
Locus-Shift Operator for Function Optimization
in Genetic Algorithms

Hiroshi Inazawa�

Center for Education in Information Systems,
Kobe Shoin Women’s University,
1-2-1 Shinohara Obanoyama, Nada, Kobe 657-0015, Japan

Kazuhisa Kitakaze

Department of Information Systems,
Tokyo University of Information Sciences,
1200-2 Yato Wakaba, Chiba 265-8501, Japan

Function optimization is the most important context for studying genetic
algorithm (GA) operators. In this paper a new GA operator is introduced
which greatly improves several well-known benchmark functions used in
function optimization. The new operator cuts a circular chromosome at
any locus selected randomly. By this operation, various types of linear
chromosomes can be formed from a parent circular chromosome. The
new operator is called locus-shift (LS) because the locus of the linear
chromosome produced by LS almost always shifts. In this paper, we study
the dynamics of the evolution of chromosomes by the LS in simulation
and show the effects of LS by various benchmark functions.

1. Introduction

Function optimization is the most important context for studying ge-
netic algorithm (GA) operators [1]. In this paper, we introduce a new
GA operator that works on a circular chromosome and cuts it at any
locus selected randomly. This operator can give various types of linear
chromosomes from a parent circular chromosome. We call the operator
locus-shift (LS) because the locus of the linear chromosome produced by
LS almost always shifts. A similar operator, which works on plasmid,
exists in nature [2]. In fact, we came up with the idea of the LS from
the plasmid.

LS yields various types of gene configurations from a circular chro-
mosome and is very similar to applying a high rate of mutation to a

�Electronic mail addresses: genzoh@shoin.ac.jp, ihiroshi@cs.ucsd.edu. Inazawa con-
ducted much of this study while a Research Scholar in the Department of Computer
Science and Engineering, at the University of California, San Diego and profited from
conversation with members of the department. Inazawa left UCSD on September 14,
2004.

Complex Systems, 16 (2006) 225–237; � 2006 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.16.3.225

226 H. Inazawa and K. Kitakaze

linear chromosome. If we consider the fact that LS has a mutation
feature, we can say that it plays the role of dynamic mutation since
the mutation rate generally changes after every LS operation. Here we
should note that the mutation rate changes randomly, but not adaptively
[3–5]. There is another important feature of the LS: although the linear
chromosome generated by the LS is different from the parent circular
chromosome as a whole, partial configurations of genes from the par-
ent remain locally in the linear chromosome. We believe that this will
produce some interesting results since some good building blocks are
conserved locally: we expect that the conserved partial configurations
may be effective in building a good chromosome through subsequent
application of the LS.

The GA has been established as a very strong method for finding the
optimal values of functions which are otherwise difficult to find [6–15].
However, some tasks remain, such as improving search performance and
deciding on the values of GA parameters. We believe that LS contributes
to the context of function optimization, especially by improvements in
search performance.

In this paper, we examine the dynamics of the evolution of chro-
mosomes by LS in simulation and show the effects of LS on various
benchmark functions used in function optimization. In section 2 we de-
scribe the features of LS in detail. In section 3 we provide an outline of
the simulation, the benchmark functions used, and describe the results.
In section 4 we summarize our findings and indicate areas for future
research.

2. Locus-Shift operator

2.1 Features of the locus-shift operator

We now define the LS and illustrate its fundamental behavior. As shown
in Figure 1, the initial chromosome has a circular structure consisting
of binary digits, where the black segments indicate “1” and the others
indicate “0”. We consider the binary digits as “genes.”

The LS operation cuts a chromosome at any position (locus) on the
circle. After the LS operation, the chromosome becomes linear. For
instance, when the chromosome breaks at the second locus, it becomes
the chromosome of No. 2. In the same way, when a break occurs at the
third locus, it becomes No. 3. By applying LS, a circular chromosome
becomes a linear chromosome with a gene configuration that depends
on the break position of the circular chromosome. Thus, we can have
a linear chromosome with various configurations of genes from the
parent circular chromosome. Note that partial configurations of the
chromosome are preserved locally.

Complex Systems, 16 (2006) 225–237

Locus-Shift Operator for Function Optimization in Genetic Algorithms 227

Figure 1. Illustrative image of the function of the LS operator. Chromosomes
consist of binary digits and they have a circular structure. Black parts have
“1” as their gene’s value, the others consist of “0”. When a chromosome
spontaneously breaks due to LS at the second locus in the circular state, it
becomes the chromosome of No. 2 on the right-hand side. In the same way,
when the break points are at the first or third locus, the chromosome becomes
No. 1 or No. 3.

Here are the two main features of LS.

Feature 1. A circular chromosome becomes a linear chromosome having
a different configuration of genes. However, partial configurations of the
circular chromosome are preserved locally.

Feature 2. The effect is similar to a high rate of mutation because the loci
positions change as a whole in the linear state.

Now, if LS is not applied, a chromosome will always break at the
first locus to interact with other linear chromosomes.

2.2 Basic behavior of the locus-shift operator

First, we examine the basic behavior of the LS in simulation. We used
chromosomes with an extremely biased structure:

[111111111111111000000000000000],

where each chromosome consists of 30 genes with half of the values
being “1”, and the remainder “0”. Note that we describe the chromo-
somes as linear for convenience. We prepared 100 chromosomes in the
population and applied only the LS in the simulation, using 0.5 as the
LS rate: Ps � 0.5. We calculated the relationship between the gener-
ations and the Hamming distances among chromosomes, the standard
deviation of the Hamming distances, and the averaged mutation rates
for each generation. Figure 2 shows the results together with the non-
biased structure case, where “1” and “0” are randomly distributed in a
chromosome. We can see that the Hamming distances of the biased case
quickly become almost equal to the nonbiased case. Also, the dynamic

Complex Systems, 16 (2006) 225–237

https://doi.org/10.25088/ComplexSystems.16.3.225

228 H. Inazawa and K. Kitakaze

0

5

10

15

20

0 10 20 30 40 50 60 70 80 90 100

Chromosome with nonbiased structure

Hamming distance

standard deviation of Hamming distance

dynamic mutation rate×10

Generation

0

5

10

15

20

0 10 20 30 40 50 60 70 80 90 100

Chromosome with biased structure

Hamming distance

standard deviation of Hamming distance

dynamic mutation rate×10

Generation

Figure 2. Relations among Hamming distances, standard deviation of the Ham-
ming distances, dynamic mutation rate, and generations. It can be seen that the
Hamming distances of the biased case quickly reaches almost the same value as
the nonbiased case, where the maximum value is 15. The Hamming distances
of both cases saturate to the maximum value at the same rate. The standard
deviations of the biased case are a little bit high in comparison with the results
of the nonbiased case. This indicates that the biased structure still remains in
the population. The dynamic mutation rates are about 0.2 for both cases. Note
that we show the real values times 10.

mutation rates quickly reached a definite value, which was about 0.2.
We concluded that LS is able to produce randomness in chromosomes
with the biased structure, which is almost the same as the nonbiased
case. On the other hand, the standard deviations of the biased case are
a little bit higher than the results of the nonbiased case. This indicates
that the biased structure still remains in the population. However, we
believe that this would be insignificant if other GA operators were ap-
plied together with LS. Also, note that if almost all of the chromosomes

Complex Systems, 16 (2006) 225–237

Locus-Shift Operator for Function Optimization in Genetic Algorithms 229

in a population initially have radical structures, such as

[111111111111111111111111111111]

or

[000000000000000000000000000000],

LS is totally inoperative.
Next, we examined whether or not LS is able to build good building

blocks in simulation, where we used the Royal Road function (R1) [16–
18]. R1 is defined as:

R1 �
n

�

i�1

ci∆i(x), (1)

where n � 8, ci � 8(i � 1, . . . , 8). The chromosome consists of 64 genes
and the fitness function is defined as 64/R1. Then the global optimal
value of R1 is 64:

∆i(x) � �
1 for x � si
0 for x � si

, (2)

where x is a bit string and si indicates a schema which consists of a block
of “11111111”. For example, s1 and s2 are described as follows:

s1 � “11111111 �

� ”,

s2 � “ � � � � � � � �11111111 � � � � � � � � � � � � � � � � � �

� ”,

and so on, where “*” means “0” or “1”. We used 0.6 as the crossover
rate Pc; the inverse of L (the number of genes in a chromosome) as the
mutation rate Pm; and 0.5 as Ps. The following algorithm was used in
the simulation.

0. Generate an initial population: Population consists of N circular chro-
mosomes with random gene configurations, where N � 100.

1. Apply the LS: Cut a chromosome at a locus selected randomly with Ps,
where we suppose that every circular chromosome becomes linear.

2. Apply roulette selection: Select N chromosomes from a population in
proportion to their fitness values.

3. Apply crossover: Make parents crossover with Pc to form new offspring.

4. Apply mutation: Make new offspring mutate at each locus with Pm.

5. Apply elite strategy: Conserve chromosomes with the best fitness value
in the present population.

Complex Systems, 16 (2006) 225–237

https://doi.org/10.25088/ComplexSystems.16.3.225

230 H. Inazawa and K. Kitakaze

0%

10%

20%

30%

40%

50%

60%

0 35 70

% egat
necre

P

Generation

R1

SGA1+LS(s1 to s8)

SGA1(s1 to s8)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 35 70

sse
nti

F

Generation

SGA1+LS

SGA1

R1

(a) (b)

Figure 3. Existing percentage of every schema s1 to s8 in the population for
the Royal Road function (R1). The upper group (solid lines) shows the case of
SGA1+LS. The lower group (dotted lines) shows the case of SGA1.

We show the results in Figure 3, where SGA1 means a simple GA with
one-point crossover and SGA1+LS means SGA1 with the LS. Figure 3(a)
shows the existing percentage of si(i � 1, . . . , 8) in the population, where
the upper group (solid lines) shows SGA1+LS and the lower group shows
SGA1. As we can see in this plot, SGA1+LS works very well at accu-
mulating good schemata. Figure 3(b) shows the searching performance
of SGA1+LS and SGA1. It can be seen that SGA1+LS performs better
than SGA1. We believe that Feature 1 worked well because the optimal
structure of R1 consisted of a nugget of “11111111”. In conclusion, LS
is very effective for R1. We can say that the LS would work very well
for chromosomes with a global optimal value, consisting of parts of the
same configuration as a bit string.

Furthermore, we calculated the Hamming distance between chromo-
somes with the best fitness in each generation to study the situation
of building blocks for R1. In addition, we studied the transition of
gene values in the best chromosome from each generation. In the sim-
ulation, we calculated 100 steps, where each step began with an ini-
tial population and the procedure of 1 through 5 was iterated for 70
generations. We used the following GA parameter values: Pc � 0.6,
Pm � 1/(the number of genes), and Ps � 0.5. The results are shown
in Figure 4, where the Hamming distances and the number of ones in
the chromosome are indicated. The values of the Hamming distance
and the number of ones are averaged by 100 steps for each generation.
We can see that the Hamming distance of SGA1+LS quickly decreases
in comparison with SGA1, and the number of ones rapidly increases
in the chromosome. This shows that a nugget “11111111” is rapidly
built by LS. We conclude that these results were caused by the special

Complex Systems, 16 (2006) 225–237

Locus-Shift Operator for Function Optimization in Genetic Algorithms 231

0

200

400

600

800

1000

0 35 70

0

10

20

30

40

50

60
ecnatsi

D gni
m

ma
H

 f ones
o

re
b

mu
N

eh
T

generation

R1 Max=64

Hamming Distance

The Number of ones

Figure 4. Hamming distances and the number of ones in the best chromosome.
The solid lines indicate SGA1+LS and the dotted lines indicated SGA1. The
values are averaged by 100 steps, where each step consists of 70 generations.
The test function is R1.

feature of the optimal state for R1, which consists of all ones. Generally,
we believe that LS has the potential to accumulate some good building
blocks for more common tasks, especially in cases with an optimal state
similar to R1. Next, we examine the effects of LS for various famous
benchmark functions.

3. Simulation

3.1 Definition of benchmark functions

We use eight popular benchmark functions for studying the performance
of GAs and GA operators. They are De Jong’s function [13] as F1 to
F5, the Twin-Peak function [19] as F6, Griewank’s function as F7, and
Michalewicz’s function as F8 [20, 21]. We examined the performance
of the LS for these functions.

These functions and the fitness functions are described in the follow-
ing, where we defined the global optimal value of each fitness function
to be “1”.

F1 is defined as

F1 � �
n

�

i�1

x2
i , (3)

where n � 3, �5.11 � xi � 	5.12,
xi � 0.01, a chromosome consists
of 30 genes: L � 30. The fitness function is defined as 1/(1 � F1).

F2 is defined as

F2 � �(100(x2
1 � x2)2 	 (1 � x1)2), (4)

Complex Systems, 16 (2006) 225–237

https://doi.org/10.25088/ComplexSystems.16.3.225

232 H. Inazawa and K. Kitakaze

where �2.047 � xi � 	2.048,
xi � 0.001, L � 24, and the fitness
function is defined as 1/(1 � F2).

F3 is defined as

F3 � �
n

�

i�1

[xi], (5)

where “[]” is Gauss’s symbol, and n � 5, �5.11 � xi � 	5.12,
xi �
0.01, L � 50, and the fitness function is defined as 1/(1 � (F3 � 30)).

F4 is defined as

F4 �
n

�

i�1

i � x4
i 	Gauss(0, 1), (6)

where n � 30, �1.27 � xi � 	1.28,
xi � 0.01, L � 240, and the
fitness function is defined as 1/(1 	 �F4�). Gauss(0, 1) means a normal
distribution with the average of “0” and the variant of “1”.

F5 is defined as

F5 � �
������
�

1
500

	
m

�

j�1

1
j 	�n

i�1(xi � aij)
6

�������
�

�1

, (7)

where n � 2, m � 25, �65.535 � xi � 	65.536,
xi � 0.001, L � 34,
and the fitness function is defined as 1/(1 � (F5 	 0.998004)). aij is
defined as:

aij � �
�32 �16 0 16 32 �32 �16 . . . 0 16 32
�32 �32 �32 �32 �32 �16 �16 . . . 32 32 32�

. (8)

F5 has a global optimum value of �0.998004 (rounded off to O(10�7)).
F6 is defined as

F6 � (x1 � x2 � x3 . . . xn�1 � xn) � (x̄1 � x̄2 � x̄3 . . . x̄n�1 � x̄n), (9)

where n � 100 and x1, . . . , xn � 1 or 0, each boolean variable xi is
determined to be F6 � 0 or 1, L � 100, and the fitness function is
defined as:

max
�������
�

�

�
n
i�1 x2

i

n
,

�

�
n
i�1(1 � xi)

2

n

��������
�

. (10)

F7 is defined as

F7 � 1 	
1

4000

n

�

i�1

x2
i �

n

	

i�1

cos �
xi

1
� , (11)

where n � 10, �512 � xi � 	511,
xi � 1.0, L � 100, and the fitness
function is defined as 1/(1 	 F7).

Complex Systems, 16 (2006) 225–237

Locus-Shift Operator for Function Optimization in Genetic Algorithms 233

F8 is defined as

F8 �
n

�

i�1

sin(xi) � sin
2m �

ix2
i

Π
� , (12)

where n � 5, m � 10, 0 � xi � Π,
xi � Π/(2
12 � 1), L � 60, and the

fitness function is defined as 1/(1 	 F8 	 4.688).

3.2 Outline of the simulation

In the simulation, the procedure of 1 to 5 from section 2.2 is iterated
until the best value of fitness is obtained, or the number of generations
reaches the maximum, which was decided a priori to be 20000. We
decided the precision of the fitness evaluation to be O(10�3). We call
each procedure a trial in the simulation and we had 100 trials, changing
the initial population for each. We used the following values for the GA
parameters: Pc � 0.6, Pm � 1/L, and Ps � 0.5.

3.3 Results

We show the results in Table 1, where AVG.G means the averaged values
of the number of generations in which a global optimal value was found,
or in which the maximal value of 20000, fixed a priori, was reached.
“Successful rate” means the percentage of a global optimal value found
out of 100 trials. Σmeans the standard deviation of AVG.G. In addition,
a two-point crossover and a three-point crossover were used in SGA2
and SGA3. Moreover, we tried to calculate various cases of SGA1+LS:

1. Pall � Pc � Pm � Ps � 0,

2. Pc � 0, Pm � 0, Ps � 0,

3. Pc � 0, Pm � 0, Ps � 0, and

4. Pc � Pm � 0, Ps � 0.

As shown in Table 1, the search performance of SGA1+LS is remark-
ably better than that of SGA1, 2, and 3 for all functions except F8. In
order to find the work performed by the LS, we examined the config-
uration of the gene’s value in the functions’ good chromosomes. We
found that the good chromosomes with improved results consist mainly
of nuggets with the same value: “000. . . 00” or “111. . . 11”, and so
on. We found these structures for F1 through F7. We conclude that
Features 1 and 2 of LS work well for these functions. However, the
situation of F4 was a little different from the other functions. The good
chromosome consisted mainly of many smaller nuggets with the same
value: “11”, “111”, “1111”, and “00”. The common configuration
of F1 through F7 is that the good chromosomes have some of the same
nuggets repeated in their structure. We believe that this structure gave

Complex Systems, 16 (2006) 225–237

https://doi.org/10.25088/ComplexSystems.16.3.225

234 H. Inazawa and K. Kitakaze

Test Fuction

Avg. of the best
fitness value

00 . 9 9 9 0.999 0.999 0.569 0.999 0.999 0.999 0.999 0.999 00 . 9 9 9 0.852 0.999 0.999 0.999

2 4 . 8 5 0 34.920 28.970 20000 31.350 35.860 32.480 31.73 567.630 22 5 . 7 5 20000 98.290 85.970 98.120
(1 0 0 %) (100%) (100%) (0%) (100%) (100%) (100%) (100%) (99%) ((1 0 0 %) (0%) (100%) (100%) (100%)

? 1 3 . 2 1 0 16.646 15.724 0.000 16.334 16.369 15.952 23.983 778.898 22 0 . 2 4 6 0.000 145.657 75.647 109.834

Dynamic
Mutation Rate

0 . 2 4 5 0.240 0.247 0.250 0.249 0.247 00 . 2 5 1 0.247

Test Fuction

Avg. of the best
fitness value

1.000 11 . 0 0 0 1.000 0.103 1.000 1.000 1.000 1.000 00 . 9 9 9 0.999 0.016 1.000 1.000 0.999

28.140 22 4 . 0 1 0 62.360 20000 33.950 34.720 35.460 110.410 88 8 . 5 4 0 214.240 20000 129.570 128.920 119.770
(100%) ((1 0 0 %) (100%) (0%) (100%) (100%) (100%) (100%) ((1 0 0 %) (100%) (0%) (100%) (100%) (100%)

? 7.321 66 . 2 9 4 32.400 0.000 9.252 11.384 12.050 45.308 33 2 . 3 4 9 66.070 0.000 41.076 41.589 34.808

Dynamic
Mutation Rate

0.224 00 . 2 2 3 0.215 0.237 0.248 00 . 2 4 8 0.250 0.249

Test Fuction

Avg. of the best
fitness value

1 . 0 0 0 0.982 1.000 0.215 0.918 0.902 0.914 1.000 11 . 0 0 0 1.000 0.796 1.000 1.000 1.000

2 3 . 5 3 0 1215.300 784.280 19800 9069.090 10604.660 9417.860 1126.290 22 0 7 . 4 5 0 716.870 20000 1567.160 1586.600 1494.370
(1 0 0 %) (96%) (100%) (0%) (51%) (54%) (40%) (100%) ((1 0 0 %) (100%) (0%) (100%) (100%) (100%)

? 1 0 5 . 0 0 3 4745.891 1049.636 1989.776 9907.388 9977.038 9966.019 622.042 44 1 . 2 6 8 200.690 0.000 599.343 585.892 420.383

Dynamic
Mutation Rate

0 . 2 4 4 0.236 0.241 0.247 0.199 00 . 1 7 5 0.184 0.233

Test Fuction

Avg. of the best
fitness value

0 . 9 8 1 0.880 0.866 0.017 0.889 0.880 0.885 0.999 0.999 0.985 0.348 0.999 00 . 9 9 8 0.999

3200 .2109069.060 20000 20000 20000 20000.000 20000 2668.890 2070.750 10643.430 20000 1795.770 11656 .7401727.110
(8 3 %) (65%) (0%) (0%) (0%) (0%) (0%) (89%) (100%) (73%) (0%) (100%) ((1 0 0 %) (99%)

? 5858 .921 9589.565 0.000 0.000 0.000 0.000 0.000 2658.854 2398.884 7731.098 0.000 2999.309 22550 .5412823.449

Dynamic
Mutation Rate

0 . 2 1 3 0.194 0.243 0.250 0.245 0.242 0.246 0.249

AVG.G
(Successful rate)

AVG.G
(Successful rate)

AVG.G
(Successful rate)

SGA1+LS
(Pc=0)Model

SGA1+LS
(Pm=0)

SGA1+LS
(Pc=0)

SGA1+LS
(Pm=0)SGA2

SGA1+LS
(Pall 0)

F 8F 7

F 3 F 4

F 5 F 6

SGA2 SGA3

AVG.G
(Successful rate)

SGA1+LS
(Pm=Pc=0) SGA1

F 1

SGA3
SGA1+LS
(Pall 0)

F 2

SGA1
SGA1+LS
(Pm=Pc=0)

Table 1. Comparisons of SGA1+LS with various cases of Pc, Pm, Ps, SGA1,
SGA2, and SGA3 for F1 to F8. SGA2 and SGA3 means SGA with two-point
crossover and three-point crossover. Each optimal fitness value is 1.0. AVG.G
indicates the average minimum generation number. Successful rate indicates the
percentage of trials in which an optimal value is found. That is, 100% means
that the operation found the optimal value in every trial. On the other hand,
when the rate is 0%, the number of generations is 20000 which was set a priori.
The results written in bold are the best AVG.G. The standard deviation Σ of
AVG.G and the dynamic mutation rate are also indicated.

us the good results produced by the LS, especially with Feature 1. On
the other hand, the good chromosome of F8 does not have this common
configuration, consisting instead of some nuggets with different types
of values and the repeated structure did not hold a dominant position.
Because of this, LS did not produce good results for F8.

Another result shown in Table 1 is that LS works well together with
the other GA operators; the mutation and crossover operators are es-
sential for LS. However, we can find some differences in this situa-
tion. F2 needs “LS+mutation” without crossover and F4 and F6 need
“LS+crossover” without mutation. Unfortunately, we could not iden-
tify the specific properties of good chromosomes that would account for
these differences. It would be necessary to study many other functions
to throw light on these properties. We conclude that LS needs ordinary

Complex Systems, 16 (2006) 225–237

Locus-Shift Operator for Function Optimization in Genetic Algorithms 235

GA operators to work well, and that LS is effective for good chromo-
somes with a repeated structure, consisting of some nuggets with the
same values.

4. Conclusion and future research

In this paper, we investigated the behavior of the locus-shift (LS) opera-
tor and its effect on function optimization. We have established that LS
gives excellent performance for almost all of the benchmark functions
considered. Search performance of the functions was remarkably im-
proved by the LS as compared to the results using only ordinary genetic
algorithm (GA) operators. On the other hand, we found that the LS
works well together with the ordinary GA operators. Moreover, we
indicated that LS is effective for good chromosomes with a repeated
structure, consisting of some nuggets with the same gene’s value, which
is produced by Features 1 and 2 of the LS. Thus, we conclude that the
LS plays an important role as a fundamental operator in the field of
function optimization.

It would be necessary to examine the best rates of the LS and ordinary
GA operators, and the combination of these rates in order to obtain the
optimal values of the benchmark functions. In addition, we would need
to study the performance of the LS for other functions. We propose to
conduct this research in the near future.

Acknowledgment

Thanks are due to Professor Yutaka Yamamoto for his careful editing
of the manuscript in its original form. One of the authors (K. K.)
was supported by the Collaboration Support Program of the Tokyo
University of Information Sciences.

References

[1] J. H. Holland, Adaptation in Natural and Artificial Systems (University
of Michigan Press, Ann Arbor, 1975).

[2] J. M. Smith, Evolutionary Genetics (Oxford University Press, Oxford,
1989).

[3] T. Bäck, “Self-Adaptation in Genetic Algorithms,” Proceedings of the First
European Conference on Artificial Life (MIT Press, Cambridge, 1992).

[4] T. Bäck, The Interaction of Mutation Rate, Selection, and Self Adaptation
within a Genetic Algorithm, Parallel Problem Solving from Nature 2
(North-Holland, Amsterdam, 1992).

Complex Systems, 16 (2006) 225–237

https://doi.org/10.25088/ComplexSystems.16.3.225

236 H. Inazawa and K. Kitakaze

[5] T. Bäck, “Optimal Mutation Rates in Genetic Search,” Proceedings of
the Fifth International Conference on Genetic Algorithms (Morgan Kauf-
mann, Publishers, San Mateo, CA 1993).

[6] J. J. Grefenstette, Proceedings of the First International Conference on Ge-
netic Algorithms and Their Applications (Lawrence Erlbaum Associates,
Publishers, Hillsdale, NJ, 1985).

[7] J. J. Grefenstette, Genetic Algorithms and Their Applications: Proceedings
of the Second International Conference on Genetic Algorithms and Their
Applications (Lawrence Erlbaum Associates, Publishers, 1987).

[8] J. D. Schaffer, Genetic Algorithms, Proceedings of the Third Interna-
tional Conference on Genetic Algorithms (Morgan Kaufmann, Publishers,
1989).

[9] R. K. Belew, and L. B. Booker, Genetic Algorithms, Proceedings of the
Fourth International Conference on Genetic Algorithms (Morgan Kauf-
mann, Publishers, 1991).

[10] K. Michalewicz, Genetic Algorithms + Data Structure = Evolution Pro-
grams (Springer-Verlag, Berlin, 1992, Second extended edition, 1994).

[11] S. Forest, Genetic Algorithms, Proceedings of the Fifth International Con-
ference on Genetic Algorithms (Morgan Kaufmann, Publishers, 1993).

[12] X. Yao, Y. Liu, and G. Lin, “Evolutionary Programming Made Faster,”
IEEE Transactions on Evolutionary Computation, 3(2) (1999) 82–102.

[13] K. A. De Jong, An Analysis of the Behavior of a Class of Genetic Adaptive
Systems, Doctoral dissertation (University of Michigan, Ann Arbor, 1975).

[14] R. A. Caruana and J. D. Schaffer, “Representation and Hidden Bias:
Gray vs. Binary Coding for Genetic Algorithms,” in Proceedings of the
Fifth International Conference on Machine Learning, Los Altos, CA 1988
(Morgan Kaufmann, Publishers, 1988).

[15] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Ma-
chine Learning (Addison Wesley, Boston, 1989).

[16] M. Mitchell, S. Forrest, and J. H. Holland, “The Royal Road for Ge-
netic Algorithms: Fitness Landscapes and GA Performance,” in Toward
a Practice of Autonomous Systems: Proceedings of the First European
Conference on Artificial Life, edited by F. J. Varela and P. Bourgine (MIT
Press, 1992).

[17] S. Forrest and M. Mitchell, “Relative Building Block Fitness and the Build-
ing Block Hypothesis,” in Foundations of Genetic Algorithms 2, edited
by L. D. Whitley (Morgan Kaufmann, Publishers, 1993).

[18] M. Mitchell, J. H. Holland, and S. Forrest, “When Will a Genetic Algo-
rithm Outperform Hill Climbing?” in Advances in Neural Information
Processing Systems 6, edited by J. D. Cowan, G. Tesauro, and J. Alspector
(Morgan Kaufmann, Publishers, 1994).

Complex Systems, 16 (2006) 225–237

Locus-Shift Operator for Function Optimization in Genetic Algorithms 237

[19] S. A. Cook, “The Complexity of Theorem-Proving Procedures,” in Pro-
ceedings of the Third Annual ACM Symposium: Theory of Computing,
1971.

[20] K. E. Mathias and L. D. Whitley, “Changing Representations During
Search: A Comparative Study of Delta Coding,” Evolutionary Computa-
tion, 2 (1995) 249–278.

[21] The Organizing Committee: H. Bersini, M. Doringo, S. Langerman, et
al., Results of the First International Contest on Evolutionary Optimiza-
tion (1st ICEO) (1996 IEEE International Conference on Evolutionary
Computation ICEC’96, 1996).

Complex Systems, 16 (2006) 225–237

https://doi.org/10.25088/ComplexSystems.16.3.225

