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In  this  paper  we  introduce  a  classification  of  elementary  cellular
automata  based  solely  on  numerical  properties  of  the  lengths  of  their
limit cycles on finite lattices  / k. The classification has a formal defini-
tion,  and  it  could  in  principle  be  proved  whether  a  given  cellular
automaton belongs to a given class. It will remain open if this is gener-
ally possible, that is, if the question is decidable. 
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Introduction1.

We assume that the concepts of cellular automata are known and will
use  the  terms  “rule”  and  “cellular  automaton”  synonymously.  The
naming  of  rules  by  decimal  numbers  is  according  to  Wolfram’s
notation.  

The  paper  is  organized  as  follows:  First  we  introduce  limit  cycles
and  cycle  length  spectra.  We  further  introduce  a  software  tool  called
“Another  kind  of  atlas”  that  we  developed  to  display  and  investigate
cellular automata, their limit cycles and cycle length spectra. Then we
summarize some numerical observations on cycle lengths related to lat-
tice size k. We then give a short overview of classifications of cellular
automata and specify the announced classification of elementary cellu-
lar  automata  based  on  the  numerical  observations.  Finally  we  com-
pare  it  with  other  classifications  and  end  with  a  short  discussion  of
open questions. 

Limit Cycles on Finite Lattices  2.

Limit sets and especially limit cycles of cellular automata on finite lat-
tices have already been studied [1].  

A  lattice  of  size  k  with  two  cell  states  has  a  state  space  of  size  2k.

Each  configuration  α ∈ 2k  necessarily  evolves  into  a  limit  cycle,  2k
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being  the  natural  upper  bound  for  limit  cycle  lengths.  In  the  fol-
lowing, we will use the term “cycle” instead of “limit cycle” for con-
ciseness. 

Wuensche/Lesser’s  [2]  as  well  as  Wolfram’s  atlas  [3]  depicts  many
state  transition  diagrams  including  limit  cycles  and  gives  numbers  on
limit  cycle  lengths  and  multiplicities  but  only  for  rather  small  lattice
sizes k ≲ 20. Wolfram’s atlas gives cycle length plots of all elementary
automata but only for the single-black-cell initial configuration. 

Wolfram  et  al.  in  [4]  investigated  limit  cycles  more  carefully  and
calculated their lengths by algebraical means (namely generating func-
tions) but only for linear or additive rules, mainly rule 90. 

Limit  cycle  lengths  play  a  role  in  some  classifications  (see  below).
In Li and Packard’s classification (see [5]) cellular automata are classi-
fied  as  “chaotic”  when  they  have  “exponentially  divergent  cycle
lengths as lattice length is increased.”

The  cycle  length  spectrum  ΓR(k)  is  the  mapping  from  lattice  size  k
to  the  set  of  cycle  lengths  that  rule  R  gives  rise  to.  Cycles  with  peri-
odic  spatial  configurations  (and  their  lengths)  can  be  ignored  because
they already appeared for smaller k. Of special interest is the maximal
cycle length LR(k) and the envelope ΛR(k) of this function. 

For the sake of our investigations, we calculated the complete cycle
length  spectrum  for  all  elementary  cellular  automata—of  which  there
are  88  up  to  equivalence—and  all  lattice  sizes  up  to  k  22.  For
rule 45  we  had  to  stop  at  k  18  due  to  limited  processing  power.
Beyond  these  numbers,  only  partial  cycle  length  spectra  were  calcu-
lated  by  starting  from  10 000  random  initial  configurations.  The
largest k that could be achieved even for complex rules like 18, 73 or
110 was k  56, due to limitations of processing power and time. For
some other rules, we went up to k  29 and k  36; for rule 45, only
up to k  22. For details, see the Appendix. 

Features of complexity, chaoticity and exponentiality can be found
not  only  in  spacetime  diagrams  of  cellular  automata  but  also  in  the
plots of their cycle length spectra. Cycle length spectra have the advan-
tage  that  there  is  only  one  diagram  to  look  at,  not  overwhelmingly
many  as  for  spacetime  diagrams.  Nevertheless,  we  can  literally  see
order  and  chaos,  linear,  exponential  and—surprise!—quadratic
growth.  Last  but  not  least,  cycle  length  spectra  are  identically  the
same for equivalent rules. 

We  developed  and  used  an  interactive  software  tool  (called
Another  kind  of  atlas)  to  visually  inspect  the  cycle  length  spectra  of
different  rules  and  find  regularities,  especially  in  the  form  of  more  or
less  densely  populated  “lines”  L(k)  in  the  L-k  plots.  We  also
implemented  filters  to  find  such  lines,  be  they  linear,  quadratic  or
exponential: 
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◼ L(k)  k + n 

◼ L(k)  k · n 

◼ L(k)  k · n /m 

◼ L(k)  k · (k + n) 

◼ L(k)  n · k2

◼ L(k)  2n - 2m for m  0, 1, 2, 3, 4 

The table views in Figure 1 gave us a first hint to a quadratic depen-
dence of L on k for rules 41, 54 and 110. 

For more details on the software tool, see the Appendix. 

Figure 1. Two  table  views  in  Another  kind  of  atlas,  giving  hints  to  quadratic
cycle length growth for rules 41, 54 and 110. Rules 45, 73 and 106 that also
pop up here will turn out to exhibit exponential cycle length growth.  

Numerical Properties of Cycle Lengths  3.

We made a great many observations that relate cycle lengths L to lat-
tice size k.  

◼ There are rules with only constant cycle lengths L  1, 2, for example,
rules 0 (FALSE), 51 (NOT) and 204 (IDENTITY). 

◼ There are rules where each cycle length is a multiple of k, for example,
rules 170 (LEFT-SHIFT) and 184. 

◼ There  are  rules  with  a  pseudo-envelope  ΛR(k)  that  is  quadratic  in  k,
namely rules 54 and 110. 

◼ There  are  rules  with  an  envelope  ΛR(k)  depending  exponentially  on  k.

We  found  either  ΛR(k)  a · 2f (k) - 1  with  a  1, 2  or  ΛR(k) 

k · 2f (k) - 1 with some linear function f (k). 
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Other numerical findings, not immediately related to our classifica-
tion task: 

◼ Rules 26 and 154 are the only rules with linear growth that have cycle
lengths L  4 · k. 

◼ Rule 54 is the only rule with abundant cycles of length L  k · (k + 7). 

◼ Rule 110 is the only rule with abundant cycles of length L  7. 

We now take a closer look at the nontrivial cases, the constant and
linear cases considered trivial. The plots show the length LR(k) of the
longest  cycle  for  each  rule  R  and  k.  Black  circles  indicate  cycles  that
are  guaranteed  to  be  the  longest;  red  circles  indicate  the  longest  cycle
found in partial cycle length spectra, which is not necessarily the abso-

lutely  longest.  The  dashed  lines  are  the  lines  L(k)  2k, 2k/2, 2k/4;  the
dotted line is L(k)  k. 

The Quadratic Cases  3.1
Rule 54  3.1.1

For  rule  54,  there  is  a  pseudo-envelope Λ54(k)  depending  quadrati-
cally on k, best to be seen when plotting L / k over k. The exact depen-
dence is Λ54(k)  k · (k + 7). Logarithmic scaling reveals that Λ54(k) is
in fact not the true envelope.

Rule 110  3.1.2

For  rule  110,  there  is  a  pseudo-envelope  Λ110(k)  2 · k2,  but  it  does

not match perfectly: for larger k, the lengths fall short of 2 · k2. This is
comparable to the case of rule 45 (see below).  
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This is how true values of L110(k) deviate from 2 · k2. 

k L L(k)

13 351 2 · k2 + 1 · k

17 578 2 · k2 + 0 · k

23 1058 2 · k2 + 0 · k

30 1770 2 · k2 - 1 · k

50 4825 2 · k2 -
7

2
· k

Taking  all  cycles  into  account—not  only  the  longest—we  find

other lengths lying near Λ110(k)  2 · k2.

k L L(k)

28 1568 2 · k2 + 0 · k

28 1652 2 · k2 + 3 · k

30 1770 2 · k2 - 1 · k

43 3999 2 · k2 + 7 · k

61 6954 2 · k2 - 8 · k

73 10 366 2 · k2 - 4 · k

87 15486 2 · k2 + 4 · k

Rule 41  3.1.3

For  rule  41,  a  pseudo-envelope  Λ41(k)  depending  quadratically  on  k
can hardly be seen, even when plotting L / k over k. Rule 41 is a noto-
rious  borderline  case  that  is  classified  quite  differently  by  different
classifications.
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Questions: 

◼ Is  there  a  closed  form  of  the  pseudo-envelope  Λ110(k),  especially  of  the

error term ϵ(k)  a(k) · k in L110(k)  2 · k2 + ϵ(k)? 

◼ If  not,  is  there  an  order  (f (k))  and  what  is  the  least  upper  bound  for
a(k)?  The  least  we  can  say  is  that  a(k) < k,  and  presumably  a(k)  is  of

order  k . 

The Case ΛR (k) 2f (k) - 13.2

Here we found true envelopes ΛR(k).  

Rules 90 and 150  3.2.1

Rules 90 and 150 have identical maximal cycle lengths and thus identi-
cal envelopes ΛR(k). We find f (k)  (k - 1) / 2.  
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k L f (k)

5 3  22 - 1 2

7 7  23 - 1 3

11 31  25 - 1 5

13 63  26 - 1 6

19 511  29 - 1 9

23 2047  211 - 1 11

29 16 383  214 - 1 14

The Case ΛR (k) 2 · 2f (k) - 13.3

Rule 105  3.3.1

For rule 105, we find f (k)  (k - 1) / 2. 

k L f (k)

5 6  2 · 22 - 1 2

7 14  2 · 23 - 1 3

11 62  2 · 25 - 1 5

19 1022  2 · 29 - 1 9

23 4094  2 · 211 - 1 11

39 32 766  2 · 214 - 1 14

Rules 94 and 164  3.3.2

For rule 94 and similarly for rule 164, we find f (k)  (k - 2) / 4. Note
that these rules are class II rules according to Wolfram’s classification,
exhibiting a kind of exponential growth nevertheless.  
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k L f (k)

6 2  2 · 21 - 1 1

10 6  2 · 22 - 1 2

14 14  2 · 23 - 1 3

22 62  2 · 25 - 1 5

26 126  2 · 26 - 1 6

38 1022  2 · 29 - 1 9

46 4094  2 · 211 - 1 11

The Case ΛR (k) k · 2f (k) - 13.4

Rule 60  3.4.1

For rule 60, we find: 
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k L L / k f (k)

3 3 1  21 - 1 1

5 15 3  22 - 1 2

11 341 31  25 - 1 5

13 819 63  26 - 1 6

19 9709 511  29 - 1 9

25 25 575 1023  210 - 1 10

Except  for  k  25,  we  find  f (k)  (k - 1) / 2.  The  reason  for  the
exception  at  k  25  may  be  that  the  longest  cycle  was  not  found  for
k  25; that is, that the cycle with length 25 575 is not the longest. 

Rules 18, 122, 126, 146  3.4.2

Rules  18,  122,  126,  146  show  identical  maximal  cycle  lengths  for
k  12, 25, 37, 45 and thus have identical envelopes ΛR(k).  

k L L / k f (k)

12 36 3  22 - 1 2

25 1575 63  26 - 1 6

37 18907 511  29 - 1 9

45 92 115 2047  211 - 1 11

Except for k  12, we find f (k)  (k - 1) / 4. 
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For  all  the  rules  given,  the  same  questions  have  to  be  asked  and
answered: 

◼ Are there infinitely many L ∈ ΛR(k)? 

◼ Is the asymptotic density of L ∈ ΛR(k) finite or does it vanish? 

◼ Is the set of k with LR(k) ∈ ΛR(k) decidable? 

With respect to the quadratic rules 41, 54 and 110, these questions
need to be investigated: 

◼ Are  there  possibly  pseudo-envelopes  of  polynomial  degree  greater
than 2? 

◼ Are  there  rules  with  quadratic  growth  of  cycle  lengths  other  than  rules
41, 54 and 110? 

Mean or Bounded Exponential Growth  3.5

There  are  rules  that  did  not  allow  us  to  make  such  exact  numerical
observations, namely rules 22, 30, 45, 73 and 106, for all of which no
closed  functional  form  for  any  envelope  could  be  found.  For  these
rules,  the  maximal  cycle  lengths  are  either  scattered  around  or
bounded by an exponential function.  

Rules 22, 30, 73, 106  3.5.1

For  these  rules,  some  sort  of  exponential  “regression”  line  seems  to
exist  around  which  the  maximal  cycle  lengths  are  scattered.  Here  are
rough, hand-drawn approximations.  

Rule 45  3.5.2

The  maximal  cycle  lengths  for  rule  45  are  bounded  from  above  by

L(k)  2k - 2,  which  is  essentially  the  size  of  the  state  space.  For

k  5, 7,  the  value  L(k)  2k - 2  is  actually  taken;  beyond  this,  the
lengths fall short quickly. 
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k L

5 30  25 - 2

7 126  27 - 2

9 504  29 - 23

17 78, 812 < 217 - 215

19 18, 3920 < 219 - 218

21 352, 884 < 221 - 220

Question: 

◼ Is  there  a  closed  functional  form  of  the  envelope  Λ45(k),  especially  of

the error term ϵ in L45(k)  2k - ϵ(k)? 

Classifications of Cellular Automata  4.

Classification of cellular automata consists of:

the definition of a set of mutually exclusive properties (which define dis-
joint classes)

1.

the  classifying  itself,  that  is,  the  estimation,  calculation  or  in  general
determination  of  the  class  to  which  any  cellular  automaton  under  con-
sideration belongs

2.

The  properties  are  typically  global  or  emergent  in  nature,  not
immediately  tellable  from  the  local  rules.  Classifications  may  be
restricted  to  elementary  cellular  automata,  but  most  are  generalizable
to higher dimensions, larger radii and larger alphabets. 

There  are  two  dichotomies  of  classifications:  formal  versus  infor-
mal and phenotypic versus genotypic (see Gutowitz [6]). Typical infor-
mal  classifications  are  Wolfram’s  qualitative  classifications  (see  [1,  7,
8]) without formal definitions and proof of mutual exclusiveness. Clas-
sifying is done more or less at discretion and is more of a class estima-
tion.  Informal  classifications  typically  have  borderline  cases  where  it
is  not  clear  to  which  class  some  cellular  automata  belong.  Many  for-
mal  classifications  turn  out  to  be  undecidable  (see  [9]),  so  may  have
(undecidable) borderline cases as well. 

Phenotypic  classifications  are  often  informal  and  require  the  long-
term  observation  of  the  evolution  of  a  cellular  automaton  with  its
local  rule  applied  to  a  large  number  of  simple  or  random  initial
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configurations.  Genotypic  classifications  are  immediately  based  on
properties of the local rules and typically have formal definitions that
allow  us  in  principle  to  prove  whether  a  given  cellular  automaton
belongs to a given class. 

The classification we will propose will be a formal phenotypic one. 

Many  classifications—for  a  good  overview  see  [10]—aim  in  one
way  or  another  at  complexity  features  like  chaoticity,  entropy  and
(exponential)  growth.  In  most—if  not  all—classifications,  the  classes
can  be  ordered  from  the  simplest  to  the  most  complex.  This  allows
classifications  to  be  compared  quantitatively.  (Historical  side  note:  It
was a bit misleading that Wolfram named his nontrivial classes “class
III”  and  “class  IV,”  while  in  fact  class  III  comprises  the  more  com-
plex, that is, more chaotic cellular automata compared to class IV.)

Classification Based on the Numerical Findings  5.

We start by writing down defining formulas ϕi(R) for classes of cellu-
lar automata, but they would probably not pass the exclusiveness test.
This  will  come  in  the  next  step.  Remember  that  ΓR(k)  is  the  set  of
cycle lengths that rule R gives rise to on  / k.  

We give the formulas in two versions, a weaker and a stronger one: 

◼ (∃∞ k)φ(k) (“there are infinitely many k with φ(k)”) defined by 

(∃ k)φ(k) ⋀ (∀ k)φ(k)  (∃ k′ > k)φ(k′).

◼ p(φ) > 0 (“the asymptotic probability of being φ does not vanish”) with
p(φ) defined by 

p(φ) :  lim
K∞

{k < K φ(k)}

K
.

It will have to be investigated which version is more appropriate. 

Definition 1.

ϕ0(R)  (∀ k > 1) ΓR(k)  {}

ϕ1(R)  (∃∞ k) 1 ∈ ΓR(k)

ϕ2(R)  (∃∞ k) 2 ∈ ΓR(k)

ϕ3(R)  (∃∞ k) k · 1 ∈ ΓR(k)

ϕ4(R)  (∃∞ k) k · 2 ∈ ΓR(k)

ϕ5(R)  (∃ a > 2) (∃∞ k) k · a ∈ ΓR(k)

ϕ6(R)  (∃ a, b ≥ 0) (∃∞ k) k2 · b + k · a(k) ∈ ΓR(k)

ϕ7(R)  (∃∞ k) 2(k-2)/4 - 1 · 2 ∈ ΓR(k)
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ϕ8(R)  (∃∞ k) 2(k-1)/4 - 1 · k ∈ ΓR(k)

ϕ9(R)  (∃∞ k) 2(k-1)/2 - 1 · 1 ∈ ΓR(k)

ϕ10(R)  (∃∞ k) 2(k-1)/2 - 1 · 2 ∈ ΓR(k)

ϕ11(R)  (∃∞ k) 2(k-1)/2 - 1 · k ∈ ΓR(k)

With asymptotic probability p(ϕ): 

Definition 2.

ϕ0
′ (R)  (∀ k > 1) ΓR(k)  {}

ϕ1
′ (R)  p( 1 ∈ ΓR(k)) > 0

ϕ2
′ (R)  p( 2 ∈ ΓR(k)) > 0

ϕ3
′ (R)  p( k · 1 ∈ ΓR(k)) > 0

ϕ4
′ (R)  p( k · 2 ∈ ΓR(k)) > 0

ϕ5
′ (R)  (∃ a > 2) p( k · a ∈ ΓR(k)) > 0

ϕ6
′ (R)  (∃ a, b ≥ 0) p( k2 · b + k · a(k) ∈ ΓR(k)) > 0

ϕ7
′ (R)  p( 2(k-1)/4 - 1 · 2 ∈ ΓR(k)) > 0

ϕ8
′ (R)  p( 2(k-2)/4 - 1 · k ∈ ΓR(k)) > 0

ϕ9
′ (R)  p( 2(k-1)/2 - 1 · 1 ∈ ΓR(k)) > 0

ϕ10
′ (R)  p( 2(k-1)/2 - 1 · 2 ∈ ΓR(k)) > 0

ϕ11
′ (R)  p( 2(k-1)/2 - 1 · k ∈ ΓR(k)) > 0

It  may  be  observed  that  a  regularity  in  the  sequences  of  properties
ϕ1-3, ϕ3-5, ϕ9-11 is not to be found for the properties ϕ7-8. 

In any case, the term a(k) for ϕ6 needs more careful consideration. 

We now define mutually exclusive classes 0 to 12: 

Definition 3.

◼ Class 11: Rule R is in class 11 if and only if ϕ11(R) holds. 

◼ Class  10:  Rule  R  is  in  class  10  if  and  only  if  it  is  not  in  class  11  and
ϕ10(R) holds. 

◼ Class  9:  Rule  R  is  in  class  9  if  and  only  if  it  is  not  in  classes  ≤  10  and
ϕ9(R) holds. 

◼ …

◼ Class  2:  Rule  R  is  in  class  2  if  and  only  if  it  is  not  in  classes  ≤  3  and
ϕ2(R) holds. 

◼ Class  1:  Rule  R  is  in  class  1  if  and  only  if  it  is  not  in  classes  ≤  2  and
ϕ1(R) holds. 
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◼ Class 0: Rule R is in class 0 if and only if ϕ0(R) holds. 

◼ Class  12:  Rule  R  is  in  class  12  if  and  only  if  it  is  not  in  any  of  the
classes ≤ 11. 

We assume that classes 0 to 5 are provably inhabited by Wolfram’s
class I and II rules. For classes 6 to 11, it must be proved rule by rule.
They  might  be  empty,  so  all  the  other  rules  would  be  in  class  12,
which is just the unspecific “other rules” class. 

Assuming  that  our  observations  for  small  k ≈ 4  can  be  generalized
to  arbitrarily  large  k—the  transitions  from  (∃4 k)  to  (∃∞ k)  can  be
made—these would be the rules by class shown in Table  1. 

Class 0 0, 8, 32, 128, 136, 160
Class 1 4, 12, 13, 36, 44, 72, 76, 77, 78, 104, 132, 140, 200, 204, 

232
Class 2 1, 5, 19, 23, 28, 29, 33, 50, 51, 108, 156, 178
Class 3 2, 10, 24, 34, 40, 42, 46, 56, 57, 130, 138, 152, 162, 168, 

170, 172, 184 

Class 4 3, 6, 7, 9, 11, 14, 15, 27, 35, 38, 43, 58, 62, 134, 142 

Class 5 25, 26, 37, 74, 154
Class 6 41, 54, 110
Class 7 94, 164
Class 8 18, 122, 126, 146
Class 9 90, 150
Class 10 105
Class 11 60
Class 12 22, 30, 45, 73, 106

Table 1. Assignment of rules to the classes defined in Definition 3.

The main conjecture of this paper is: 

Conjecture 1. The  assignment  of  rules  to  classes  as  given  in  Table  1  is
correct. 

It  must  be  noted  that  no  proof  is  given—and  known  to  the
author—for any of the complex rules starting from class 6. 

To  avoid  too-small  classes,  it  makes  sense  to  group  them  into
larger  classes  A  (constant  cycle  length,  classes  0  to  2),  B  (linear
growth, classes 3 to 5), C (quadratic growth, class 6), D (deterministic
exponential  growth,  classes  7  to  11)  and  X  (stochastic  exponential
growth, class 12). We then have Table 2.
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Class A 0, 8, 32, 128, 136, 160, 4, 12, 13, 36, 44, 72, 76, 77, 78, 
104, 132, 140, 200, 204, 232, 1, 5, 19, 23, 28, 29, 33, 50, 
51, 108, 156, 178

Class B 2, 10, 24, 34, 40, 42, 46, 56, 57, 130, 138, 152, 162, 168, 
170, 172, 184, 3, 6, 7, 9, 11, 14, 15, 27, 35, 38, 43, 58, 
62, 134, 142 , 25, 26, 37, 74, 154

Class C 41, 54, 110
Class D 94, 164, 18, 122, 126, 146, 90, 150, 105, 60
Class X 22, 30, 45, 73, 106

Table 2. Assignment of rules to coarser classes.

Comparison with Other Classifications  6.

In  the  beginning,  our  proposed  classification  was  made  completely
without  regard  to  other  classifications  (see  [10])  with  respect  to  their
criteria and their outcome.  

Nevertheless, our classification shows strong similarities with many
of  the  others,  but  since  they  have  quite  different  grainedness  (from
only  2  classes  up  to  13),  they  are  hard  to  compare.  So  we  decided  to
reduce  them  to  dichotomic  classifications  with  only  two  classes—
“simple”  and  “complex”—by  merging  the  lower  and  the  higher
classes, respectively. See Figures 2–4.

(a) (b)

Figure 2. Classifications  by  cycle  length  with  (a)  13  classes  and  with  (b)  five
classes.  We  depict  classifications  by  arranging  the  256  rules  in  a  1616  grid
according  to  their  numerical  value  in  the  so-called  “canonical  encoding
scheme”  (see  Figure  3)  and  coloring  them  by  shades  of  blue,  from  dark  blue
for  simple  rules  ((R)  0)  to  light  blue  for  the  most  complex  ones
((R)  1).  Here  we  consider  normalized  class  numbers  (R),  assuming  that
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the  classes  of  a  classification  can  be  naturally  ordered  from  “simple”  to
“chaotic.”  When  a  classification    defines  n  ordered  classes  C0, …, Cn-1,
these correspond to normalized class numbers ci  i / (n - 1).

Figure 3. The canonical encoding scheme of a rule arranges the local configu-
rations  from  0  000  to  7  111  in  a  systematic  and  meaningful  way  and
encodes  by  1  that  the  color  of  the  center  cell  is  kept  and  by  0  that  it  is
inverted. The canonical encoding gives rule 110 position (12,7) in the 1616
rule matrix. In the canonical encoding, swapping the two rows and swapping
the  two  inner  columns  yield  equivalent  rules.  The  number  of  1s  is  the  same
for equivalent rules.

Figure 4. Different dichotomic classifications of elementary cellular automata.
Rules  are  arranged  the  same  as  earlier:  dark  blue  indicates  “simple”  rules;
light blue indicates “complex” rules.
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We have chosen classifications that look quite similar at first sight.
Others from [10] are neglected, for example, Wuensche’s [2]. 

◼ by Wolfram [1]

◼ by density parameter (Fatés, [11]) 

◼ by  normalized  compression  (Zenil  et  al.,  [12])  (This  classification  is
dichotomic by nature.) 

◼ by Li and Packard [5]

◼ by expressivity (Redeker et al., [13]) 

◼ by topology (Chua et al., [14]) 

◼ by surface dynamics (Seck et al., [15]) 

As  a  dichotomic  benchmark  classification,  we  introduced  the
“triangenic”  rules,  that  is,  the  rules  that  generate  triangles  as  shown
in Figure 5.

Figure 5. The rules whose evolution exhibits characteristic triangles, symmet-
ric  and  asymmetric  ones  and  even  distorted  (rule  106).  Some  of  the  triangles
generate  from  a  continuous  sequence  of  black  cells;  others  allow  isolated
white cells in their upper border. There are no other rules of this kind.

Figure  6  shows  the  rules  that  are  not  classified  the  same  in  all  of
these classifications.
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Figure 6. The  classification  of  rules  54,  106,  122  dissents  only  for  the classi-
fication  by  expressivity.  The  classification  of  rule  164  dissents  only  for  the
classification by cycle length. Neglecting the triangenic classification, the only
dissenting classification of rule 73 is by Wolfram. 

The closest classifications are Li and Packard’s and the topological
classification,  which  only  differ  for  rule  41,  and  the  classifications  by
cycle  length  and  by  normalized  compression,  which  only  differ  for
rules 62 and 164. 

The  cycle  length  classification  differs  from  Wolfram’s  for  the  rules
73, 94 and 164, which are “simple” (class II) for Wolfram but “com-
plex” for us. 

In the Appendix, we show the set of complex rules according to dif-
ferent classifications as induced subgraphs of the folded rule space. 

Open Questions  7.

As  mentioned  earlier,  no  partial  proof  of  Conjecture  1  is  given—and
known  to  the  author—for  any  of  the  complex  rules  starting  from
class  6.  It  is  assumed  that  the  proofs  have  to  be  performed  rule  by
rule and need not follow a common proof scheme [16].  

The  error  term  ϵ(k)  a(k) · k  in  L110(k)  2 · k2 + ϵ(k)  (see  the  for-
mula  for  ϕ6(R))  needs  more  careful  consideration.  It  is  this  term  that
makes the formula unspecific. 
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But even when just stating that a(k) < (k), it remains to be investi-
gated  and  decided  which  of  the  two  versions—the  one  with
(∃∞ k)φ(k)  or  the  one  with  p(φ) > 0—is  the  more  appropriate  one.
And  of  course,  Theorem  1  needs  to  be  proved,  presumably  rule
by rule. 

On  a  more  general  level,  it  needs  to  be  investigated  if  the  cycle
length  classification  will  stay  meaningful  when  one  generalizes  to
larger  dimensions,  neighborhoods  and  alphabets.  Possibly,  the
number  of  classes  based  on  cycle  length  growth  increases  unpre-
dictably [16]. 

Appendix

Appendix  A.

Calculating Cycle Length Spectra  A.1

We found all limit cycles and their lengths for all rules and k ≤ 18 by
the following brute force method: 

We looped over all numbers from 0 to 2k - 1, interpreting them as ini-
tial configurations of an ECA over  / k. 

1.

We  evolved  the  configurations  by  the  local  function  of  each  rule  until
either:

2.

◼ a configuration was reached that was already attained in one of the
loop steps (“runs”) before

◼ a configuration γ  was reached that was already attained in the cur-
rent run

In the latter case, γ was stored as the representative of a limit cycle, and
the length of the run minus the index of γ in the current run was stored
as the length L of the cycle. 

3.

We tracked all indices of a cycle (starting from γ with index 0) at which
the cycle was met by transients. 

4.

We  determined  the  subperiod  l  of  a  cycle  being  the  number  of  steps
until  the  initial  configuration  γ  reappeared  shifted  by  some  number
σ < k. 

5.

For  other  k,  we  stopped  looping  after  some  rule-  and  k-dependent
number of runs. 

Induced Subgraphs of Complex Rules in Folded Rule Space  A.2

The  concept  of  a  folded  rule  space  was  introduced  in  [5].  It  is  essen-
tially  the  graph  with  equivalence  classes  of  ECAs  as  nodes  and  an
edge  between  two  nodes  when  the  minimal  Hamming  distance
between their corresponding rules is 1. It has 88 nodes and 288 edges,

Classification of ECAs Based on Their Limit Cycle Lengths in /k 247

https://doi.org/10.25088/ComplexSystems.32.3.229

https://doi.org/10.25088/ComplexSystems.32.3.229


and  its  automorphism  group  has  order  128.  The  nodes  can  be
arranged as shown in Figure A.1.  

Some  interesting  differences  between  the  structures  of  the  sub-
graphs  induced  by  the  sets  of  complex  rules  (according  to  the  differ-
ent classifications) can best be seen in force-directed graphs like those
in Figure A.2. 

Figure A.1.Node colors represent conjugate nodes: when there is an automor-
phism  α  with  α(R1)  R2  then  rules  R1  and  R2  have  the  same  color.  The
black lines are just for highlighting some symmetric subgraphs, three of them
being isomorphic to the four-dimensional hypercube.

Cycle Length Wolfram Density Parameter

248 H.-P. Stricker

Complex Systems, 32 © 2023



Normalized
Compression Li-Packard Expressivity

Topological Surface Dynamics Triangenic

Figure A.2. Subgraphs induced by the sets of complex rules according to differ-
ent classifications. Most of them are connected, and some have minimal node
degree 2.

Another Kind of AtlasA.3
Initially, we implemented Another kind of atlas for the visualization
of limit cycles and cycle length spectra. Later on, other features were
added, for example:

◼ visualization and comparison of classifications

◼ tables of properties

◼ state transition diagrams

◼ interactive spacetime diagrams

◼ investigation of tilings and defects

◼ investigation of rule 110’s ether and particles

◼ colorings of spacetime diagrams

◼ regexp search for limit cycles

◼ stochastification

◼ sonification (experimental)

◼ graph drawings of the folded rule space
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The atlas is a work in progress. The tool can be made available on
request to the author.

Figure A.3. Start  page  of  the  atlas,  displaying  the  cycle  spectra  of  all  elemen-
tary cellular automata.

References  

[1] S.  Wolfram,  “Computation  Theory  of  Cellular  Automata,”  Communi-
cations in Mathematical Physics, 96(1), 1984 pp. 15–57.
doi:10.1007/BF01217347.

[2] A. Wuensche, M. Lesser and M. J. Lesser, Global Dynamics of Cellular
Automata:  An  Atlas  of  Basin  of  Attraction  Fields  of  One-Dimensional
Cellular Automata, Vol. 1, Reading, MA: Addison-Wesley, 1992. 

[3] “Elementary  Cellular  Automata.”  The  Wolfram  Atlas  of  Simple  Pro-
grams—A Wolfram Web Resource. atlas.wolfram.com/01/01. 

[4] O.  Martin,  A.  M.  Odlyzko  and  S.  Wolfram,  “Algebraic  Properties  of
Cellular  Automata,”  Communications  in  Mathematical  Physics,  93(2),
1984 pp. 219–258. doi:10.1007/BF01223745.

[5] W.  Li  and  N.  Packard,  “The  Structure  of  the  Elementary  Cellular
Automata Rule Space,” Complex Systems, 4(3), 1990 pp. 281–297.
complex-systems.com/pdf/04-3-3.pdf.

[6] H.  A.  Gutowitz,  “Mean  Field  vs.  Wolfram  Classification  of  Cellular
Automata,” 1989.
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.4525.

250 H.-P. Stricker

Complex Systems, 32 © 2023

https://doi.org/10.1007/BF01217347
http://atlas.wolfram.com/01/01/
https://doi.org/10.1007/BF01223745
https://complex-systems.com/pdf/04-3-3.pdf
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.4525


[7] S.  Wolfram,  A  New  Kind  of  Science,  Champaign,  IL:  Wolfram  Media,
Inc., 2002. 

[8] S. Wolfram, Cellular Automata and Complexity: Collected Papers, Read-
ing, MA: Addison-Wesley Publishing Company, 1994. 

[9] K.  Culik  II  and  S.  Yu,  “Undecidability  of  CA  Classification  Schemes,”
Complex Systems, 2(2), 1988 pp. 177–190.
complex-systems.com/pdf/02-2-2.pdf.

[10] G.  J.  Martínez,  “A  Note  on  Elementary  Cellular  Automata  Classifica-
tion,” Journal of Cellular Automata, 8(4), 2013 pp. 233–259. 

[11] N. Fatès, “Experimental Study of Elementary Cellular Automata Dynam-
ics Using the Density Parameter,” Discrete Mathematics and Theoretical
Computer Science, AB(DMCS), 2003 pp. 155–166.
doi:10.46298/dmtcs.2304.

[12] H.  Zenil  and  E.  Villarreal-Zapata,  “Asymptotic  Behavior  and  Ratios  of
Complexity in Cellular Automata,” International Journal of Bifurcation
and Chaos, 23(09), 2013 1350159. doi:10.1142/S0218127413501599.

[13] M.  Redeker,  A.  Adamatzky  and  G.  J.  Martínez,  “Expressiveness  of
Elementary  Cellular  Automata,”  International  Journal  of  Modern
Physics C, 24(03), 2013 1350010. doi:10.1142/S0129183113500101.

[14] L. O. Chua, J. Guan, V. I. Sbitnev and J. Shin, “A Nonlinear Dynamics
Perspective of Wolfram’s New Kind of Science, Part VII: Isles of Eden,”
International  Journal  of  Bifurcation  and  Chaos,  17(09),  2007
pp. 2839–3012. doi:10.1142/S0218127407019068.

[15] J. C. Seck-Tuoh-Mora, J. Medina-Marin, G. J. Martínez and N. Hernán-
dez-Romero,  “Emergence  of  Density  Dynamics  by  Surface  Interpolation
in  Elementary  Cellular  Automata,”  Communications  in  Nonlinear  Sci-
ence and Numerical Simulation, 19(4), 2014 pp. 941–966.
doi:10.1016/j.cnsns.2013.08.013.

[16] V. Salo. Private communication, 2022. 

Classification of ECAs Based on Their Limit Cycle Lengths in /k 251

https://doi.org/10.25088/ComplexSystems.32.3.229

https://complex-systems.com/pdf/02-2-2.pdf
https://doi.org/10.46298/dmtcs.2304
https://doi.org/10.1142/S0218127413501599
https://doi.org/10.1142/S0129183113500101
https://doi.org/10.1142/S0218127407019068
https://doi.org/10.1016/j.cnsns.2013.08.013
https://doi.org/10.25088/ComplexSystems.32.3.229



