
Affinity Classification Problem by 

Stochastic Cellular Automata

Kamalika Bhattacharjee*

Department of Computer Science and Engineering
National Institute of Technology
Tiruchirappalli, Tamilnadu – 620015, India

Subrata Paul

Sukanta Das

Department of Information Technology
Indian Institute of Engineering Science and Technology
Shibpur, Howrah, West Bengal – 711103, India
{kamalika.it* , subratapaul.sp.sp}@gmail.com, sukanta@it.iiests.ac.in 
*Corresponding author

This paper introduces the affinity classification problem, which is a gen-
eralization of the density classification problem. To solve this problem,
we  introduce  temporally  stochastic  cellular  automata  where  two  rules
are stochastically applied in each step on all cells of the automata. Our
model is defined on a two-dimensional grid having affection capability.
We  show  that  this  model  can  be  used  in  several  applications,  such  as
modeling self-healing systems. 
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Introduction1.

The density classification problem is a well-known problem in cellular
automata  (CAs).  Given  an  initial  configuration,  the  goal  is  to  find  a
binary cellular automaton (CA) that converges to an all-0 (resp. all-1)
configuration,  a  fixed  point,  if  the  number  of  0s  (resp.  1s)  in  the  ini-
tial  configuration  is  higher  than  the  number  of  1s  (resp.  0s).  That  is,
the CA reaches an all-1 configuration if it has an affinity toward 1 in
its  initial  configuration  with  respect  to  the  density  of  1s  in  it  and
reaches  an  all-0  configuration  otherwise.  However,  sometimes  the
requirement  of  many  applications  is  that  this  density  itself  is  to  be
treated as a variable—still, a binary CA is required that can converge
to the all-1 (resp. all-0) configuration. In this paper, we introduce this
problem as a generalization of the density classification problem. For-
mally, the problem can be stated as:  
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Given  an  initial  configuration,  find  a  binary  CA  that  converges
to  an  all-1  configuration  if  the  density  of  1s  is  more  than  ρ.
Otherwise, it converges to an all-0 configuration.

Here,  ρ  is  calculated  as  the  density  of  1s  in  the  initial  configuration
and  all-0  and  all-1  are  the  only  fixed  points  of  the  CA.  We  call  this
the  affinity  classification  problem,  as  the  CA  has  an  affection  toward
the  all-1  configuration.  When  ρ  0.5,  the  problem  is  reduced  to  the
classical density classification problem.  

Several attempts have been made in the literature to solve the den-
sity  classification  problem.  However,  in  [1]  it  is  proved  that  it  is
impossible  to  solve  this  problem  with  100%  accuracy  using  classical
CAs.  Because  of  this,  research  efforts  have  been  shifted  toward  find-
ing  the  nonclassical  CAs  that  can  solve  the  problem  “almost”  per-
fectly. In [2], the density classification task is shown to be solvable by
running  in  sequence  the  trivial  combination  of  elementary  rules  184
and  232.  In  [3]  this  solution  is  extended  for  two  dimensions  using  a
stochastic component in the two rules 184 and 232. In [4], a stochas-
tic  CA  is  used  to  solve  the  problem  with  arbitrary  precision.  In  this
solution, the cells of one-dimensional CAs stochastically choose a rule
in each step from a set of rules to evolve. These nonclassical CAs can
be  called  spatially  stochastic  CAs.  Another  approach  has  been  to
tackle this problem with nonuniform CAs where the cells can use dif-
ferent rules to evolve. A nonuniform CA that performs the best on the
density  classification  task  is  identified  in  [5].  However,  neither  (spa-
tial)  stochastic  CAs  nor  nonuniform  CAs  can  perfectly  solve  the  den-
sity classification problem, whereas the nonclassical CA of [2], which
may be called a temporally nonuniform CA, can do it perfectly. 

As the affinity classification problem is an extension of the density
classification problem, it is most likely to be unsolvable using classical
CAs.  We  may  need  nonclassical  CAs  with  temporal  nonuniformity
and  stochastic  components  for  this.  Hence,  to  solve  this  problem,  in
this  paper,  we  introduce  temporally  stochastic  CAs.  We  define  our
problem  over  two-dimensional  binary  CAs  and  use  two  different  CA
rules  uniformly  over  the  grid.  The  default  rule  is  deterministic,
whereas another rule is stochastic whose application at each time step
is  dependent  on  some  probability.  Section  2  describes  the  proposed
model.  The  simulation  and  convergence  to  the  solution  for  different
densities  is  shown  in  Section  3.  It  is  shown  that  our  model  is  not
blind,  as  it  intelligently  decides  and  converges  to  its  point  of  attrac-
tion. Finally, Section 4 shows that this model has several applications,
including a model for self-healing systems. 

The Model   2.

The  proposed  CA  is  defined  over  a  two-dimensional  square  grid  that
uses  a  periodic  boundary  condition.  The  CA  is  binary  and  considers
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the  Moore  neighborhood  dependency;  that  is,  a  cell  takes  any  of  the
two states 0 or 1 and depends on itself and its eight nearest neighbors.
At time step t, a cell can be updated using one of the two rules f  and
g. Here, f  is deterministic and the default rule for the grid, whereas g
is  stochastic  and  is  applied  with  some  probability.  As  the  CA  is
defined  over  a  Moore  neighborhood,  both  f  and  g  have  the  same
domain and range:  

f : {0, 1}9  {0, 1} and g : {0, 1}9  {0, 1}.

We now discuss the default rule f . This rule is spatially determinis-
tic—at  any  time,  it  is  applied  over  all  cells  uniformly.  At  each  time
step t + 1, this rule updates the state of cell (i, j) depending on the pre-
sent states of its neighboring cells: 

(i - 1, j), (i - 1, j - 1), (i, j - 1), (i + 1, j - 1),
(i + 1, j), (i + 1, j + 1), (i, j + 1), (i - 1, j + 1).

Let si, j
t

 be the present state of cell (i, j) and (i, j)
d

 represents the num-

ber of neighbors for the cell (i, j) with si, j
t  d where d ∈ {0, 1}. Then

f  works in the following way: 

si, j
t+1  f si-1, j

t , si-1, j-1
t , si, j-1

t , si, j
t ,

si+1, j-1
t , si+1, j

t , si+1, j+1
t , si,j+1

t , si-1,j+1
t 



0 if si, j
t  1 and 

i-1≤l≤i+1

j-1≤m≤j+1

 (l,m)
0 > K

1 if si, j
t  0 and 

i-1≤l≤i+1,

j-1≤m≤j+1

 (l,m)
1  8 -K

si, j
t otherwise

 

where K is a constant and 0 ≤ K ≤ 8. That means, if a cell is in state 1
and it has more than K neighbors with state 0, it changes to state 0 in
the  next  step,  whereas  a  cell  of  state  0  with  8 -K  or  more  neighbors
with state 1 becomes state 1 in the next step. This number K of neigh-
bors required for state transition is the first parameter of the model.  

The  most  significant  characteristic  of  our  model  comes  from  the
second rule g. As already mentioned, g is a stochastic rule; that is, it is
applied to each cell with some probabilities. Moreover, at which time
step this rule is to be applied is also stochastically decided. Hence, we
call the CA a temporally stochastic CA. However, when selected, this
rule is also applied uniformly over all cells. Here is the rule definition: 
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si, j
t+1  gsi-1, j

t , si-1, j-1
t , si, j-1

t , si, j
t , si+1, j-1

t , si+1,j
t , si+1,j+1

t , si,j+1
t , si-1,j+1

t 



0 with probability ϕ(x) if si, j
t  1 and 

i-1≤l≤i+1,

j-1≤m≤j+1

(l,m)
0  x

1 with probability ψ(x) if si, j
t  0 and 

i-1≤l≤i+1,

j-1≤m≤j+1

(l,m)
1  x

si, j
t otherwise.

Here,  ϕ(x),  ψ(x) : {0, 1, … , K}  [0, 1]  are  two  probability  distribu-
tion functions. We call x the number of supporting neighbors or sim-
ply support.  

This rule implies if a cell is at state 1 and it has x number of neigh-
bors with state 0, it updates its value to state 0 with some probability
ϕ(x). Similarly, if a cell is at state 0 and it has x number of neighbors
with state 1, it updates its value to state 1 with some probability ψ(x).
We call ϕ(x) the affection probability and ψ(x) the repulsion probabil-
ity  function.  These  two  probability  distribution  functions  are  the  sec-
ond and third parameters of our model. 

However, this stochastic rule g does not act in each step. When it is
to  be  applied  is  decided  by  another  probability  p,  which  we  call  the
upgrade  probability.  This  p  is  the  fourth  and  final  parameter  of  our
model. Hence, the parameters required by the model are: 

◼ K,  the  number  of  neighbors  required  to  change  from  one  state  to
another 

◼ ϕ(x), the affection probability function 

◼ ψ(x), the repulsion probability function 

◼ p, the upgrade probability

Observe that in our model, the role of g is to give the cells an extra
chance  to  change  their  status.  During  evolution  of  the  CA  by  f ,  if
some cells are left out that are eager to update their states but cannot
do  so  because  of  the  surrounding  neighbors  (hostile  environment),
they  get  a  booster  to  upgrade  their  current  status  through  g.  This  g
helps  them  achieve  their  desired  status  even  if  they  have  a  smaller
number  of  neighboring  cells  as  support  (as  x ≤ K).  But  whether  the
cell will be updated or not is dependent on the probability value. Both
cells with state 0 and state 1 get this advantage uniformly in terms of
the  two  probability  distribution  functions  ϕ(x)  and  ψ(x).  As  g  gives
precedence  toward  some  cells,  it  is  to  be  applied  with  caution—
so  there  is  the  upgrade  probability  value  p,  which  works  as  a
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controlling  measure.  Therefore,  when  K  4,  f  works  as  a  simple
majority  rule  and  depending  on  g,  the  system  can  be  inclined  toward
a specific state. 

Note  that  the  parameters  give  us  flexibility  to  design  the  model
according  to  the  needs  of  an  application.  For  example,  for  the  model
to  have  an  affection  to  converge  to  all-0  as  a  fixed  point,  we  can  set
ϕ(x)  and  ψ(x)  accordingly.  Similarly,  we  can  change  the  value  of  our
parameter(s) to get different versions of the model, which can be used
for a specific purpose. In fact, we may also consider that in our model
rule, g is applied with probability p, whereas the rule f  is applied with
probability  (1 - p),  with  p  being  any  probability  value.  This  way  of
looking  at  these  rules  makes  both  of  them  temporally  stochastic.  The
next section shows some simulation results solving the affinity classifi-
cation problem with specific parameter values. 

Solving Affinity Classification Problem: A Simulation   3.

We  now  simulate  our  proposed  model  to  understand  its  efficacy  in
solving  the  affinity  classification  problem.  As  mentioned  before,  the
model is a two-dimensional finite CA that uses periodic boundary con-
ditions. For the purposes of the simulation, we consider a grid size of

103103;  that  is  a  total  of  106  cells.  Further,  our  model  is  character-
ized by four parameters: K, ϕ(x), ψ(x) and p. In our simulation, we set
the following values for the parameters:  

K  4

ϕ(x) 
0 if x ≤ 1

logK(x) 2 ≤ x ≤ K

ψ(x) 
0 if x  0

ex-K 1 ≤ x ≤ K

p  0.2.

As  our  model  uses  a  Moore  neighborhood  dependency  on  a  two-
dimensional grid, K is very small: 0 ≤ K ≤ 8. In this small range of K,
logarithmic  functions  grow  faster  than  exponential  functions.  There-
fore,  since  we  want  to  observe  the  affinity  of  the  model  toward  an
all-0 configuration, we take ϕ(x) as a logarithmic function and ψ(x) as
an exponential function. As per our model, we use x  0, 1, … , K to
get the probability values for ϕ(x) and ψ(x). We have plotted ϕ(x) and
ψ(x)  for  different  x  to  see  their  behavior  at  K  4  (see  Figures  1(b)
and  2(b),  respectively).  At  K  4  we  can  observe  that  ϕ(1)  0.0,
ϕ(2)  0.5,  ϕ(3)  0.79248,  ϕ(4)  1.0,  whereas  ψ(1)  0.0497,
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ψ(2)  0.1353,  ψ(3)  0.3679,  ψ(4)  1.0.  We  observe  that  if  the
number of supporting neighbors x is increased, then the probability of
changing  from  state  1  to  state  0  is  also  increased  (Figure  1(b));  how-
ever, if x is decreased, then the probability of changing from state 0 to
state  1  is  increased,  with  the  growth  of  the  first  function  being  faster
than the latter (Figure 2(b)). 

(a) (b)

(c) (d)

Figure 1. Graph  of  ϕ(x)  for  different  K:  (a) K  3;  (b)  K  4;  (c)  K  5;
(d) K  6.  

(a) (b)

Figure 2. (continues)
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(c) (d)

Figure 2. Graph  of  ψ(x)  for  different  K:  (a)  K  3;  (b)  K  4;  (c)  K  5;
(d) K  6.  

Random Initial Configuration  3.1

We have used our model with a large number of random initial config-
urations with various values of ρ where  

ρ 
number of 1

total number of cells
.

Following  are  some  sample  results  from  our  experiment  when
K  4.  Here,  0  is  represented  in  yellow  and  1  is  represented  in  red.
Figure 3 shows that at ρ  0.475, for a random initial configuration,
all the cells become yellow after 150 iterations; that means the model
converges  to  its  point  of  attraction  (all-0).  We  have  experimented
with  a  large  number  of  random  initial  configurations  and  seen  that
when  the  initial  configuration  has  ρ ≤ 0.675,  the  model  converges  to
all-0; otherwise, it converges to all-1.  

(a) (b) (c)

Figure 3. For K  4 and ρ  0.475, the model converges after 150 iterations:
(a) initial configuration, (b) an intermediate configuration, (c) final configura-
tion (all-0).  

Figure  4  shows  another  sample  random  initial  configuration  with
an  arbitrary  ρ > 0.675  (here  ρ  0.6989).  Here,  the  model  converges
to all-1 after 137 iterations. 
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(a) (b) (c)

Figure 4. For  K  4  and  ρ  0.6989,  the  model  converges  to  all-1  after  137
iterations: (a) initial configuration, (b) an intermediate configuration, (c) final
configuration (all-1).  

Naturally, the question arises, Can we increase the affection proba-
bility so that even if we take a lot of 1s in the initial configuration the
model  still  converges  to  all-0?  To  search  for  this  answer,  we  have
again done a large number of experiments by varying the value of K.
In  our  experiments,  we  have  observed  that  when  we  decrease  the
value  of  K,  the  model  converges  to  all-0  even  though  ρ > 0.68.  For
example,  for  the  initial  configuration  of  Figure  5,  if  K  3,  then
although ρ ≤ 0.96, the model converges to all-0. By further experimen-
tation,  we  observe  that  if  the  value  of  K  is  decreased  to  two,  then  ρ

can be as high as 0.99, but the model may still converge to all-0. Simi-
larly,  when  we  increase  the  value  of  K,  then  the  value  of  ρ  is  to  be
decreased for converging to all-0. 

(a) (b) (c) (d)

Figure 5. For  K  3  and  ρ  0.969852,  after  3132  iterations,  the  model
converges to all-0: (a) initial configuration, (b) an intermediate configuration,
(c) another intermediate configuration, (d) final configuration (all-0).  

Figures  1  and  2  show  the  variation  of  the  probability  distribution
functions  for  different  K  values.  If  K  is  changed,  then  the  growth  of
the  probability  distribution  functions  ϕ(x)  and  ψ(x)  is  also  changed
with  respect  to  K.  Table  1  gives  some  of  our  experimental  results.  In
each of the subtables of this table, columns 1 and 2 describe the initial
configurations in the form of K and ρ, whereas columns 3 and 4 show
experimental outcomes. 
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K ρ
Number of 

Iterations Converge to

1 0.000002 1 all-0

1 0.0002 2 all-0

1 0.0051 2 all-0

1 0.3 3 all-0

1 0.55 4 all-0

1 0.67 6 all-0

1 0.6864 8 all-0

1 0.943 21 all-0

1 0.991 76 all-0

1 0.997 170 all-0

1 0.9995 489 all-0

2 0.1 3 all-0

2 0.3 4 all-0

2 0.4 5 all-0

2 0.61 7 all-0

2 0.74 14 all-0

2 0.8 16 all-0

2 0.9536 90 all-0

2 0.965 151 all-0

2 0.982 323 all-0

2 0.993 759 all-0

2 0.995 3 all-1

2 0.9995 2 all-1

3 0.1 3 all-0

3 0.3 6 all-0

3 0.4 9 all-0

3 0.55 20 all-0

3 0.61 22 all-0

3 0.6864 44 all-0

3 0.8 109 all-0

3 0.943 518 all-0

3 0.953 2042 all-0

3 0.96 2372 all-0

3 0.965 3220 all-0

3 0.982 3 all-1

3 0.991 3 all-1

3 0.995 2 all-1

4 0.1 4 all-0

4 0.4 66 all-0

4 0.55 805 all-0

 

K ρ
Number of 

Iterations Converge to

4 0.61 3074 all-0

4 0.65 7019 all-0

4 0.67 12385 all-0

4 0.675 16186 all-0

4 0.6864 261 all-1

4 0.7 159 all-1

4 0.74 69 all-1

4 0.8 8 all-1

4 0.943 4 all-1

4 0.965 4 all-1

4 0.991 2 all-1

5 0.06 8 all-0

5 0.08 14 all-0

5 0.09512 8 all-0

5 0.1 14 all-0

5 0.3 304 all-1

5 0.4 91 all-1

5 0.55 12 all-1

5 0.61 10 all-1

5 0.686 6 all-1

6 0.001 2 all-0

6 0.0051 3 all-0

6 0.00994 8 all-0

6 0.03 638 all-1

6 0.0629 230 all-1

6 0.076 194 all-1

6 0.08 98 all-1

6 0.1 58 all-1

7 0.000002 2 all-0

7 0.0002 2 all-0

7 0.0004 2 all-0

7 0.0005 976 all-1

7 0.0009 375 all-1

7 0.001 417 all-1

7 0.00499 136 all-1

7 0.00994 83 all-1

7 0.0676 25 all-1

7 0.1 12 all-1

7 0.55 4 all-1

7 0.95 2 all-1

Table 1. Relationship  between  the  values  of  K  and  ρ  where  the  model  con-
verges to all-0 or all-1. 
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Initial Configuration with a Block of 0s and 1s   3.2

The previous subsection shows the results when 0 and 1 are randomly
distributed  in  the  initial  configuration.  Now,  we  experiment  with  ini-
tial configurations where a block of cells is set to have the same value.
Tables 2 and 3 depict our sample results. In Table 2, we consider ini-
tial configurations with a small number of consecutive cells in state 0
and  the  remaining  cells  in  state  1.  For  every  value  of  K  (1 ≤ K ≤ 7),
column  2  shows  the  number  of  consecutive  cells  having  the  same
value  in  our  experiments,  so  that  the  model  converges  to  all-0.  For
instance, when K  4, then an initial configuration having a block of
100  consecutive  0s,  the  model  converges  to  all-0.  These  consecutive
0s form a cluster that grows in size until the model converges to all-0.

Figure  6  shows  a  random  initial  configuration  with  106  cells,  where
only  25  consecutive  cells  are  in  state  0  and  K  3.  We  can  observe
that although the number of 0s is very small, the model still converges
to all-0 after 4093 iterations (see Figure 6). Therefore, our model has
an  affinity  to  converge  to  all-0  even  if  the  number  of  0s  in  the  initial
configuration is very small in comparison to the grid size.   

(a) (b) (c) (d)

Figure 6. K  3  and  the  block  of  25  0s;  the  model  converges  to  all  0s  after
4093  iterations:  (a)  initial  configuration,  (b)  intermediate  configuration,
(c)  another  intermediate  configuration,  (d)  final  configuration  converges  to
all-0.  

However, the model does not always converge to the desired fixed
point. For example, at K  3, for a random initial configuration hav-
ing  a  block  of  81  0s,  the  model  converges  to  all-1  (Table  2).  Table  3
depicts  some  sample  results  from  our  experiment  where  we  take  a
small number of 1s organized in sequential order; that is, they make a
cluster. Here, we can see that after taking K > 4, sometimes the model
converges  to  all-1  even  if  the  number  of  1s  is  very  small.  Therefore,
even if the model has an affection to converge to all-0, the value of K
may take a major role and cause the model to converge in a direction
(all-0 or all-1). 

280 K. Bhattacharjee, S. Paul and S. Das

Complex Systems, 32 © 2023



K Number of 0s Iterations (Time Steps) Converges to

1 1 1 all-1

1 2 998 all-0

2 2 1 all-1

2 3 1152 all-0

2 4 1148 all-0

3 3 1 all-1

3 4 3874 all-0

3 25 4093 all-0

4 49 64 all-1

4 64 92 all-1

4 70 492 all-1

4 81 576 all-1

4 100 15915 all-0

4 144 16138 all-0

Table 2. Relationship  between  the  values  of  K  and  the  block  of  0s  where  the
model  converges  to  all-0  or  all-1  when  the  numbers  of  0s  are  placed  sequen-
tially in the grid. 

K Number of 1s Iterations (Time Steps) Attractor

5 25 24 all-0

5 225 212 all-0

5 256 483 all-0

5 324 12148 all-1

5 400 11870 all-1

6 2 1 all-0

6 4 13 all-0

6 5 1519 all-1

6 6 1510 all-1

6 8 1507 all-1

6 9 1493 all-1

7 1 1 all-0

7 2 979 all-1

Table 3. Relationship  between  the  values  of  K  and  the  block  of  0s  where  the
model  converges  to  all-0  or  all-1  when  the  numbers  of  1s  are  placed  sequen-
tially in the grid. 
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Applications   4.

As  discussed  in  Section  2,  the  parameters  give  us  flexibility  to  design
our model according to the need of the solution to a particular prob-
lem. There are several possible applications of our model. Here we dis-
cuss some of them.  

Modeling Self-Healing Systems   4.1

Living systems are assumed to be more intelligent than a nonliving sys-
tem.  Therefore,  to  be  intelligent,  a  machine  (nonliving  system)  has  to
emulate  the  properties  of  living  systems.  Among  the  properties,  self-
healing  is  a  basic  and  important  biological  property  that  is  a  sign  of
life.  Self-healing  is  the  ability  for  a  system  to  reorganize  and  heal
itself.  If  a  machine  has  self-healing  ability,  it  is  likely  to  mimic  other
properties  of  living  elements  like  self-replication.  Hence,  it  will  be
more  intelligent,  just  like  a  living  system.  We  can  show  that  our  pro-
posed CA can be used to model any self-healing system, where param-
eters of our abstract model can be interpreted as the characteristics of
the self-healing system.  

Let  us  interpret  our  model  as  the  following.  Let  a  grid  of  cells
embody a collection of living elements (they can be cells, humans, ani-
mals, anything), where state 0 means the cell is healthy and 1 means it
is  sick.  We  want  to  model  how  much  infection  the  cells  can  endure
and  still  heal.  By  default,  the  living  system  is  healthy;  that  is,  all  cells
are in state 0. Now, suppose, because of some environmental change,
a  number  of  cells  get  infected  and  update  their  states  to  1  (become
sick).  This  is  the  initial  configuration  from  which  we  start  to  observe
the  system  dynamics.  Let  us  consider  that  in  our  model,  the  system’s
immunity is the immunity of individual cells, and as a whole, the sys-
tem’s  health  is  the  health  condition  of  the  majority  of  the  individual
cells.  So,  at  the  initial  configuration,  if  we  ask  the  system,  Are  you
sick?,  it  can  answer  yes  or  no  depending  on  the  density  of  1s  (ρ).  If
the system can heal itself using this model, that is, come back to all-0,
then  we  can  call  it  a  model  for  self-healing  systems.  At  that  time,  the
answer  to  Are  you  sick?  will  always  be  no.  Therefore,  our  target  is
that the grid converges to all-0 so that we can say there is no infection
and  the  model  is  not  sick.  However,  if  the  model  converges  to  all-1,
then we have to declare that the model is sick.

Now,  any  living  body  has  some  built-in  immunity  status.  This
immunity  is  represented  by  the  first  parameter  K.  Just  like  immunity
is  different  for  different  elements,  K  itself  is  a  variable.  When  K  4,
the system can be interpreted as the situation of natural immunity hav-
ing  no  prevailing  sickness.  The  deterministic  rule  f  plays  the  role  of
natural healing process based on immunity K. Results from Section 3
show that if the converging point is set to all-0 and K ≤ 4, then there
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is a tendency to converge toward all-0 even if in the initial configura-
tion the number of 1s is greater than the number of 0s. This indicates,
like any living body, our model also wants to become not sick. 

However,  even  in  this  condition,  if  the  number  of  infected  cells
becomes  too  large  (ρ  is  high),  then,  according  to  our  rule,  the  system
is  sick.  So,  inherent  immunity  is  not  enough  to  restore  its  health.  For
example, if we take a random initial configuration with some infected
cells  (cell  state  1)  where  ρ  0.632275  (ρ  is  the  density  of  1s)  and
K  4,  then  at  this  stage  the  model  is  sick  (see  Figure  7(a)).  At  this
point,  the  cells  are  given  some  booster  to  improve  their  immunity  in
terms  of  g.  Here,  g  may  be  considered  as  a  vaccine  for  the  infection,
as if it can bypass the natural justice process giving the cells a second
chance  to  live.  But  whether  the  vaccine  will  be  effective  for  a  cell  is
not  deterministic  (so  g  is  stochastic).  Further,  when  this  vaccine  is  to
be  applied  to  the  system  is  also  not  pre-determined  (temporally
stochastic CA with probability p). 

(a) (b)

(c) (d)

Figure 7. (a) Initial configuration of a sick model; (b) and (c) show two inter-
mediate configurations during evaluation; (d) the model is healed.  
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Nevertheless,  for  every  cell,  the  vaccine  will  not  react  similarly.  A
large  number  of  sick  cells  with  a  favorable  environment  may  become
healthy  (represented  by  ϕ(x)),  whereas  some  healthy  cells  with  an
unhealthy  environment  can  become  sick  (represented  by  ψ(x)).  But  if
we take ϕ(x) as logarithmic and ψ(x) as exponential as defined in Sec-
tion 3, by choosing K and x, we can see that after some iterations the
model converges to all-0 (see Table 1). Then we can say the model is
not sick (Figure 7(d)). 

However, if we further increase the value of ρ (say, from 0.675 to
0.68 or more), then for the same K and x, the model may converge to
all-1 (see Table 1) and become sick. Therefore, the role of K and x is
very  important  to  model  self-healing  systems.  If  we  want  our  system
to have a larger tendency to heal, then we need to choose the parame-
ters of our model wisely. Moreover, if the affection probability ϕ(x) is
large,  then  the  system  has  more  tendency  to  heal.  This  probability
indicates the ability to repair or heal oneself automatically and evolve
oneself according to the demands of the environment. 

This  is  how  self-healing  is  modeled  by  our  CA.  It  also  shows  that
our abstract model can be a good interpretation of the role of vaccina-
tion  in  a  living  population.  Also,  observe  that  our  proposed  model
takes  the  global  decision  democratically,  where  every  single  cell
makes its own decision and the system comes to a consensus. Because
of these properties, we claim that our proposed model is intelligent. 

Modeling Transformation Process4.2

In the natural and chemical world, we get glimpses of several transfor-
mation  processes:  water  evaporates  into  vapor;  a  drop  of  color  in  a
glass of liquid dissolves giving the whole glass of liquid a lighter shade
of  that  color.  All  these  processes  happen  to  conserve  the  law  of  mass
and  energy.  This  section  shows  that  our  CA  can  be  used  to  model
such transformation processes.  

During the process of transformation, the particles are divided into
smaller-sized particles and dissolve until the system comes to an equi-
librium. In our model, if we set K  3 (and other parameters the same
as  Section  3),  then  for  some  special  initial  configurations,  the  evolu-
tion of the CA looks like transformation processes—the configuration
is divided into two or more smaller configurations. It goes on dividing
and dissolving until the system converges to a fixed point, which signi-
fies the equilibrium state. For example, in Figure 8, an initial configu-
ration  is  shown,  which,  after  some  iterations,  is  divided  into  more
than  three  configurations.  It  keeps  on  getting  smaller  until  it  con-
verges to the fixed point all-0 when the system has reached its equilib-
rium. Hence, we can say that by varying the parameters of our model,
we  can  simulate  the  transformation  process  from  one  system  to
another by our CA.
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(a) t  0 (b) t  42 (c) t  78 (d) t  108

(e) t  151 (f) t  180 (g) t  198

Figure 8. Simulation of a transformation process.

Density Classification Problem4.3
The density classification problem can also be addressed by our
model. According to the definition of the affinity classification prob-
lem, this problem reduces to the former if we take the density of 1s as
ρ  0.5. However, here, instead of taking ρ as exactly 0.5, we take it
as a variable and see how close we can get to solving this classical
problem using our model.

Previous papers have established that the density classification
problem is not solvable by spatially stochastic CAs (uniform or
nonuniform) but can be solved by using temporally nonuniform CAs
[2, 3]. So we also take our CA as temporally nonuniform with a
stochastic component g, which perfectly fits our model. However, a
property of this problem is that there is no affinity toward any state
at any time. Hence, to make the system unbiased, we take the number
of neighbors K required to change from one state to another as 4.
Also, we choose both the probability distribution functions ϕ(x) and
ψ(x) to be the same. That is, if a cell is at state 1 and it has x number
of neighbors with state 0, it updates its value to 0 with the same prob-
ability distribution function as in the case of the cell being at state 0
with x number of neighbors with state 1 and getting updated to state
1. Further, we consider the upgrade probability value p  0.1 such
that the stochastic component g is applied with very low probability.

Here we show simulation results for two different probability dis-
tribution functions—linear and exponential. For the first case, the
values of the parameters for the model are:
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K  4

ϕ(x) 
x

K
for 0 ≤ x ≤ K

ψ(x) 
x

K
for 0 ≤ x ≤ K

p  0.1.

We  have  performed  a  large  number  of  experiments  with  random  ini-
tial  configurations  over  a  200200  grid  based  on  this  model.  Some
sample  simulation  results  are  shown  in  Table  4.  Here,  the  first  col-
umn  indicates  some  ρ  values,  whereas  the  third  and  fourth  columns
represent for each of these ρ, out of 100 experiments how many con-
verge  to  all-0  and  all-1,  respectively.  In  our  experiments,  we  observe
that  with  random  initial  configurations  and  ρ ≤ 0.4647  or  ρ ≥ 0.54,
our model converges to its fixed point (all-0 and all-1, respectively).  

ρ (Number of 1s)
Number of 
Experiments

Converge to 

All-0
Converge to 

All-1

≤ 0.4647 100 100 0

0.4779710 100 96 4

0.49112875 100 73 27

0.5036035 100 37 63

0.51548925 100 9 91

0.52758225 100 5 95

0.5394037 100 1 99

≥ 0.54 100 0 100

Table 4. Taking a 200200 two-dimensional square grid and both ϕ and ψ as
linear functions. 

For the second case, we take both ϕ and ψ as exponential functions
with K  4 and p  0.1. Hence, the changed parameters of the model
are: 

ϕ(x) 
0 if x  0

ex-K for 1 ≤ x ≤ K

ψ(x) 
0 if x  0

ex-K for 1 ≤ x ≤ K.

We repeat our experiments with a large set of random initial configu-
rations  over  a  100100  grid.  Table  5  shows  some  sample  results  of
this experiment. Here also we observe that when the initial configura-
tion is random, then for ρ ≤ 0.4679 or ≥ 0.520, the model reaches its
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desired fixed point (all-0 or all-1). However, when the configurations
are  a  block  of  0s  or  1s  forming  a  cluster,  then  it  fails  to  reach  the
desired  fixed  point.  Figure  9(a)  shows  examples  of  two  such  patterns
where the model cannot reach its fixed point (see Section 3.2 for more
details).  

ρ (Number of 1s) 
Number of 
Experiments

Converge to 

All-0 

Converge to 

All-1

≤ 0.4679 100 100 0

0.47837 100 96 4

0.513014 100 30 70

0.5181367 100 0 100

≥ 0.520 100 0 100

Table 5. Taking a 100100 two-dimensional square grid and both ϕ and ψ as
exponential functions. 

(a) (b)

Figure 9. Some  unsolvable  configurations  for  the  density  classification  prob-
lem in a two-dimensional square grid.   

Conclusion and Future Scope    5.

There  are  several  properties  in  living  systems  that  make  them  intelli-
gent—affection  is  one  of  them.  In  this  paper,  we  propose  a  new
problem,  called  the  affinity  classification  problem.  We  develop  a
devoted  machine  that  is  embedded  in  a  two-dimensional  cellular
automaton  (CA)  having  a  Moore  neighborhood  dependency  and
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periodic boundary conditions. Our model has affection capabilities to
a  converging  point,  all-1  or  all-0  and  can  be  characterized  by  four
parameters  K,  ϕ(x),  ψ(x)  and  p.  Using  this  model,  we  can  develop  a
self-healing  system.  We  know  that  because  of  self-healing  any  species
can  survive  in  the  environment.  As  our  model  has  this  feature  and  it
makes  decisions  democratically,  we  can  say  that  the  model  is  acting
like  a  natural  living  system  to  some  extent  and  we  can  conclude  that
the model is intelligent.  

However, there are some other properties of life that an intelligent
machine needs to possess; we have to see if our model possesses them.
Similarly,  here  we  have  considered  only  the  Moore  neighborhood;
what  kind  of  behavior  might  arise  if  we  change  the  neighborhood
dependency  for  the  rules  is  still  not  seen.  Different  other  behaviors
might  emerge  by  varying  the  parameters  of  our  model.  And,  apart
from  self-healing  systems,  our  model  may  be  useful  for  several  other
areas  of  application.  Answers  to  these  questions  remain  work  for  the
future. 
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