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The  first  pattern  formation  model  was  proposed  by  the  mathematician
Alan  M.  Turing.  This  model  consists  of  a  system  of  reaction-diffusion
equations  that  produces  stationary  patterns  by  means  of  the  so-called
“Turing instability.” In this paper, we found the conditions that the net-
work  and  the  parameters  need  to  fulfill  in  order  to  achieve  the  Turing
instability  in  a  particular  reaction-diffusion  system  called  the  Mimura–
Murray model on different network topologies, including some simula-
tions  on  an  innovative  kind  of  network,  based  on  the  Wolfram  model,
that  evolves  over  time,  generating  interesting  topologies  that  exhibit
lattice-like  topology.  In  addition,  the  equations  are  solved  and  simu-
lated in Wolfram Language, and some examples of applications in biol-
ogy and sociology are presented.
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Introduction1.

The  English  mathematician  Alan  Turing,  in  his  1952  article  “The
Chemical Basis of Morphogenesis,” was the first to propose a mathe-
matical  model  for  the  formation  of  spatial  patterns  in  biological
systems.  Turing  claimed  that  spatial  patterns  can  arise  as  a  result  of
instability  in  a  reaction-diffusion-type  mechanism  for  two  chemicals
(one  acting  as  an  activator  and  the  other  acting  as  an  inhibitor),
which he called morphogens. This mechanism of pattern generation is
now  called  “Turing  instability.”  Turing  instability  occurs  when  a
steady  state  is  stable  without  diffusion  and  unstable  with  diffusion,
then under certain conditions, spatial inhomogeneities (stationary spa-
tial  patterns)  will  occur  [1,  2].  The  instability  caused  by  the  diffusion
might appear counterintuitive at first, since diffusion is usually a pro-
cess of stabilization and homogenization, but Turing’s insight showed
that  from  the  interaction  of  two  stabilizing  processes,  an  instability
can arise [3]. 
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After Turing’s pioneering work, a general mathematical framework
was developed to investigate the Turing instability with different reac-
tions in continuous domains with distinct geometries and recently has
been extended to discrete domains defined by networks [4, 5]. In such
systems  on  networks,  Turing  instability  leads  to  the  spontaneous  dif-
ferentiation  of  the  nodes  of  the  network  into  groups  of  nodes  where
some have a high concentration of the activating substance and others
a high concentration of the inhibiting substance. 

In this paper, we present the Turing instability analysis of a par-
ticular  reaction-diffusion  system  called  the  Mimura–Murray  model
for  two  species  on  different  network  topologies,  but  this  analysis  can
be  generalized  and  extended  to  more  species,  more  reaction-diffusion
models,  and  to  other  types  of  networks,  for  example,  multilayer  net-
works [6]. 

Additionally,  we  explore  through  various  illustrative  numerical
simulations  the  Turing  instability  on  dynamical  networks  given  by
Wolfram  models  that  evolve  over  time  using  simple  rules  that  con-
verge into lattice structures [7] and can be used as a first approach to
complement Turing’s work on the morphogen equations for an assem-
bly  of  cells  [8].  This  discrete  case  may  be  useful  in  many  circum-
stances where the continuum limit is not adequate or applicable. 

Background2.

The  existence  of  pattern  formation  in  discrete  media  was  first  intro-
duced  by  Othmer  and  Scriven  in  the  context  of  the  diffusion  of  mor-
phogens through a network of intercellular connections [9].

The  patterns  in  this  context  correspond  to  different  populations
of  nodes  differentiated  by  their  levels  of  concentrations  of  the  differ-
ent  species  and  exhibit  properties  quite  different  from  the  continuum
case. For example, multiple coexisting steady states can occur and hys-
teresis effects are present, indicating that the patterns are not particu-
larly robust over time [10].

Since  then,  the  theory  has  been  extended  to  directed  networks
[11],  multilayer  networks  [12]  and  time  evolutionary  networks  [10].
And  given  the  widespread  prevalence  of  networks  in  a  large  number
of  socio-economic,  biological,  technological  [13]  and  social  systems,
Turing’s  theory  is  increasingly  being  used  to  model  self-organizing
behaviors,  among  other  complex  phenomena.  Although  much  has
been studied regarding the application and the existence of Turing pat-
terns  in  different  types  of  complex  networks,  much  remains  to  be
understood about the precise role of network topology.
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Reaction-Diffusion System3.

A  reaction-diffusion  system  is  a  mathematical  model  that  describes
the  dynamics  of  how  the  concentration  of  one  or  more  substances
varies in time and space, under the influence of two terms: one of reac-
tion,  in  which  the  concentration  increases  or  decreases  by  local  inter-
action,  and  another  by  diffusion  that  causes  substances  to  disperse  in
space [2, 3].
 The general form of this system is:

∂s

∂ t
= D∇2 s + f (s), (1)

where s is the vector of the concentrations of the morphogens, f  repre-
sents  the  reaction  kinetics  and  D  is  the  diagonal  matrix  of  the  diffu-
sion coefficients.

The  following  work  addresses  the  model  for  two  chemical  species,
given by the equations:

∂u

∂ t
= d1∇

2u + f (u, v), (2)

∂v

∂ t
= d2∇

2v + g(u, v), (3)

where  f  and  g  are  nonlinear  functions  [2].  Furthermore,  we  consider
that  u  is  an  activator;  this  means  that  the  production  of u  is  auto-
catalytically  stimulated  by  u,  and  v  is  an  inhibitor.  That  means  that
this species inhibits the production of u.

Reaction-Diffusion System in a Discrete Domain3.1

Since  we  are  interested  in  the  discrete  form  of  this  equation,  we  need
to modify equations (2) and (3) to discrete form as follows.

If  the  system  is  embedded  in  a  network  instead  of  a  continuous
domain,  we  use  a  similar  set  of  equations,  by  means  of  the  analog  of
the  Laplacian  operator  for  networks,  known  as  the  Laplacian  matrix
[4, 5]:

Lij = Aij - kiδij. (4)

Here,  Aij  is  the  symmetric  adjacency  matrix,  whose  elements  are  1  if

there  is  an  edge  between  the  nodes  i  and  j  and  0  otherwise,  and
ki = ΣiAij  is  the  degree  of  node  i.  Then  the  diffusion  of  a  particular

node is the sum of all incoming flows from its neighbors and propor-
tional  to  their  respective  concentration  differences.  Substituting  this
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modification, our initial system is transformed into a set of 2N differ-
ential equations (for i = 1, 2, … , N):

∂ui

∂ t
= ϵ

j=1

N

Lijuj + f (ui, vi), (5)

∂vi

∂ t
= ϵγ

j=1

N

Lijvj + g(ui, vi), (6)

where  we  introduce  ϵ = d1  and  γ = d2  to  align  the  notation  with  the
continuous system.

Mimura–Murray Model4.

The reaction defined by the Mimura–Murray model that will be used
in the following simulations specifies the functions f  and g from equa-
tions (5) and (6) as:

f (u, v) = u
a + bu - u2

c
- v , (7)

g(u, v) = v(u - (1 + dv)), (8)

where a, b, c and d are real positive parameters.

This model has proven to be very versatile and has been applied to
various  phenomena  of  biological  interest.  Specifically,  it  has  been
used  to  model  a  predator-prey  type  system  [14].  Our  choice  of  this
model  is  motivated  by  its  extended  use  in  the  study  of  different
reaction-diffusion  dynamics  in  complex  networks;  however,  our
results are applicable to a wide range of dynamics. 

Turing Instability on the Discrete Domain5.

Turing’s  crucial  idea  was  that  it  is  possible  to  have  stable  stationary
states in the absence of diffusion, which become unstable in the pres-
ence  of  diffusion  and  form  heterogeneous  patterns,  hence  the  name
diffusion-driven instability. To obtain this diffusion-driven instability,
we need to derive these conditions as follows.

Stability in the Absence of Diffusion5.1

Similar  to  the  more-studied  classical  continuous  domain,  we  consider
(u*, v*)  an  equilibrium  point,  which  satisfies  f (u*, v*) =
g(u*, v*) = 0.We linearize the system in the absence of diffusion (with
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ϵ = 0 in equations (5) and (6)) around (u*, v*):

u


v
 =

fu fv
gu gv (u*,v*)

u

v
, (9)

where  the  matrix  
fu fv
gu gv (u*,v*)

 is  the  Jacobian,  which  we  will  denote

by J.
In this way, to find the stability of the system, we will only have an

eigenvalue problem:

J - λI = 0 (10)

with the characteristic polynomial:

λ2 - (fu + gv)λ + (fugv - fvgu) = 0 (11)

and solutions:

λ1, 2 =
1

2
Tr(J) ± Tr(J)2 - 4 Det(J)  (12)

where Tr(J) = fu + gv and Det(J) = fugv - fvgu. 

From  this,  the  system  in  the  absence  of  diffusion  will  be  stable  if
Re[λ] < 0. This holds if the following inequalities are satisfied:

Tr[J] = fu + gv < 0 (13)

Det[J] = fugv - fvgu > 0. (14)

Diffusion-Driven Instability5.2

Now we need to find the conditions for the instability in the presence
of diffusion (ϵ > 0). To achieve this, we introduce diffusion in the lin-
ear system at the equilibrium point:

dui

dt
du2

dt

= J
ui
vi

+

j=1

N

Lij
ϵ 0

0 ϵ γ
∇2 ui

vi
. (15)

 To  derive  the  necessary  conditions  for  the  steady  state  to  become
unstable,  we  consider  an  inhomogenous  perturbation  for  the  steady
state, that is, u = u* + ηu and v = v* + ηv with ηu ≪ 1 and ηv ≪ 1. 

These perturbations then satisfy the following linearized ODEs:

dηu

dt
dηv

dt

= J
ηu

ηv
+

j=1

N

Lij
ϵ 0

0 ϵ γ
∇2 ηu

ηv
. (16)
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The perturbations ηu  and ηv  therefore satisfy a 2N linear ODE sys-
tem,  and  their  long-term  behavior  can  be  studied  using  the  eigenval-
ues of the matrix

fu I + ϵ L fv I

gu I gu I + ϵγL
. (17)

Here we can apply a similar technique as in Turing’s work, expand-
ing the dynamics on a well-chosen orthogonal basis. In the continuum
case,  we  use  the  orthogonal  basis  of  eigenfunctions  of  the  Laplace
operator,  and  in  the  discrete  case,  we  can  use  the  eigenvectors  of  the
graph  Laplacian  L.  Note  that  since  L  is  a  real  positive  semi-definite
matrix, the eigenbasis for L is indeed orthogonal, and the correspond-
ing eigenvalues are real and non-negative.

Denote  by  Φj
(α)

 the  set  of  N  eigenvectors  of  L  with  accompanying

eigenvalues Λa, which lie in the interval [0, N]. We assume for simplic-
ity  that  the  eigenvectors  are  ordered  such  that  the  eigenvalues  Λa  are
in  increasing  order.  Then,  if  we  introduce  the  corresponding  eigen-
value equation for the Laplacian matrix with eigenvalue and eigenvec-
tor decomposition, we will have:



j=1

N

LijΦj
(α) = Λα Φj

(α)
(18)

where α = 1, … , N. The disturbances can be expanded over the set of
Laplacian eigenvectors as:

ηu = 

a=1

N

caE
(λat)Φi

(α) (19)

ηv = 

a=1

N

ca BaE
(λat)Φi

(α)
i. (20)

Substituting equations (19) and (20) in equations (16) and (17), we
obtain the following eigenvalue equation:

λa
1

Ba
=

fu + ϵ Λa fvΛa

guΛa gu + γΛa

1

Ba
(21)

with characteristic equation:

λa
2 + b (Λa)λa + c(Λa) = 0 (22)

and roots:

λ1, 2 =
1

2
-b(Λa) ± -b(Λa)

2 - 4c(Λa)  (23)
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with definitions:

b(Λa) = -(Tr(J) + (ϵ + γ)Λa) (24)

c(Λa) = ϵγΛa
2 + (ϵgv + γfu)Λa +Det(J). (25)

From the conditions obtained for the system in the absence of diffu-
sion,  we  can  see  that  the  only  way  to  make  the  roots  positive  (unsta-
ble)  is  with  the  root  of  equation  (20).  Thus,  to  induce  differentiation
we need λα(Λα) > 0 for some α, which implies c(Λα) < 0, so:

c(Λa) = ϵγΛa
2 + (ϵgv + γfu)Λa +Det(J) < 0. (26)

The roots of c(Λa) are:

Λα1,α2
=

1

2ϵγ
-(ϵgv + γfu) ± (ϵgv + γfu)

2 - 4 ϵγ Det(J) . (27)

Therefore, c(Λa)  is  negative  if  some  of  the  Laplacian  eigenvalues
are  in  the  range  [Λa1 , Λa2 ],  which  guarantees  the  existence  of  positive

growth factors λa. In this way, we obtain the conditions for instability
in the presence of diffusion:

ϵ gv + γfu > 0 (28)

(ϵgv + γfu)
2 - 4 ϵγ(fugv - fvgu) > 0. (29)

So  the  conditions  to  achieve  Turing  instability  and  differentiation
of the nodes of our network are:

fu + gv < 0 (30)

fugv - fvgu > 0 (31)

ϵ gv + γfu > 0 (32)

(ϵgv + γfu)
2 - 4 ϵγ(fugv - fvgu) > 0, (33)

with  fu,  fv,  gu  and  gv  as  the  coefficients  of  the  Jacobian  evaluated  at
the equilibrium point.

If we comply with these conditions and start from an almost homo-
geneous distribution of concentrations, the species are gradually regu-
lated  until  a  spontaneous  differentiation  of  the  nodes  of  the  network
arises,  and  as  time  increases,  the  dynamics  of  the  system  do  not
undergo any further changes [2].

Interestingly,  the  appearance  of  positive  growth  rates  λa  corre-
sponds  to  the  superposition  of  the  Laplacian  eigenvalues  with  the
instability regime and since

Tr(-L) = Σiki = ΣaΛa,
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we have: 

〈k〉 = 〈Λa〉

where 〈k〉 =
2m

N
 is the average degree of the network.

Thus, for a fixed set of diffusion coefficients and dynamic parame-
ters, Turing instabilities can be triggered in any type of network topol-
ogy  by  adjusting  the  average  connectivity  of  the  system  into  a  regime
with  positive  growth  rates.  In  contrast,  for  fixed  network  topology,
the  diffusion  coefficients  can  be  adjusted  (within  significant  limits)  to
generate instabilities [5].

Simulations6.

Now that we have identified the conditions for the appearance of Tur-
ing patterns, we can observe the Turing space; this will allow us to see
when  spontaneous  differentiation  occurs.  For  example,  Figure  1
shows  the  parameter  space  for  γ  and  ϵ,  holding  the  other  parameter
values  fixed.  In  this  image,  the  green  area  shows  the  value  of  the
parameters  ϵ  and  γ  that  will  allow  us  to  obtain  the  Turing  pattern
based on previous analysis.

50 100 150
γ

0.1

0.2

0.3

0.4

ϵ

Figure 1. Parameter space γ versus ϵ fixing a = 35, b = 16, c = 9 and d = 2 / 5.

From  the  parameter  space,  we  can  select  ϵ = 0.015  and  γ = 2  to
observe  the  instability  parameter  range  determined  by  the  diffusion
coefficients.  In  this  range,  the  dynamics  at  the  stable  point  become
unstable  with  a  positive  eigenvalue.  In  Figure  2,  we  can  see  the char-
acteristic curve c(Λa), which relates the Laplacian eigenvalues with the
dynamical  eigenvalues  and  allows  us  to  choose  the  average  degree  of
our network nodes to be able to generate a pattern. For example, for
a  Watts–Strogatz–type  network  with  Λa = 〈k〉 = 200,  shown  in
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Figure 3,  spontaneous  differentiation  occurs,  as  we  can  see  in  the
network graph and the graph of the index versus the concentration of
u. This graph of the index versus the concentration of u indicates that
there  are  two  types  of  nodes,  one  type  with  a  large  quantity  of  the
inhibitor  species  and  the  other  type  with  a  small  quantity  of  the
inhibitor, meaning that it has a large quantity of the activator.

For  〈Λa〉 = 〈k〉 = 150  (Figure  4),  〈Λa〉 = 〈k〉 = 100  (Figure  5),
〈Λa〉 = 〈k〉 = 50 (Figure 6) and 〈Λa〉 = 〈k〉 = 10 (Figure 7), we can also
observe the differentiation on the nodes for these cases. So 〈k〉 can be
tuned to trigger Turing instability.

-200 -150 -100 -50
λ(Λα)

-0.5

0.5

1

1.5

2.

Λα

A B C D E

Figure 2.Characteristic curve.

Figure 3.Differentiation in the network for 〈k〉 = 200. 
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Figure 4.Differentiation in the network for 〈k〉 = 150.

Figure 5.Differentiation in the network for 〈k〉 = 100.

Figure 6.Differentiation in the network for 〈k〉 = 50.
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Figure 7.Differentiation in the network for 〈k〉 = 10.

Evolution of the Network Using the Wolfram Model7.

So  far,  it  has  been  seen  that  reaction-diffusion  models  have
unavoidable limitations in describing many phenomena in the biologi-
cal  and  chemical  sciences.  A  good  way  to  generalize  the  systems  and
give  them  more  applications  is  to  take  into  account  the  effect  of  a
growing domain. We believe that by taking this effect into account we
will  be  able  to  better  describe  some  phenomena  in  the  biological  and
chemical sciences. To simulate this growth in the domain, we will use
a  special  kind  of  evolving  network  based  on  the  Wolfram  model
(WM) [7].

Evolving networks are networks that change as a function of time.
They  are  a  natural  extension  of  network  science,  as  almost  all  real-
world networks evolve, either adding or removing nodes or links over
time  [15,  16].  Usually,  all  of  these  processes  occur  simultaneously,  as
in social media, where people make and lose friends over time, creat-
ing and destroying edges.

In  the  same  way,  the  WM  generates  networks  that  evolve  over
time.  It  begins  with  a  small  graph  and  a  simple  rule  that  is  applied
recursively  over  the  network.  Surprisingly,  self-organization  into
macroscopic  structures  appears,  including  two-dimensional  lattices,
among  other  complex  structures.  We  use  the  WM  and  some  of  its
“notable universes” (sets of rules) to perform the simulation on some
interesting  network  topologies.  We  are  especially  interested  in  rules
defined  by  two  ternary  relations,  specially  the  2^33^3  case.  Exten-
sive search in all 79 million or so 2^3  3^3 possible rules has shown
that  rules  with  slow  growth  are  quite  rare  and  are  strongly  localized
to about 10 broad regions in the space of possible rules [7]. From the
rules  with  slow  growth,  only  a  small  subset  form  nontrivial  globular
structures,  and  of  these,  perhaps  10%  exhibit  obvious  lattice-like
patterns  [7].  We  are  interested  in  these  rules  for  their  simple
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mechanism of dynamic update yet complex self-organizing behavior
into lattices, with striking visual connections to the two-dimensional
continuous case commonly linked to stripe animal patterning, among
other phenomena. Consider the case in Figure 8 as an example of a
WM with Turing patterning: notice the stripe patterning on the last
network.

10 20 30 40 50 60 70

2

4

6

8

20 40 60 80

2

4

6

8

20 40 60 80 100

2

4

6

8

20 40 60 80 100 120

2

4

6

8

Figure 8.Growth through rules for WM 1268.

In this evolving networks case, when some new nodes are added
into the graph, we are assuming the new nodes have a random value
of u and v at the beginning, the dynamics of the reaction-diffusion
system work as shown previously and as time goes by, the nodes
arrive at stable u and v values.
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Other  examples  of  Turing  patterns  in  Wolfram’s  remarkable  uni-
verses  are  Figures  9–13  for  the  notable  universes  3255,  1517,  3639,
1167 and 1986, respectively.

Figure 9. Turing pattern in the WM 3255.

Figure 10. Turing pattern in the WM 1517.

Figure 11. Turing pattern in the WM 3639.
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Figure 12. Turing pattern in the WM 1167.

Infinity

Figure 13. Turing pattern in the WM 1986.

The  novel  part  of  Turing  patterns  on  these  types  of  networks  that
evolve over time, generating interesting topologies that exhibit lattice-
like  networks  based  on  the  WM,  is  that  this  type  of  topology  in  the
form  of  a  lattice  can  show  Turing  patterns  in  networks  in  a  visible
way  as  we  would  see  it  in  the  continuous  domain;  such  visible  pat-
terns can be hard to find on networks.

Discussion8.

In  this  paper,  we  analyzed  the  extension  of  the  classical  Turing  pat-
tern  formation  analysis  to  different  complex  network  topologies.  In
great  resemblance  to  the  two-dimensional  analysis,  the  Turing  condi-
tions  are  obtained  and  consequently  allowed  to  fix  parameters  that
produce self-organizing patterns. However, there are important differ-
ences  between  the  classical  framework  and  the  network  framework,
due to the effect of the network topology in the diffusion. We observe
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that  the  Turing  space  is  completely  determined  by  the  graph  of  the
Laplacian  spectrum  and  therefore  intimately  linked  to  network
connectivity.

We  also  observe  that,  in  principle,  the  differentiation  of  nodes  can
be  induced  in  any  type  of  network  topology,  adjusting  the  average
connectivity of the system, allowing a degree of tuning and control of
the  degree  of  overlap  between  the  graph  spectrum  and  the  instability
regime; conversely, for a fixed network topology, dynamic parameters
can be adjusted within significant limits to generate Turing patterns.

Additionally,  the  novel  part  of  Turing  patterns  on  these  types  of
networks  that  evolve  over  time,  generating  interesting  topologies  that
exhibit  lattice-like  networks  based  on  the  WM,  is  that  this  type  of
topology  in  the  form  of  a  lattice  can  show  Turing  patterns  in  net-
works  in  a  visible  way  as  we  would  see  it  in  the  continuous  domain,
so it could be of interest when compared with some simulation meth-
ods  in  continuous  domains  that  use  meshes  of  discretization,  such  as
the finite element method.

Conclusion9.

In this paper, the theory of pattern formation in the Mimura–Murray
reaction-diffusion  system  on  complex  networks  was  discussed  in  a
way that can be generalized and applied to other spacetime dynamics.
Likewise,  the  conditions  necessary  for  the  formation  of  the  patterns
were  determined  in  detail  by  means  of  the  so-called  “Turing  instabil-
ity.”  These  equations  were  implemented  and  solved  to  be  able  to
observe  the  resulting  pattern  on  different  network  topologies,  includ-
ing  some  simulations  on  an  innovative  kind  of  network  that  evolves
over  time,  generating  interesting  topologies  that  exhibit  lattice-like
networks based on the Wolfram model.

We conclude that the results of this paper can enrich the investi-
gation  of  pattern  formation,  since  it  presents  a  great  variety  of  possi-
ble  applications  in  different  socioeconomic,  biological,  technological
and social systems. For example, it could be useful to model polariza-
tion  and  opinion  formation,  and  the  socio-economic  segregation  in
many social systems, similar to how the predator-prey model is used.
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