� �UZU�UWU�

� U

Z

t

U� �U[W, Z]U� � � 


t

U�ZU�

�

U

t

U�UZU� �UZ



t

U� �UZ



t

U�

� U �
Z

t
� [W, Z]�U� � U(DZ)U�. (A.2)

The repeated use of equations (A.1) and (A.2) gives rise to equa-
tion (16):

D	nZ	 � U(DnZ)U�. (A.3)

B. Transformation of the direct product of Ψ

Using equation (5), we have

(Ψ	 � Ψ	�)i,j � Ψ
	
iΨ
	�
j � (UΨ)i(UΨ)�j � UiΑΨΑU

�
jΒΨ

�
Β

� UiΑΨΑΨ
�
ΒU

�
jΒ � UiΑΨΑΨ

�
ΒU

�
Βj � (U(Ψ	 � Ψ	�)U�)i,j, (B.1)

where the repeated indices are assumed to be summed. Equation (B.1)
gives rise to equation (21).

Similarly, we have

Ψ	iΨ
	�
j Ψ

	
hΨ
	�
l � (UΨ)i(UΨ)�j (UΨ)k(UΨ)�l

� UiΛUkΥΨΛΨΥU
�
jΜΨ

�
ΜU

�
lΘΨ�Θ

� UiΛUkΥΨΛΨΥΨ
�
ΜΨ
�
ΘU

�
ΜjU

�
Θl, (B.2)

which can be written symbolically as

Ψ	 � Ψ�	 � Ψ	 � Ψ	� � U �U(Ψ� Ψ� � Ψ� Ψ)U� �U�. (B.3)
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C. Transformation of the electromagnetic-like connection field

Using equations (32) and (33), we have




t

W	
ij �




t

UiWijU
�
j �Ui




t

WijU
�
j �UiWij




t

U�
j (C.1)

V	i W
	
ij � Ui




t

U�
i W	

ij �UiViU
�
i W	

ij

� Ui



t

U�
i U�

i WijU
�
j �UiViU

�
i UiWijU

�
j

� �



t

UiWijU
�
i �UiViWijU

�
j , (C.2)

where we used 
/
t(UiU
�
i ) � 0.

Similarly, we have

W	
ijV

	
j � UiWijU̇

�
j �UiWijV(j)U�

j . (C.3)

Combining equations (C.1), (C.2), and (C.3), we obtain equation (34):




t

W	
ij � V	i W

	
ij �W	

ijV
	
j � Ui � 

tWij � ViWij �WijVj�U�

j . (C.4)

In a similar way, we have equation (35):

V	i � V	�i � Ui



t

U�
i �




t

UiU
�
i �Ui(Vi � V�i )U�

j

� Ui(Vi � V�i )U�
i . (C.5)

D. Nonlinear interaction among the elements

Starting from equation (52) with equation (5), we have

�	(i,j)(k,l)(UΨ)�i (UΨ)j(UΨ)�k(UΨ)l � �(Λ,Μ)(Ν,Θ)Ψ
�
ΛΨΜΨ

�
ΝΨΘ. (D.1)

Expanding the left-hand side of equation (D.1), we obtain

�	(i,j)(k,l)U�
ΛiΨ

�
ΛUjΜΨΜU

�
ΝkΨ�ΝUlΘΨΘ � �(Λ,Μ)(Ν,Θ)Ψ

�
ΛΨΜΨ

�
ΝΨΘ. (D.2)

Noting that UU� � U�U � 1, we have

UjΜU
�
Μj	 � ∆jj	 , Uk	ΝU

�
Νk � ∆k	k

UlΘU
�
Θl	 � ∆ll	 .

%&&&&'&&&&
(

(D.3)

Furthermore, using equation (D.3), we can derive equation (53):

�	(i,j)(k,l) � UiΛUkΝ�(Λ,Μ)(Ν,Θ)U
�
ΜjU

�
Θl (D.4)
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Differentiating both sides of equation (D.4) with respect to time and
using equations derived from equation (8),


U

t
� UW �W	U (D.5)


U�


t
� U�W	 �WU�. (D.6)

We have equation (54) with equation (55)




t
�	(i,j)(k,l) � [W	,�	](i,j)(k,l) �

UiΛUkΝ � 

t�(Λ,Μ)(Ν,Θ) � [W,�](Λ,Μ)(Ν,Θ)�U�
Μ,jU

�
Θl (D.7)

after straightforward calculation, where [W,�](Λ,Μ)(Ν,Θ) or [W	,�	](i,j)(k,l)

is an abbreviated notation defined as

[W,�](Λ,Μ)(Ν,Θ) �

WΛΡ�(Ρ,Μ)(Ν,Θ) � �(Λ,S)(Ν,Θ)WSΜ �WΝq�(Λ,Μ)(q,Θ) � �(Λ,Μ)(Ν,Γ)WΓΘ. (D.8)
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