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Having  a  model  and  being  able  to  implement  open-ended  evolutionary
systems are important for advancing our understanding of open-ended-
ness. Complex systems science and the newest generation high-level pro-
gramming  languages  provide  intriguing  possibilities  to  do  so.  Here,
some recent advances in modeling and implementing open-ended evolu-
tionary  systems  are  reviewed  (an  earlier  and  shorter  version  was  pre-
sented at [1]). Then, the so-called allagmatic method is introduced as a
computational  framework  that  describes,  models,  implements  and
allows interpreting complex systems using system metamodeling. Based
on  recent  advances,  the  model  building  blocks  evolving  entities,  entity
lifetime  parameter,  co-evolutionary  operations  of  entities  and  environ-
ment and combinatorial interactions are identified to characterize open-
ended  evolutionary  systems.  They  are  formalized  within  the  system
metamodel, providing a formal description of an open-ended evolution-
ary system. The study further provides a self-modifying code prototype
in  C#  and  guidance  to  create  code  blocks  for  an  intrinsic  implementa-
tion  of  open-ended  evolutionary  systems.  This  is  achieved  by  control-
ling the self-modification of program code within the abstractly defined
building blocks of the system metamodel. It is concluded that the identi-
fied  model  building  blocks  and  the  proposed  self-modifying  code
provide a promising starting point to model and implement open-ended-
ness  in  a  computational  system  that  potentially  allows  us  to  interpret
novelties at runtime. 

Keywords: Open-Ended Evolutionary Systems; Metamodeling; Self-
Modifying Code; Combinatorial Evolution; Allagmatic Method

Introduction1.

The diversity and complexity of organisms created by biological evolu-
tion over the last billions of years is staggering. It seems to really be a
never-ending  story  of  inventions  [2,  3].  Engineered  physical  systems,
evolutionary and genetic algorithms, artificial intelligence, deep learn-
ing  and  other  computational  methods  are  far  from  simulating  and
explaining  the  diversity,  creativity  and  open-endedness  exhibited  by
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biological  evolution.  The  main  deficiency  is  that  all  these  computa-
tional systems reach an equilibrium state and cease to generate further
adaptive novelty—they are essentially cul-de-sacs.

Understanding  the  open-endedness  of  biological  evolution  is  a
grand  challenge  [4],  especially  in  the  field  of  artificial  life.  If  imple-
mented in an open-ended computational system, it would have major
implications  far  beyond  artificial  life  [2,  3].  It  would  allow  us  to
invent  virtually  everything,  including  new  architectures,  furniture,
cars, games and of course algorithms and software in general [2, 3]. It
would most likely bring us closer to strong artificial intelligence, since
only biological evolution has created it so far [2, 3]. 

Furthermore,  open-endedness  has  been  observed  in  various  com-
plex  systems  such  as  human  languages,  legal  systems,  economic  and
financial  systems  and  technological  innovation,  showing  its  relevance
as well as urging its study [5, 6]. These systems are an important part
of  our  society.  A  better  understanding  of  their  open-ended  dynamics,
that is, when a system is completely reorganizing itself, is key to man-
aging  these  systems.  Reorganization  of  a  system  can  be,  for  example,
a crash of a financial system or the collapse of an ecological system. It
happens  unpredictably  and  from  time  to  time  in  systems  relevant  to
society  and  is  therefore  related  to  some  of  our  biggest  challenges,
including climate change and socioeconomic stability [7]. 

The  open-ended  evolution  community  made  remarkable  progress
defining  and  exploring  open-endedness  by  creating  systems  such  as
Avida  [8]  and  Geb  [9],  algorithms  such  as  novelty-driven  approaches
[10],  and  even  programming  languages  such  as  ulam  [11].  By  study-
ing  evolution  in  general,  evolutionary  biology  and  complex  systems
science  also  contribute  to  the  understanding  of  open-endedness,
although  in  an  implicit  way.  For  example,  evolutionary  biology  pro-
vides  insight  into  speciation  mechanisms  [12],  complex  systems  sci-
ence  gives  an  evolutionary  model  that  shows  punctuated  equilibria
[13,  14],  and  dynamical  systems  theory  contributed  to  the  more  for-
mal  development  of  open-ended  evolution  based  on  theoretical  con-
cepts such as Poincaré recurrence time [15] and methods derived from
algorithmic  complexity  theory  [16].  The  technical  contribution  of  the
open-ended  evolution  and  artificial  life  community  regarding  imple-
menting these systems is also impressive since it requires some kind of
self-modification and self-referencing capabilities to account for novel-
ties  at  runtime  [6].  Despite  this  progress,  there  is  no  model  yet  that
produces  novelties  and  shows  creativity  as  observed  in  complex  sys-
tems  such  as  the  economy  or  biological  evolution.  It  seems  that  we
are missing an important ingredient or idea. 

To  get  an  overview  of  potential  model  building  blocks  of  open-
endedness  and  implementation  approaches  across  different  fields,  this
paper  first  presents  a  short  review  of  some  recent  advances  in
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modeling  and  implementing  open-ended  evolutionary  systems  from
the fields of artificial life, including the open-ended evolution commu-
nity,  complex  systems  science,  dynamical  systems  theory,  artificial
intelligence  and  evolutionary  algorithms,  and  evolutionary  biology.
Then,  to  connect  the  ideas  from  different  fields  within  a  coherent
framework,  the  so-called  allagmatic  method  is  introduced.  It
describes,  models,  implements  and  allows  interpretation  of  complex
systems.  After  highlighting  some  current  modeling  and  implementa-
tion challenges, model building blocks of open-ended evolutionary sys-
tems  are  identified  and  a  system  metamodel  of  open-ended  evolution
is  proposed  as  part  of  the  allagmatic  method.  In  terms  of  implement-
ing open-ended evolutionary systems, a self-modifying code prototype
in a high-level programming language is presented, and the allagmatic
method  is  used  as  guidance  to  create  code  blocks  with  the  developed
self-modifying  code  prototype.  It  is  concluded  that  the  identified
model  building  blocks  and  the  proposed  self-modifying  code  provide
a promising starting point to model and implement open-endedness in
a  computational  system  that  potentially  allows  us  to  interpret  novel-
ties at runtime. 

Recent Advances in Modeling Open-Ended Evolutionary Systems2.

Definitions2.1

Although progress has been made, especially by the open-ended evolu-
tion  community,  much  remains  to  be  explored  [17].  Before  having  a
closer  look  at  modeling,  we  start  with  some  preliminaries  regarding
the definition of open-ended evolution or open-endedness.

Open-endedness has been defined as the ability to continually pro-
duce novelty and/or complexity whereby novelty is classified as varia-
tion, innovation and emergence [6]. Based on creativity research [18],
different  terms  for  this  classification  were  suggested,  namely
exploratory,  expansive  and  transformational  novelty,  respectively
[19].  The  latter  terms  will  be  used  here  to  avoid  interpretation  issues
with  innovation  and  emergence.  Regardless  of  the  terminology,  both
definitions  relate  to  a  formal  model  and  metamodel  of  the  system
under  study.  Exploratory  novelty  can  be  described  using  the  current
model,  expansive  novelty  requires  a  change  in  that  model  but  still
uses  concepts  in  the  metamodel,  and  transformational  novelty  intro-
duces  new  concepts  necessitating  a  change  in  the  metamodel  [6,  19].
With  their  connection  to  model  and  metamodel,  they  provide  a  way
to determine whether and which kind of novelty emerges in an open-
ended evolutionary system. 

Defining complexity and its measurement in open-ended evolution-
ary  systems  is  a  topic  of  ongoing  research  too.  Dolson  et  al.  [20]
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recommend  an  information-theoretic  approach  based  on  the  count  of
informative  sites  across  all  components  in  a  population  and  suggest
improving it by also accounting for all possible mutations and by con-
sidering  epistatic  interactions.  Channon  [21]  defines  individual  com-
plexity as the diversity of adaptive components in the individual, that
is,  the  number  of  active  genes.  Furthermore,  in  evolutionary  biology,
information is quantified with respect to different sources available to
an adapting organism, from ancestors and the environment [22]. 

Modeling Contributions from Artificial Life and Open-Ended 

Evolution Community
2.2

Banzhaf  et  al.  [6]  have  argued  that  open-endedness  in  physical  sys-
tems  such  as  in  a  computation  are  hard  to  prove  in  a  finite  universe
and therefore we might endeavor to create a sufficient rather than an
infinite  number  of  open-ended  events,  which  is  then  called  effectively
open-ended.  To  achieve  this  despite  the  limits  on  computational
power,  it  was  suggested  to  hard-code  certain  elements  of  the  model,
for  example,  the  process  of  replication,  into  so-called  shortcuts  [6,
19].  Taylor  [19]  bases  shortcuts  on  generally  accepted  processes  of
Darwinian  evolution:  phenotype  generation  (from  the  genotype),
phenotype  evaluation  and  reproduction  with  variation.  Ongoing  evo-
lutionary  activity  and  with  that  exploratory  open-endedness  are  pro-
moted  by  modifying  the  adaptive  landscape,  the  topology  of  genetic
space or the genotype-phenotype map. He further argues that none of
these expand the phenotype space itself and thus do not help us for an
expansive  and  transformational  open-endedness,  where  so-called
door-opening  states  in  phenotype  space  are  needed.  The  complexity
of physical and chemical laws provides a vast space for biological sys-
tems,  whereas  in  computational  systems  we  might  dynamically
increase the space instead, for example, providing access to additional
resources  on  the  internet  [18,  19,  23].  In  contrast,  at  the  third  work-
shop  on  open-ended  evolution,  Taylor  and  others  from  the  open-
ended  evolution  community  mentioned  that  current  computational
systems implement rather scanty environments and organisms.

Taylor  [19]  also  proposes  two  possible  intrinsic  mechanisms  to
access new states. The first is via exaptation, where a trait changes its
function to a different one from the one it was originally adapted for.
Physical  systems  are  composed  of  multi-property  components  having
several  properties  in  different  domains  (mechanical,  chemical,  electri-
cal,  etc.)  [19].  For  example,  a  multifunctional  enzyme  has  multiple
properties  in  the  same  domain,  which  can  produce  expansive  novel-
ties, whereas transformational novelties can be achieved by properties
in  different  domains  [19].  The  second  is  via  non-additive  composi-
tion,  which  is  phenotype  generation  by  assembling  several  compo-
nents  drawn  from  a  set  of  component  types  [19].  For  example,  the
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construction  of  proteins  from  amino  acid  sequences,  producing  new
molecules and introducing new functions [19]. 

This assembly of lower-level elements into higher-level structures is
also  highlighted  by  Banzhaf  et  al.  [6].  With  the  above-mentioned
metamodel  that  defines  novelties,  they  also  provide  an  abstract  way
to model multiple levels, accounting for such constructed structures at
different levels [6]. They also mention that having several levels drasti-
cally  increases  the  combinatorial  possibilities  to  construct  new  struc-
tures  and  with  that  also  the  demand  for  computational  power  [6].  It
therefore  seems  to  be  a  way  to  increase  the  opportunities  to  create
something new. It also implies that open-ended evolution in computa-
tional systems is computationally expensive. 

Modeling Contributions from Complex Systems Science2.3

There  are  also  relevant  modeling  contributions  from  the  field  of
complex  systems  science.  W.  Brian  Arthur  is  known  for  his  work  on
complexity economics [24] and technology evolution [25, 26]. He pro-
posed  the  concept  of  combinatorial  evolution,  which  states  that  new
technologies  are  created  out  of  existing  technologies  and  iteratively,
these  newly  created  technologies  become  building  blocks  for  yet  fur-
ther  technologies  [26,  27].  The  collective  of  technology  is  therefore
self-creating or autopoietic with the agency of human beings [25, 27].
In  a  simple  computer  model  of  circuits,  Arthur  and  Polak  [28]
showed  that  complicated  technologies  (in  their  case  circuits)  could  be
created  out  of  simpler  building  blocks,  and  they  found  evidence  of
self-organized  criticality.  It  requires  some  kind  of  modularity  and  the
evolution  of  simpler  steppingstone  technologies  [25–  28].  The  latter
means that we cannot create a technology ahead of time without first
creating  the  simpler  precursor  technologies.  Natural  phenomena  also
provide  technological  elements  that  can  be  combined  [25,  27].  In
terms  of  open-endedness,  there  seems  to  be  a  vast  space  of  possible
combinations, and with the conversion of discovered natural phenom-
ena  into  technological  elements  there  is  a  mechanism  in  place  to
expand that space. 

Combinatorial evolution is also part of a more general approach to
modeling  evolution  by  the  complex  system  scientist  Stefan  Thurner.
He and his colleagues recently introduced the co-evolutionary, combi-
natorial  and  critical  evolution  model  (CCC  model)  [14,  29–33].  It
models  evolution  as  an  open-ended  process  of  creation  and  destruc-
tion of new entities emerging from the interactions of existing entities
with  each  other  and  with  their  environment  [14].  The  spaces  of  enti-
ties  and  of  interactions  co-evolve,  and  new  entities  emerge  sponta-
neously  or  through  the  combination  of  existing  entities.  This  leads  to
power  law  statistics  in  the  event  histories  [14,  30].  Selection  is
modeled by specifying rules for what can be created and what will be
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destroyed [14, 29, 30]. This model captures so-called punctuated equi-
libria in biological evolution [34] or Schumpeterian business cycles in
economic  evolution  [35],  where  an  equilibrium  is  destabilized  or
destroyed by a critical transition leading to another equilibrium in an
ongoing and thus open-ended process [13, 14, 29, 30]. It is interesting
to  note  that  it  could  be  shown  that  in  economic  innovation,  creative
deconstruction  is  happening  and  not  niche  filling  as  usually  assumed
for biological innovation [14, 29, 31]. 

A more detailed and formal description of the CCC model is given
in  the  following,  based  on  [13]  and  [14].  Evolution  is  described  in
three  steps  as  a  process:  (1)  A  new  entity  is  created  and  placed  in  an
environment.  An  entity  can  be  a  species,  product,  technology  and  so
on.  An  entity’s  state  is  described  by  σi  and  its  environment  by  σj  in

the  same  state  vector  σ.  (2)  The  newly  added  entity  interacts  with  its
environment,  which  also  includes  the  already  existing  entities.  Based
on  these  interactions,  the  entity  is  either  removed  from  or  added  to
the  system.  The  interaction  of  entity  i  and  environment  j  is  described
by an interaction matrix Mij

α, where α denotes the type of interaction.

If more than two entities are interacting, for example, entity k, a fur-
ther  dimension  is  needed  and  thus  a  tensor  Mijk

α .  The  evolution  of

states can now be given by 

d

dt
σi(t) ∼ FMijk...

α (t), σj(t), (1)

where F is some function depending on the state vectors and the inter-
actions. (3) If the new entity is added to the system, it becomes part of
the  environment,  which  therefore  changes  the  environment.  This
induces existing entities trying to relax toward a new equilibrium that
was  disrupted  by  the  changing  environment  (boundary  condition).
Since  entities  are  added  and  removed  from  the  system  over  time,  the
interactions  M  also  change  over  time.  To  account  for  that,  a  second
equation to describe the evolution of interactions is introduced

d

dt
Mijk…

α (t) ∼ GMijk…
α (t), σj(t), (2)

where G is some function depending on the state vectors and the inter-
actions.  The  combination  of  these  two  evolutionary  equations  results
in co-evolutionary dynamics.

Modeling Contributions from Dynamical Systems Theory2.4

Adams  et  al.  [15]  provide  another  systems  approach  and  formally
define  and  treat  open-ended  evolution  as  a  more  general  problem  in
dynamical  systems  theory.  They  introduce  a  criterion  for  open-ended
evolution based on the features unbounded evolution and innovation.
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Poincaré recurrence time, that is the maximum time until the dynami-
cal  trajectory  repeats  in  an  isolated  system,  is  used  to  formally  define
a  minimal  criterion  for  unbounded  evolution  in  finite  dynamical  sys-
tems.  They  state  that  an  unbounded  system  is  one  that  does  not
repeat within the expected Poincaré recurrence time. Since finite deter-
ministic systems do not meet this criterion, some kind of external per-
turbation  is  required,  and  thus  unbounded  evolution  is  only  possible
in  a  subsystem  interacting  with  an  external  environment.  The  second
criterion  of  innovation  is  defined  as  dynamical  trajectories  not
observed  in  isolated,  unperturbed  systems.  Also  in  this  case,  an  inter-
action  between  at  least  two  subsystems  is  required.  A  subsystem  is
therefore open ended if it is unbounded and innovative. Applying this
definition  in  cellular  automata,  Adams  et  al.  [15]  show  that  systems
with  time-dependent  rules  as  a  function  of  their  state  are  statistically
better at meeting the defined criteria for open-endedness than systems
with  externally  driven  time  dependence.  Through  the  coupling  to
larger  environments,  these  results  show  that  state-dependent  systems
provide a mechanism for generating open-ended evolution. They con-
clude  that  open-ended  evolution  is  a  general  property  of  dynamical
systems with update rules that are time dependent. This is in contrast
to  the  classical  modeling  approach,  where  dynamical  rules  remain
fixed. It is interesting to observe that also in the CCC model described
earlier,  the  environment  opens  the  system  to  external  perturbations,
underlining the importance of this possible mechanism of open-ended
evolution.  The  mechanism  is  also  comparable  to  door-opening  states
in a phenotype space as described by Taylor [19, 36].

The study from Hernández-Orozco et al. [16] also formally defines
open-ended  evolution  in  dynamical  systems,  however,  using  methods
derived from algorithmic complexity theory and investigating whether
undecidability  is  a  requirement  for  open-ended  evolution.  They char-
acterize  open-ended  evolution  in  computable  dynamical  systems  as  a
process  in  which  families  of  objects  with  increasing  complexity  are
produced  and  present  a  general  mathematical  model  for  adaptation.
This  allowed  them  to  show  that  decidability  imposes  universal  limits
on  the  growth  of  complexity  in  computable  systems.  Furthermore,
they also show that the undecidability of adapted states and the unpre-
dictability of the behavior of the systems at each state are required for
open-ended evolution and that such behavior is irreducible. 

Modeling Contributions from Artificial Intelligence and 

Evolutionary Algorithms
2.5

Open-ended evolution is also studied in artificial intelligence and evo-
lutionary  algorithms.  It  is  an  emerging  topic  where  the  research  of
Kenneth  O.  Stanley  and  his  colleagues  serves  as  an  example  here.
They  tried  to  get  rid  of  the  prevailing  concept  of  optimizing  a  fitness
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function  and  have  even  suggested  abandoning  objectives  in  general
[37–39].  They  showed  that  a  novelty-driven  approach  finds  solutions
faster and results in solutions with less genomic complexity in compar-
ison  to  traditional  evolutionary  computation  [10].  They  also  devised
several algorithms, including novelty search with explicit novelty pres-
sure,  MAP-Elites  and  innovation  engines  with  explicit  elitism  within
niches  in  an  otherwise  divergent  process,  and  minimal  criterion  co-
evolution  where  problems  and  solutions  can  co-evolve  divergently
[40,  41].  Like  Thurner,  avoiding  objectives  also  allowed  Stanley  and
his  colleagues  to  model  punctuated  equilibria  with  transitions
between  equilibria  in  a  simple  simulation  with  voxel  structures  [42].
Also,  in  this  case  co-evolution  and  the  apparently  never-ending  cre-
ation of anything new by combining existing structures were essential
ingredients.

Modeling Contributions from Evolutionary Biology2.6

The  work  of  Thurner  and  Stanley  indicates  that  transitions  between
equilibria  are  an  important  part  of  open-ended  evolution.  In  evolu-
tionary  biology,  the  major  evolutionary  transitions  are  of  great  inter-
est  too,  for  example,  the  transition  from  unicellular  to  multicellular
organisms  [43,  44].  Here,  only  a  small  selection  of  research  is  pre-
sented,  mainly  on  mechanisms  that  can  explain  rapid  increases  in
diversity  and  biological  innovation.  The  work  of  evolutionary  ecolo-
gist  Ole  Seehausen  illustrates  this  well,  as  he  is  interested  in  mecha-
nisms  by  which  diversity  arises.  Especially  relevant  here  is  the
possibility  of  speciation  through  combinatorial  mechanisms.  In  such
cases,  new  combinations  of  old  gene  variants  can  quickly  generate
reproductively  isolated  species  and  thus  provide  a  possible  explana-
tion for rapid speciation [12]. For example, he showed that hybridiza-
tion  between  two  divergent  lineages  provides  ample  genetic  starting
variation.  This  is  then  combined  and  sorted  into  many  new  species,
fueling  rapid  cichlid  fish  adaptive  radiations  [45].  Seehausen  further-
more investigates and underlines the importance of jointly considering
species  traits  and  environmental  factors  in  speciation  and  adaptive
radiation as they affect one another [46, 47]. His work therefore sup-
ports  the  importance  of  co-evolutionary  and  combinatorial  dynamics
for  open-ended  evolution,  even  though  co-evolution  is  between
species  in  a  heterogeneous  environment  and  combinations  happen  at
the gene level. 

Biological  insights  into  innovation  itself  are  also  relevant.  The
work  of  evolutionary  biologist  Andreas  Wagner  illustrates  this  nicely
[48,  49].  For  example,  he  showed  that  recombination  creates  pheno-
typic  innovation  in  metabolic  networks  much  more  readily  than
random  changes  in  chemical  reactions  [50].  The  work  of  Wagner
suggests  that  recombination  of  genetic  material  is  a  general
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mechanism  that  greatly  increases  the  diversity  of  genotypes  [51,  52].
Also,  relevant  here  is  his  work  on  evolutionary  innovation  through
exaptation.  He  found  that  simulated  real  metabolic  networks  were
not  only  able  to  metabolize  on  a  specific  carbon  source  but  also  on
several  others,  which  shows  that  metabolic  systems  may  harbor  hid-
den pre-adaptations that could potentially lead to evolutionary innova-
tions  [53].  Combinatorial  interactions  at  the  gene  level  again  play  a
crucial  role,  and  the  latter  study  revealing  hidden  pre-adaptations  is
like  Stanley’s  open-ended  algorithms,  creating  many  potential  solu-
tions before it is applied to solve an actual problem. 

Besides this limited and biased review of contributions from evolu-
tionary  biology,  it  seems  nevertheless  important  to  point  out  that  the
field  has  shown  that  combinatorial  interactions  matter  at  organiza-
tional  levels  above  the  genes  and  that  a  changing  environment  can
greatly affect species diversity and vice versa. 

Recent Advances in Implementing Open-Ended 

Evolutionary Systems
3.

Implementation Contributions from Artificial Life and Open-
Ended Evolution Community

3.1

We  first  consider  implementations  from  the  artificial  life  and  open-
ended  evolution  community.  Banzhaf  et  al.  [6]  and  Taylor  [19]
provide  some  implementation  suggestions.  The  implementation  of
computational systems that can detect and integrate novelties into the
model  and  metamodel  as  described  by  Banzhaf  et  al.  [6]  and  Taylor
[19] provides a challenge in its own right. It is argued that operations
should  be  defined  intrinsically  in  the  system  and  by  the  system  itself
[19,  54].  It  requires  program  code  that  can  recognize  and  modify
itself. Banzhaf et al. [6] state that this can be achieved by representing
entities  as  strings  of  assembly  language  code  or  by  using  a  high-level
language designed specifically for this purpose [55], or a reflective lan-
guage. A reflective language allows implementing programs that have
the  ability  to  manipulate  and  observe  their  states  during  their  own
execution [56]. Indeed, it was possible to generate exploratory, expan-
sive and transformative novelties with Stringmol, where modifications
happen in sequences of assembly language code [57]. A replicator and
some of the observed operations and structures were defined extrinsi-
cally, whereas some others could be defined intrinsically [57].

There  are  several  computational  systems,  of  which  Avida  [8]  and
Geb  [9]  are  two  prominent  examples.  Usually,  digitally  simulated
organisms  are  represented  by  assembly  code  competing  for  limited
CPU  resources.  Most  of  these  systems  implement  extrinsically  com-
mon  shortcuts  such  as  replication  and  a  certain  fitness  function,
which  makes  them  a  powerful  tool  to  explore  biological  questions
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such  as  the  genotype-phenotype  mapping  [58]  in  a  highly  controlled
way.  Another  strength  of  computational  systems  is  that  they  usually
involve  visualizations,  for  example,  Sims  [59],  and  thus  contribute  to
the  exploration  of  complex  evolutionary  dynamics.  With  respect  to
open-endedness,  however,  Pugh  et  al.  [42]  point  out  that  none  of
these  systems  has  generated  explosions  of  complexity,  as  seen  in  bio-
logical  evolution  during  transitions,  and  therefore  something  must
still  be  missing.  With  Voxelbuild,  Pugh  et  al.  [42]  have  contributed
the  most  relevant  computational  system  in  this  respect.  A  first  proto-
type  demonstrated  that  a  certain  organization  of  voxels  emerged,
which  was  used  as  a  steppingstone  for  other  organizations  that
emerged  later.  This  seems  to  be  a  kind  of  combinatorial  evolution.
Additionally, they report that exaptation has occurred, which is remi-
niscent of evolutionary biology studies. 

Implementation Contributions from Complex Systems Science 

and Dynamical Systems Theory
3.2

Thurner  et  al.  [14]  add  another  important  aspect  to  the  implementa-
tion. They argue that only a so-called algorithmic implementation and
thus  discrete  formulation  can  work  because  in  evolutionary  systems,
boundary  conditions  cannot  be  fixed  (the  environment  evolves  as  a
consequence of the system dynamics), and the phase space is not well
defined  as  it  changes  over  time  [14].  It  would  lead  to  a  system  of
dynamical  equations  that  are  dynamically  coupled  to  their  boundary
conditions,  which  is  according  to  them  a  mathematical  monster  and
the  reason  why  evolutionary  systems  cannot  be  implemented  follow-
ing  an  analytical  approach.  In  addition,with  the  CCC  model,  they
provide  a  general  description  of  a  complex  evolving  system  that  is  so
general  that  it  applies  to  every  evolutionary  system.  It  therefore  pro-
vides  a  general  metamodel  layer  of  a  computational  evolutionary
system,  which  suggests  that  it  might  not  need  a  change  to  capture
novelties.

The algorithmic approach is capable of creating complex structures
and behaviors based on simple rules described with an algorithm and
run iteratively with time on a computer. This has been shown with ele-
mentary cellular automata [60, 61] and hypergraphs [62, 63]. Adams
et  al.  [15]  add  to  this  an  implementation  of  cellular  automata  with
time-dependent  update  rules,  providing  a  way  to  implement  dynami-
cal systems with the capability to expand their state space at runtime. 

The Allagmatic Method4.

Modeling Contribution4.1

We  have  developed  the  so-called  allagmatic  method  [64,  65]  to
describe,  model,  implement  and  allow  interpretation  of  complex
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systems  (Figure  1).  It  consists  of  a  system  metamodel  inspired  and
guided  by  philosophical  concepts  of  Gilbert  Simondon  [66,  67]  and
Alfred  North  Whitehead  [68,  69].  Simondon’s  metaphysics  gives  an
operational  and  systemic  account  of  how  technical  and  natural
objects  emerge  and  evolve.  It  allows  the  abstract  definition  of  a  sys-
tem  with  the  concepts  structure  and  operation,  since  according  to
him,  systems  develop  from  a  seed  through  a  constant  interplay
between operations and structures [70]. More concretely, but still gen-
eral,  we  defined  model  building  blocks  in  a  system  metamodel.  The
main  building  blocks  are  entity,  milieu,  update  function,  adaptation
function  and  target,  for  which  we  recently  provided  a  mathematical
formalism  [71].  The  concepts  entity,  adaptation  and  control  are  bor-
rowed  from  Whitehead  [68,  69]  as  described  in  a  recent  conference
paper [72]. The creation of a system model and metamodel can be fol-
lowed  through  three  regimes:  In  the  virtual  regime,  abstract  defini-
tions  with  classes  corresponding  to  interpretable  philosophical  con-
cepts are given. Using generic programming [73], the type of states an
entity can have are defined by defining a system model object that has
not yet initialized any parameters. At this point the metastable regime
starts, where step by step the object/model is concretized with parame-
ters  such  as  number  of  entities  and  concrete  update  functions  (model
individuation). Once all parameters are defined, the object is executed
in  the  actual  regime.  If  there  are  any  adaptation  processes  involved,
the  allagmatic  method  cycles  between  the  metastable  and  actual
regimes.

Figure 1. Overview  of  the  allagmatic  method  and  its  system  metamodel’s
main building blocks. Figure adapted from [72].

Implementation Contribution4.2

The  programming  of  the  allagmatic  method  with  its  system  meta-
model is aligned with philosophical concepts. This allows not only an
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interpretation  of  the  final  result  in  the  context  of  the  related  meta-
physics  but  also  the  tracing  of  the  developmental  steps  a  model  is
undergoing,  and  thus  provides  a  way  to  study  the  emergence  of  the
typical  characteristics  of  complex  systems.  We  have  recently  outlined
how adaptation can be studied in this way [72]. In this work, we also
introduced the possibility and concepts to form hierarchies and define
control,  which  further  support  the  use  of  the  allagmatic  method  to
define concepts that are difficult to pin down.

Furthermore, we showed how the method might be used for auto-
matic  programming  [65].  We  found  that  the  abstract  model  building
blocks are well suited to be automatically combined by self-modifying
code in a high-level language. Our work shows that certain philosoph-
ical  concepts  and  even  metaphysics  as  a  whole  can  be  defined  and
implemented in program code, providing the opportunity to run these
concepts or the whole metaphysics and study them in action. 

We  also  created  a  prototype  of  open-ended  automatic  program-
ming  through  combinatorial  evolution  [74,  75].  Like  Arthur  and
Polak  [28],  we  created  a  computational  model  based  on  combinato-
rial  evolution  but  instead  of  evolving  circuits,  we  evolved  computer
code.  Useful  code  blocks  were  stored  in  a  repository  and  could  be
used  in  later  iterations.  Starting  with  basic  keywords  available  in  the
programming  language,  more  complex  code  blocks  including  classes,
void methods and variable declarations evolved. 

Current Modeling and Implementation Challenges5.

Modeling Open-Ended Evolutionary Systems5.1

Co-evolutionary dynamics, combinatorial interactions and a changing
environment  seem  to  be  important  ingredients  of  open-ended  evolu-
tionary  systems.  The  work  of  evolutionary  biologists  including  See-
hausen  and  Wagner  supports  the  view  that  co-evolutionary  dynamics
and  combinatorial  interactions  are  key  elements.  They  also  indicate
that biological evolution exhibits different levels or types of combina-
torial  interactions,  and  that  the  environment  is  an  important  driver
and  mediator  of  change.  The  CCC  model  accounts  for  co-evolution-
ary  dynamics  and  combinatorial  interactions  and  successfully  gener-
ates  the  statistics  of  economic  data  with  reoccurring  transitions
between equilibria [14, 29–33]. It could also show that economic inno-
vations  are  driven  by  creative  destruction,  thus  Schumpeterian  evolu-
tion.  This  provides  important  insights  into  the  open-ended  dynamics
of  economic  evolution  [14,  29,  31].  However,  it  still  needs  to  be
investigated in other evolutionary systems, especially in biological evo-
lution. Banzhaf et al. [6], Taylor [19], Adams et al. [15] and Hernán-
dez-Orozco  et  al.  [16]  provide  guidance  for  modeling  open-ended
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evolution  in  general,  which  might  allow  us  to  come  up  with  a  model
that  captures  open-ended  dynamics  of  any  evolutionary  system,
including economic and biological systems. 

Implementing Open-Ended Evolutionary Systems5.2

There  is  the  challenge  of  an  intrinsic  implementation  of  open-ended
evolutionary  systems.  The  programming  techniques  for  this  already
exist; however, the real challenge is linking the structure and events in
the  implementation  with  interpretable  concepts.  To  illustrate  this
problem,  assume  that  we  dispense  with  all  shortcuts  and  let  the  pro-
gram  completely  overwrite  the  model  and  metamodel.  Having  no
replicator  or  other  prevailing  concepts  makes  it  hard  to  understand
and see what is going on in the evolutionary simulation. This problem
was  discussed  at  the  third  workshop  on  open-ended  evolution  [17,
76]. It is mostly uncharted territory that requires much more research,
including how to identify certain concepts and components from simu-
lation  data  and  how  to  implement  such  systems  in  a  purely  intrinsic
manner,  where  generated  novelties  are  meaningfully  integrated  into
the model/metamodel by the evolving systems themselves.

Another  challenge  is  the  choice  of  digital  organisms  and  environ-
ment.  The  CCC  model  [14,  29–33]  provides  a  mathematical  for-
malism  for  theoretical  considerations  and  ways  to  perform  statistical
analyses.  Computational  systems  from  artificial  life  and  the  open-
ended  evolution  community  such  as  Voxelbuild  [42]  usually  come
with  powerful  visualizations;  however,  they  lack  a  mathematical
formalism. 

The Allagmatic Method for Open-Ended Evolutionary Systems6.

Model Building Blocks of Open-Ended Evolutionary Systems6.1

Observing evolving systems like technology or the rain forest makes it
clear  that  not  only  entities  evolve  but  also  the  interactions  among
them.  Co-evolution  implies  that  species  have  a  mutual  influence  on
each other [77]. Since species are also part of the environment, co-evo-
lution  leads  to  a  changing  environment,  providing  more  possibilities
for  state  changes.  Also,  external  environmental  input  can  change  and
affect species and their interactions. Combinatorial interactions create
new  entities  from  existing  entities  [14,  25,  26,  29].  These  newly  cre-
ated  entities  might  be  able  to  exploit  different  parts  of  the  changing
environment  and  thus  perhaps  fill  any  niches  that  may  arise.  Chro-
maria [78] captures this to some degree, as entities become part of the
environment and thus change the environment that interacts with fur-
ther  new  entities.  Changing  the  interactions  between  entities  and
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between  entities  and  their  environment  leads  to  complex  cascades  of
changes,  potentially  resulting  in  disruptive  changes  in  the  system  that
can be regarded as novelties. This is further supported by the findings
of  Adams  et  al.  [15]  and  Hernández-Orozco  et  al.  [16].  Combinato-
rial interactions also lead to evolutionary changes and potential novel-
ties;  they  combine  existing  entities  to  form  new  entities.  This  can  be
observed nicely in the evolution of technology [25, 26]. It is a possibil-
ity for how transitions might be explained, for example, from unicellu-
lar to multicellular organisms [43, 44].

We  could  therefore  use  the  allagmatic  method  to  capture  the
co-evolutionary  dynamics,  including  the  environment  and  the  combi-
natorial interactions as given by the CCC model. The CCC model has
been  able  to  generate  an  ongoing  evolutionary  process  with  punctu-
ated equilibria when, in addition, the lifetime of an entity was limited
[14,  29,  30].  It  showed  the  statistical  behavior  of  open-ended  evolu-
tionary  systems.  Here,  the  CCC  model  is  formalized  within  the
allagmatic  method  to  allow  interpretation  within  the  implemented
metaphysics  of  Simondon  [66,  67]  and  Whitehead  [68,  69].  The  sys-
tem  metamodel  of  the  allagmatic  method  and  the  CCC  model  both
follow a complex systems perspective, which makes them compatible. 

The model building blocks or general concepts to be captured with
the allagmatic method are specifically: evolving entities, entity lifetime
parameters,  co-evolutionary  operations  of  entities  and  environment
and combinatorial interactions. 

System Model and Metamodel of Open-Ended Evolution6.2

The  allagmatic  method  consists  of  a  system  metamodel  for  modeling
systems  in  general  and  complex  systems  in  particular  (see  Christen
and  Del  Fabbro  [71]  for  detailed  mathematical  definitions).  The  sys-
tem  metamodel  describes  individual  parts  of  a  system  as  entities

defined  with  an  entity  e-tuple  ℰ  (e

1, e


2, e


3, … , e


e),  where  e


i ∈ Q

with  Q  being  the  set  of  k  possible  entity  states.  Entity  states  are

updated  over  time  according  to  an  update  function  ϕ :Qm+1  Q
with  m  being  the  number  of  neighboring  or  linked  entities.  The
update  function  ϕ  therefore  describes  how  entities  evolve  over  time,
dependent on the states of neighboring entities. Update rules and thus
the  logic  are  stored  in  the  structure  update  rules  .  Entities  are
thereby  considered  connected  together  in  a  network  structure  and

defined  with  the  milieus  e-tuple  ℳ  ℳ

1, ℳ


2, ℳ


3, … , ℳ


e,  where

ℳ

i  (m


1, m


2, m


3, …, m


m)  is  the  milieu  of  the  ith  entity  e


i  of  ℰ  con-

sisting of m neighbors of e

i. Over time, update function ϕ and milieus

ℳ might be changing as well, which is described with the adaptation
function ψ.
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We now extend the system metamodel where needed with concepts
to model open-ended evolution as identified earlier. Evolving entities:
The  entity  e-tuple  ℰ  captures  evolving  entities  (entities  changing  their
state  over  time)  in  the  same  sense  as  the  general  evolution  algorithm
[14] does with the state vector σ. The general evolution algorithm can
be  regarded  as  the  metamodel  from  which  the  CCC  model  is  created
[14].  Co-evolutionary  operations  of  entities  and  environment:  With
the creation of new entities (novelty), new possibilities for interactions
also emerge. This is key for open-endedness and is captured by the co-
evolution  of  entities  and  their  interactions  in  the  general  evolution
algorithm [14]. Formally, the update equations of the entity state vec-
tor  σ  and  the  interaction  tensors  M  are  simultaneously  updated  over
time  in  the  general  evolution  algorithm.  In  the  system  metamodel  of
the  allagmatic  method,  this  is  described  with  the  update  function  ϕ

and  the  adaptation  function  ψ,  which  can  both  be  modeled  in  such  a
way  that  the  update  function  ϕ  updates  entity  states  in  ℰ  simultane-
ously  with  the  adaptation  of  their  interactions  in  the  milieus  ℳ

through the adaptation function ψ. This is a concretization of the sys-
tem metamodel into a metamodel of open-ended evolution. The envi-
ronment  is  also  part  of  co-evolution  and  is  described  in  the  state
vector σ in the general evolution algorithm [14] and the entity e-tuple
ℰ  in  the  system  metamodel.  Combinatorial  interactions:  In  complex
systems,  interactions  are  of  combinatorial  nature  consisting  of  rules
determining  how  new  entities  can  be  formed  out  of  existing  entities.
The  creation  and  destruction  of  entities  are  encoded  in  rules  that  do
not  change  with  time.  They  can  be  regarded  as  physical  or  chemical
laws  determining  which  transformations  and  reactions  are  possible,
respectively. Please note that this covers the typical evolutionary mech-
anisms  of  selection,  competition  and  reproduction.  At  runtime,  mod-
els  created  from  this  metamodel  make  use  only  of  a  subset  of  these
rules  at  any  given  time  point,  which  is  captured  with  so-called  active
productive/destructive  rules.  This  is  formally  described  with  the  func-
tion F in the general evolution algorithm [14] and the update function
ϕ in the system metamodel. Entity lifetime parameter: Besides the cre-
ation  of  new  entities  through  combinatorial  interactions,  entities  can
spontaneously  appear,  which  would  be  like  discovering  a  new  law  or
element in nature. By introducing a decay rate λ, the CCC model did
not freeze [14]. It thus plays an important role for open-ended evolu-
tion.  In  the  system  metamodel,  this  parameter  can  be  described  as  a
further structure with a respective further operation. 

Self-Modifying Code Prototype in C#6.3

An  intrinsic  implementation  as  suggested  by  Banzhaf  et  al.  [6]  and
Taylor  [19]  requires  self-modifying  program  code  and  some  way  to
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add  novelties  to  the  model  or  metamodel.  Interpreting  these  novelties
in  the  context  of  a  certain  metaphysical  framework  will  most  likely
require  a  high-level  language  with  the  capabilities  to  modify  program
code  during  runtime  and  reflect  on  it.  C#  provides  these  capabilities
with  the  open-source  Roslyn  .NET  compiler  [79].  The  compiler  plat-
form  provides  dynamic  code  manipulation  with  syntax  trees  and
many  other  features,  including  reflection  as  well  as  comprehensive
code analysis. Syntax trees can either be created from a string contain-
ing  program  code  or  they  can  be  assembled  using  predefined  classes.
As opposed to writing program code into a file and then compiling it,
syntax trees can be stored as an object and compiled and executed at
runtime.

In  the  allagmatic  method,  a  general  layer  in  the  system  metamodel
that  is  not  modifiable  by  the  code  is  suggested  here.  These  are  the
model  building  blocks  every  complex  evolutionary  system  requires.
However, there is also a layer in the metamodel that is modifiable by
the code. It consists of less general model building blocks that are basi-
cally more concrete instances of the general layer. With these different
layers  and  controllable  code  self-modification,  it  will  potentially  be
possible to link concepts defined in the metamodel to newly generated
code,  improving  interpretability.  The  present  study  provides  a  first
prototype of self-modifying code in C# [80], bringing us one little step
closer to that ambitious goal. 

Fundamentally,  implementing  self-modifying  code  requires  consid-
ering  at  least  three  basic  questions:  what  words  to  use,  how  to  con-
catenate  these  words  to  create  valid  code  and  how  to  implement  the
duality  between  code  and  data.  In  theoretical  computer  science,  a
word or string is defined as a finite sequence of symbols over a given
alphabet [81]. An alphabet is a finite set of symbols [81] and symbols
are  the  basic  constituents  of  any  language  (i.e.,  the  set  of  all  words
over a given alphabet), for example, letters, digits or any other charac-
ters  [81].  To  define  the  words,  we  consider  universal  computation
and code interpretability. We want to choose words that do not limit
the  generated  code  and  therefore  require  universal  computation  or
Turing  completeness.  It  has  been  shown  that  only  the  instructions
load,  store,  increment  and  goto  (unconditional  branching)  are
required to achieve universal computation [82]. Most widely used pro-
gramming languages including C++ and C# provide words to generate
these instructions and many other instructions and are thus capable of
universal  computation.  Regarding  code  interpretability,  we  suggest
including the complete or most of the syntax of a high-level program-
ming  language  since  these  languages  are  designed  to  be  human  read-
able and interpretable. The first words to include are therefore all the
C# keywords as defined in the C# language reference [83]. In addition
to  keywords,  we  also  include  special  characters,  the  member  access
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expression  and  operators  as  defined  in  the  C#  language  specification
[84], as well as some further words. Please note that we treat symbols
such as operators as words since we can concatenate them with other
words  to  create  sentences  (i.e.,  instructions).  In  the  following,  all
included words are listed: 

◼ Keywords:  abstract,  as,  base,  bool,  break,  byte,  case,  catch,  char,
checked,  class,  const,  continue,  decimal,  default,  delegate,  do,  double,
else,  enum,  event,  explicit,  extern,  false,  finally,  fixed,  float,  for,
foreach,  goto,  if,  implicit,  in,  int,  interface,  internal,  is,  lock,  long,
namespace,  new,  null,  object,  operator,  out,  override,  params,  private,
protected,  public,  readonly,  ref,  return,  sbyte,  sealed,  short,  sizeof,
stackalloc,  static,  string,  struct,  switch,  this,  throw,  true,  try,  typeof,
uint,  ulong,  unchecked,  unsafe,  ushort,  using,  virtual,  void,  volatile,
while 

◼ Special characters: { } ( ) [ ] " ; ,

◼ Member access expression: . 

◼ Arithmetic operators: + - * / % 

◼ Relational operators: < > < >  ! 

◼ Logical operators: & ^ | && || 

◼ Assignment operator:  

◼ Further words: IDENTIFIER, NUMBER, PLACEHOLDER 

There  are  some  further  words  that  need  to  be  explained.  Program
code  contains  words  that  are  used  as  a  name  or  identifier,  for  exam-
ple,  for  variables  and  classes.  To  account  for  that,  the  word
IDENTIFIER  is  included  as  a  possible  word.  If  the  self-modifying  code
chooses  this  word,  an  identifier  is  generated  and  inserted.  Natural
numbers are inserted in the same way, replacing the word NUMBER. If
the  word  PLACEHOLDER  is  chosen,  an  instruction  that  is  a  combina-
tion  of  words  representing  valid  code  is  inserted.  Such  a  placeholder
allows generating a nested code structure, for example, a variable dec-
laration inside a method [74, 75]. In this first prototype of self-modify-
ing  code,  syntax  to  make  use  of  the  extensive  .NET  API  is  not
included. Thus, the language used here is a subset of the C# language. 

We now address the second question regarding the combination of
the  defined  words  to  create  valid  code.  The  general  algorithm  to
achieve  this  is  based  on  the  concept  of  combinatorial  evolution  as
proposed byW. Brian Arthur [26, 27] and already used in our earlier
study  to  evolve  programming  concepts  such  as  variable  declarations
and  classes  in  Java  [74,  75].  The  algorithm  uses  two  data  structures,
a list words (set W) containing the previously defined words and a list
codeBlocks  (set  C)  storing  valid  code  blocks  (sentences), which  is

initially  empty  (C  ∅).  It  is  an  iterative  process  in  which  several

System Metamodeling of Open-Ended Evolution 369

https://doi.org/10.25088/ComplexSystems.32.4.353

https://doi.org/10.25088/ComplexSystems.32.4.353


steps  are  repeated:  (1)  The  first  step  is  to  generate  a  new  code  block.
This is achieved by randomly selecting a given number of words from
set  W,  which  are  then  concatenated,  separated  by  a  space.  The  num-
ber  of  words  in  a  code  block  is  set  randomly  between  two  and  eight
as  in  the  previous  studies  where  combinatorial  evolution  was  simu-
lated  [28,  74,  75].  If  the  chosen  word  is  PLACEHOLDER,  it  is  replaced
by  an  already  existing  valid  code  block  from  set  C  or  by  another
word  if  set C  is  still  empty.  Similarly,  if  the  chosen  word  is
IDENTIFIER, it is replaced by a numbered identifier. If the chosen word
is NUMBER, it is replaced by a randomly generated integer. (2) The sec-
ond  step  is  checking  the  validity  of  the  newly  generated  code  block.
This is achieved by parsing the code block into a syntax tree, which is
then analyzed making use of the Roslyn API (the .NET Compiler Plat-
form SDK) [79]. A compilation object is created from the syntax tree
[85]  that  is  compiled  at  runtime,  avoiding  time-consuming  read  and
write operations in file-based compilation. (3) In the third step, if the
compilation is successful, the code block is added to set C. 

The  described  algorithm  was  implemented  in  the  present  study
using  the  programming  language  C#  and  the  mentioned  Roslyn  API.
Several  computational  experiments  were  run,  each  time  for  one  mil-
lion  iterations.  Since  the  combination  of  code  blocks  is  completely
random and no selection toward a certain objective is added, it is not
surprising that most of the generated code is not valid and generates a
compiler error. However, in all of the conducted test runs, some valid
code  was  generated.  This  included  the  declaration  of  variables  (e.g.,
char  identifier98242  ;), scope definitions (e.g., {  }) and combinations of
the two (e.g., char identifier98242 ; { }).

The  third  question  is  how  to  implement  a  duality  between  code
and  data.  We  need  to  address  this  question  because  we  want  to  exe-
cute the generated code as well as modify it. It also includes transfer-
ring the state of data such as the state of an entity from code to data
and  back  to  code  again.  Such  transitioning  between  code  and  data
allows implementing self-modifying operations on data structures, for
example, the update function ϕ and update rules , where the current
state  of  an  entity  is  required  to  be  transferred  from  code  to  data  and
after  self-modification  and  running  of  the  code,  back  again  into  code
as the updated state of the entity. There are certain programming lan-
guages  where  program  code  is  also  represented  as  data  and  thus  can
be manipulated as such. It is a language property often referred to as
homoiconic,  and  a  prominent  example  is  Lisp.  However,  it  can  also
be achieved with C#. If, for example, we want to transfer the value of
the  variable  input  from  code  to  data,  we  can  use  the  String.Replace
[86] and String.ToString [87] methods as follows: 

code.Replace(“input”, input.ToString()). 
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Here,  code  is  a  string  containing  code  as  data,  “input”  represents
the  variable  input  in  that  code  as  data,  and  input  represents  the
variable  input  in  the  code  as  code.  The  variable  value  of  the  latter  is
converted into a string with the String.ToString method, and then this
value  is  inserted  into  the  code  as  data  by  replacing  “input”  with  the
String.Replace  method.  We  can  then  run  the  code  as  data  (the  string
code)  as  described  earlier  in  the  self-modifying  code  prototype.  Once
we  have  executed  the  code  at  runtime,  we  also  want  to  transfer  back
the  output  to  our  program,  therefore  from  data  to  code.  One  way  to
achieve  that  in  C#  is  to  redirect  the  console  output  stream  to  a
variable.  We  first  set  the  output  stream  to  a  StringWriter  object
[88]. When the code as data (the string code) is executed, the value of
the  variable  output  is  printed  out  in  the  console  with  the
Console.WriteLine method [89] as follows: 

Console.WriteLine(output). 

Because of the redirection of the output stream, output is not printed
in  the  console  but  stored  in  the  StringWriter  object.  From  there,  we
can use it in our program, and thus we have transferred data to code. 

The Allagmatic Method as Guidance to Create Code Blocks6.4

The system metamodel ℳ of the allagmatic method is defined as:

ℳ(ℰ, Q, ℳ, , , , …, s

s, ϕ, ψ, …, o


o), (3)

where  ℰ  is  the  entities  e-tuple,  Q  the  set  of  possible  entity  states,  ℳ
the milieus e-tuple,  the update rules u-tuple,  the adaptation rules

a-tuple,    the  adaptation  end  p-tuple,  s

s  are  further  structures,  ϕ  the

update function, ψ the adaptation function, o

o  are further operations,

and  s

i ∈ S ⋀ o


j ∈ O  [71].  It  intertwines  structures  and  operations  to

create  (complex)  systems  at  the  most  abstract  level  in  the  virtual
regime.  Every  such  system  contains  at  least  the  structures  entities  ℰ,
entity states Q, milieus ℳ, update rules , adaptation rules , adap-
tation  end  ,  the  operations  update  function  ϕ  and  adaptation  func-
tion  ψ.  As  stated  previously,  to  create  an  open-ended  evolutionary

system,  we  need  the  further  structure  lifetime  parameter  s

lt  and  a

respective further operation o

lt to remove entities as soon as they have

reached that time limit. We also need a simultaneous update of entity
states  and    and  ℳ.  Since  the  update  function  ϕ  modifies  entity
states  and  the  adaptation  function  ψ  modifies    and  ℳ,  this  is
achieved  by  running  ϕ  and  ψ  in  the  same  iteration.  From  the  virtual
regime,  structures  and  operations  are  concretized,  creating  a
metastable system in the metastable regime. In this concretization pro-
cess,  the  self-modifying  code  prototype  can  now  be  used  to  generate
concrete  instances  of  the  identified  structures  and  operations.  In  the
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following, a description of how this could be implemented is provided
for each structure and operation: 

◼ Entities ℰ and their possible states Q: entities are concretized by defin-
ing  the  number  of  entities  e  and  number  and  kind  of  possible  states  Q
and k. By providing respective words, the self-modifying code is guided
or  restricted  in  its  generation  of  code  blocks.  An  entity  is  implemented
as  an  object  containing  fields  capturing  all  its  states.  For  example,  it  is
possible to randomly define the number of entities and states and based
on  that,  randomly  choose  a  data  type  for  each  field  from  predefined
words  implementing  different  data  types.  A  list  of  length  e  is  then  cre-
ated with the defined entity objects. 

◼ Milieus  ℳ:  milieus  are  concretized  by  defining  the  number  of  con-
nected  entities  m  for  each  entity  and  the  connections  between  entities
forming  a  network  structure.  For  example,  it  is  possible  to  randomly
define the number of connected entities for each entity and which enti-
ties are connected to it.

◼ Update  function  ϕ  and  update  rules  :  update  function  and  rules  are
concretized by defining what operations should be performed on which
entity fields under which conditions. For example, it is possible to ran-
domly  define  some  Boolean  operations  for  Boolean  fields  and  arith-
metic  operations  for  integer  and  float  fields.  These  operations  are  then
coupled  with  some  randomly  defined  if  conditions  choosing  states  of
connected entities and relational operators. 

◼ Adaptation function ψ, adaptation rules  and adaptation end P: adap-
tation  function,  rules  and  end  are  concretized  by  defining  new  update
rules  ,  milieus  ℳ,  and  adaptation  end  .  For  example,  it  is  possible
to  overwrite  update  rules  with  newly  created  rules,  overwrite  the  net-
work  structure  and  randomly  choose  a  value  for  each  entity  field  to
define the adaptation end. 

◼ Lifetime  parameter  s

lt  and  respective  operation  o


lt:  lifetime  parameter

and operation are concretized by defining a time limit in terms of itera-
tions  and  the  way  entities  are  removed.  For  example,  it  is  possible  to
randomly  define  an  integer  value  for  the  lifetime  parameter  and  to
decide  whether  entities  are  removed  after  they  were  present  for  the
defined  number  of  iterations  or  by  randomly  removing  them  after  the
defined number of iterations has passed. 

Also, modification of code can be implemented with this approach
by allowing certain parts of these defintions to be overwritten.

Discussion and Conclusion7.

Based on recent advances, the model building blocks evolving entities,
entity  lifetime  parameter,  co-evolutionary  operations  of  entities  and
environment  and  combinatorial  interactions  are  identified  to
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characterize  open-ended  evolutionary  systems.  These  concepts  led  to
punctuated  equilibria  in  the  co-evolutionary,  combinatorial  and  criti-
cal  evolution  model  (CCC  model)  model  [14],  which  means  that  it
never  reaches  an  equilibrium  state  where  the  generation  of  further
adaptive  novelty  is  ceased  and  thus  can  be  regarded  as  open  ended.
This  study  provides  a  formal  description  of  a  system  metamodel  for
open-ended  evolution  according  to  the  CCC  model  thus  also  capable
of  generating  punctuated  equilibria.  It  also  provides  a  self-modifying
code  prototype  in  C#  and  guidance  to  create  code  blocks  that  poten-
tially will allow an intrinsic implementation of open-ended evolution-
ary systems as suggested by Banzhaf et al. [6] and Taylor [19].

The  proposed  self-modifying  code  prototype  and  the  guidance  of
the  allagmatic  method  to  create  code  blocks  seem  to  be  a  promising
way  to  change  program  code  at  runtime  and  potentially  account  for
novelties. This is achieved by controlling the self-modification of code
within  abstractly  defined  building  blocks  of  a  system  metamodel
describing complex and evolutionary systems in general. It could thus
be a way to interpret novelties without limiting possible solutions. 

It  is  interesting  to  note  that  certain  models  anticipate  changes  that
might  occur  to  them.  In  all  evolutionary  systems,  new  entities  arise
and  other  entities  disappear,  which  will  not  only  change  how  many
entities  there  are  but  also  their  interactions  with  each  other  and  the
environment.  The  CCC  model  [14]  is  capable  of  accounting  for  such
changes in the model through co-evolution of entity states and interac-
tions. On this level, it therefore does not need self-modification of the
code  but  generic  programming  [73]  of  certain  structures  to  dynami-
cally adapt them to these changes. 

In  addition,  the  interpretation  of  concepts  within  a  metaphysical
framework  as  described  with  the  allagmatic  method  provides  a
promising  starting  point  to  interpret  novelty  generated  at  runtime.
This study provides a system metamodel of open-ended evolution and
a prototype of self-modifying code implemented in C#. Using this pro-
totype in the allagmatic method allows us to modify certain structures
and  operations  of  the  system  model  and  metamodel  in  a  controlled
way  and  potentially  will  allow  us  to  interpret  novelties  in  computa-
tional systems. 

In  conclusion,  the  identified  model  building  blocks  evolving  enti-
ties,  entity  lifetime  parameter,  co-evolutionary  operations  of  entities
and  environment  and  combinatorial  interactions  and  the  proposed
self-modifying  code  provide  a  promising  starting  point  to  model  and
implement open-endedness in a computational system that potentially
allows us to interpret novelties at runtime. 
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