
System Metamodeling of Open-Ended

Evolution Implemented with Self-
Modifying Code

Patrik Christen

FHNW, Institute for Information Systems, Switzerland
ETH Zurich, Chair for Philosophy, Switzerland

Having a model and being able to implement open-ended evolutionary
systems are important for advancing our understanding of open-ended-
ness. Complex systems science and the newest generation high-level pro-
gramming languages provide intriguing possibilities to do so. Here,
some recent advances in modeling and implementing open-ended evolu-
tionary systems are reviewed (an earlier and shorter version was pre-
sented at [1]). Then, the so-called allagmatic method is introduced as a
computational framework that describes, models, implements and
allows interpreting complex systems using system metamodeling. Based
on recent advances, the model building blocks evolving entities, entity
lifetime parameter, co-evolutionary operations of entities and environ-
ment and combinatorial interactions are identified to characterize open-
ended evolutionary systems. They are formalized within the system
metamodel, providing a formal description of an open-ended evolution-
ary system. The study further provides a self-modifying code prototype
in C# and guidance to create code blocks for an intrinsic implementa-
tion of open-ended evolutionary systems. This is achieved by control-
ling the self-modification of program code within the abstractly defined
building blocks of the system metamodel. It is concluded that the identi-
fied model building blocks and the proposed self-modifying code
provide a promising starting point to model and implement open-ended-
ness in a computational system that potentially allows us to interpret
novelties at runtime.

Keywords: Open-Ended Evolutionary Systems; Metamodeling; Self-
Modifying Code; Combinatorial Evolution; Allagmatic Method

Introduction1.

The diversity and complexity of organisms created by biological evolu-
tion over the last billions of years is staggering. It seems to really be a
never-ending story of inventions [2, 3]. Engineered physical systems,
evolutionary and genetic algorithms, artificial intelligence, deep learn-
ing and other computational methods are far from simulating and
explaining the diversity, creativity and open-endedness exhibited by

https://doi.org/10.25088/ComplexSystems.32.4.353

https://doi.org/10.25088/ComplexSystems.32.4.353

biological evolution. The main deficiency is that all these computa-
tional systems reach an equilibrium state and cease to generate further
adaptive novelty—they are essentially cul-de-sacs.

Understanding the open-endedness of biological evolution is a
grand challenge [4], especially in the field of artificial life. If imple-
mented in an open-ended computational system, it would have major
implications far beyond artificial life [2, 3]. It would allow us to
invent virtually everything, including new architectures, furniture,
cars, games and of course algorithms and software in general [2, 3]. It
would most likely bring us closer to strong artificial intelligence, since
only biological evolution has created it so far [2, 3].

Furthermore, open-endedness has been observed in various com-
plex systems such as human languages, legal systems, economic and
financial systems and technological innovation, showing its relevance
as well as urging its study [5, 6]. These systems are an important part
of our society. A better understanding of their open-ended dynamics,
that is, when a system is completely reorganizing itself, is key to man-
aging these systems. Reorganization of a system can be, for example,
a crash of a financial system or the collapse of an ecological system. It
happens unpredictably and from time to time in systems relevant to
society and is therefore related to some of our biggest challenges,
including climate change and socioeconomic stability [7].

The open-ended evolution community made remarkable progress
defining and exploring open-endedness by creating systems such as
Avida [8] and Geb [9], algorithms such as novelty-driven approaches
[10], and even programming languages such as ulam [11]. By study-
ing evolution in general, evolutionary biology and complex systems
science also contribute to the understanding of open-endedness,
although in an implicit way. For example, evolutionary biology pro-
vides insight into speciation mechanisms [12], complex systems sci-
ence gives an evolutionary model that shows punctuated equilibria
[13, 14], and dynamical systems theory contributed to the more for-
mal development of open-ended evolution based on theoretical con-
cepts such as Poincaré recurrence time [15] and methods derived from
algorithmic complexity theory [16]. The technical contribution of the
open-ended evolution and artificial life community regarding imple-
menting these systems is also impressive since it requires some kind of
self-modification and self-referencing capabilities to account for novel-
ties at runtime [6]. Despite this progress, there is no model yet that
produces novelties and shows creativity as observed in complex sys-
tems such as the economy or biological evolution. It seems that we
are missing an important ingredient or idea.

To get an overview of potential model building blocks of open-
endedness and implementation approaches across different fields, this
paper first presents a short review of some recent advances in

354 P. Christen

Complex Systems, 32 © 2024

modeling and implementing open-ended evolutionary systems from
the fields of artificial life, including the open-ended evolution commu-
nity, complex systems science, dynamical systems theory, artificial
intelligence and evolutionary algorithms, and evolutionary biology.
Then, to connect the ideas from different fields within a coherent
framework, the so-called allagmatic method is introduced. It
describes, models, implements and allows interpretation of complex
systems. After highlighting some current modeling and implementa-
tion challenges, model building blocks of open-ended evolutionary sys-
tems are identified and a system metamodel of open-ended evolution
is proposed as part of the allagmatic method. In terms of implement-
ing open-ended evolutionary systems, a self-modifying code prototype
in a high-level programming language is presented, and the allagmatic
method is used as guidance to create code blocks with the developed
self-modifying code prototype. It is concluded that the identified
model building blocks and the proposed self-modifying code provide
a promising starting point to model and implement open-endedness in
a computational system that potentially allows us to interpret novel-
ties at runtime.

Recent Advances in Modeling Open-Ended Evolutionary Systems2.

Definitions2.1

Although progress has been made, especially by the open-ended evolu-
tion community, much remains to be explored [17]. Before having a
closer look at modeling, we start with some preliminaries regarding
the definition of open-ended evolution or open-endedness.

Open-endedness has been defined as the ability to continually pro-
duce novelty and/or complexity whereby novelty is classified as varia-
tion, innovation and emergence [6]. Based on creativity research [18],
different terms for this classification were suggested, namely
exploratory, expansive and transformational novelty, respectively
[19]. The latter terms will be used here to avoid interpretation issues
with innovation and emergence. Regardless of the terminology, both
definitions relate to a formal model and metamodel of the system
under study. Exploratory novelty can be described using the current
model, expansive novelty requires a change in that model but still
uses concepts in the metamodel, and transformational novelty intro-
duces new concepts necessitating a change in the metamodel [6, 19].
With their connection to model and metamodel, they provide a way
to determine whether and which kind of novelty emerges in an open-
ended evolutionary system.

Defining complexity and its measurement in open-ended evolution-
ary systems is a topic of ongoing research too. Dolson et al. [20]

System Metamodeling of Open-Ended Evolution 355

https://doi.org/10.25088/ComplexSystems.32.4.353

https://doi.org/10.25088/ComplexSystems.32.4.353

recommend an information-theoretic approach based on the count of
informative sites across all components in a population and suggest
improving it by also accounting for all possible mutations and by con-
sidering epistatic interactions. Channon [21] defines individual com-
plexity as the diversity of adaptive components in the individual, that
is, the number of active genes. Furthermore, in evolutionary biology,
information is quantified with respect to different sources available to
an adapting organism, from ancestors and the environment [22].

Modeling Contributions from Artificial Life and Open-Ended

Evolution Community
2.2

Banzhaf et al. [6] have argued that open-endedness in physical sys-
tems such as in a computation are hard to prove in a finite universe
and therefore we might endeavor to create a sufficient rather than an
infinite number of open-ended events, which is then called effectively
open-ended. To achieve this despite the limits on computational
power, it was suggested to hard-code certain elements of the model,
for example, the process of replication, into so-called shortcuts [6,
19]. Taylor [19] bases shortcuts on generally accepted processes of
Darwinian evolution: phenotype generation (from the genotype),
phenotype evaluation and reproduction with variation. Ongoing evo-
lutionary activity and with that exploratory open-endedness are pro-
moted by modifying the adaptive landscape, the topology of genetic
space or the genotype-phenotype map. He further argues that none of
these expand the phenotype space itself and thus do not help us for an
expansive and transformational open-endedness, where so-called
door-opening states in phenotype space are needed. The complexity
of physical and chemical laws provides a vast space for biological sys-
tems, whereas in computational systems we might dynamically
increase the space instead, for example, providing access to additional
resources on the internet [18, 19, 23]. In contrast, at the third work-
shop on open-ended evolution, Taylor and others from the open-
ended evolution community mentioned that current computational
systems implement rather scanty environments and organisms.

Taylor [19] also proposes two possible intrinsic mechanisms to
access new states. The first is via exaptation, where a trait changes its
function to a different one from the one it was originally adapted for.
Physical systems are composed of multi-property components having
several properties in different domains (mechanical, chemical, electri-
cal, etc.) [19]. For example, a multifunctional enzyme has multiple
properties in the same domain, which can produce expansive novel-
ties, whereas transformational novelties can be achieved by properties
in different domains [19]. The second is via non-additive composi-
tion, which is phenotype generation by assembling several compo-
nents drawn from a set of component types [19]. For example, the

356 P. Christen

Complex Systems, 32 © 2024

construction of proteins from amino acid sequences, producing new
molecules and introducing new functions [19].

This assembly of lower-level elements into higher-level structures is
also highlighted by Banzhaf et al. [6]. With the above-mentioned
metamodel that defines novelties, they also provide an abstract way
to model multiple levels, accounting for such constructed structures at
different levels [6]. They also mention that having several levels drasti-
cally increases the combinatorial possibilities to construct new struc-
tures and with that also the demand for computational power [6]. It
therefore seems to be a way to increase the opportunities to create
something new. It also implies that open-ended evolution in computa-
tional systems is computationally expensive.

Modeling Contributions from Complex Systems Science2.3

There are also relevant modeling contributions from the field of
complex systems science. W. Brian Arthur is known for his work on
complexity economics [24] and technology evolution [25, 26]. He pro-
posed the concept of combinatorial evolution, which states that new
technologies are created out of existing technologies and iteratively,
these newly created technologies become building blocks for yet fur-
ther technologies [26, 27]. The collective of technology is therefore
self-creating or autopoietic with the agency of human beings [25, 27].
In a simple computer model of circuits, Arthur and Polak [28]
showed that complicated technologies (in their case circuits) could be
created out of simpler building blocks, and they found evidence of
self-organized criticality. It requires some kind of modularity and the
evolution of simpler steppingstone technologies [25– 28]. The latter
means that we cannot create a technology ahead of time without first
creating the simpler precursor technologies. Natural phenomena also
provide technological elements that can be combined [25, 27]. In
terms of open-endedness, there seems to be a vast space of possible
combinations, and with the conversion of discovered natural phenom-
ena into technological elements there is a mechanism in place to
expand that space.

Combinatorial evolution is also part of a more general approach to
modeling evolution by the complex system scientist Stefan Thurner.
He and his colleagues recently introduced the co-evolutionary, combi-
natorial and critical evolution model (CCC model) [14, 29–33]. It
models evolution as an open-ended process of creation and destruc-
tion of new entities emerging from the interactions of existing entities
with each other and with their environment [14]. The spaces of enti-
ties and of interactions co-evolve, and new entities emerge sponta-
neously or through the combination of existing entities. This leads to
power law statistics in the event histories [14, 30]. Selection is
modeled by specifying rules for what can be created and what will be

System Metamodeling of Open-Ended Evolution 357

https://doi.org/10.25088/ComplexSystems.32.4.353

https://doi.org/10.25088/ComplexSystems.32.4.353

destroyed [14, 29, 30]. This model captures so-called punctuated equi-
libria in biological evolution [34] or Schumpeterian business cycles in
economic evolution [35], where an equilibrium is destabilized or
destroyed by a critical transition leading to another equilibrium in an
ongoing and thus open-ended process [13, 14, 29, 30]. It is interesting
to note that it could be shown that in economic innovation, creative
deconstruction is happening and not niche filling as usually assumed
for biological innovation [14, 29, 31].

A more detailed and formal description of the CCC model is given
in the following, based on [13] and [14]. Evolution is described in
three steps as a process: (1) A new entity is created and placed in an
environment. An entity can be a species, product, technology and so
on. An entity’s state is described by σi and its environment by σj in

the same state vector σ. (2) The newly added entity interacts with its
environment, which also includes the already existing entities. Based
on these interactions, the entity is either removed from or added to
the system. The interaction of entity i and environment j is described
by an interaction matrix Mij

α, where α denotes the type of interaction.

If more than two entities are interacting, for example, entity k, a fur-
ther dimension is needed and thus a tensor Mijk

α . The evolution of

states can now be given by

d

dt
σi(t) ∼ FMijk...

α (t), σj(t), (1)

where F is some function depending on the state vectors and the inter-
actions. (3) If the new entity is added to the system, it becomes part of
the environment, which therefore changes the environment. This
induces existing entities trying to relax toward a new equilibrium that
was disrupted by the changing environment (boundary condition).
Since entities are added and removed from the system over time, the
interactions M also change over time. To account for that, a second
equation to describe the evolution of interactions is introduced

d

dt
Mijk…

α (t) ∼ GMijk…
α (t), σj(t), (2)

where G is some function depending on the state vectors and the inter-
actions. The combination of these two evolutionary equations results
in co-evolutionary dynamics.

Modeling Contributions from Dynamical Systems Theory2.4

Adams et al. [15] provide another systems approach and formally
define and treat open-ended evolution as a more general problem in
dynamical systems theory. They introduce a criterion for open-ended
evolution based on the features unbounded evolution and innovation.

358 P. Christen

Complex Systems, 32 © 2024

Poincaré recurrence time, that is the maximum time until the dynami-
cal trajectory repeats in an isolated system, is used to formally define
a minimal criterion for unbounded evolution in finite dynamical sys-
tems. They state that an unbounded system is one that does not
repeat within the expected Poincaré recurrence time. Since finite deter-
ministic systems do not meet this criterion, some kind of external per-
turbation is required, and thus unbounded evolution is only possible
in a subsystem interacting with an external environment. The second
criterion of innovation is defined as dynamical trajectories not
observed in isolated, unperturbed systems. Also in this case, an inter-
action between at least two subsystems is required. A subsystem is
therefore open ended if it is unbounded and innovative. Applying this
definition in cellular automata, Adams et al. [15] show that systems
with time-dependent rules as a function of their state are statistically
better at meeting the defined criteria for open-endedness than systems
with externally driven time dependence. Through the coupling to
larger environments, these results show that state-dependent systems
provide a mechanism for generating open-ended evolution. They con-
clude that open-ended evolution is a general property of dynamical
systems with update rules that are time dependent. This is in contrast
to the classical modeling approach, where dynamical rules remain
fixed. It is interesting to observe that also in the CCC model described
earlier, the environment opens the system to external perturbations,
underlining the importance of this possible mechanism of open-ended
evolution. The mechanism is also comparable to door-opening states
in a phenotype space as described by Taylor [19, 36].

The study from Hernández-Orozco et al. [16] also formally defines
open-ended evolution in dynamical systems, however, using methods
derived from algorithmic complexity theory and investigating whether
undecidability is a requirement for open-ended evolution. They char-
acterize open-ended evolution in computable dynamical systems as a
process in which families of objects with increasing complexity are
produced and present a general mathematical model for adaptation.
This allowed them to show that decidability imposes universal limits
on the growth of complexity in computable systems. Furthermore,
they also show that the undecidability of adapted states and the unpre-
dictability of the behavior of the systems at each state are required for
open-ended evolution and that such behavior is irreducible.

Modeling Contributions from Artificial Intelligence and

Evolutionary Algorithms
2.5

Open-ended evolution is also studied in artificial intelligence and evo-
lutionary algorithms. It is an emerging topic where the research of
Kenneth O. Stanley and his colleagues serves as an example here.
They tried to get rid of the prevailing concept of optimizing a fitness

System Metamodeling of Open-Ended Evolution 359

https://doi.org/10.25088/ComplexSystems.32.4.353

https://doi.org/10.25088/ComplexSystems.32.4.353

function and have even suggested abandoning objectives in general
[37–39]. They showed that a novelty-driven approach finds solutions
faster and results in solutions with less genomic complexity in compar-
ison to traditional evolutionary computation [10]. They also devised
several algorithms, including novelty search with explicit novelty pres-
sure, MAP-Elites and innovation engines with explicit elitism within
niches in an otherwise divergent process, and minimal criterion co-
evolution where problems and solutions can co-evolve divergently
[40, 41]. Like Thurner, avoiding objectives also allowed Stanley and
his colleagues to model punctuated equilibria with transitions
between equilibria in a simple simulation with voxel structures [42].
Also, in this case co-evolution and the apparently never-ending cre-
ation of anything new by combining existing structures were essential
ingredients.

Modeling Contributions from Evolutionary Biology2.6

The work of Thurner and Stanley indicates that transitions between
equilibria are an important part of open-ended evolution. In evolu-
tionary biology, the major evolutionary transitions are of great inter-
est too, for example, the transition from unicellular to multicellular
organisms [43, 44]. Here, only a small selection of research is pre-
sented, mainly on mechanisms that can explain rapid increases in
diversity and biological innovation. The work of evolutionary ecolo-
gist Ole Seehausen illustrates this well, as he is interested in mecha-
nisms by which diversity arises. Especially relevant here is the
possibility of speciation through combinatorial mechanisms. In such
cases, new combinations of old gene variants can quickly generate
reproductively isolated species and thus provide a possible explana-
tion for rapid speciation [12]. For example, he showed that hybridiza-
tion between two divergent lineages provides ample genetic starting
variation. This is then combined and sorted into many new species,
fueling rapid cichlid fish adaptive radiations [45]. Seehausen further-
more investigates and underlines the importance of jointly considering
species traits and environmental factors in speciation and adaptive
radiation as they affect one another [46, 47]. His work therefore sup-
ports the importance of co-evolutionary and combinatorial dynamics
for open-ended evolution, even though co-evolution is between
species in a heterogeneous environment and combinations happen at
the gene level.

Biological insights into innovation itself are also relevant. The
work of evolutionary biologist Andreas Wagner illustrates this nicely
[48, 49]. For example, he showed that recombination creates pheno-
typic innovation in metabolic networks much more readily than
random changes in chemical reactions [50]. The work of Wagner
suggests that recombination of genetic material is a general

360 P. Christen

Complex Systems, 32 © 2024

mechanism that greatly increases the diversity of genotypes [51, 52].
Also, relevant here is his work on evolutionary innovation through
exaptation. He found that simulated real metabolic networks were
not only able to metabolize on a specific carbon source but also on
several others, which shows that metabolic systems may harbor hid-
den pre-adaptations that could potentially lead to evolutionary innova-
tions [53]. Combinatorial interactions at the gene level again play a
crucial role, and the latter study revealing hidden pre-adaptations is
like Stanley’s open-ended algorithms, creating many potential solu-
tions before it is applied to solve an actual problem.

Besides this limited and biased review of contributions from evolu-
tionary biology, it seems nevertheless important to point out that the
field has shown that combinatorial interactions matter at organiza-
tional levels above the genes and that a changing environment can
greatly affect species diversity and vice versa.

Recent Advances in Implementing Open-Ended

Evolutionary Systems
3.

Implementation Contributions from Artificial Life and Open-
Ended Evolution Community

3.1

We first consider implementations from the artificial life and open-
ended evolution community. Banzhaf et al. [6] and Taylor [19]
provide some implementation suggestions. The implementation of
computational systems that can detect and integrate novelties into the
model and metamodel as described by Banzhaf et al. [6] and Taylor
[19] provides a challenge in its own right. It is argued that operations
should be defined intrinsically in the system and by the system itself
[19, 54]. It requires program code that can recognize and modify
itself. Banzhaf et al. [6] state that this can be achieved by representing
entities as strings of assembly language code or by using a high-level
language designed specifically for this purpose [55], or a reflective lan-
guage. A reflective language allows implementing programs that have
the ability to manipulate and observe their states during their own
execution [56]. Indeed, it was possible to generate exploratory, expan-
sive and transformative novelties with Stringmol, where modifications
happen in sequences of assembly language code [57]. A replicator and
some of the observed operations and structures were defined extrinsi-
cally, whereas some others could be defined intrinsically [57].

There are several computational systems, of which Avida [8] and
Geb [9] are two prominent examples. Usually, digitally simulated
organisms are represented by assembly code competing for limited
CPU resources. Most of these systems implement extrinsically com-
mon shortcuts such as replication and a certain fitness function,
which makes them a powerful tool to explore biological questions

System Metamodeling of Open-Ended Evolution 361

https://doi.org/10.25088/ComplexSystems.32.4.353

https://doi.org/10.25088/ComplexSystems.32.4.353

such as the genotype-phenotype mapping [58] in a highly controlled
way. Another strength of computational systems is that they usually
involve visualizations, for example, Sims [59], and thus contribute to
the exploration of complex evolutionary dynamics. With respect to
open-endedness, however, Pugh et al. [42] point out that none of
these systems has generated explosions of complexity, as seen in bio-
logical evolution during transitions, and therefore something must
still be missing. With Voxelbuild, Pugh et al. [42] have contributed
the most relevant computational system in this respect. A first proto-
type demonstrated that a certain organization of voxels emerged,
which was used as a steppingstone for other organizations that
emerged later. This seems to be a kind of combinatorial evolution.
Additionally, they report that exaptation has occurred, which is remi-
niscent of evolutionary biology studies.

Implementation Contributions from Complex Systems Science

and Dynamical Systems Theory
3.2

Thurner et al. [14] add another important aspect to the implementa-
tion. They argue that only a so-called algorithmic implementation and
thus discrete formulation can work because in evolutionary systems,
boundary conditions cannot be fixed (the environment evolves as a
consequence of the system dynamics), and the phase space is not well
defined as it changes over time [14]. It would lead to a system of
dynamical equations that are dynamically coupled to their boundary
conditions, which is according to them a mathematical monster and
the reason why evolutionary systems cannot be implemented follow-
ing an analytical approach. In addition,with the CCC model, they
provide a general description of a complex evolving system that is so
general that it applies to every evolutionary system. It therefore pro-
vides a general metamodel layer of a computational evolutionary
system, which suggests that it might not need a change to capture
novelties.

The algorithmic approach is capable of creating complex structures
and behaviors based on simple rules described with an algorithm and
run iteratively with time on a computer. This has been shown with ele-
mentary cellular automata [60, 61] and hypergraphs [62, 63]. Adams
et al. [15] add to this an implementation of cellular automata with
time-dependent update rules, providing a way to implement dynami-
cal systems with the capability to expand their state space at runtime.

The Allagmatic Method4.

Modeling Contribution4.1

We have developed the so-called allagmatic method [64, 65] to
describe, model, implement and allow interpretation of complex

362 P. Christen

Complex Systems, 32 © 2024

systems (Figure 1). It consists of a system metamodel inspired and
guided by philosophical concepts of Gilbert Simondon [66, 67] and
Alfred North Whitehead [68, 69]. Simondon’s metaphysics gives an
operational and systemic account of how technical and natural
objects emerge and evolve. It allows the abstract definition of a sys-
tem with the concepts structure and operation, since according to
him, systems develop from a seed through a constant interplay
between operations and structures [70]. More concretely, but still gen-
eral, we defined model building blocks in a system metamodel. The
main building blocks are entity, milieu, update function, adaptation
function and target, for which we recently provided a mathematical
formalism [71]. The concepts entity, adaptation and control are bor-
rowed from Whitehead [68, 69] as described in a recent conference
paper [72]. The creation of a system model and metamodel can be fol-
lowed through three regimes: In the virtual regime, abstract defini-
tions with classes corresponding to interpretable philosophical con-
cepts are given. Using generic programming [73], the type of states an
entity can have are defined by defining a system model object that has
not yet initialized any parameters. At this point the metastable regime
starts, where step by step the object/model is concretized with parame-
ters such as number of entities and concrete update functions (model
individuation). Once all parameters are defined, the object is executed
in the actual regime. If there are any adaptation processes involved,
the allagmatic method cycles between the metastable and actual
regimes.

Figure 1. Overview of the allagmatic method and its system metamodel’s
main building blocks. Figure adapted from [72].

Implementation Contribution4.2

The programming of the allagmatic method with its system meta-
model is aligned with philosophical concepts. This allows not only an

System Metamodeling of Open-Ended Evolution 363

https://doi.org/10.25088/ComplexSystems.32.4.353

https://doi.org/10.25088/ComplexSystems.32.4.353

interpretation of the final result in the context of the related meta-
physics but also the tracing of the developmental steps a model is
undergoing, and thus provides a way to study the emergence of the
typical characteristics of complex systems. We have recently outlined
how adaptation can be studied in this way [72]. In this work, we also
introduced the possibility and concepts to form hierarchies and define
control, which further support the use of the allagmatic method to
define concepts that are difficult to pin down.

Furthermore, we showed how the method might be used for auto-
matic programming [65]. We found that the abstract model building
blocks are well suited to be automatically combined by self-modifying
code in a high-level language. Our work shows that certain philosoph-
ical concepts and even metaphysics as a whole can be defined and
implemented in program code, providing the opportunity to run these
concepts or the whole metaphysics and study them in action.

We also created a prototype of open-ended automatic program-
ming through combinatorial evolution [74, 75]. Like Arthur and
Polak [28], we created a computational model based on combinato-
rial evolution but instead of evolving circuits, we evolved computer
code. Useful code blocks were stored in a repository and could be
used in later iterations. Starting with basic keywords available in the
programming language, more complex code blocks including classes,
void methods and variable declarations evolved.

Current Modeling and Implementation Challenges5.

Modeling Open-Ended Evolutionary Systems5.1

Co-evolutionary dynamics, combinatorial interactions and a changing
environment seem to be important ingredients of open-ended evolu-
tionary systems. The work of evolutionary biologists including See-
hausen and Wagner supports the view that co-evolutionary dynamics
and combinatorial interactions are key elements. They also indicate
that biological evolution exhibits different levels or types of combina-
torial interactions, and that the environment is an important driver
and mediator of change. The CCC model accounts for co-evolution-
ary dynamics and combinatorial interactions and successfully gener-
ates the statistics of economic data with reoccurring transitions
between equilibria [14, 29–33]. It could also show that economic inno-
vations are driven by creative destruction, thus Schumpeterian evolu-
tion. This provides important insights into the open-ended dynamics
of economic evolution [14, 29, 31]. However, it still needs to be
investigated in other evolutionary systems, especially in biological evo-
lution. Banzhaf et al. [6], Taylor [19], Adams et al. [15] and Hernán-
dez-Orozco et al. [16] provide guidance for modeling open-ended

364 P. Christen

Complex Systems, 32 © 2024

evolution in general, which might allow us to come up with a model
that captures open-ended dynamics of any evolutionary system,
including economic and biological systems.

Implementing Open-Ended Evolutionary Systems5.2

There is the challenge of an intrinsic implementation of open-ended
evolutionary systems. The programming techniques for this already
exist; however, the real challenge is linking the structure and events in
the implementation with interpretable concepts. To illustrate this
problem, assume that we dispense with all shortcuts and let the pro-
gram completely overwrite the model and metamodel. Having no
replicator or other prevailing concepts makes it hard to understand
and see what is going on in the evolutionary simulation. This problem
was discussed at the third workshop on open-ended evolution [17,
76]. It is mostly uncharted territory that requires much more research,
including how to identify certain concepts and components from simu-
lation data and how to implement such systems in a purely intrinsic
manner, where generated novelties are meaningfully integrated into
the model/metamodel by the evolving systems themselves.

Another challenge is the choice of digital organisms and environ-
ment. The CCC model [14, 29–33] provides a mathematical for-
malism for theoretical considerations and ways to perform statistical
analyses. Computational systems from artificial life and the open-
ended evolution community such as Voxelbuild [42] usually come
with powerful visualizations; however, they lack a mathematical
formalism.

The Allagmatic Method for Open-Ended Evolutionary Systems6.

Model Building Blocks of Open-Ended Evolutionary Systems6.1

Observing evolving systems like technology or the rain forest makes it
clear that not only entities evolve but also the interactions among
them. Co-evolution implies that species have a mutual influence on
each other [77]. Since species are also part of the environment, co-evo-
lution leads to a changing environment, providing more possibilities
for state changes. Also, external environmental input can change and
affect species and their interactions. Combinatorial interactions create
new entities from existing entities [14, 25, 26, 29]. These newly cre-
ated entities might be able to exploit different parts of the changing
environment and thus perhaps fill any niches that may arise. Chro-
maria [78] captures this to some degree, as entities become part of the
environment and thus change the environment that interacts with fur-
ther new entities. Changing the interactions between entities and

System Metamodeling of Open-Ended Evolution 365

https://doi.org/10.25088/ComplexSystems.32.4.353

https://doi.org/10.25088/ComplexSystems.32.4.353

between entities and their environment leads to complex cascades of
changes, potentially resulting in disruptive changes in the system that
can be regarded as novelties. This is further supported by the findings
of Adams et al. [15] and Hernández-Orozco et al. [16]. Combinato-
rial interactions also lead to evolutionary changes and potential novel-
ties; they combine existing entities to form new entities. This can be
observed nicely in the evolution of technology [25, 26]. It is a possibil-
ity for how transitions might be explained, for example, from unicellu-
lar to multicellular organisms [43, 44].

We could therefore use the allagmatic method to capture the
co-evolutionary dynamics, including the environment and the combi-
natorial interactions as given by the CCC model. The CCC model has
been able to generate an ongoing evolutionary process with punctu-
ated equilibria when, in addition, the lifetime of an entity was limited
[14, 29, 30]. It showed the statistical behavior of open-ended evolu-
tionary systems. Here, the CCC model is formalized within the
allagmatic method to allow interpretation within the implemented
metaphysics of Simondon [66, 67] and Whitehead [68, 69]. The sys-
tem metamodel of the allagmatic method and the CCC model both
follow a complex systems perspective, which makes them compatible.

The model building blocks or general concepts to be captured with
the allagmatic method are specifically: evolving entities, entity lifetime
parameters, co-evolutionary operations of entities and environment
and combinatorial interactions.

System Model and Metamodel of Open-Ended Evolution6.2

The allagmatic method consists of a system metamodel for modeling
systems in general and complex systems in particular (see Christen
and Del Fabbro [71] for detailed mathematical definitions). The sys-
tem metamodel describes individual parts of a system as entities

defined with an entity e-tuple ℰ  (e

1, e


2, e


3, … , e


e), where e


i ∈ Q

with Q being the set of k possible entity states. Entity states are

updated over time according to an update function ϕ :Qm+1  Q
with m being the number of neighboring or linked entities. The
update function ϕ therefore describes how entities evolve over time,
dependent on the states of neighboring entities. Update rules and thus
the logic are stored in the structure update rules . Entities are
thereby considered connected together in a network structure and

defined with the milieus e-tuple ℳ  ℳ

1, ℳ


2, ℳ


3, … , ℳ


e, where

ℳ

i  (m


1, m


2, m


3, …, m


m) is the milieu of the ith entity e


i of ℰ con-

sisting of m neighbors of e

i. Over time, update function ϕ and milieus

ℳ might be changing as well, which is described with the adaptation
function ψ.

366 P. Christen

Complex Systems, 32 © 2024

We now extend the system metamodel where needed with concepts
to model open-ended evolution as identified earlier. Evolving entities:
The entity e-tuple ℰ captures evolving entities (entities changing their
state over time) in the same sense as the general evolution algorithm
[14] does with the state vector σ. The general evolution algorithm can
be regarded as the metamodel from which the CCC model is created
[14]. Co-evolutionary operations of entities and environment: With
the creation of new entities (novelty), new possibilities for interactions
also emerge. This is key for open-endedness and is captured by the co-
evolution of entities and their interactions in the general evolution
algorithm [14]. Formally, the update equations of the entity state vec-
tor σ and the interaction tensors M are simultaneously updated over
time in the general evolution algorithm. In the system metamodel of
the allagmatic method, this is described with the update function ϕ

and the adaptation function ψ, which can both be modeled in such a
way that the update function ϕ updates entity states in ℰ simultane-
ously with the adaptation of their interactions in the milieus ℳ

through the adaptation function ψ. This is a concretization of the sys-
tem metamodel into a metamodel of open-ended evolution. The envi-
ronment is also part of co-evolution and is described in the state
vector σ in the general evolution algorithm [14] and the entity e-tuple
ℰ in the system metamodel. Combinatorial interactions: In complex
systems, interactions are of combinatorial nature consisting of rules
determining how new entities can be formed out of existing entities.
The creation and destruction of entities are encoded in rules that do
not change with time. They can be regarded as physical or chemical
laws determining which transformations and reactions are possible,
respectively. Please note that this covers the typical evolutionary mech-
anisms of selection, competition and reproduction. At runtime, mod-
els created from this metamodel make use only of a subset of these
rules at any given time point, which is captured with so-called active
productive/destructive rules. This is formally described with the func-
tion F in the general evolution algorithm [14] and the update function
ϕ in the system metamodel. Entity lifetime parameter: Besides the cre-
ation of new entities through combinatorial interactions, entities can
spontaneously appear, which would be like discovering a new law or
element in nature. By introducing a decay rate λ, the CCC model did
not freeze [14]. It thus plays an important role for open-ended evolu-
tion. In the system metamodel, this parameter can be described as a
further structure with a respective further operation.

Self-Modifying Code Prototype in C#6.3

An intrinsic implementation as suggested by Banzhaf et al. [6] and
Taylor [19] requires self-modifying program code and some way to

System Metamodeling of Open-Ended Evolution 367

https://doi.org/10.25088/ComplexSystems.32.4.353

https://doi.org/10.25088/ComplexSystems.32.4.353

add novelties to the model or metamodel. Interpreting these novelties
in the context of a certain metaphysical framework will most likely
require a high-level language with the capabilities to modify program
code during runtime and reflect on it. C# provides these capabilities
with the open-source Roslyn .NET compiler [79]. The compiler plat-
form provides dynamic code manipulation with syntax trees and
many other features, including reflection as well as comprehensive
code analysis. Syntax trees can either be created from a string contain-
ing program code or they can be assembled using predefined classes.
As opposed to writing program code into a file and then compiling it,
syntax trees can be stored as an object and compiled and executed at
runtime.

In the allagmatic method, a general layer in the system metamodel
that is not modifiable by the code is suggested here. These are the
model building blocks every complex evolutionary system requires.
However, there is also a layer in the metamodel that is modifiable by
the code. It consists of less general model building blocks that are basi-
cally more concrete instances of the general layer. With these different
layers and controllable code self-modification, it will potentially be
possible to link concepts defined in the metamodel to newly generated
code, improving interpretability. The present study provides a first
prototype of self-modifying code in C# [80], bringing us one little step
closer to that ambitious goal.

Fundamentally, implementing self-modifying code requires consid-
ering at least three basic questions: what words to use, how to con-
catenate these words to create valid code and how to implement the
duality between code and data. In theoretical computer science, a
word or string is defined as a finite sequence of symbols over a given
alphabet [81]. An alphabet is a finite set of symbols [81] and symbols
are the basic constituents of any language (i.e., the set of all words
over a given alphabet), for example, letters, digits or any other charac-
ters [81]. To define the words, we consider universal computation
and code interpretability. We want to choose words that do not limit
the generated code and therefore require universal computation or
Turing completeness. It has been shown that only the instructions
load, store, increment and goto (unconditional branching) are
required to achieve universal computation [82]. Most widely used pro-
gramming languages including C++ and C# provide words to generate
these instructions and many other instructions and are thus capable of
universal computation. Regarding code interpretability, we suggest
including the complete or most of the syntax of a high-level program-
ming language since these languages are designed to be human read-
able and interpretable. The first words to include are therefore all the
C# keywords as defined in the C# language reference [83]. In addition
to keywords, we also include special characters, the member access

368 P. Christen

Complex Systems, 32 © 2024

expression and operators as defined in the C# language specification
[84], as well as some further words. Please note that we treat symbols
such as operators as words since we can concatenate them with other
words to create sentences (i.e., instructions). In the following, all
included words are listed:

◼ Keywords: abstract, as, base, bool, break, byte, case, catch, char,
checked, class, const, continue, decimal, default, delegate, do, double,
else, enum, event, explicit, extern, false, finally, fixed, float, for,
foreach, goto, if, implicit, in, int, interface, internal, is, lock, long,
namespace, new, null, object, operator, out, override, params, private,
protected, public, readonly, ref, return, sbyte, sealed, short, sizeof,
stackalloc, static, string, struct, switch, this, throw, true, try, typeof,
uint, ulong, unchecked, unsafe, ushort, using, virtual, void, volatile,
while

◼ Special characters: { } () [] " ; ,

◼ Member access expression: .

◼ Arithmetic operators: + - * / %

◼ Relational operators: < > < >  !

◼ Logical operators: & ^ | && ||

◼ Assignment operator: 

◼ Further words: IDENTIFIER, NUMBER, PLACEHOLDER

There are some further words that need to be explained. Program
code contains words that are used as a name or identifier, for exam-
ple, for variables and classes. To account for that, the word
IDENTIFIER is included as a possible word. If the self-modifying code
chooses this word, an identifier is generated and inserted. Natural
numbers are inserted in the same way, replacing the word NUMBER. If
the word PLACEHOLDER is chosen, an instruction that is a combina-
tion of words representing valid code is inserted. Such a placeholder
allows generating a nested code structure, for example, a variable dec-
laration inside a method [74, 75]. In this first prototype of self-modify-
ing code, syntax to make use of the extensive .NET API is not
included. Thus, the language used here is a subset of the C# language.

We now address the second question regarding the combination of
the defined words to create valid code. The general algorithm to
achieve this is based on the concept of combinatorial evolution as
proposed byW. Brian Arthur [26, 27] and already used in our earlier
study to evolve programming concepts such as variable declarations
and classes in Java [74, 75]. The algorithm uses two data structures,
a list words (set W) containing the previously defined words and a list
codeBlocks (set C) storing valid code blocks (sentences), which is

initially empty (C  ∅). It is an iterative process in which several

System Metamodeling of Open-Ended Evolution 369

https://doi.org/10.25088/ComplexSystems.32.4.353

https://doi.org/10.25088/ComplexSystems.32.4.353

steps are repeated: (1) The first step is to generate a new code block.
This is achieved by randomly selecting a given number of words from
set W, which are then concatenated, separated by a space. The num-
ber of words in a code block is set randomly between two and eight
as in the previous studies where combinatorial evolution was simu-
lated [28, 74, 75]. If the chosen word is PLACEHOLDER, it is replaced
by an already existing valid code block from set C or by another
word if set C is still empty. Similarly, if the chosen word is
IDENTIFIER, it is replaced by a numbered identifier. If the chosen word
is NUMBER, it is replaced by a randomly generated integer. (2) The sec-
ond step is checking the validity of the newly generated code block.
This is achieved by parsing the code block into a syntax tree, which is
then analyzed making use of the Roslyn API (the .NET Compiler Plat-
form SDK) [79]. A compilation object is created from the syntax tree
[85] that is compiled at runtime, avoiding time-consuming read and
write operations in file-based compilation. (3) In the third step, if the
compilation is successful, the code block is added to set C.

The described algorithm was implemented in the present study
using the programming language C# and the mentioned Roslyn API.
Several computational experiments were run, each time for one mil-
lion iterations. Since the combination of code blocks is completely
random and no selection toward a certain objective is added, it is not
surprising that most of the generated code is not valid and generates a
compiler error. However, in all of the conducted test runs, some valid
code was generated. This included the declaration of variables (e.g.,
char identifier98242 ;), scope definitions (e.g., { }) and combinations of
the two (e.g., char identifier98242 ; { }).

The third question is how to implement a duality between code
and data. We need to address this question because we want to exe-
cute the generated code as well as modify it. It also includes transfer-
ring the state of data such as the state of an entity from code to data
and back to code again. Such transitioning between code and data
allows implementing self-modifying operations on data structures, for
example, the update function ϕ and update rules , where the current
state of an entity is required to be transferred from code to data and
after self-modification and running of the code, back again into code
as the updated state of the entity. There are certain programming lan-
guages where program code is also represented as data and thus can
be manipulated as such. It is a language property often referred to as
homoiconic, and a prominent example is Lisp. However, it can also
be achieved with C#. If, for example, we want to transfer the value of
the variable input from code to data, we can use the String.Replace
[86] and String.ToString [87] methods as follows:

code.Replace(“input”, input.ToString()).

370 P. Christen

Complex Systems, 32 © 2024

Here, code is a string containing code as data, “input” represents
the variable input in that code as data, and input represents the
variable input in the code as code. The variable value of the latter is
converted into a string with the String.ToString method, and then this
value is inserted into the code as data by replacing “input” with the
String.Replace method. We can then run the code as data (the string
code) as described earlier in the self-modifying code prototype. Once
we have executed the code at runtime, we also want to transfer back
the output to our program, therefore from data to code. One way to
achieve that in C# is to redirect the console output stream to a
variable. We first set the output stream to a StringWriter object
[88]. When the code as data (the string code) is executed, the value of
the variable output is printed out in the console with the
Console.WriteLine method [89] as follows:

Console.WriteLine(output).

Because of the redirection of the output stream, output is not printed
in the console but stored in the StringWriter object. From there, we
can use it in our program, and thus we have transferred data to code.

The Allagmatic Method as Guidance to Create Code Blocks6.4

The system metamodel ℳ of the allagmatic method is defined as:

ℳ(ℰ, Q, ℳ, , , , …, s

s, ϕ, ψ, …, o


o), (3)

where ℰ is the entities e-tuple, Q the set of possible entity states, ℳ
the milieus e-tuple,  the update rules u-tuple,  the adaptation rules

a-tuple,  the adaptation end p-tuple, s

s are further structures, ϕ the

update function, ψ the adaptation function, o

o are further operations,

and s

i ∈ S ⋀ o


j ∈ O [71]. It intertwines structures and operations to

create (complex) systems at the most abstract level in the virtual
regime. Every such system contains at least the structures entities ℰ,
entity states Q, milieus ℳ, update rules , adaptation rules , adap-
tation end , the operations update function ϕ and adaptation func-
tion ψ. As stated previously, to create an open-ended evolutionary

system, we need the further structure lifetime parameter s

lt and a

respective further operation o

lt to remove entities as soon as they have

reached that time limit. We also need a simultaneous update of entity
states and  and ℳ. Since the update function ϕ modifies entity
states and the adaptation function ψ modifies  and ℳ, this is
achieved by running ϕ and ψ in the same iteration. From the virtual
regime, structures and operations are concretized, creating a
metastable system in the metastable regime. In this concretization pro-
cess, the self-modifying code prototype can now be used to generate
concrete instances of the identified structures and operations. In the

System Metamodeling of Open-Ended Evolution 371

https://doi.org/10.25088/ComplexSystems.32.4.353

https://doi.org/10.25088/ComplexSystems.32.4.353

following, a description of how this could be implemented is provided
for each structure and operation:

◼ Entities ℰ and their possible states Q: entities are concretized by defin-
ing the number of entities e and number and kind of possible states Q
and k. By providing respective words, the self-modifying code is guided
or restricted in its generation of code blocks. An entity is implemented
as an object containing fields capturing all its states. For example, it is
possible to randomly define the number of entities and states and based
on that, randomly choose a data type for each field from predefined
words implementing different data types. A list of length e is then cre-
ated with the defined entity objects.

◼ Milieus ℳ: milieus are concretized by defining the number of con-
nected entities m for each entity and the connections between entities
forming a network structure. For example, it is possible to randomly
define the number of connected entities for each entity and which enti-
ties are connected to it.

◼ Update function ϕ and update rules : update function and rules are
concretized by defining what operations should be performed on which
entity fields under which conditions. For example, it is possible to ran-
domly define some Boolean operations for Boolean fields and arith-
metic operations for integer and float fields. These operations are then
coupled with some randomly defined if conditions choosing states of
connected entities and relational operators.

◼ Adaptation function ψ, adaptation rules  and adaptation end P: adap-
tation function, rules and end are concretized by defining new update
rules , milieus ℳ, and adaptation end . For example, it is possible
to overwrite update rules with newly created rules, overwrite the net-
work structure and randomly choose a value for each entity field to
define the adaptation end.

◼ Lifetime parameter s

lt and respective operation o


lt: lifetime parameter

and operation are concretized by defining a time limit in terms of itera-
tions and the way entities are removed. For example, it is possible to
randomly define an integer value for the lifetime parameter and to
decide whether entities are removed after they were present for the
defined number of iterations or by randomly removing them after the
defined number of iterations has passed.

Also, modification of code can be implemented with this approach
by allowing certain parts of these defintions to be overwritten.

Discussion and Conclusion7.

Based on recent advances, the model building blocks evolving entities,
entity lifetime parameter, co-evolutionary operations of entities and
environment and combinatorial interactions are identified to

372 P. Christen

Complex Systems, 32 © 2024

characterize open-ended evolutionary systems. These concepts led to
punctuated equilibria in the co-evolutionary, combinatorial and criti-
cal evolution model (CCC model) model [14], which means that it
never reaches an equilibrium state where the generation of further
adaptive novelty is ceased and thus can be regarded as open ended.
This study provides a formal description of a system metamodel for
open-ended evolution according to the CCC model thus also capable
of generating punctuated equilibria. It also provides a self-modifying
code prototype in C# and guidance to create code blocks that poten-
tially will allow an intrinsic implementation of open-ended evolution-
ary systems as suggested by Banzhaf et al. [6] and Taylor [19].

The proposed self-modifying code prototype and the guidance of
the allagmatic method to create code blocks seem to be a promising
way to change program code at runtime and potentially account for
novelties. This is achieved by controlling the self-modification of code
within abstractly defined building blocks of a system metamodel
describing complex and evolutionary systems in general. It could thus
be a way to interpret novelties without limiting possible solutions.

It is interesting to note that certain models anticipate changes that
might occur to them. In all evolutionary systems, new entities arise
and other entities disappear, which will not only change how many
entities there are but also their interactions with each other and the
environment. The CCC model [14] is capable of accounting for such
changes in the model through co-evolution of entity states and interac-
tions. On this level, it therefore does not need self-modification of the
code but generic programming [73] of certain structures to dynami-
cally adapt them to these changes.

In addition, the interpretation of concepts within a metaphysical
framework as described with the allagmatic method provides a
promising starting point to interpret novelty generated at runtime.
This study provides a system metamodel of open-ended evolution and
a prototype of self-modifying code implemented in C#. Using this pro-
totype in the allagmatic method allows us to modify certain structures
and operations of the system model and metamodel in a controlled
way and potentially will allow us to interpret novelties in computa-
tional systems.

In conclusion, the identified model building blocks evolving enti-
ties, entity lifetime parameter, co-evolutionary operations of entities
and environment and combinatorial interactions and the proposed
self-modifying code provide a promising starting point to model and
implement open-endedness in a computational system that potentially
allows us to interpret novelties at runtime.

System Metamodeling of Open-Ended Evolution 373

https://doi.org/10.25088/ComplexSystems.32.4.353

https://doi.org/10.25088/ComplexSystems.32.4.353

Acknowledgments

This work was supported by the Hasler Foundation under grant
No. 21017. I thank Tom Van Dooren, Frietson Galis, Olivier Del Fab-
bro, Stefan Thurner, Sagi Nedunkanal and the members of the Com-
plexity Club for their helpful comments on a draft of the manuscript.

References

[1] P. Christen, “Modelling and Implementing Open-Ended Evolutionary
Systems,” in The Fourth Workshop on Open-Ended Evolution (OEE4),
The 2021 Conference on Artificial Life (ALife 2021), 2021.
workshops.alife.org/oee4/papers/christen-oee4-camera-ready.pdf.

[2] K. O. Stanley, “Why Open-Endedness Matters,” Artificial Life, 25(3),
2019 pp. 232–235. doi:10.1162/artl_a_00294.

[3] K. O. Stanley, J. Lehman and L. Soros. “Open-Endedness: The Last
Grand Challenge You’ve Never Heard Of.” O’Reilly Media, Inc.
(Jan 16, 2024) www.oreilly.com/radar/open-endedness-the-last-
grand-challenge-youve-never-heard-of.

[4] M. A. Bedau, J. S. McCaskill, N. H. Packard, S. Rasmussen, C. Adami,
D. G. Green, T. Ikegami, K. Kaneko and T. S. Ray, “Open Problems in
Artificial Life,” Artificial Life, 6(4), 2000 pp. 363–376.
doi:10.1162/106454600300103683.

[5] M. A. Bedau, N. Gigliotti, T. Janssen, A. Kosik, A. Nambiar and
N. Packard, “Open-Ended Technological Innovation,” Artificial Life,
25(1), 2019 pp. 33–49. doi:10.1162/artl_a_00279.

[6] W. Banzhaf, B. Baumgaertner, G. Beslon, R. Doursat, J. A. Foster,
B. McMullin, V. V. de Melo, et al., “Defining and Simulating Open-
Ended Novelty: Requirements, Guidelines, and Challenges,” Theory in
Biosciences, 135(3), 2016 pp. 131–161.
doi:10.1007/s12064-016-0229-7.

[7] S. Thurner, Die Zerbrechlichkeit der Welt, Wien: edition a, 2020.

[8] C. Ofria and C. O. Wilke, “Avida: A Software Platform for Research in
Computational Evolutionary Biology,” Artificial Life, 10(2), 2004
pp. 191–229. doi:10.1162/106454604773563612.

[9] A. D. Channon and R. I. Damper, “Towards the Evolutionary Emer-
gence of Increasingly Complex Advantageous Behaviours,” Interna-
tional Journal of Systems Science, 31(7), 2010 pp. 843–860.
doi:10.1080/002077200406570.

[10] B. G. Woolley and K. O. Stanley, “A Novel Human-Computer Collabo-
ration: Combining Novelty Search with Interactive Evolution,” in Pro-
ceedings of the 2014 Annual Conference on Genetic and Evolutionary
Computation (GECCO ’14) (C. Igel, ed.), Vancouver, BC, Canada,
New York: Association for Computing Machinery, 2014 pp. 233–240.
doi:10.1145/2576768.2598353.

374 P. Christen

Complex Systems, 32 © 2024

http://workshops.alife.org/oee4/papers/christen-oee4-camera-ready.pdf
https://doi.org/10.1162/artl_a_00294
https://www.oreilly.com/radar/open-endedness-the-last-grand-challenge-youve-never-heard-of
https://www.oreilly.com/radar/open-endedness-the-last-grand-challenge-youve-never-heard-of
https://doi.org/10.1162/106454600300103683
https://doi.org/10.1162/artl_a_00279
https://doi.org/10.1007/s12064-016-0229-7
https://doi.org/10.1162/106454604773563612
https://dx.doi.org/10.1080/002077200406570
https://doi.org/10.1145/2576768.2598353

[11] D. H. Ackley and E. S. Ackley, “The ulam Programming Language for
Artificial Life,” Artificial Life, 22(4), 2016 pp. 431–450.
doi:10.1162/ARTL_a_00212.

[12] D. A. Marques, J. I. Meier and O. Seehausen, “A Combinatorial View
on Speciation and Adaptive Radiation,” Trends in Ecology & Evolu-
tion, 34(6), 2019 pp. 531–544. doi:10.1016/j.tree.2019.02.008.

[13] S. Thurner, “A Simple General Model of Evolutionary Dynamics,” Prin-
ciples of Evolution: From the Planck Epoch to Complex Multicellular
Life (H. Meyer-Ortmanns and S. Thurner, eds.), Berlin and Heidelberg:
Springer, 2011 pp. 119–144. doi:10.1007/978-3-642-18137-5_4.

[14] S. Thurner, R. Hanel and P. Klimek, Introduction to the Theory of Com-
plex Systems, New York: Oxford University Press, 2018.

[15] A. Adams, H. Zenil, P. C. W. Davies and S. I. Walker, “Formal Defini-
tions of Unbounded Evolution and Innovation Reveal Universal Mecha-
nisms for Open-Ended Evolution in Dynamical Systems,” Scientific
Reports, 7(1), 2017 p. 997. doi:10.1038/s41598-017-00810-8.

[16] S. Hernández-Orozco, F. Hernández-Quiroz and H. Zenil, “Undecid-
ability and Irreducibility Conditions for Open-Ended Evolution
and Emergence,” Artificial Life, 24(1), 2018 pp. 56–70.
doi:10.1162/ARTL_a_00254.

[17] N. Packard, M. A. Bedau, A. Channon, T. Ikegami, S. Rasmussen,
K. O. Stanley and T. Taylor, “An Overview of Open-Ended Evolution:
Editorial Introduction to the Open-Ended Evolution II Special Issue,”
Artificial Life, 25(2), 2019 pp. 93–103. doi:10.1162/artl_a_00291.

[18] M. A. Boden, “Creativity and ALife,” Artificial Life, 21(3), 2015
pp. 354–365. doi:10.1162/ARTL_a_00176.

[19] T. Taylor, “Evolutionary Innovations and Where to Find Them: Routes
to Open-Ended Evolution in Natural and Artificial Systems,” Artificial
Life, 25(2), 2019 pp. 207–224. doi:10.1162/artl_a_00290.

[20] E. L. Dolson, A. E. Vostinar, M. J. Wiser and C. Ofria, “The MODES
Toolbox: Measurements of Open-Ended Dynamics in Evolving Sys-
tems,” Artificial Life, 25(1), 2019 pp. 50–73. doi:10.1162/artl_a_00280.

[21] A. Channon, “Maximum Individual Complexity Is Indefinitely Scalable
in Geb,” Artificial Life, 25(2), 2019 pp. 134–144.
doi:10.1162/artl_a_00285.

[22] O. Rivoire, “Informations in Models of Evolutionary Dynamics,” Jour-
nal of Statistical Physics, 162(5), 2016 pp. 1324–1352.
doi:10.1007/s10955-015-1381-z.

[23] T. Taylor, J. E. Auerbach, J. Bongard, J. Clune, S. Hickinbotham,
C. Ofria, M. Oka, S. Risi, K. O. Stanley and J. Yosinski, “WebAL
Comes of Age: A Review of the First 21 Years of Artificial Life on the
Web,” Artificial Life, 22(3), 2016 pp. 364–407.
doi:10.1162/artl_a_00211.

System Metamodeling of Open-Ended Evolution 375

https://doi.org/10.25088/ComplexSystems.32.4.353

https://doi.org/10.1162/ARTL_a_00212
https://doi.org/10.1016/j.tree.2019.02.008
https://doi.org/10.1007/978-3-642-18137-5_4
https://doi.org/10.1038/s41598-017-00810-8
https://doi.org/10.1162/ARTL_a_00254
https://doi.org/10.1162/artl_a_00291
https://doi.org/10.1162/ARTL_a_00176
https://doi.org/10.1162/artl_a_00290
https://doi.org/10.1162/artl_a_00280
https://doi.org/10.1162/artl_a_00285
https://doi.org/10.1007/s10955-015-1381-z
https://doi.org/10.1162/artl_a_00211
https://doi.org/10.25088/ComplexSystems.32.4.353

[24] W. B. Arthur, Complexity and the Economy, New York: Oxford Univer-
sity Press, 2015.

[25] W. B. Arthur, “How We Became Modern,” Sydney Brenner’s 10-on-10:
The Chronicles of Evolution (S. Sim and B. Seet, eds.), Singapore: Wild-
type Books, 2018.

[26] W. B. Arthur, The Nature of Technology: What It Is and How It
Evolves, New York: Free Press, 2009.

[27] W. B. Arthur, “Where Darwin Doesn’t Fit,” New Scientist, 203(2722),
2009 pp. 26–27. doi:10.1016/S0262-4079(09)62217-X.

[28] W. B. Arthur and W. Polak, “The Evolution of Technology within a
Simple Computer Model,” Complexity, 11(5), 2006 pp. 23–31.
doi:10.1002/cplx.20130.

[29] S. Thurner. “The Creative Destruction of Evolution,” Sydney Brenner’s
10-on-10: The Chronicles of Evolution (S. Sim and B. Seet, eds.), Singa-
pore: Wildtype Books, 2018.

[30] S. Thurner, P. Klimek and R. Hanel, “Schumpeterian Economic Dynam-
ics as a Quantifiable Model of Evolution,” New Journal of Physics,
12(7), 2010 075029. doi:10.1088/1367-2630/12/7/075029.

[31] P. Klimek, R. Hausmann and S. Thurner, “Empirical Confirmation of
Creative Destruction from World Trade Data,” PLoS ONE, 7(6), 2012
e38924. doi:10.1371/journal.pone.0038924.

[32] P. Klimek, S. Thurner and R. Hanel, “Evolutionary Dynamics from a
Variational Principle,” Physical Review E, 82(1), 2010 011901.
doi:10.1103/PhysRevE.82.011901.

[33] R. Hanel, S. A. Kauffman and S. Thurner, “Phase Transition in Random
Catalytic Networks,” Physical Review E, 72(3), 2005 036117.
doi:10.1103/PhysRevE.72.036117.

[34] S. J. Gould and N. Eldredge, “Punctuated Equilibria: The Tempo and
Mode of Evolution Reconsidered,” Paleobiology, 3(2), 1977 115–151.
www.jstor.org/stable/2400177.

[35] J. A. Schumpeter, Business Cycles: A Theoretical, Historical, and Statisti-
cal Analysis of the Capitalist Process, New York: McGraw-Hill Book
Company, Inc., 1939.

[36] T. Taylor, M. Bedau, A. Channon, D. Ackley, W. Banzhaf, G. Beslon,
E. Dolson, et al., “Open-Ended Evolution: Perspectives from the OEE
Workshop in York,” Artificial Life, 22(3), 2016 pp. 408–423.
doi:10.1162/artl_a_00210.

[37] K. O. Stanley and J. Lehman, Why Greatness Cannot Be Planned: The
Myth of the Objective, Cham: Springer, 2015.

[38] J. Lehman and K. O. Stanley, “Abandoning Objectives: Evolution
through the Search for Novelty Alone,” Evolutionary Computation,
19(2), 2011 pp. 189–223. doi:10.1162/EVCO_a_00025.

376 P. Christen

Complex Systems, 32 © 2024

https://doi.org/10.1016/S0262-4079(09)62217-X
https://doi.org/10.1002/cplx.20130
https://dx.doi.org/10.1088/1367-2630/12/7/075029
https://doi.org/10.1371/journal.pone.0038924
https://doi.org/10.1103/PhysRevE.82.011901
https://doi.org/10.1103/PhysRevE.72.036117
https://www.jstor.org/stable/2400177
https://doi.org/10.1162/artl_a_00210
https://doi.org/10.1162/EVCO_a_00025

[39] K. O. Stanley, “To Achieve Our Highest Goals, We Must Be Willing to
Abandon Them,” ACM SIGPLAN Notices, 45(10), 2010 p. 3.
doi:10.1145/1932682.1869541.

[40] R. Wang, J. Lehman, J. Clune and K. O. Stanley, “POET: Open-Ended
Coevolution of Environments and Their Optimized Solutions,” in Pro-
ceedings of the Genetic and Evolutionary Computation Conference
(GECCO ’19), Prague, Czech Republic (M. López-Ibáñez, ed.), New
York: Association for Computing Machinery, 2019 pp. 142–151.
doi:10.1145/3321707.3321799.

[41] J. C. Brant and K. O. Stanley, “Minimal Criterion Coevolution: A New
Approach to Open-Ended Search,” in Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO ’17), Berlin Germany,
New York: Association for Computing Machinery, 2017 pp. 67–74.
doi:10.1145/3071178.3071186.

[42] J. K. Pugh, L. B. Soros, R. Frota, K. Negy and K. O. Stanley, “Major
Evolutionary Transitions in the Voxelbuild Virtual Sandbox Game,” in
The Fourteenth European Conference on Artificial Life (ECAL 2017),
Lyon, France, Cambridge, MA: MIT Press, 2017 pp. 553–560.
doi:10.1162/isal_a_088.

[43] E. Szathmáry, “Toward Major Evolutionary Transitions Theory 2.0,”
Proceedings of the National Academy of Sciences, 112(33), 2015
pp. 10104–10111. doi:10.1073/pnas.1421398112.

[44] E. Szathmáry and J. M. Smith, “The Major Evolutionary Transitions,”
Nature, 374(6519), 1995 pp. 227–232. doi:10.1038/374227a0.

[45] J. I. Meier, D. A. Marques, S. Mwaiko, C. E. Wagner, L. Excoffier and
O. Seehausen, “Ancient Hybridization Fuels Rapid Cichlid Fish Adap-
tive Radiations,” Nature Communications, 8(1), 2017 14363.
doi:10.1038/ncomms14363.

[46] O. Seehausen, “Speciation Affects Ecosystems,” Nature, 458(7242),
2009 1122–1123. doi:10.1038/4581122a.

[47] C. E. Wagner, L. J. Harmon and O. Seehausen, “Ecological Opportu-
nity and Sexual Selection Together Predict Adaptive Radiation,”
Nature, 487(7407), 2012 pp. 366–369. doi:10.1038/nature11144.

[48] M. E. Hochberg, P. A. Marquet, R. Boyd and A. Wagner, “Innovation:
An Emerging Focus from Cells to Societies,” Philosophical Transactions
of the Royal Society B: Biological Sciences, 372(1735), 2017 20160414.
doi:10.1098/rstb.2016.0414.

[49] A. Wagner, The Origins of Evolutionary Innovations: A Theory of
Transformative Change in Living Systems, New York: Oxford Univer-
sity Press, 2011.

[50] S.-R. Hosseini, O. C. Martin and A. Wagner, “Phenotypic Innovation
through Recombination in Genome-Scale Metabolic Networks,” Pro-
ceedings of the Royal Society B: Biological Sciences, 283(1839), 2016
20161536. doi:10.1098/rspb.2016.1536.

System Metamodeling of Open-Ended Evolution 377

https://doi.org/10.25088/ComplexSystems.32.4.353

https://doi.org/10.1145/1932682.1869541
https://doi.org/10.1145/3321707.3321799
https://doi.org/10.1145/3071178.3071186
https://doi.org/10.1162/isal_a_088
https://doi.org/10.1073/pnas.1421398112
https://doi.org/10.1038/374227a0
https://doi.org/10.1038/ncomms14363
https://doi.org/10.1038/4581122a
https://doi.org/10.1038/nature11144
https://dx.doi.org/10.1098/rstb.2016.0414
https://doi.org/10.1098/rspb.2016.1536
https://doi.org/10.25088/ComplexSystems.32.4.353

[51] A. Wagner, “The Low Cost of Recombination in Creating Novel Pheno-
types,” BioEssays, 33(8), 2011 pp. 636–646.
doi:10.1002/bies.201100027.

[52] O. C. Martin and A. Wagner, “Effects of Recombination on Complex
Regulatory Circuits,” Genetics, 183(2), 2009 pp. 673–684.
doi:10.1534/genetics.109.104174.

[53] A. Barve and A. Wagner, “A Latent Capacity for Evolutionary Innova-
tion through Exaptation in Metabolic Systems,” Nature, 500(7461),
2013 pp. 203–206. doi:10.1038/nature12301.

[54] N. H. Packard, “Intrinsic Adaptation in a Simple Model for Evolution,”
Artificial Life (C. G. Langton, ed.), Redwood City, CA: Addison-
Wesley, 1989.

[55] L. Spector and A. Robinson, “Genetic Programming and Autocon-
structive Evolution with the Push Programming Language,” Genetic Pro-
gramming and Evolvable Machines, 3(1), 2002 pp. 7–40.
doi:10.1023/A:1014538503543.

[56] F.-N. Demers and J. Malenfant, “Reflection in Logic, Functional and
Object-Oriented Programming: A Short Comparative Study,” in Proceed-
ings of the IJCAI ’95 Workshop on Reflection and Metalevel Architec-
tures and Their Applications in AI, 1995 pp. 29–38.

[57] S. Stepney and S. Hickinbotham, “Innovation, Variation, and Emer-
gence in an Automata Chemistry,” in ALife 2020: The 2020 Conference
on Artificial Life, Montreal, Canada (J. Bongard, J. Lovato, L. Soros
and L. Hébert-Dufrésne, eds.), Cambridge, MA: MIT Press Direct, 2020
pp. 753–760. doi:10.1162/isal_a_00265.

[58] M. A. Fortuna, L. Zaman, C. Ofria and A. Wagner, “The Genotype-
Phenotype Map of an Evolving Digital Organism,” PLOS Computa-
tional Biology, 13(2), 2017 e1005414.
doi:10.1371/journal.pcbi.1005414.

[59] K. Sims, “Evolving 3D Morphology and Behavior by Competition,”
Artificial Life, 1(4), 1994 pp. 353–372. doi:10.1162/artl.1994.1.4.353.

[60] S. Wolfram, “Cellular Automata as Models of Complexity,” Nature,
311(5985), 1984 pp. 419–424. doi:10.1038/311419a0.

[61] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[62] S. Wolfram, “A Class of Models with the Potential to Represent Funda-
mental Physics,” Complex Systems, 29(2), 2020 pp. 107–536.
doi:10.25088/ComplexSystems.29.2.107.

[63] S. Wolfram, A Project to Find the Fundamental Theory of Physics,
Champaign, IL: Wolfram Media, Inc., 2020.

378 P. Christen

Complex Systems, 32 © 2024

https://doi.org/10.1002/bies.201100027
https://doi.org/10.1534/genetics.109.104174
https://doi.org/10.1038/nature12301
https://doi.org/10.1023/A:1014538503543
https://doi.org/10.1162/isal_a_00265
https://doi.org/10.1371/journal.pcbi.1005414
https://doi.org/10.1162/artl.1994.1.4.353
https://doi.org/10.1038/311419a0
https://doi.org/10.25088/ComplexSystems.29.2.107

[64] P. Christen and O. Del Fabbro, “Cybernetical Concepts for Cellular
Automaton and Artificial Neural Network Modelling and Implemen-
tation,” in 2019 IEEE International Conference on Systems, Man
and Cybernetics (SMC), Bari, Italy, Piscataway, NJ: IEEE, 2019
pp. 4124–4130. doi:10.1109/SMC.2019.8913839.

[65] P. Christen and O. Del Fabbro, “Automatic Programming of Cellular
Automata and Artificial Neural Networks Guided by Philosophy,” New
Trends in Business Information Systems and Technology (R. Dorn-
berger, ed.), Cham: Springer, 2021 pp. 131–146.
doi:10.1007/978-3-030-48332-6_9.

[66] G. Simondon, Individuation in Light of Notions of Form and Informa-
tion (T. Adkins, trans.), Minneapolis, MN: University of Minnesota
Press, 2020.

[67] G. Simondon, On the Mode of Existence of Technical Objects
(C. Malaspina and J. Rogove, trans.), Minneapolis, MN: University of
Minnesota Press, 2016.

[68] D. Debaise, Nature as Event: The Lure of the Possible (M. Halewood,
trans.), Durham, NC: Duke University Press, 2017.

[69] A. N. Whitehead, Process and Reality: An Essay in Cosmology,
corrected ed. (D. R. Griffin and D. W. Sherburne, eds.), New York: Free
Press, 1978.

[70] O. Del Fabbro, Philosophieren mit Objekten: Gilbert Simondons prozes-
suale Individuationsontologie, Frankfurt and New York: Campus
Verlag, 2021.

[71] P. Christen and O. Del Fabbro, “Philosophy-Guided Mathematical For-
malism for Complex Systems Modelling,” in 2022 IEEE International
Conference on Systems, Man and Cybernetics (SMC), Prague, Czech
Republic, Piscataway, NJ: IEEE, 2022 pp. 2229–2236.
doi:10.1109/SMC53654.2022.9945443.

[72] O. Del Fabbro and P. Christen, “Philosophy-Guided Modelling and
Implementation of Adaptation and Control in Complex Systems,” in
IEEE World Congress On Computational Intelligence (IEEE WCCI),
Padua, Italy, Piscataway, NJ: IEEE, 2022.
doi:10.1109/IJCNN55064.2022.9892833.

[73] K. Czarnecki and U. W. Eisenecker, Generative Programming: Methods,
Tools, and Applications, Boston: Addison-Wesley, 2000.

[74] S. Fix, T. Probst, O. Ruggli, T. Hanne and P. Christen, “Open-Ended
Automatic Programming through Combinatorial Evolution,” in Intelli-
gent Systems Design and Applications, 21st International Conference on
Intelligent Systems Design and Applications (ISDA 2021), (A. Abraham,
N. Gandhi, T. Hanne, T.-P. Hong, T. N. Rios and W. Ding, eds.),
Cham: Springer, 2022 pp. 1–12. doi:10.1007/978-3-030-96308-8_1.

System Metamodeling of Open-Ended Evolution 379

https://doi.org/10.25088/ComplexSystems.32.4.353

https://doi.org/10.1109/SMC.2019.8913839
https://doi.org/10.1007/978-3-030-48332-6_9
https://doi.org/10.1109/SMC53654.2022.9945443
https://doi.org/10.1109/IJCNN55064.2022.9892833
https://doi.org/10.1007/978-3-030-96308-8_1
https://doi.org/10.25088/ComplexSystems.32.4.353

[75] S. Fix, T. Probst, O. Ruggli, T. Hanne and P. Christen, “Automatic Pro-
gramming as an Open-Ended Evolutionary System,” International
Journal of Computer Information Systems and Industrial Management
Applications, 14, 2022 pp. 204–212.
mirlabs.org/ijcisim/regular_papers_2022/IJCISIM_18.pdf.

[76] N. Packard, M. A. Bedau, A. Channon, T. Ikegami, S. Rasmussen,
K. Stanley and T. Taylor, “Open-Ended Evolution and Open-Ended-
ness: Editorial Introduction to the Open-Ended Evolution I Special
Issue,” Artificial Life, 25(1), 2019 pp. 1–3. doi:10.1162/artl_e_00282.

[77] D. Debaise, “What Is Relational Thinking?,” Inflexions, 5, 2012
pp. 1–11. www.inflexions.org/n5_Debaise.pdf.

[78] L. Soros, Necessary Conditions for Open-Ended Evolution, Ph.D.
thesis, Department of Computer Science, University of Central Florida,
2018.

[79] The .NET Compiler Platform SDK. (Jan 19, 2024)
docs.microsoft.com/en-gb/dotnet/csharp/roslyn-sdk.

[80] J. Skeet, C# in Depth, 4th ed., Shelter Island: Manning Publications
Co., 2019.

[81] V. Kulkarni, Theory of Computation, New Delhi: Oxford University
Press, 2013.

[82] R. Rojas, “Conditional Branching Is Not Necessary for Universal
Computation in von Neumann Computers,” Journal of Universal Com-
puter Science, 2(11), 1996 pp. 756–768. doi:10.3217/jucs-002-11-0756.

[83] “C# Keywords.” The .NET C# Documentation. (Jan 19, 2024)
docs.microsoft.com/en-gb/dotnet/csharp/language-reference/keywords.

[84] “Expressions.” The .NET C# Documentation. (Jan 19, 2024)
docs.microsoft.com/en-gb/dotnet/csharp/language-reference/
language-specification/expressions.

[85] “CSharpSyntaxTree Class.” The .NET API Documentation.
(Jan 19, 2024) docs.microsoft.com/en-gb/dotnet/api/microsoft.
codeanalysis.csharp.csharpsyntaxtree?viewroslyn-dotnet-4.1.0.

[86] “String.Replace Method.” The .NET API Documentation.
(Jan 19, 2024) docs.microsoft.com/en-gb/dotnet/api/system.string.
replace?viewnet-6.0#system-string-replace(system-string-system-string).

[87] “Type.ToString Method.” The .NET API Documentation.
(Jan 19, 2024) docs.microsoft.com/en-gb/dotnet/api/system.
type.tostring?viewnet-6.0#system-type-tostring.

[88] “StringWriter Class.” The .NET API Documentation. (Jan 19, 2024)
docs.microsoft.com/en-gb/dotnet/api/system.io.
stringwriter?viewnet-6.0.

[89] “Console.WriteLine Method.” The .NET API Documentation.
(Jan 19, 2024) docs.microsoft.com/en-gb/dotnet/api/system.console.
writeline?viewnet-6.0#system-console-writeline.

380 P. Christen

Complex Systems, 32 © 2024

https://mirlabs.org/ijcisim/regular_papers_2022/IJCISIM_18.pdf
https://doi.org/10.1162/artl_e_00282
https://www.inflexions.org/n5_Debaise.pdf
https://docs.microsoft.com/en-gb/dotnet/csharp/roslyn-sdk
https://dx.doi.org/10.3217/jucs-002-11-0756
https://docs.microsoft.com/en-gb/dotnet/csharp/language-reference/keywords
https://docs.microsoft.com/en-gb/dotnet/csharp/language-reference/language-specification/expressions
https://docs.microsoft.com/en-gb/dotnet/csharp/language-reference/language-specification/expressions
https://docs.microsoft.com/en-gb/dotnet/api/microsoft.codeanalysis.csharp.csharpsyntaxtree?viewroslyn-dotnet-4.1.0
https://docs.microsoft.com/en-gb/dotnet/api/microsoft.codeanalysis.csharp.csharpsyntaxtree?viewroslyn-dotnet-4.1.0
https://docs.microsoft.com/en-gb/dotnet/api/system.string.replace?viewnet-6.0#system-string-replace(system-string-system-string)
https://docs.microsoft.com/en-gb/dotnet/api/system.string.replace?viewnet-6.0#system-string-replace(system-string-system-string)
https://docs.microsoft.com/en-gb/dotnet/api/system.type.tostring?viewnet-6.0#system-type-tostring
https://docs.microsoft.com/en-gb/dotnet/api/system.type.tostring?viewnet-6.0#system-type-tostring
https://docs.microsoft.com/en-gb/dotnet/api/system.io.stringwriter?viewnet-6.0
https://docs.microsoft.com/en-gb/dotnet/api/system.io.stringwriter?viewnet-6.0
https://docs.microsoft.com/en-gb/dotnet/api/system.console.writeline?viewnet-6.0#system-console-writeline
https://docs.microsoft.com/en-gb/dotnet/api/system.console.writeline?viewnet-6.0#system-console-writeline

