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At row 2n in the cellular automaton rule 30, a region of the initial con-
dition reappears on the right side, which causes the automaton to “begin
again” locally. As a result, local nested structure is produced. This phe-
nomenon is ultimately due to the property that rule 30 is reversible in
time under the condition that the right half of each row is white. The
main result of the paper establishes the presence of local nested structure
in k-color rules with this bijectivity property, and we explore a class of
integer sequences characterizing the nested structure. We also prove an
observation of Wolfram regarding the period length doubling of diagonals
on the left side of rule 30.

1. Introduction

A one-dimensional cellular automaton consists of a row of cells that are
updated in parallel according to a rule icon such as

��� ��� ��� ��� ��� ��� ��� ���
� � � � � � � � ,

which specifies the color of a cell in terms of the colors of itself and a
number of its neighbors on the previous step. The icon above is that
of rule 30 and can be paraphrased as follows. If a cell and its right
neighbor are both white, the cell becomes the color of its left neighbor;
otherwise it becomes the opposite color of its left neighbor.

The rule icon

��� ��� ��� ��� ��� ��� ��� ���
� � � � � � � �

is that of rule 90, under which a cell becomes white if its left and right
neighbors are the same color and black otherwise. Rules 30 and 90
display qualitatively different nested structures.

Let I be the doubly infinite row

���������
consisting of a single black cell at position 1 among a background of
white cells. In a sense, this is the simplest nontrivial initial condition,
and as such we assume that a cellular automaton is begun from I if no
other initial condition is specified.
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240 E. Rowland

Figure 1. Rule 90 evaluated for 100 steps. Global nested structure is evident:
Each part resembles the whole.

Figure 1 shows the beginning of rule 90. The left and right diagonals
of rule 90 are periodic with period lengths 2Α. It follows that at row
2n, partial copies of the initial condition I reappear on the left and right
sides. Locally, the evaluation continues from these isolated black cells
identically as it continues initially from I. The number of cells to which
row 2n and I agree increases with n, so a “self-similar” nested structure
appears on each side. Since the two copies of the initial condition on
row 2n span the entire row, this structure is global: Every part of the
automaton resembles some part of the initial condition.

Figure 2 shows the beginning of rule 30—a triangular pattern of more
or less uniform disorder. As convincingly established by Stephen Wol-
fram in A New Kind of Science [1], systems like rule 30 defy the intuition
that simple programs only produce simple results. Rule 30, despite its
simple definition, does not appear to generate a regular pattern.

However, there are certain local structures in rule 30 that are pre-
dictable. In particular, the right diagonals are periodic with period
lengths 2Α. (This is shown in Lemma 2.) Just as in the case of rule 90,
this periodicity implies that a small region of the initial condition reap-
pears on the right side of row 2n, and from this the computation con-
tinues locally as it does from I. Once again, nested structure arises, but
in this case the structure remains local. More precisely, the number of
central cells to which row 2n agrees with I grows roughly linearly with n,
whereas in the case of rule 90 the growth is exponential. In both cases,
the nested structure leads to some level of computational reducibility,
but in rule 30 this reducibility is quite restricted. This is to be expected
simply on the basis of the perceived computational complexity of the
two automata: Rule 90 is performing a relatively simple computation,
while rule 30 is presumably performing a computation that cannot be
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Local Nested Structure in Rule 30 241

Figure 2. Rule 30 evaluated for 100 steps. No global structure is present, but
there is local nested structure on the right side.

Figure 3. Rule 86: a left–right reflected, left-justified image of rule 30, in which
the periodicity of columns can be seen. The leftmost sequence of black cells in
each row has been highlighted, showing the local nested structure.

done more quickly. That is, rule 90 is computationally reducible, while
rule 30 is almost certainly computationally irreducible.

As shown for the general case in section 2, the right nestedness of
rules 30 and 90 is a consequence of the left bijectivity of these rules.
A Mathematica package for studying left and right bijective rules is
available from the author’s web site [2].

The nested structure of rule 30 is more easily seen when each row is
shifted right relative to the one below it. After an additional left–right
reflection (to put it into the standard form used in later sections), one
obtains the range [�2, 0] rule 86 shown in Figure 3.
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242 E. Rowland

A nested integer sequence naturally arises from this structure, the
following properties of which are proved in section 2. Let ΛI(t) be the
length of the maximal leftmost sequence of consecutive black cells in
row t � 1 of rule 86. The sequence �ΛI(t)�

�
t�1 begins

1, 3, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 3, 1, 7,
1, 3, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 3, 1, 9,
1, 3, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 3, 1, 7,
1, 3, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 3, 1, 15, . . .

and is nonperiodic. It follows by right bijectivity that

ΛI(t) � a(ord2(t))

for some (strictly) increasing sequence �a(n)��n�0, where ordl(t) is the
exponent of the largest power of l dividing t. Thus a(n) � ΛI(2

n) for all
n, so at least n 	 1 consecutive black cells follow the infinite white left
tail on row 2n � 1 and, consequently, for n 
 1 at least n consecutive
white cells, preceded by a black cell, follow the white left tail on row
2n. That is, at least n 	 1 central cells of row 2n coincide with I.

The values of a(n) for 0 � n � 40 are 1, 3, 4, 6, 7, 9, 15, 16, 24,
25, 27, 29, 34, 36, 37, 39, 41, 43, 48, 49, 51, 54, 55, 58, 60, 63, 64,
66, 69, 70, 72, 74, 77, 79, 80, 82, 84, 86, 90, 91, 93. This sequence
characterizes the period lengths of the diagonals on the right side of
rule 30 and seems to have additional significance as well, as discussed in
section 3. However, it displays no obvious regularity by which the nth
term may be computed (even conjecturally) in shorter than exponential
time. Indeed, the terms given here were obtained directly by computing
the rightmost 121 nonwhite diagonals of rule 30 up to row 240.

In section 2 we formalize our discussion with relevant definitions and
prove the main theorem of the paper, which establishes the appearance
of nestedness in right and left bijective cellular automata. In section 3
we discuss other initial conditions and corresponding integer sequences.
Section 4 gives consideration to other right bijective rules and a possible
application to the problem of detecting computational reducibility.

The left diagonals of rule 30 are only eventually periodic, and this is
not sufficient to produce nested structure on the left side. However, the
concept of bijectivity can still be used to obtain some information. In
section 5 we prove Wolfram’s observation on the period doubling of left
diagonals by studying conditions under which rule 30 is right bijective.

2. Bijectivity and convergence

We adopt Wolfram’s paradigm [1, 3] for studying cellular automata. In
particular, we use his numbering convention for cellular automaton rules
(in which the rule icon is read in base k) with the following additional
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Local Nested Structure in Rule 30 243

notation. The set of k colors will be denoted [k], with the special case
[2] � ��, ��. The set [k]� of doubly infinite sequences of cells (indexed
by the set of integers �, increasing to the right) is the set of rows. For a
row R � [k]�, let R(m) be the color of the cell at position m in R, and
let R[m1, m2] be the (m2 �m1 	 1)-tuple (R(m1), R(m1 	 1), . . . , R(m2)).
(We have I(1) � �, and I(m) � � for m 
 1.)

For d1 � d2, a k-color, range [d1, d2] rule f is one in which a cell
may be any of k colors and the color of the cell at position m depends
on the colors of the d2 � d1 	 1 cells at positions m 	 d1, m 	 d1 	 1,
. . . , m 	 d2 on the previous step. Formally, we allow f to be both a
function on (d2�d1	1)-tuples and a function on rows, with the notation
f (xd1

, xd1	1, . . . , xd2
) for the function f � [k]d2�d1	1 � [k] and the notation

fR for the function f � [k]� � [k]�, where

(fR)(m) � f (R(m 	 d1), R(m 	 d1 	 1), . . . , R(m 	 d2)).

The successor of R under f is fR, and the row S is a predecessor of R
under f if fS � R. We generate the image of a cellular automaton with
rule f and initial condition R by placing below each row f tR its successor
f t	1R. By “column m of �f tR�” we mean the sequence �(f tR)(m)��t�0.

A row R is rightful if there exists a cell to the left of which all cells are
a single color c; all of the “information” of a rightful row is on the right
half. The color c will be called the color of the left tail of R, and often
our convention will be that R(m) � c 
 R(1) for m � 0. Analogously,
a row is leftful if its left–right reflection is rightful. A row is central if
it is both rightful and leftful (allowing the left and right tails to be of
different colors). Rightfulness, leftfulness, and centrality are preserved
under any finite range rule.

For example, the row

I ����������

is rightful with a white left tail. It is also leftful with a white right tail.
Therefore it is central (with a central part of length 1).

The rule f is right bijective if for every (cd1
, cd1	1, . . . , cd2�1) � [k]d2�d1

the function

x � f (cd1
, cd1	1, . . . , cd2�1, x)

on [k] is bijective. Define the left–right reflection of a k-color, range
[d1, d2] rule f to be the k-color, range [�d2,�d1] rule g satisfying

g(xd2
, . . . , xd1	1, xd1

) � f (xd1
, xd1	1, . . . , xd2

)

for every (d2 � d1 	 1)-tuple (xd1
, xd1	1, . . . , xd2

). We say that f is left
bijective if its left–right reflection is right bijective. This positional
bijectivity has been considered by Jen [4, 5] and by Wolfram [1] (under
the name “one-sided additivity”).
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244 E. Rowland

The results in this paper are stated for right bijective rules but hold for
left bijective rules mutatis mutandis. Accordingly, we primarily study
k-color, range [�d, 0] rules f (with d 
 0). The color of a cell under
such a rule depends on the colors of d 	 1 cells on the previous step,
namely itself and its d nearest left neighbors. (By composing with an
appropriate horizontal shift, any k-color, finite range rule can be put into
this form.) The advantage of these “shifted” rules is that the columns
(rather than the diagonals) are periodic.

Right bijectivity allows one to uniquely determine c0 in

c � f (c�d, c�d	1, . . . , c�1, c0),

given the colors of all other cells appearing. That is, there is an inverse
function

f �1 � f (c�d, c�d	1, . . . , c�1, x) � x

for every d-tuple (c�d, c�d	1, . . . , c�1). Because of this inverse function,
the automaton can often be run backward in time (uniquely) as well as
forward.

We say that a row R has an infinite history under f if for every t 
 1
there exists S�t such that f tS�t � R. We say that R has an infinite rightful
history if every S�t can be chosen to be rightful.

Proposition 1. Under a right bijective rule, a rightful row has at most
one infinite rightful history.

Proof. Let f be a right bijective, k-color rule, and let R � [k]� be a
rightful row with left tail color c and an infinite rightful history under
f . It suffices to show the uniqueness of a rightful predecessor S of R
having an infinite rightful history under f . By right bijectivity, the left
tail color c� of S determines S uniquely. Therefore, to show uniqueness
of S it suffices to show the uniqueness of c�.

Let G be the directed graph on the vertex set [k] with an edge (i � j)
from i to j whenever f (i, i, . . . , i) � j. (In particular, we have the edge
(c� � c).) The sequence of left tail colors in the infinite rightful history
of R corresponds to a (directed) cycle in G. Since every vertex i � [k]
has exactly one edge leaving it, there is at most one cycle containing the
vertex c. The vertex c� in this cycle preceding c is thus unique.

For a right bijective rule f and a rightful row R with an infinite rightful
history, let us therefore define f �1R to be the rightful predecessor of R
with an infinite rightful history. (By the proof of Propostion 1, R fails
to have an infinite rightful history only when the left tail color of R does
not belong to a cycle in G.) One verifies for a range [�d, 0] rule that if
R(m) � R(0) for m � 0, then (f �1R)(m) � (f �1R)(0) for m � 0.

Figure 4 shows rule 30 in the range �50 � t � 50, displayed as a
(centered) range [�1, 1] rule. Each row in the infinite leftful history has
a white right tail and an eventually periodic left “tail.”
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Figure 4. The history (upper half) and future (lower half) of rule 30 from a single
black cell. While the future is computed down the page by the automaton, the
history is computed up the page by the inverse function. As guaranteed by
Proposition 1, this history is the unique history with white right tails.

Lemma 1 follows immediately from the bijectivity of f .

Lemma 1. Let f be a right bijective, range [�d, 0] rule. Let R and S be
rows such that R(m) � S(m) for m < M but R(M) 
 S(M). For every
t � �, (f tR)(M) 
 (f tS)(M).

That is, under a bijectivity condition, changing the color of a cell in the
initial condition causes each subsequent (and precedent) cell in the same
column to change color as well.

A result of Jen [4, Theorem 4] guarantees the eventual periodicity of
columns in any range [�d, 0] cellular automaton with a rightful initial
condition. For right bijective rules, the periodicity is not eventual but
immediate. Intuitively, this is because periodicity in a column continues
uniquely backward in time. We formalize this in the following result,
where l(k) � lcm(1, 2, . . . , k).

Lemma 2. Let f be a right bijective, k-color, range [�d, 0] rule, and let
R � [k]�. If, in the computation of �f tR�, columns m � d, m � d 	 1,
. . . , m � 1 are periodic with period lengths pm�d, pm�d	1, . . . , pm�1
respectively, then column m is periodic with period length dividing l(k) �
lcm(pm�d, pm�d	1, . . . , pm�1).

Proof. Let p � lcm1�i�d pm�i, and let cj � (f jpR)(m). If cj � c0 for some
j 
 1, then column m is periodic with period length dividing jp. Thus we
would like to show that cj � c0 for some 1 � j � k. To that end, assume
that cj 
 c0 for 1 � j < k; we show that ck � c0. By Lemma 1, cj 
 ci

for 0 � i < j < k (because cj � ci would imply cj�i � c0). Therefore
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246 E. Rowland

�c0, c1, . . . , ck�1� � [k], so we must have ck � ci for some 0 � i < k.
Again by Lemma 1, i � 0.

Let Sn � [k]� for each n 
 0. We say that the sequence �Sn�
�
n�0

converges to a row S � [k]� and write Sn � S if for every m there exists
N such that for all n 
 N we have Sn(m) � S(m). This is simply bitwise
convergence, where every cell eventually stabilizes.

Theorem 1 implies that a right bijective cellular automaton with a
rightful initial condition exhibits local nested structure on the left side.
It identifies a sequence of rows in the automaton that converges to its
initial condition, causing the computation to “begin again” locally at
each. (One can think of this in terms of p-adic convergence in the
exponent.) Again, let l(k) � lcm(1, 2, . . . , k).

Theorem 1. Let f be a right bijective, k-color, range [�d, 0] rule, and
let R � [k]� be a rightful row with an infinite rightful history under f .
As n � �, f l(k)n

R � R.

Proof. Without loss of generality, assume that R(m) � R(0) for m � 0.
For every m � 0, column m of �f tR� is periodic with period length
dividing l(k). It follows from Lemma 2 that for m 
 0, column m of �f tR�
is periodic with period length dividing l(k)m	1. Therefore �(f tR)[0, m]��t�0

is also periodic with period length dividing l(k)m	1, so (f l(k)m	1
R)[0, m] �

R[0, m]. As m � �, f l(k)m	1
R � R.

If f is right bijective, a nested structure is observed on the left side of
�f tR� even without the condition of the theorem that R has an infinite
rightful history. However, in this case there exists t0 such that f t0R has
an infinite rightful history, and the theorem applies. In some sense, then,
it is more natural to consider an initial condition with an infinite history
than one without.

An immediate corollary of Theorem 1 is that for every integer r,
f l(k)n	rR � f rR as n � �. This follows from the uniqueness of rightful
successors and (infinite history) rightful predecessors.

With a right bijective, k-color rule f specified by context, define

ΛR(t) � inf�m � � � (f tR)(m 	 1) 
 R(m 	 1)�.

For rightful R, this is the number of central cells to which f tR agrees with
R. Thus ΛR(t) � � � ����, where ΛR(t) � � if f tR � R and ΛR(t) � ��
if f tR and R have different left tail colors. By right bijectivity, Λf rR(t) �
ΛR(t) for all r � �. An argument similar to that of Lemma 2 shows
that the sequence �ΛR(l(k)n)��n�0 is strictly increasing; thus �ΛR(t)��t�0 is
nonperiodic, and for n 
 1

(f l(k)n
R)(n � 1) � R(n � 1).

This establishes a lower bound on the computational reducibility pro-
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vided by the local nested structure on the left side of a right bijective
rule begun from a rightful row.

3. The right side of rule 30

For this section, let f be the 2-color, range [�2, 0] rule 86. The rule icon
of f is

��� ��� ��� ��� ��� ��� ��� ���
� � � � � � � � .

The beginning of the automaton �f tI� is shown in Figure 3. Rule 30
and f , being equivalent up to left–right reflection and a horizontal shift,
are different ways of viewing the same computation. Rule 30 is left
bijective, and f is right bijective. We favor f for simplicity of indices.

Note that

f�1I ����������.

The sequence of left tail colors under f (being all white) has period
length 1. The period length of column 1 is also 1, so the proof of
Theorem 1 implies that (f 2n�1I)(n 	 1) � �. That is, there are (at least)
n 	 1 consecutive black cells following the white left tail on row 2n � 1.

Let

ΙR(t) � min�m 
 0 � (f tR)(m 	 1) 
 ��.

We have ΙI(t) � Λf�1I(t) � ΛI(t 	 1), so �ΙI(t)�
�
t�0 is the sequence �ΛI(t)�

�
t�1

discussed in section 1. It begins

1, 3, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 3, 1, 7, . . .

and has the structure ΙI(t) � a(ord2(t 	 1)) for the sequence �a(n)��n�0

beginning 1, 3, 4, 6, 7, 9, 15, 16, . . . .
The sequences �ΙR(t)��t�0 for other rightful rows R show similar char-

acteristics. For example, the row

R �����������

gives the periodic sequence 2, 1, 2, 1, 2, 1, . . . . The row

R ������������

gives the periodic sequence 1, 2, 1, 2, 1, 2, . . . . For

R ������������,

�ΙR(t)��t�0 begins 3, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 3, 1, 7, . . . , which is
simply �ΙI(t 	 1)��t�0 since in this case R � fI. To take a more interesting
example, let

R �������������.

Complex Systems, 16 (2006) 239–258

https://doi.org/10.25088/ComplexSystems.16.3.239



248 E. Rowland

One finds that �ΙR(t)��t�0 begins

1, 6, 1, 3, 1, 4, 1, 3, 1, 7, 1, 3, 1, 4, 1, 3,
1, 6, 1, 3, 1, 4, 1, 3, 1, 8, 1, 3, 1, 4, 1, 3, . . .

and then repeats with this period of length 32.
In general, the sequence �ΙR(t)� for a rightful row R includes several

terms from the sequence �a(n)�, since ΙR(t 	 1) � 1 whenever ΙR(t) > 1,
which causes the sequence to (at least temporarily) mimic �ΙI(t)�. More-
over, for every rightful R there is a nondecreasing sequence �bR(n)��n�0

whose first several terms agree with �a(n)��n�0 and which satisfies the
following condition. For every n 
 0 there exists tn such that for all
s � � we have ΙR(tn 	 s2n	1) � bR(n). That is, �ΙR(t)� is partially nested,
but �bR(n)� may be eventually constant (so �ΙR(t)� may be periodic).

In the previous examples we have seen two types of behavior: Either
�ΙR(t)��t�0 is periodic or R appears in rule 86 begun from I. Experimental
evidence suggests that in fact these are the only two cases.

Conjecture 1. If R is a central row with white tails such that �ΙR(t)��t�0

is nonperiodic, then R � f rI for some r 
 0.

The conjecture claims that, when begun from I, rule 86 (and thus
rule 30) computes precisely the central rows which yield nonperiodic
sequences �ΙR(t)�. The conjecture has been verified for every initial
condition R whose central part is at most 24 cells in length.

Conjecture 1 is not true for rightful rows in general. We now con-
struct a noncentral row R with the property that ΙR(t) � a(ord2(3t 	 1))
for all t � �. By construction ΙR(t) < �, so that for every t � �,
f tR 
 f �1I. It follows that this row R does not appear in rule 86 begun
from I.

It suffices to arrange that

ΙR�
2n � 1

3
� � a(n), even n 
 0;

ΙR�
5 � 2n � 1

3
� � a(n), odd n 
 1.

Let R(m) � � for m � 0 and R[1, 2] � (�, �), so that a(0) � 1 as
desired. We construct the remainder of R inductively from left to right,
a(n 	 1) � a(n) cells at a time. Assume therefore that we have defined
R[1, a(n)	1] such that the stated condition holds for n. Define R[a(n)	2,
a(n	1)	1] so that the condition holds for n	1; right bijectivity provides
existence and uniqueness of this (a(n	1)�a(n))-tuple. From position 1,
R begins

������������������������������������������.

The same procedure can be used to construct a rightful row R with
any sequence �ΙR(t)� satisfying the condition on �bR(n)� given previously;
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that is, this condition is also sufficient for a given sequence to occur as
�ΙR(t)� for some rightful R.

As we considered �ΙR(t)� for various rows R, we may also consider
�ΛR(t)�, and in fact it is ΛR(t), not ΙR(t), that provides the natural
generalization of �a(n)�. As suggested by Theorem 1, analogous se-
quences �aR(n)��n�0 can be defined by aR(ord2(t)) � ΛR(t). The sequence
�aR(n)� for

R �����������

begins 1, 4, 5, 7, 8, 10, 16, 17, 25, 26, 28, 30, . . . , and for

R ������������

it begins 1, 5, 6, 8, 9, 11, 17, 18, 26, 27, 29, 31, . . . . For the row

R ������������ � fI

we find that aR(n) � aI(n). In general, afrR(n) � aR(n) for every r � �.
The converse of this statement has been verified for initial conditions
with central parts at most 10 cells in length; that is, each infinite evalu-
ation of rule 30 seems to have its own unique sequence �aR(n)�.

Conjecture 2. If aR(n) � aS(n) for all n, then R � f rS for some r � �.

There seems to be some degree of freedom in the sequences �aR(n)�,
but it is unclear by how much their growth rates vary. The central initial
conditions

������������������

and

������������������

give some indication, having sequences �aR(n)� that begin

1, 3, 4, 6, 7, 9, 12, 13, 15, 17, 20, 21, 23, 25, 27, 29, . . . and
1, 3, 4, 6, 7, 14, 26, 27, 34, 36, 37, 39, 41, 44, 48, 53, . . .

respectively.
One can construct sequences of arbitrarily large initial growth. It is

not difficult to show that aR(0) � 1 for any nontrivial rightful row R
with a white left tail. However, consideration of the initial conditions

������������������

shows that aR(1) takes on all odd values greater than 1, and considera-
tion of the initial conditions

�������������������

shows that aR(1) takes on all even values greater than 2.
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The slowest growing sequence overall,

� min
R rightful

aR(n)�
�

n�0

,

begins 1, 3, 4, 6, 7, 9, 12, 13, 15, 17, 19, . . . . It would be interesting to
have more information on the growth rate of this sequence if asymptotic
information cannot be obtained for �aR(n)� in general.

4. Other right bijective rules

Of the kkd	1
k-color rules depending on d	1 cells, precisely k!kd

are right
bijective, and their rule numbers are given by the following function in
Mathematica version 5.1 and later, where s � d 	 1 (and k � k).

RightBijectiveRules[k_, s_] :=
FromDigits[Join @@ #, k] & /@

Tuples[Permutations[Range[k] - 1], k^(s-1)]

The package [2] mentioned in section 1 includes an implementation.
In general it suffices to consider rules with a periodic sequence of

background colors that includes white (i.e., rules under which a white
tail supports an infinite history); all other rules are obtained by permut-
ing the colors. Thus we consider rules begun from the initial condition
I. (Another nontrivial simple initial condition is f �1I, where f is the
2-color, range [�2, 0] rule 86. This initial condition also leads to struc-
ture worthy of study, but we do not pursue it here.)

The sixteen 2-color, range [�2, 0] right bijective rule numbers are

85, 86, 89, 90, 101, 102, 105, 106,
149, 150, 153, 154, 165, 166, 169, 170.

Of these, each of the twelve rules

85, 86, 89, 90, 101, 102, 105, 106, 150, 154, 166, 170

supports an infinite rightful history from I and thus shows local nested
structure on the left when begun from a rightful row with a white left
tail. Figure 5 shows several columns of these automata in the range
�32 � t � 31.

The 2-color, range [0, 2] left bijective rules with histories from I are
left–right reflections of the range [�2, 0] right bijective rules; their rule
numbers are

15, 30, 45, 60, 75, 90, 105, 120, 150, 180, 210, 240.

Each of these rules shows local nested structure on the right when begun
from a leftful row with a white right tail. Of these, rules 30, 45, and
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154 166 170

105 106 150

90 101 102

85 86 89

Figure 5. The right bijective, 2-color, range [�2, 0] rules which support an infinite
rightful history from I. Each shows local nested structure on the left side. As
in Figure 4, the top half of each image shows the history leading to I, and the
bottom half shows the evaluation from I.

75 (the reflections of 86, 101, and 89 respectively) are regarded to be
computationally irreducible when begun from I. For rule 101, �aI(n)�
begins ��, 1, 2, 4, 5, 7, 9, 13, 14, 20, . . . ; for rule 89, �aI(n)� begins
��, 1, 2, 4, 5, 9, 10, 12, 14, 17, . . . .

We now explore the relationship between the computational irre-
ducibility of �f tR� for rightful R and the computational irreducibility of
�aR(n)��n�0, where f is a k-color rule and aR(ordl(k)(t)) � ΛR(t). Specifi-
cally, we examine evidence for the following conjecture.
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Conjecture 3. Let f be a right bijective, k-color rule, and let R � [k]�

have an infinite rightful history under f . The cellular automaton �f tR�
is computationally irreducible if and only if the sequence �aR(n)� is
computationally irreducible.

Moreover, it appears that �aR(n)� is computationally reducible precisely
when it is of exponential growth.

The sequence �aR(n)� for a computationally reducible cellular au-
tomaton is necessarily computationally reducible. For example, aI(n) �
2n	1 for rule 90. Rules 102, 105, 150, and 154 likewise exhibit global
nested structure from I, and the sequences �aI(n)� for these rules are
successive powers of 2 as well. This is in contrast to the roughly linear
growth of �aI(n)� for the irreducible rules 86, 89, and 101.

Conjecture 3 does not only apply to I. Indeed, for rule 90 we have
aR(n) � 2n	1 for every nontrivial rightful R with a white left tail. Rule 90
is one of four right bijective, 2-color, range [�2, 0] rules that are additive,
that is, satisfies f (x�2, x�1, x0)	f (y�2, y�1, y0) � f (x�2	y�2, x�1	y�1, x0	
y0), where addition is taken modulo 2 everywhere. The others are
rules 102, 150, and 170. The additivity of these rules enables one
to compute �f tR� for any R as superpositions of copies of �f tI�. In
the case of rule 90, the nested structure of �f tI� (given, for example,
by Kummer’s determination of � tm� mod 2) allows the computation of
a general cell (f tI)(m) in O(log t) operations; thus one can compute a
general cell (f tR)(m) in O(t log t) operations, as opposed to the O(t2)
operations taken by the automaton.

For an additive rule f , it is interesting to note that although the human
visual system facilely detects the O(log t) computational reducibility in
�f tI�, it often fails to detect the O(t log t) computational reducibility in
�f tR� for a general row R. As shown in Figure 6, although the periodicity
of columns is evident, these automata do not appear to us as having any
global structure. Therefore Conjecture 3 provides a potential criterion
for determining reducibility in some cases when our eyes cannot.

The right bijective rules 105 and 106 are not additive, so we do
not know a priori whether or not each is reducible. Rule 105 yields
global nested structure when begun from I, and rule 106 leaves I fixed.
Computations for rule 105 show that aR(n) � 2n for n 
 1, and indeed
�f tR� is computationally reducible, since rule 105 is simply rule 150
composed with white–black negation. For rule 106, however, one finds
that �aR(n)� tends to grow roughly linearly, and there are no proper-
ties of rule 106 that suggest the possibility of a computational reduc-
tion.

Thus, in agreement with Conjecture 3, for right bijective cellular
automata it would appear that by examining �aR(n)� one can distinguish
both reducible nested (O(log t)) behavior from irreducible uniformly
disordered “class 3” (O(t2)) behavior (in Wolfram’s classification [1,
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90 102 150 170

Figure 6. The 2-color, range [�2, 0] rules which support white tails and are both
right bijective and additive. In the nontrivial cases, the human visual system
apparently fails to detect the O(t log t) computational reducibility of these rules
when begun from rightful initial conditions which are not especially simple. The
criterion given in Conjecture 3, however, does detect this reducibility.

Figure 7. The 2-color, range [�3, 0] rule 42586 from I, rotated so that time
increases to the right.

6]) and also reducible uniform (O(t log t)) behavior from irreducible
uniform (O(t2)) behavior.

We proceed to consider rules with other values of k and d.
The 2-color, range [�1, 0] right bijective rule numbers are 5, 6, 9, and

10. Of these, rules 5, 6, and 10 support infinite histories from I. Begun
from I, rules 5 and 10 give periodic patterns, and rule 6 gives a global
nested pattern.

There are 192 2-color, range [�3, 0] right bijective rules that support a
rightful history from I. Of these, 25 have eventually constant sequences
�aI(n)�; these correspond to structures like vertical lines. An additional
48 rules have sequences �aI(n)� that approximately double with each
successive entry, and all of these sequences and corresponding automata
are reducible. Several of the remaining 119 rules are shown in Figure 8.
Only one of these 119 appears to be computationally reducible upon
visual inspection; this is rule 42586 (shown in Figure 7), for which
�aI(n)� begins

2, 3, 5, 8, 10, 18, 20, 38, 40, 78, 80, 158, 160, 318, 320, 638, . . .

and for n 
 1 is given by

aI(n) �
������
�

5 � 2(n�1)/2 � 2, if n is odd;
5 � 2(n�2)/2, if n is even.

That is, �aI(n)� is computationally reducible, but it grows slower than
2n. Rule 42586 from I is quite similar to the 2-color, range [�2, 0]
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43418 43670

42646 42650

39258 39526

27238 38554

22886 25945

Figure 8. Some of the more interesting irreducible right bijective, 2-color, range
[�3, 0] rules which support an infinite rightful history from I. The row I appears
as the center row of each. In some, the nested structure on the left is clear; in
others it is more difficult to discern.
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rule 106 begun from

R �����������,

which gives for n 
 1

aR(n) �
������
�

3 � 2(n�1)/2, if n is odd;
3 � 2(n�2)/2 	 1, if n is even.

These rules have initial conditions for which they are reducible, but
for most initial conditions they appear not to be. (That �aR(n)� grows
slower than 2n in reducible cases may prove to be an indication of this
phenomenon.)

In section 1 we noted that rule 90 displays global nested structure,
while the only nested structure of rule 30 appears on the right. One
may wonder whether there are rules that are both right bijective and
left bijective (so that they display nested structure on both the left and
right sides) but that do not display global structure when begun from
a central row. The answer is affirmative, and three are found among
2-color, range [�3, 0] rules; their rule numbers are 22185, 27285, and
43350. Therefore, double-sided local nested structure does not force
global nested structure.

There are 136 3-color, range [�1, 0] right bijective rules that support
a rightful history from I. By visual inspection, 42 of these are computa-
tionally irreducible when begun from I, and again these coincide with
those predicted to be irreducible by Conjecture 3.

As one systematically examines rules in this manner, it becomes ap-
parent that Wolfram’s behavioral class 4 (characterized by persistent
“particle-like” structures) does not appear among right bijective au-
tomata. The only class 4, 2-color, range [�2, 0] rules with white back-
grounds are 110 and its left–right reflection, rule 124. Neither of these
rules exhibits positional bijectivity or nestedness. For rule 124 we have
ΛI(t) � 1 for all t 
 0; this is simply because each row after the first
begins with two black cells.

Similarly, the presumed computationally irreducible 2-color, range
[�3, 0] automata and 3-color, range [�1, 0] automata are exclusively
of Wolfram’s behavioral class 3 as opposed to class 4. Perhaps this
is indicative of a deeper relation between the local computational re-
ducibility provided by Theorem 1 and the classes of computation that
can be carried out. It is intuitively plausible that, like global nestedness,
local nestedness is too restrictive to allow particle-like structures that
would otherwise move without constraint.

5. The left side of rule 30

The right side of rule 30 is characterized by periodicity and preserva-
tion of information; this is due to the right bijectivity of the rule. A

Complex Systems, 16 (2006) 239–258

https://doi.org/10.25088/ComplexSystems.16.3.239



256 E. Rowland

Figure 9. Rule 30, left-justified. The columns are eventually periodic, with period
doublings occurring as prescribed by Proposition 2.

consequence of Jen’s Theorem 4 [4] is that each left diagonal of rule 30
is eventually periodic with period length a power of 2, and the left side
is characterized by eventual periodicity and loss of information. From
the leftmost nonwhite diagonal, the sequence of eventual period lengths
begins 1, 1, 1, 2, 1, 2, 2, 1, 4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4,
4, 4, 4, 1, 8, 1, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 4, 8, 8, . . . .

Wolfram [1, page 871] states the following.

Proposition 2. “Each period doubling turns out to occur exactly when
a diagonal in the pattern eventually becomes a white stripe, and the
diagonal to its left has an odd number of black cells in each repeating
block.”

This section is devoted to proving this observation, which holds for
rule 30 begun from any rightful row R.

Let f be the 2-color, range [�2, 0] rule number 30; this is the left-
justified version, whose rule icon is

��� ��� ��� ��� ��� ��� ��� ���
� � � � � � � � .

One hundred rows of �f tI� are shown in Figure 9.
Let R and S be rows that differ only at position m. We say that the

bit R(m) has a long term effect on its column if for all t 
 0 we have
(f tR)(m) 
 (f tS)(m). By Lemma 1, a bijectivity condition suffices to
ensure a long term effect. Because f is not right bijective, one expects that
under most circumstances flipping a bit will not have a long term effect
on its column, that is, there will eventually be a loss of information in
that column. The following bijectivity condition (deduced from the rule
icon) describes when there is a long term effect: The value of f (c�2, c�1, x)
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is independent of x if and only if c�1 � �; that is, f (c�2, c�1, �) 

f (c�2, c�1, �) if and only if c�1 � �. This gives the following lemma.

Lemma 3. The bit (f t0R)(m) has a long term effect on column m pre-
cisely when column m � 1 is white for t 
 t0.

Further, we observe from the rule icon that f (c�2, �, x) 
 x if and only
if c�2 � �. That is, under the bijectivity condition, a bit flips from one
row to the next precisely when its next-nearest left neighbor is black.

Consider columns m�2 and m�1 with respective period lengths 2Αm�2

and 2Αm�1 beginning at t � t0. Set Α � max(Αm�2,Αm�1). Column m has
eventual period length 2Αm , with Αm � Α 	 1. We show that Αm � Α 	 1
if and only if (f tR)(m � 1) � � for all t 
 t0 and

�����t0 � t < t0 	 2Α � (f tR)(m � 2) � ������ is odd.

It is clear that this condition implies that Αm > Αm�2 � Α: Information
will be preserved by the bijectivity condition, and the odd number of
black cells in the period of column m � 2 guarantees that (f t0R)(m) 

(f t0	2ΑR)(m).

We now prove the converse. Assume that Αm � Α 	 1, so that
(f t0R)(m) 
 (f t0	2ΑR)(m). The color of (f t0	s�2ΑR)(m) for s 
 1 then
depends on the parity of s. In particular,

(f t0	s�2ΑR)(m) 
 (f t0	(s�1)2ΑR)(m),

so information regarding the color of (f t0	(s�1)2ΑR)(m) must propagate
down column m from row t0 	 (s� 1)2Α to row t0 	 s � 2Α, implying that
a bijectivity condition is met. By Lemma 3, (f tR)(m � 1) � � for t 
 t0,
and it follows that the number of black cells in the period of column
m � 2 is odd. This completes the proof of Proposition 2.

When column m � 1 is eventually white and the eventual period of
column m contains at least one black cell, it follows also that column
m 	 1 is eventually black, since f (�, �, x) � � and f (�, x, �) � � for
both colors x.

Upon examining the long term behavior for several initial conditions,
one is tempted to conjecture that among nontrivial rightful rows R with
a white left tail, the eventual period of column m in �f tR� is independent
of R — that there is really only one “left side” of rule 30, regardless of
which rightful initial condition we choose. However, this conjecture is
likely false.

Since column 1 is black with period length 1, to prove such a con-
jecture inductively it would suffice to show that the eventual period of
column m is independent of R under the assumption that the same is
true for all columns to the left of column m. Only under the condition of
Lemma 3 is any information regarding the initial condition of column m
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retained; therefore, unless column m � 1 is eventually white, the period
of column m depends only on the periods of columns m � 2 and m � 1
and so is independent of R.

Thus any counterexample to this conjecture occurs when column
m � 1 is eventually white. If the period length of column m is greater
than the period length of column m � 2, then the period of column m
is invariant under white–black negation and thus is independent of R.
If not, then by Proposition 2 the number of black cells in the period
of column m � 2 is even. It turns out that this case first occurs at
column m � 53209: Column 53208 is eventually white, and the period
of column 53207 is

(�, �, �, �, �, �, �, �, �, �, �, �, �, �, �, �),

resulting in two possible periods that might occur as the eventual period
of column 53209 and providing a counterexample to the conjecture
(if in fact they do occur for some initial conditions). Moreover, each
of these periods leads to two other possible periods (at columns 58288
and 72577 respectively), and one surmises that in fact there are infinitely
many possible left sides of rule 30.
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