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Random Boolean networks have been used widely to explore aspects of
gene regulatory networks. As the name implies, traditionally the model
has  used  a  binary  representation  scheme.  This  paper  uses  a  modified
form of the model to systematically explore the effects of increasing the
number  of  gene  states.  These  random  multi-valued  networks  are
evolved  within  rugged  fitness  landscapes  to  explore  their  behavior.
Results  suggest  the  basic  properties  of  the  original  model  remain,
regardless  of  the  update  scheme  or  fitness  sampling  method.  Changes
are  seen  in  sensitivity  to  high  levels  of  connectivity,  the  mutation  rate
and the ability to vary network size. 
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Introduction1.

Gene  regulatory  networks  (GRNs)  have  long  been  cast  as  a  form  of
discrete dynamical system through which to study their general prop-
erties,  after  [1].  In  the  vast  majority  of  known  cases,  the  underlying
representation  in  the  model  is  binary:  genes  are  assumed  to  be  either
on or off at any given time and update using Boolean logic to capture
the  regulatory  relationships  between  them.  Such  models  have  also
been  used  to  accurately  predict  aspects  of  the  regulatory  dynamics
seen in mammalian cells [2], Drosophila [3] and yeast [4], among oth-
ers.  However,  the  binary  assumption  is  potentially  a  simplification,
and  examples  of  increasing  the  number  of  gene  expression  states  in
dynamical  system  GRNs  vary  from  using  the  triplet  low,  medium,
high (e.g., [5]) through to continuous values (e.g., [6]). Following [7],
this  paper  adds  a  new  parameter  to  the  well-known  random  Boolean
network  (RBN)  model  [1]  that  enables  the  systematic  exploration  of
the effects of altering the size of the alphabet A of the underlying gene
expression state representation and logic. Moreover, the placement of
GRNs  within  fitness  landscapes  is  used  to  explore  the  effects  of
increasing  the  logic  alphabet  on  evolutionary  behavior,  specifically
within versions of the NK model [8].  
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Results suggest that a number of the basic properties of the original
binary  model  remain,  while  aspects  such  as  how  fitness  is  sampled
and  how  many  genes  contribute  explicitly  to  the  fitness  calculation
can  significantly  vary  behavior,  particularly  when  network  size
evolves. 

A  comprehensive  review  of  the  significant  body  of  work  using
other  classes  of  gene  regulatory  network  models—including  ordinary
differential  equations,  chemical  reaction  systems,  Petri  nets  and  so
on—is beyond the scope of this paper and the reader is referred to [9]
for an overview. 

The Random Boolean Network Model  2.

Within  the  traditional  form  of  RBN,  the  R  nodes  in  a  network,  each
with  B  directed  connections  randomly  assigned  from  other  nodes  in
the network, all update synchronously based upon the current state of
those  B  nodes.  As  noted  earlier,  gene  states  are  traditionally  from  a
binary  alphabet  A  2  and  use  a  randomly  assigned  Boolean  update
function.  Hence  those  B  nodes  are  seen  to  have  a  regulatory  effect
upon  the  given  node,  specified  by  the  given  Boolean  function
attributed to it. Since they have a finite number of possible states and
they are deterministic, such networks eventually fall into an attractor.
It is well established that the value of B affects the emergent behavior
of  an  RBN  wherein  attractors  typically  contain  an  increasing  number
of  states  with  increasing  B  (see  [10]  for  an  overview).  Three  regimes
of  behavior  exist:  ordered  when  B  1,  with  attractors  consisting  of
one or a few states; chaotic when B > 2, with a very large number of
states per attractor; and a critical regime around B  2, where similar
states lie on trajectories that tend to neither diverge nor converge (see
[11]  for  formal  analysis).  Note  that  the  size  of  an  RBN  is  labeled  N,
as  opposed  to  R  here,  and  the  degree  of  node  connectivity  is  labeled
K, as opposed to B here. The change is adopted due to the traditional
use  of  the  labels  N  and  K  in  the  NK  model  of  fitness  landscapes,
which are also used in this paper, as will be shown.  

This  paper  uses  a  form  of  multi-valued  logic  (e.g.,  after  [12])  over
the original binary model: each node can exist in one of A states and

is assigned a randomly created logic table for each of the AB
 possible

configurations (Figure 1). Figure 2 shows the typical number of nodes
changing  state  per  update  cycle  in  such  discrete  dynamical  systems
where  R  50,  with  various  connectivity  B  and  number  of  gene
expression states A, using 0 < B < 6 and 1 < A < 9. As can be seen, in
these  random  multi-valued  networks  (RMNs),  for  low  connectivity,
B < 3  behavior  is  not  significantly  changed  with  increasing  A  but
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becomes  more  chaotic  with  larger  B  thereafter.  That  is,  significantly
more nodes change state per update cycle than when A  2. 

Figure 1. An  example  random  multi-valued  regulatory  network  model,  with
R  3, B  2 and A  3.  

(a) (b)

Figure 2. Showing  the  effects  on  the  typical  behavior  of  the  multi-valued
regulatory networks with varying connectivity B and states A. Results are the
average of 100 randomly created networks per parameter configuration.  

Evolving Multi-valued Regulatory Networks on Tunable Fitness Landscapes 291

https://doi.org/10.25088/ComplexSystems.32.3.289

https://doi.org/10.25088/ComplexSystems.32.3.289


The NK Model3.

Kauffman  and  Levin  [8]  introduced  the  NK  model  to  allow  the  sys-
tematic  study  of  various  aspects  of  fitness  landscapes  (see  [10]  for  an
overview). In the standard NK model, an individual is represented by
a set of N binary genes or traits, each of which depends upon its own
value  and  that  of  K  randomly  chosen  others  in  the  individual  (Fig-
ure 3).  Thus,  increasing  K  with  respect  to  N  increases  the  epistasis.
This  increases  the  ruggedness  of  the  fitness  landscapes  by  increasing
the  number  of  fitness  peaks.  The  NK  model  assumes  all  epistatic
interactions  are  so  complex  that  it  is  only  appropriate  to  assign  (uni-
form) random values to their effects on fitness. Therefore, for each of

the  possible  K  interactions,  a  table  of  2(K+1)  fitnesses  is  created,  with
all  entries  in  the  range  0.0  to  1.0,  such  that  there  is  one  fitness  value
for each combination of traits. The fitness contribution of each trait is
found  from  its  individual  table.  These  fitnesses  are  then  summed  and
normalized  by  N  to  give  the  selective  fitness  of  the  individual.
Exhaustive  search  of  NK  landscapes  [13]  suggests  three  general
classes exist: unimodal when K  0; uncorrelated, multi-peaked when
K > 3;  and  a  critical  regime  around  0 < K < 4,  where  multiple  peaks
are correlated. 

Figure 3. An example traditional binary NK model, with N  3 and K1.  
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The  traditional  binary  NK  model  has  recently  been  extended  to

higher  alphabets;  that  is,  fitness  tables  of  size  A(K+1)
 are  created  per

gene,  finding  that  the  general  properties  of  the  landscapes  are  seem-
ingly  preserved  [14].  This  form  of  the  NK  model  is  here  used  to
explore  the  evolutionary  behavior  of  the  multi-valued  regulatory  net-
works introduced above—a version of the RBNK model [15]. 

The Random Multi-valued NK Model  4.

The  combination  of  the  discrete  dynamical  networks  and  the  NK
model enables the exploration of the relationship between phenotypic
traits  and  the  GRNs  by  which  they  are  produced  [15].  In  this  paper,
the  following  simple  scheme  is  adopted:  N  phenotypic  traits  are
attributed  to  the  first  N  nodes  within  the  network  of  R  genes  (where
0 < N ≤ R,  Figure  4).  Thereafter,  all  aspects  of  the  two  models
remain  as  described  earlier,  with  simulated  evolution  used  to  evolve
the  random  multi-valued  network  (RMN)  on  NK  landscapes.  Hence
the NK element creates an explicitly tunable component to the overall
fitness landscape of the RMN.  

Figure 4. Example  RMNK  model.  Each  network  consists  of  R  nodes,  each
node  containing  B  integers  in  the  range  [1, R]  to  indicate  input  connections

and  an  A-ary  string  of  length  AB
 to  indicate  the  multi-valued  logic  function

over those connections.  

Evolving Random Multi-valued Networks  5.

Simulated  evolution  has  previously  been  used  to  design  random
Boolean  networks  (RBNs),  beginning  with  a  simple  feedforward  net-
work architecture [16] (see [15] for an overview). Following [10], the
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simple case of a greedy hill climbing algorithm is considered here. For
a  given  RMN,  mutation  can  either  alter  the  logic  function  of  a  ran-
domly  chosen  node  or  alter  a  randomly  chosen  connection  for  that
node (equal probability).  

A  single  fitness  evaluation  of  a  given  RMN  is  ascertained  by  first
assigning  each  node  to  a  randomly  chosen  start  state  (uniform  in  A)
and updating each node synchronously for U cycles. Here U is chosen
such that the networks have typically reached an attractor U  50. At
update cycle U, the value of each of the N  trait nodes is then used to
calculate  fitness  on  the  given  NK  landscape.  This  process  is  repeated
10  times  on  the  given  NK  landscape,  repeated  for  10  randomly  cre-
ated  NK  landscapes,  that  is,  1010  100  runs,  with  the  fitness
assigned to the RMN being the average fitness. Then a mutated RMN
becomes the parent for the next generation if its fitness is higher than
that of the original (ties are broken at random). 

Synchronous Updating  5.1

Figure  5  shows  the  typical  evolutionary  performance  of  R  50
RMNs  with  various  internal  connectivity  B  (0 < B < 6)  and  logic
alphabet  A  (1 < A < 9),  on  landscapes  of  varying  ruggedness K
(0 ≤ K < 5)  after  5000  generations.  When  N  10  (left  column),  fit-
ness generally decreases with increasing B, regardless of K or A. That
is,  results  for  B  1  or  B  2  are  always  statistically  better  (T-test,
p < 0.05)  than  for  B  4  or  B  5.  When  K  0,  increasing  A  typi-
cally  decreases  when  A > 2  and  B > 2,  with  B < 3  RMNs  seemingly
most  robust  to  increasing  A.  When  K > 0  and B < 3,  fitnesses
increase  with  increasing  A.  Fitnesses  are  all  roughly  equally  poor  for
B > 2,  regardless  of  A.  Figure  5  (right  column)  also  shows  the  effects
of increasing the number of nodes by which fitness is explicitly calcu-
lated,  with  N  R.  As  can  be  seen,  the  same  general  behavior  as  for
N  10  emerges.  However,  the  drop  in  fitness  for  increasing  B  from
B  1  to  B  2  is  much  larger,  and  fitness  levels  are  generally
decreased for all B and A, regardless of K (T-test, p < 0.05 comparing
each  N  10  with  N  R  cases).  That  is,  it  appears  to  be  a  signifi-
cantly more difficult task, perhaps as might be expected. 

In  the  preceding,  fitness  is  calculated  from  the  state  of  the  N  trait
nodes  on  the  step  after  U  network  update  cycles,  that  is,  typically
within  an  attractor.  To  explicitly  consider  the  evolution  of  temporal
behavior, that is, particular sequences of gene activity, the state of the
RMN can be sampled on every update cycle, that is, up to and includ-
ing  within  an  attractor.  Here  total  fitness  is  calculated  as  the  average
of  the  fitness  of  each  successive  state  of  the  N  nodes  for  U  cycles.
Thus, networks must evolve temporal behavior that keeps them consis-
tently  within  the  high  optima  region(s)  of  the  fitness  landscape.
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Figure 6  shows  examples  of  how  the  change  causes  a  significant
decrease  in  fitness  (T-test,  p < 0.05)  achieved  with  any  K  for  B > 2
and  A  2.  Fitnesses  are  not  significantly  affected  otherwise  (T-test,
p ≥ 0.05).  Figure  2  showed  how  the  A  2  RMN,  that  is,  traditional
RBN,  experienced  fewer  numbers  of  nodes  changing  state  for  higher
B compared to higher A. 

(a) (b)

(c) (d)

(e) (f)

Figure 5. Showing fitness reached after 5000 generations for combinations of
network connectivity B and different logic alphabets A for various degrees of
fitness landscape ruggedness K. Left column N  10, right column N  50.  
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(a) (b)

(c) (d)

(e) (f)
Figure 6. Showing fitness reached after 5000 generations for combinations of
network connectivity B and different logic alphabets A for various degrees of
fitness landscape ruggedness K and number of explicit fitness calculation
nodes (left column N  10, right column N  50), where the fitness is calcu-
lated as the average over each network update cycle.

The aforementioned work on the use of nonbinary representations
within the NK model reported some differences in the effects of vary-
ing the mutation rate between low and high A alphabets [14]. In par-
ticular, higher mutation rates M were found to be either neutral or
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beneficial for higher values of A in many cases: simply, the larger the
search  space,  the  more  beneficial  larger  jumps  in  that  space  can
become. Figure 7 shows examples of the effect of increasing the num-
ber  of  mutations,  as  described  earlier,  from  one  to  three  for  N  10
and N  R. As can be seen, in comparison to Figure 5, the higher val-
ues  of  A  benefit  from  the  increased  mutation  when  B < 3  and K > 0
(T-test,  p < 0.05).  Moreover,  when  A  2,  the  higher  degrees  of  con-
nectivity  B > 2  also  appear  to  benefit  from  the  increased  mutation
rate  for  all  K  when  N  10  (T-test,  p < 0.05).  Again,  it  is  assumed
the  greater  percentage  of  updating  nodes  for  the  equivalent  high A
cases means the same improvement is not achievable. The same is gen-
erally true when fitness is calculated on every time step, as in Figure 6
(not shown). 

(a) (b)

(c) (d)

Figure 7. Showing fitness reached after 5000 generations for combinations of
network connectivity B and different logic alphabets A for various degrees of
fitness  landscape  ruggedness  K  and  three  mutations  per  offspring  production
(left column N  104, right column N  50).  

Asynchronous Updating  5.2

Traditionally,  RBNs  update  synchronously,  that  is,  a  global  clock
signal  is  assumed  to  exist.  It  has  long  been  suggested  that  this
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assumption  is  less  than  realistic  for  natural  systems,  and  hence  dis-
crete  dynamical  models  have  also  used  asynchronous  updating  (after
[17]).  Harvey  and  Bossomaier  [18]  were  first  to  present  an  asyn-
chronous  form  of  RBNs  wherein  a  node  is  picked  at  random  (with
replacement)  to  be  updated,  with  the  process  repeated  R  times  per
cycle  to  give  equivalence  to  the  synchronous  case.  The  resulting  loss
of determinism means such networks no longer fall into regular cyclic
attractors;  rather,  they  either  fall  into  point  attractors  (one  state)  or
so-called  “loose”  attractors  where  “the  network  passes  indefinitely
through  a  subset  of  its  possible  states”  [18].  Many  forms  of  asyn-
chronous updating are possible (e.g., see [19] for an overview) but the
simple  random  scheme  is  used  here  to  explore  such  updating  in
RMNs.  Simulated  evolution  has  previously  been  used  with  asyn-
chronous RBNs, beginning with attractor matching to exhibit defined
rhythmic behavior [20].  

Figure  8  shows  the  typical  performance  of  asynchronous  RMNs
over  the  parameter  ranges  used  earlier.  As  can  be  seen,  despite  the
change  in  the  underlying  update  scheme,  there  is  generally  no  signifi-
cant  difference  in  behavior  from  that  seen  in  Figure  5.  Primarily,
results for B  1 or B  2 are again always statistically better (T-test,
p < 0.05) than for B  4 or B  5, regardless of A. The use of fitness
calculations  on  each  update  cycle,  as  in  Figure  6,  has  also  been
explored with no significant changes observed (not shown). Similarly,
the  change  in  update  scheme  does  not  significantly  alter  the  results
reported  above  for  an  increase  in  the  mutation  rate  (not  shown):  the
higher values of A benefit from the increased mutation when B < 3. 

There  is  typically  no  significant  difference  in  the  fitness  reached
between  the  two  updating  schemes  in  all  cases,  with  two  notable
exceptions:  when  B  2,  for  N  R  and  K > 0,  for  any  A,  the  asyn-
chronous  fitnesses  are  significantly  higher  (T-test,  p < 0.05);  and
when B  2, for any N, K and A, with the constant fitness calculation
used,  the  asynchronous  fitnesses  are  significantly  lower  (T-test,
p < 0.05).  In  the  latter  case  it  appears  evolution  finds  it  relatively
harder  to  design  such  RMNs,  which  must  take  consistently  high  fit-
ness  paths  through  the  basins  of  attraction,  presumably  due  to  the
stochastic  nature  of  their  updating.  However,  in  the  former  case,
when  landscapes  experience  the  highest  levels  of  explicitly  imposed
ruggedness  through  the  trait  nodes,  such  stochasticity  appears  benefi-
cial.  It  is  here  suggested  a  form  of  fitness  landscape  smoothing  is
occurring  due  to  the  randomness  in  the  final  attractors  of  the  RMN
reached;  a  typically  low-fitness  RMN  may  achieve  an  atypically  high
fitness  due  to  the  loose  attractors  it  exhibits,  enabling  evolution  to
move between peaks in the fitness landscape (after [21]). 
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Showing  fitnesses  after  5000  generations  for  combinations  of  asyn-
chronous network connectivity B and logic alphabets A for various degrees of
fitness landscape ruggedness K.  

Network Size  5.3

Novel  sequences  of  DNA  can  originate  through  a  variety  of  mecha-
nisms,  including  retrotransposons,  horizontal  gene  transfers,  during
recombination  events,  whole  genome  duplications,  and  so  on.  For
example,  it  is  estimated  that  over  half  the  genes  in  GRNs  are  the
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result of gene duplications (e.g., [22]), a process that may aid robust-
ness  as  well  as  providing  a  mechanism  for  subsequent  innovation
through  function  divergence  (e.g.,  [23]).  Aldana  et  al.  [24]  examined
the  effects  of  adding  a  new,  single  gene  into  a  given  RBN  through
duplication  and  divergence.  They  showed  the  addition  of  one  gene
typically  only  slightly  alters  the  attractors  of  the  resulting  RBN  when
B < 3, but that attractor structure is not conserved for higher B.  

The  experiments  reported  here  have  been  repeated  with  the  addi-
tion  of  two  extra  “macro”  mutation  operators:  one  to  delete  a  ran-
domly  chosen  node  (the  N  trait  nodes  cannot  be  deleted),  randomly
reassigning  all  of  its  connections,  and  one  to  duplicate  an  existing
node, connecting it to a randomly chosen node in the network. These
two  operators  occur  with  equal  probability  to  the  two  previously
described mutation operators; that is, one of four mutations is chosen
to create the offspring per generation. The replacement process is also
altered  such  that,  when  fitnesses  are  equal,  the  smaller  network  is
kept,  with  ties  again  broken  at  random.  Networks  are  initialized  at
size R, as before, and labeled as of size R′

 thereafter. 
No  significant  change  in  the  fitness  of  solutions  is  seen  with  the

macro-structure  mutation  operators  added  regardless  of  whether
N  10  or  N  R  (not  shown).  However,  as  can  be  seen  in  Figure  9
(left  column),  when  N  10,  regardless  of  K,  the  networks  decrease
significantly  in  size  when  B < 3  (T-test,  p < 0.05).  The  decrease  in
size  decreases  with  increasing  A.  A  2  networks  decrease  in  size
when  B < 5.  That  is,  not  only  do  low-connectivity  networks  evolve
the  highest  fitnesses  for  all  K  and  A,  they  are  able  to  do  so  with  a
smaller  number  of  nodes  R′.  It  is  known  that  both  the  number  of
states  in  an  attractor  and  the  number  of  attractors  are  dependent
upon  R  within  traditional  RBNs,  and  that  the  general  form  of  those
relationships  changes  for  low  and  high  connectivity.  For  example,

when  B  2,  attractors  are  typically  of  size  R0.5,  whereas  when

B  R, attractors typically contain 0.52R/2  states (e.g., see [10] for a
summary).  Hence,  regardless  of  A,  the  evolutionary  process  appears
able  to  exploit  the  potential  for  ever-smaller  attractors  for  the  low-B
cases,  driven  by  the  additional  selection  pressure  for  network  size
reduction, and to do so while maintaining fitness. This result is some-
what  anticipated  by  the  results  of  Aldana  et  al.  [24]  but  is  in  the
opposite  direction  and  with  A > 2:  small  reductional  changes  are
maintained, as the attractor space appears to be sufficiently conserved
in both directions. 

Figure  9  (right  column)  also  shows  the  case  when  N  R,  that  is,
where  there  is  no  scope  for  network  size  reduction  from  the  initial
size.  As  can  be  seen,  some  growth  occurs  for  all  B  and  A,  regardless
of  K  (R′ > 50).  The  largest  growth  is  typically  seen  when  B  2  and
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increases  with  A  (T-test,  p < 0.05).  That  is,  B  2  connectivity
appears  to  enable  evolution  to  explore  the  space  of  larger  networks
without  a  drop  in  fitness:  evolvability  is  increased  under  such  condi-
tions  and  further  increased  with  increasing  degrees  of  freedom  in  the
gene state space A. 

(a) (b)

(c) (d)

(e) (f)

Figure 9. Showing network sizes R′
 reached after 5000 generations for combi-

nations  of  network  connectivity  B,  different  alphabets  A,  for  various  degrees
of fitness landscape ruggedness K.  
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Figure 10 shows examples of the effects on network size, explicitly
considering  the  evolution  of  temporal  behavior  by  sampling  the  state
of  the  RMN  on  every  update  cycle.  Again,  there  is  no  significant
effect  on  fitness  (not  shown)  but  there  is  a  change  in  the  type  of
growth  seen  from  the  single-point  (attractor)  fitness  sampling  case.
Regardless  of  N,  A  and  K,  size  is  typically  highest  for  B < 3.  When
A  2,  networks  are  largest  with  B ≥ 2.  That  is,  significant  growth
occurs  where  the  lower  fitnesses  emerge  in  such  networks  (see  Fig-
ure 6).  That  networks  do  not  decrease  in  size  here  for  N  10  sug-
gests  that  the  removal  of  genes  is  more  disruptive  than  the  addition:
when the path to attractors explicitly contributes to the overall fitness
of the RMN, it seems gene deletion causes more change to the basins
than  addition.  That  is,  gene  deletion  appears  to  affect  the  basins  of
attractors  more  than  the  attractors  themselves,  since  networks  sam-
pled  after  U  updates  experienced  significant  size  reduction  (Figure  9,
left column). 

(a) (b)

Figure 10. Showing example network sizes R′
 reached after 5000 generations

for  combinations  of  network  connectivity  B,  different  alphabets  A  and  num-
ber  of  explicit  fitness  calculation  nodes  (N  10  left,  N  50  right),  where
the fitness is calculated as the average over each update cycle.  

Asynchronous  updating  gives  the  same  general  result  as  the  syn-
chronous  case  (e.g.,  as  in  Figure  9  with  N  10),  but  does  not  show
the  significant  increase  in  network  size  around  B  2  when  N  R;
instead  growth  is  very  minimal  for  all  B  and  A  combinations  regard-
less  of  K  (not  shown).  Results  are  the  same  as  for  the  synchronous
case when fitness calculations are made on each update (not shown). 

Thus,  despite  the  selective  pressure  against  growth  used  here,
results  suggest  it  is  a  relatively  common  occurrence  during  the
evolution  of  GRNs  on  rugged  fitness  landscapes.  That  is,  fitness  can
be  increased  by  the  addition  of  a  random  gene,  due  to  the  large
number  of  relatively  low  optima  typically  experienced.  Hence  a
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population finds its progress “reset” within a higher-dimension fitness
landscape  each  time;  new  routes  to  optima  in  a  bigger  space  become
available  on  each  gene  addition.  Another  source  of  potentially  more
significant  progress  disruption  is  a  change  in  the  fitness  landscape.
That is, the movement of optima can cause a GRN to become less fit,
increasing  the  likelihood  of  further  novel  genes  being  able  to  make  a
positive  contribution  to  fitness  as  it  re-adapts.  Figure  11  shows  an
example case of the effect on fitness and network size when the whole
fitness  landscape  is  randomly  recreated  for  the  given  K;  that  is,  each
of the entries in the lookup table of each of the N  genes is assigned a
new  value  in  the  range  0.0  to  1.0  after  2500  generations.  Here
N  R, as in Figure 9 (right column) where growth was seen for all B,
particularly  B  2,  for  all  A.  As  can  be  seen,  there  is  a  significant
drop  in  the  fitness  level  at  the  point  of  change  before  it  recovers  to  a
similar level achieved before the change. The effect on network size R′

is to cause a similar level of growth as from the original length before
the  change.  The  same  behavior  is  seen  in  all  given  cases  where
network  size  increased  (not  shown).  Growth  in  response  to  an
alternating  change  in  the  fitness  landscape  has  previously  been  noted
in  a  Boolean  GRN  model  [26].  Conversely,  under  the  conditions
where networks decreased in size significantly (Figure 9, left column),
further  decreases  in  size  are  seen  in  the  nonstationary  fitness  case
(Figure 12). 

(a) (b)

Figure 11. Typical  behavior  when  the  fitness  landscape  changes  randomly
under conditions where growth is seen to emerge during evolution.  
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(a) (b)

Figure 12. Typical  behavior  when  the  fitness  landscape  changes  randomly
under conditions where networks decrease in size during evolution.  

Conclusion6.

While binary discrete dynamical system models of gene regulatory net-
works  (GRNs)  have  proven  useful  both  theoretically  and  practically,
they  clearly  represent  a  simplification  of  the  biology,  for  example,  in
the  face  of  noise  [27].  This  paper  has  explored  the  effects  of
increasing  the  size  of  the  alphabet  of  gene  states  within  such  models,
finding  that  the  general  properties  are  seemingly  preserved  under  dif-
ferent  updating  and  fitness  sampling  schemes.  That  is,  GRNs  become
increasingly  chaotic  with  increasing  connectivity  B,  an  effect  that
increases  with  the  number  of  states  A,  and  evolution  is  better  able  to
manipulate  low-B  networks—since  their  attractors  typically  contain
one or a few states—to find high-fitness solutions. This general result
is  supported  by  data  from  biological  GRNs  that  appear  to  be
relatively  sparsely  connected:  on  average  it  seems  1.5 ≤ B ≤ 2  (e.g.,
see [28]).  

It  has  previously  been  suggested  that  increases  in  genome  length
are  an  inherent  property  of  evolution  on  rugged  fitness  landscapes
[25].  Despite  a  selective  pressure  against  growth,  results  here  show  it
is  a  common  event  in  low-connectivity  networks  B,  regardless  of  the
size  of  the  space  of  possible  gene  states  A,  when  the  effects  of  the
underlying  ruggedness  of  the  landscape  N  R  or  the  attractor  space
(U  fitness  evaluations)  are  most  prominent.  The  most  significant
growth was seen for A > 2. 

As  noted  earlier,  in  traditional  random  Boolean  networks  (RBNs),
B  2  has  been  formally  identified  as  a  critical  regime  where  similar
states lie on trajectories that tend to neither diverge nor converge. For-
mal  analysis  of  increasing  the  number  of  gene  states  A  suggests  the
critical  regime  of  connectivity  tends  towards  B  1  [7],  somewhat
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contrasting  with  biology.  Such  analysis  assumes  all  multi-valued
states and logic functions are equally likely, which has been suggested
as  potentially  unrealistic  [29].  However,  with  simulated  evolution
able to shape the logic functions (and node connections) here, the fit-
ness  difference  between  B  1  and  B  2  is  typically  significant  for
A > 2.  Results  here  indicate  the  largest  increases  in  complexity  typi-
cally  occur  at  B  2,  regardless  of  A.  The  interaction  between  these
two processes may account for the variation in the data from biology
and  the  theoretical  prediction  for  B  1  with  increasing  A.  Note  the
model is unable to capture how increasing complexity may open new
niches where competition is reduced; the lower fitness for B  2 may
be less significant with speciation. 

Current  work  is  exploring  the  effects  of  increasing  the  number  of
gene  states  on  the  potentially  related  aspect  of  the  evolution  of  gene
expression times (after [30]), as well as other mechanisms such as epi-
genetic control (e.g., after [31, 32]). 
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