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Properties of elementary one-dimensional cellular automata (CAs) have
been studied extensively in the past by varying the number of states each
cell can take, the neighborhood of the cell, or the transition rules by which
each cell is updated. This paper describes a previously untried variation
on a CA system, where each cell is able to anticipate its state one step
in the future, and the entire system is allowed to revisit the past over
many iterations. Manipulating the time domain in this way allows the
CA to exhibit complex fractal replication behavior. Any configuration of
active cells can be replicated endlessly while remaining constrained in a
self-similar layout.

1. Introduction

A cellular automaton (CA) consists of discrete cells arrayed in a specific
geometry. Each cell can be in one of k finite states, and each cell’s state
is updated on every time step according to a deterministic rule based
on the values of the neighboring cells and the value of the cell being
updated.

CAs have been studied in depth over the past several decades [1–5].
Although most researchers have examined such automata by manipulat-
ing the number of states, update rules, initial conditions, or the structure
(changing a square grid to a triangular one, treating it as a torus, etc.)
we have chosen to concentrate on some computational experiments in
manipulating the time domain of a one-dimensional CA (1-CA). Thus,
although our starting point is a 1-CA, our system is not a true CA by
any means as we allow the individual sites to peek ahead in the future,
and we allow the system to go back to the “past.”

The behavior exhibited by this modified system is interesting in that
it acts as a fractal replicator—any starting shape (a bitmap of the word
“ORDER” in Figure 1) is replicated endlessly, with the different copies
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Figure 1. Fractal replication of a simple bitmap.

of this shape always constrained in a self-similar fractal layout. Fractal
replicator CAs of this kind, sometimes called “Fredkin’s replicators,”
are described in the context of two-dimensional cellular automata (2-
CAs) [6–8], but fractal replication in 1-CAs seems to be a previously
undocumented phenomenon.

This paper is organized as follows. Section 2 describes an elementary
1-CA and a set of experiments that progressively demonstrate the in-
creasing complexity of the different systems that result as we manipulate
the time domain.

In section 3, we analyze this modified 1-CA using a more standard
2-CA where the second dimension is treated as an analogue of time in
the modified 1-CA. This conventional 2-CA also shows the same fractal
replicator properties.

Although the emergence of self-similar patterns like Sierpinski’s Tri-
angle in 1-CAs is well documented [3, 9], we have not seen any descrip-
tions of 1-CAs that replicate a two-dimensional shape or pattern. In
our discussion section, we propose that looking ahead (and retracing
steps) in a 1-CA allows the system to exhibit complex regularities (such
as fractal replication) that are not possible in an elementary automaton.

2. Manipulation of time domain in a one-dimensional

cellular automaton

2.1 Elementary one-dimensional cellular automata

An elementary 1-CA consists of a single row of square cells that are
updated on each time step based on their states and on the states of
their neighbors. We begin with the following two-state model having a
neighborhood of radius 1.

Number of states: k � 2.

Number of neighbors on each side: r � 1.

Update rule: Cellt�1 � (Leftt � Cellt �Rightt) mod 2.
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(a) Step 1

(b) Step 2

(c) Step 3

Figure 2. First three steps of an elementary 1-CA with k � 2, r � 1, and Rule 150.

Figure 3. First 128 steps in the evolution of a 1-CA with Rule 150.

The rule in Figure 2 is also known as Rule 150 according to Wolfram’s
numbering system [9]. The numbering system describes the value of each
cell on the next step, based on the values on the previous step of three
cells—the left neighbor, the cell itself, and the right neighbor. There are
23 � 8 possible combinations of three cells with binary values. If we
canonically order these eight combinations as �1, 1, 1�, �1, 1, 0�, �1, 0, 1�,
�1, 0, 0�, �0, 1, 1�, �0, 1, 0�, �0, 0, 1�, and �0, 0, 0�, then the updated cell
value for each combination will be 1, 0, 0, 1, 0, 1, 1, and 0 respectively.
Rule 150 is the decimal equivalent of 10010110, and there are 256 such
rules possible (28).

When we begin with a single cell on, and lay out several successive
time steps of this 1-CA one below the other, we get the well-documented
self-similar nested triangles in Figure 3.

2.2 One-dimensional cellular automaton with “look-ahead”

We now move away from a classic 1-CA where each cell was updated
based on the past values of the cell itself and its two neighbors. In our
time-manipulated 1-CA, each cell is allowed to look ahead at its own
future state. The new value of the cell still depends on three input values,
but instead of the neighborhood consisting of the left neighbor, the cell
itself, and the right neighbor, the neighborhood now becomes the left
neighbor, the cell’s own future state, and the right neighbor (Figure 4).
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Here is the time-manipulated model.

Number of states: k � 2.

Number of neighbors on each side: r � 1.

Update rule: Cellt�1 � (Leftt � Cellt�1 � Rightt) mod 2.

Note: Cellt�1 will be 0 for every step in this case.

On starting with a single on cell, we get a perfect Sierpinski Triangle
(or Pascal’s Triangle) after 128 steps (Figure 5). There is nothing very
surprising about this figure as other elementary 1-CA systems such as
the well-documented Rule 90 (and Rules 18, 26, 82, 146, 154, 210, and
218) also result in exactly the same figure. Rule 150 with every center
cell considered to have value 0 acts just like Rule 90, which takes the sum
modulo 2 of the left and right cells, without regard to the middle cell.

2.3 Placement of an object in the future

Figures 3 and 5 show how a 1-CA evolves over time. Each row in these
figures is a snapshot in time, with the future and past being visible at

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Figure 4. First four steps in the evolution of a time-manipulated 1-CA.

Figure 5. First 128 steps in the evolution of a modified 1-CA where each cell can
look ahead.
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(a) (b)

Figure 6. (a) Placing a squiggle in the “future” field of the 1-CA (b) results in a
chaotic pattern after 128 steps.

the same time. If we now place an “object” (a configuration of active
cells) such as a broken line, or a series of objects at different time points
in the future (Figure 6(a)), we see the graceful growth of a Sierpinski
triangle degenerate into a complex chaotic pattern once it “encounters”
the objects in the future.

At first glance, the dark region created on encountering objects in the
future (Figure 6(b)) might look like it can be characterized as class 4
behavior according to Wolfram’s schema [9]—with patterns that border
on the edge of chaos but occasionally show nested regularity (such as
the repeated white triangles of different sizes). However, subsequent
iterations of this CA (as described next) demonstrate that the behavior
is very regular and not at all chaotic as it initially seems.

2.4 Iterations of a modified one-dimensional cellular automaton

After the modified 1-CA has finished a specific number of time steps
(128 for the example in Figure 6(b)), we allow it to revisit the past and
go back to step 1. It is difficult to come up with a physical analogue
for this process but the computational and algorithmic specification is
straightforward.

We take all the states (past and present) together as a two-dimensional
field and update each row again according to our look-ahead rule, start-
ing from the first row. The process of running the CA system through
one complete set of time steps is defined as one iteration.

Many iterations of the CA result in a very interesting phenomenon—
the system now acts as a fractal replicator. Any objects or cell configura-
tions placed in the system will replicate infinitely—but the layout of the
copies will be constrained to the fractal Sierpinski Triangle (Figure 7).

On the 16th iteration in Figure 7, we see many copies of the original
active cell and the squiggly strand in a Sierpinski Triangle arrangement
with some overlapping. On the 17th iteration, each solitary active cell
and each squiggle causes darker, more chaotic regions to be formed sim-
ilar to the formation in the first iteration. By the 32nd iteration, the field
has sharpened again to show clear, nonoverlapping copies of the com-
plete configurations of the single active cell and the squiggle, arranged
fractally, but fewer in number than in the 16th iteration. Although
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Figure 7. First 32 iterations (from left to right, top to bottom) of the future field
in Figure 6.

replication seems to start by the 16th iteration, perfect nonoverlapping
replication takes place only on the 32nd iteration.

If we iterate this system some more (Figure 8), we see the same
types of behavior repeating at different scales. Moving from the 32nd
to the 33rd iteration is similar to moving from the 16th to the 17th
iteration. Similarly, by the time we get to the 64th iteration, we see only
three perfect nonoverlapping copies of the original configuration. This
reduction in the number of copies over iterations reaches the original
configuration by the 128th iteration.

If there is no object in the future field of the CA, the iterations make
no difference at all, and the Sierpinski triangle in Figure 5 remains
unchanged.

Unlike proper CAs that assume infinite grids and infinite time steps,
an iteration by its very nature restricts this CA to a certain number of
time steps after which the system has to iterate. We chose 128 time steps
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Figure 8. Iterations 33 to 64 (from left to right, top to bottom) of the future field
in Figure 6.

because it is easy to visualize smaller graphs, but iterations with more
time steps also exhibit the same behavior.

The number of iterations taken for the CA to create perfect nonover-
lapped copies of a shape depends on the size of the shape. The simplest
shape (a single black cell) takes one step to replicate, whereas larger
shapes take more time.

The fractal replication behavior of our modified 1-CA remains the
same even without the initial active cell. The only difference is that no
copies of the initial cell are produced.

The complete configuration of the field in Figure 6(a) is 30 cells
wide and 30 cells high, and it took 32 iterations for nonoverlapping
replication to occur.

As the log–log plot in Figure 9 shows, an N�N square configuration
of cells takes 2�Log2N� iterations to replicate.
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Figure 9. Number of iterations needed for a square pixel configuration of side
N to replicate.

Figure 10. Number of iterations needed for a rectangular pixel configuration
1 �N in size.

Rectangular configurations with dimensions M and N (M < N) will
replicate in fewer iterations than N �N square configurations, but the
formula remains a logarithmic step function as in Figure 9. As an
extreme case, the number of iterations needed for rectangles of size
1 �N is shown in Figure 10 and equals 2�Log2N�1� for N > 1.

The formula for the number of iterations needed for replication is
an upper limit in a sense. As the 16th iteration in Figure 7 shows,
fractal replication seems to be occurring earlier than expected for the
30 � 30 cell configuration that we started with. This is because the
starting configuration (Figure 6(a)) is sparse, and we do not perceive the
overlaps as being significant. If we start with a 30 � 30 cell smiley face
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Figure 11. 30 � 30 smiley face as a starting configuration.

in Figure 11, then we clearly see that perfect nonoverlapping replicas
only form on the 32nd iteration (Figure 12).

Shapes are fractally replicated even if we introduce them in between
iterations. Figure 13 shows what happens when a 10 � 10 cell squiggle
is introduced on the 10th step.

The 10�10 cell squiggle takes 16 iterations to replicate and maintains
its identity as seen on the 26th iteration (16 iterations after its introduc-
tion). The 42nd (10 � 32) and 64th iterations of this system are shown
in Figure 14. The 42nd clearly shows a replica of the squiggle while the
64th shows a replica of the smiley that was part of the initial field.

The properties of our modified 1-CA can be summarized as follows.

1. Any configuration of black cells in the field is replicated in a fractal layout.

2. Because the shapes grow at a fixed rate (one cell in each horizontal di-
rection on each time step), the number of iterations required to replicate
any shape is dependent on the size of the shape—larger shapes require
more iterations (because they need to move further apart in order to have
copies that do not overlap). An N �N square configuration of cells will
take 2�Log2N� iterations to replicate. A 1 � N rectangle takes 2�Log2N�1�

iterations for N > 1.

3. Additional shapes introduced anywhere in the field or on any iteration
will continue to replicate fractally even though their growth may look
chaotic for a few iterations.

4. Shapes that overlap each other may look chaotic to begin with, but re-
peated iterations show that the shapes remain intact.

5. The field changes in a discontinuous way on the iteration after a sharp
copy of the original configuration is seen.

An obvious question that comes to mind is whether this phenomenon
is seen for every rule in a modified 1-CA or just for the equivalent of
Rule 150.

In our update rule, the new state of each cell is given by the sum of
the three cells being considered modulo 2. Of the 256 possible rules
involving three cells (the cell being updated and its two neighbors), only
one other rule, Rule 105, shows any kind of fractal replication.
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Figure 12. First 32 iterations (left to right, top to bottom) for the modified 1-CA
field in Figure 11.

Figure 15 shows the first 16 iterations of the same starting configura-
tion as in Figure 6 using Rule 105. Rule 105 in binary is �0,1,1,0,1,0,0,1�,
which is the inverse of the binary representation of Rule 150—�1,0,0,1,0,
1,1,0�. Although the fractal replication behavior of Rule 105 is similar
to Rule 150, it is not as perfect a replicator as Rule 150 because it
introduces other artifacts as seen in the first 16 iterations. If the initial
configuration had been made up of all black cells with just one white
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Figure 13. First 32 iterations of the modified 1-CA field in Figure 11, with a
small squiggle introduced on the 10th iteration.

cell in the first row, then the result would have been the exact inverse of
the modified 1-CA with Rule 150.

2.5 Summary

When we modify an elementary 1-CA to allow individual cells to look
one step into the future and we allow the system to revisit the past over
many iterations, the system shows fractal replication behavior.
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(a) 42nd iteration (b) 64th iteration

Figure 14. 42nd and 64th iterations of modified 1-CA field in Figure 11.

Figure 15. First 16 iterations of modified 1-CA system based on Rule 105.

Of the remaining 254 rules, Rules 60, 102, and 195 allow replication
to occur, but not in a fractal layout.

Rule 150 is special in that it is the only rule that exhibits perfect
fractal replication in our modified 1-CA systems. See [3], [6], and
[7] for demonstrations of how self-similar nested structures (such as
Sierpinski Triangles) can only occur when the rules are additive. The
exclusivity of Rules 150 and 105 comes from the fact that they are the
only rules which flip the result if any of the three inputs are flipped. This
makes them the most specific additive rules, and the only ones capable
of fractal replication behavior.

In section 3 we describe a more conventional 2-CA (without time
manipulation) that also shows the fractal replication behavior seen in a
modified Rule 150 1-CA.

3. Fractal replication in a two-dimensional cellular automaton

One way of bringing the nonstandard and seemingly arbitrary peeks
into the future (and reiterations of the past) in line with conventional
CA research is to study the time-modified 1-CA using a 2-CA.
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The most well known 2-CA is the “Game of Life” devised by Conway
and popularized in [10]. “Life,” as it is popularly known, is a two state
CA where the cells are arranged in a square grid, and each cell is updated
based on a Moore neighborhood consisting of the cell itself and its eight
immediate vertical, horizontal, or diagonal neighbors. The rule for
updating the state of a cell on the next step is as follows: A cell in state
1 survives on the next time step if two or three of its neighbors are
currently 1, and goes to state 0 otherwise; a cell in state 0 goes to state
1 if it is surrounded by exactly three neighbors in state 1.

There are many ways that we can set up the rules and neighborhood
of a 2-CA in order to see fractal replication behavior. We describe one
such system which is the exact analogue of the modified Rule 150 1-CA
presented in section 2.

If we treat the vertical dimension of a 2-CA as the analogue of the
time steps in our earlier 1-CA, then the rules and neighborhood of the
2-CA will be as follows.

Number of states: k � 2.

Neighborhood: 2—North-East (NE) and North-West (NW) neighbors.

Update rule:
Cellt�1 � 1 If Cellt � 1 and Count (Neighborhoodt) � 0 or 2
Cellt�1 � 0 If Cellt � 1 and Count (Neighborhoodt) � 1
Cellt�1 � 1 If Cellt � 0 and Count (Neighborhoodt) � 1
Cellt�1 � 0 If Cellt � 0 and Count (Neighborhoodt) 	 1.

In other words, a cell “survives” (remains in state 1) on the next
step if it has 0 or 2 neighbors in state 1 on the current step, and an
inactive cell (state 0) is born (becomes state 1) on the next step if it has
exactly one neighbor in state 1 on this step. In the “Weighted Life”
rule syntax developed in [8], this would be listed as “NW1, NN0, NE1,
WW0, ME0, EE0, SW0, SS0, SE0, HI0, RS0, RS2, RB1.” The first nine
values in this list specify the weights of the neighbors being considered.
“HI0” specifies that there are no history states or intermediate states
between a cell’s 1 and 0 states. “RS” and “RB” signify the rules for
survival and birth respectively. Thus, in this rule, a cell in state 1
survives if surrounded by zero or two cells in state 1 while a cell in state
0 comes alive if surrounded by exactly one neighbor in state 1. The
corresponding Wolfam number for this 2-CA is 10, with the NE and NW
neighbors weighted as 1, and all other Moore neighbors weighted as 0.

If the initial configuration (t � 0) is a single 1 cell, then this 2-CA will
evolve over the first four steps as shown in Figure 16.

Just as in the case of our modified 1-CA, any shape (a smiley face
in Figure 17) “reproduces” in a self-similar way, laid out fractally as a
Sierpinski Triangle.
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Figure 16. First four steps in a 2-CA analogue of a modified 1-CA.

Figure 17. First 32 steps (left to right, top to bottom) of the 2-CA in Figure 15,
initialized with a smiley face instead of a single active cell.
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The key features of fractal replication in this 2-CA are the same as
the features of fractal replication in the modified 1-CA.

4. Discussion

In both of these cellular automaton (CA) systems, perfect copies of the
original configuration occur every 2n steps (where n is dependent on the
size of the configuration). The main difference between the two CAs is
the way that the field changes from one iteration or step to the next. In
the modified one-dimensional CA (1-CA), the iteration after the stage
with the perfect replica is the most chaotic. In contrast, for the two-
dimensional CA (2-CA), the step before the step with the perfect replica
is the most chaotic looking.

Beginning with a starting configuration of a single active cell, both
of these CA systems result in perfect Sierpinski Triangles. The modified
1-CA fills the field in the first iteration itself (the field cannot be infinite
because we have to revisit the first row after an iteration is complete).
On the other hand, the 2-CA described here grows infinitely.

Thus, the two systems are not identical. However, their fractal repli-
cation behavior is the same and is a direct consequence of the fact that
the update rule is essentially the same and is additive in nature. In both
cases, the states of three cells are considered before the update is done
and if the number of active cells out of these three is odd, then the
updated cell is active, else it is inactive.

In both systems the number of iterations (for the modified 1-CA) or
time steps (for the 2-CA) is a step function dependent on the size of the
cell configuration.

Rule 150 is the only rule for which our modified elementary 1-CA
shows perfect fractal replication. However, there are several 2-CAs
(with different neighborhoods and rules) that fractally reproduce any
shape present at the start. For a list of 2-CA replicators (based on the
“Weighted Life” model in [8]) with square, rectangular, and triangular
layouts, see [11].

Our focus in this paper was on the effect of modifying the time
domain of a 1-CA. The 2-CA is just a way to demonstrate that what
we have done is not some artifact of the updating scheme. Although
additive rules have been described before [3], in traditional 1-CAs they
form nested self-similar structures only for very simple initial conditions.
For more complex initial states, such systems do not exhibit fractally laid
out copies. By allowing individual cells to look ahead in our 1-CA, and
by allowing the modified system to revisit the past, we see qualitatively
different behavior that is not immediately intuitive. Shapes can grow
across each other without losing their identity, which is a well-known
property of additive rules such as Rule 90. We also see dramatic phase
transitions from sharp replicas to chaotic jumbles (and vice versa, in the
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(a) (b)

(c) (d)

Figure 18. The Modified 1-CA is able to separate out images placed in the field
at different points of time. (a) Starting with a smiley face. (b) After 32 iterations
a small boat is placed at the top of the field, overlapping the first smiley face.
(c) After 64 iterations a bitmap of the word “ORDER” is placed in the same
location, but it is illegible because all black cells in the bitmap are flipped to
white if it is overlapping a cell that is already black. (d) After 96 iterations
the bitmap of “ORDER” is clearly visible, and the remaining shapes will also
emerge on their own over the next 32 iterations.

case of the 2-CA described here). If shapes are of different sizes, or they
are introduced on different iterations, then they sharpen at different
times. Perfect and sharp replicas of all shapes are seen every 2n steps (n
depends on the size of the shape).

The additivity of the rule allows shapes to be introduced at different
points in different parts of the field and on different iterations. Even
though the shapes grow and overlap each other, they maintain their
identity over many iterations. In Figure 18, new shapes are introduced
on every 32nd iteration and placed in the same part of the field with the
condition that a black cell in the new shape is flipped to white if the cell
below is already black. After 96 iterations, we see how this modified
1-CA seems to be recovering the images placed in the field.

Computers typically store and retrieve images from memory using
explicit allocation and retrieval instructions. Our modified 1-CA system
is storing many copies of each image with no higher-order programming
instructions. The only point at which an external entity writes data to
the cells is on the top of the CA field. Computer memories, on the other
hand, would have to seek out an empty block of memory cells, write the
new data, remember where it wrote the data, and then recover it later
as the result of an external command.
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Organic neurons have little in common with digital cells in a CA,
except for one condition. The state of a neuron in a biological neural
network is dependent on the (past) states of other neurons connected
to it. Such is the case in our modified 1-CA. It is tempting to speculate
that the principles underlying memory storage and retrieval in neural
networks may be similar to our modified 1-CA.
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