
An Alternative Representation of
Turing Machines by Means of the
Iota-Delta Function

Luan Carlos de Sena Monteiro Ozelim

André Luís Brasil Cavalcante

Department of Civil and Environmental Engineering
University of Brasilia
Campus Universitário Darcy Ribeiro, SG12, Asa Norte
Brasilia, Federal District, 70910-900, Brazil

Todd Rowland

Zeta Cubed LLC
Odenton, Maryland 21113, United States

Jan M. Baetens

KERMIT
Department of Data Analysis and Mathematical Modelling
Ghent University
Coupure links 653, B-9000, Ghent, Belgium

The evolution of universal systems has been of great interest to
computer scientists. In particular, the role of Turing machines in the
study of computational universality is widely recognized. Even though
the patterns emerging from the evolution of this kind of dynamical sys-
tem have been studied in much detail, the transition functions them-
selves have received less attention. In the present paper, the iota-delta
function is used to encode the transition function of one-head Turing
machines. In order to illustrate the methodology, we describe the transi-
tion functions of two universal Turing machines in terms of the latter
function. By using the iota-delta function in this setting, Turing
machines can be represented as a system of transition functions. This
new representation allows us to write the transition functions as a lin-
ear combination of evolution variables wrapped by the iota-delta func-
tion. Thus, the nonlinear part of the evolution is totally described by
the iota-delta function.

Keywords: Turing machines; universality; iota-delta function

Introduction1.

The study of Turing machines (TMs) has been of great interest to
computer scientists. Since the pioneering work of Turing [1], exten-
sive work has been done on the subject. In fact, one of the key

https://doi.org/10.25088/ComplexSystems.32.4.381

https://doi.org/10.25088/ComplexSystems.32.4.381

concepts in this area, computational universality, has its basis deeply
related to TMs [2, 3].

In short, a Turing machine (TM) consists of four main parts: a
tape, a head, a state register and a transition function [2]. The core of
the updating process is how the transition function updates the states
and heads of this type of machine. In general, transition functions are
implemented as tables or replacement rules. When the number of pos-
sible states (also represented as colors in [2]) and heads (represented
as directions in [2]) is large, defining replacement rules and transition
tables becomes impractical due to the large number of input and out-
put combinations.

Boolean functions can represent truth tables; however, when the
number of input and output variables increases, functional complex-
ity also increases. This way, Boolean algebra may not always provide
the most compact notation [4].

Regarding other representations of Boolean functions (and truth
tables), real polynomials are alternatives [5, 6]. Simply using
Lagrange interpolating polynomials to describe Boolean functions is
also possible [4].

The transition functions of elementary cellular automata (ECAs)
can be represented in terms of Boolean functions, as discussed in [2].
It is worth noticing that ECAs are nothing but three-variable Boolean
truth tables. Wolfram [2] also discussed algebraic representations for
the evolution of a few rules, considering polynomials modulo 2 in
such cases.

In a series of recent papers [7, 8], a new function that can represent
transition functions of ECAs has been introduced. The so-called
iota-delta function can be used to describe transition functions of not
only one-dimensional but also of two-dimensional cellular automata
(CAs) [9].

The Boolean universality [4] and functional structure of the iota-
delta function allow it to represent truth tables in a straightforward
and compact way. In addition, since the iota-delta representations are
surjective (in the sense that every representation can only be linked to
one rule), enumeration schemes can easily be built for the considered
computational systems. By representing the transition functions of
computational systems in terms of a well-defined mathematical func-
tion, standard analysis tools, such as differentiation and integration,
can be used. Differentiation, for example, can be used to study stabil-
ity, as indicated in [10].

Representing the evolution of TMs plays a central role in determin-
ing if the iota-delta function can be used to properly represent dynami-
cal systems that are different from CAs.

Finally, since different dynamical systems can be encoded in terms
of this new function, a comparison of the evolution of these systems is

382 L. C. S. M. Ozelim, A. L. B. Cavalcante, T. Rowland and J. M. Baetens

Complex Systems, 32 © 2024

simplified by comparing the transition function rather than the evolu-
tion patterns.

In the present paper, a generic procedure for obtaining the transi-
tion functions of TMs in terms of the iota-delta function is proposed.
In particular, the transition functions of two universal TMs are
obtained in terms of the iota-delta function.

In Section 2, we introduce the iota-delta function and formally
define TMs and CAs. In Section 3, we describe the methodology pro-
posed in the present paper to convert TMs into a sequence of CAs. In
Section 4, two TMs are studied. Finally, Section 5 presents the conclu-
sion of the present paper.

Preliminaries 2.

Elementary Cellular Automata2.1

A comprehensive study of ECAs can be found in [2]. In short, an ele-
mentary cellular automaton (ECA) consists of a one-dimensional
array of cells, each colored black or white (1 or 0, respectively, in a
binary description). At discrete time steps, a transition function
assigns the new color (or value) of a given cell by considering the col-
ors (or values) of that cell and its immediate left and right neighbors
at the last time step [2].

Mathematically, let g(.) be the transition function of an ECA.
Then, the color C at position k and time step i + 1 is given by:

Ck
i+1  gCk-1

i , Ck
i , Ck+1

i . (1)

Turing Machines2.2

Turing defined the class of abstract machines that now bear his name.
A TM is a finite-state machine associated with a special kind of envi-
ronment—its tape—in which it can store (and later recover) sequences
of symbols [1, 11]. A TM consists of a tape, a head, a state register
and a transition function [2]. The tape can be interpreted as a one-
dimensional grid. The head can be thought of as two discrete vari-
ables, namely, head existence H and head state HS. The head
indicates how the colors C of the cells are updated.

Mathematically, let h(.) be the set of transition functions of a TM.
Then, the color, head existence and head state at tape position k and
time step i + 1 can be symbolically expressed as:

Ck
i+1, Hk

i+1, HSk
i+1  hHk

i , Ck
i , HSk

i . (2)

The universal TMs considered in the present paper are the 2-state,
3-color and 2-state, 5-color ones presented in Figure 1 and discussed
in [2]. The evolution of such TMs can be visualized in Figure 2.

Representating Turing Machines with the Iota-Delta Function 383

https://doi.org/10.25088/ComplexSystems.32.4.381

https://doi.org/10.25088/ComplexSystems.32.4.381

(a)

(b)

HeadStateCode
0 1

ColorCode
-1 0 1 2 3 4

Figure 1. Transition functions of universal Wolfram (a) 2,3 and (b) 2,5 TMs.

Figure 2. Evolution of universal TMs for 10 time steps: (a) Wolfram 2,3 TM
with initial configuration of an up head state at a blank color cell, and
(b) 2,5 TM with an initial configuration of a down head state at the third
position of a colored tape with colors {1, 0, 1, 2}.The color and head state
codes are presented at the right of the figure.

The next subsections present the fundamentals of the iota-delta
function, as well as the general idea behind its usage to represent CA
transition functions.

The Iota-Delta Function2.3

The iota-delta function is defined as follows [7, 8]:

ιδn
m[x]  mod[mod[…mod[mod[x, pm], pm-1], …, pj], n], (3)

where m ≥ j; m, n ∈ +; x ∈ ; j  π[n] + 1 and mod[o, p] denotes
the modulus operator, which gives the remainder of the division of o
by p if o is greater than p or o itself. Otherwise, m and n are parame-

ters of the iota-delta function, pm is the mth
 prime number and π[n]

384 L. C. S. M. Ozelim, A. L. B. Cavalcante, T. Rowland and J. M. Baetens

Complex Systems, 32 © 2024

stands for the prime counting function, which gives the number of
primes less than or equal to n. Note that p1  2. Essentially, n deter-
mines how many different outputs the function may have. Thus, for
binary outputs, n  2; for ternary ones, n  3; for quaternary ones,
n  4 and so on. On the other hand, m gives a notion of functional
complexity. As m increases, more mod functions need to be nested.
Also, the iota-delta function is taken to be non-negative and
max[ιδn

m[x]]  n when x ∈  [7, 8]. The iota-delta function is peri-

odic with period pm.

The Iota-Delta Function and Elementary Cellular Automata2.4

It has been shown [7] that every ECA can be represented by the fol-
lowing transition function:

Ck
i+1  ιδ2

mα1Ck-1
i + α2Ck

i + α3Ck+1
i + α4, (4)

where the coefficients are αj  {r r ≤ pm - 1; r ∈ Z+}; j  1, 2, 3, 4.

Also, in equation (4), the indices k and i relate to the position of the
cell in the bidimensional (space and time, respectively) state space of
the CA. In the case of ECAs, the minimum value of m that enables
encoding every rule is m  5, that is:

ιδ2
5[x]  mod[mod[mod[mod[mod[x, 11], 7], 5], 3], 2]. (5)

In this way, every ECA is characterized by a set of tuples
{α1, α2, α3, α4} [7]. For example, rule 110 can be described by [7]:

Ck
i+1  ιδ2

52Ck-1
i + 4Ck

i + 4Ck+1
i , (6)

so α1  2, α2  4, α3  4 and α4  0. A possible iota-delta represen-
tation of rule 30 is given by:

Ck
i+1  ιδ2

5Ck-1
i + 4Ck

i + 4Ck+1
i . (7)

Clearly, the iota-delta function is a powerful tool to represent
the transition functions of ECAs. As can be seen from equation (6),
the nonlinearity of the transition function is totally concentrated in
the iota-delta function, while the dependency on the neighbor cells is
linear.

We refer the reader to [9] to obtain the transition functions of two-
dimensional CAs in terms of the iota-delta function.

Usage2.5

The philosophy behind the usage of the iota-delta function for the rep-
resentation of transition functions is to identify the variables that are
important for determining the value of a given cell [9]. For example,
in the case of ECAs, the value of a given cell depends on the value of
its immediate left and right neighbors and the value of the cell itself in

Representating Turing Machines with the Iota-Delta Function 385

https://doi.org/10.25088/ComplexSystems.32.4.381

https://doi.org/10.25088/ComplexSystems.32.4.381

the current step. So, three variables determine the value of the cell of
interest in the next step. This way, the iota-delta function representa-
tion given by equation (4) fits the need. It is worth noting that in addi-
tion to the coefficients multiplying each variable, a fourth coefficient
is needed to represent odd rules.

The main advantage of the iota-delta function comes from the fact
that its representation isolates the transition function’s nonlinearity in
the function itself, while the dependency on the neighborhood cells
becomes linear. Besides that, by representing the transition functions
in terms of a mathematical function, regular operations such as differ-
entiation and integration can be easily performed. This allows us to
analyze the transition functions using the robust tools mathematical
analysis has to offer.

This separation of linearity and nonlinerarity may be fundamental
to link computational systems to real-world physical phenomena. In
[12], the iota-delta representation of ECAs made it possible to link
such dynamical systems and partial differential equations describing
advective-dispersive phenomena.

The next section discusses how to interpret TMs as a sequence
of CAs.

Turing Machines as a Sequence of Cellular Automata 3.

As stated in the Section 2, the representation of the transition func-
tion of a CA in terms of the iota-delta function requires knowledge of
the variables that govern the updating process.

In a TM of the type presented in Figure 1, it is clear that there are
three entities of interest, namely, the color of the cell, the state of the
head and finally its position. This suggests that three mutually depen-
dent entities should be taken into account by different transition func-
tions. This will be outlined in the remainder of this section.

The Color Rule3.1

Figure 1 reveals that the color of a given cell at the next step i + 1
depends on its color in the present step i. Also, by definition, only
the cells in which a head is present are updated; thus, the color at the
next step also depends on the existence of heads. Finally, besides these
two variables, the color at the next step depends on the state of
the head.

This way, there are three variables that control the evolution of the

colors in TMs like the one shown in Figure 1, namely, the jth color of

the cell in the present state, denoted by Ck
i ∈ {0, 1, …, j - 1}; the

386 L. C. S. M. Ozelim, A. L. B. Cavalcante, T. Rowland and J. M. Baetens

Complex Systems, 32 © 2024

existence of a head, Hk
i ∈ {0, 1}; and finally, the qth state of the latter,

HSk
i ∈ {0, 1, …, q - 1}.

It is straightforward to suppose that the transition function of the
color is given by:

Ck
i+1  1 -Hk

i Ck
i +Hk

i ιδn1
m1α1,1Ck

i + α1,2HSk
i + α1,3 (8)

where the double subscripts for the α values are just an indexation
trick. These indices will be used to build a matrix of coefficients later
on and will indicate the position of the α as (row, column) inside the
matrix.

In short, equation (8) states that the colors of all k tape positions
are updated at time step i + 1 according to a rule of the type

ιδn1
m1α1,1Ck

i + α1,2HSk
i + α1,3

when the head is present. Otherwise, the color remains the same.

The Head Rule3.2

There are two possibilities, either a head exists or it does not. This
way, it is important to investigate how a given head is displaced at
each time step.

In order to better understand the update process, a parameter μk
i
 is

defined:

μk
i  Hk

i 1 - 2ιδn2
m2α2,1Ck

i + α2,2HSk
i + α2,3. (9)

This parameter indicates, based on the color Ck
i , head state HSk

i

and head existence Hk
i , how the head should move. Note that we

must have n2  2, since the heads may move at most one cell to the

left or to the right at each subsequent time step. Thus, if μk
i  0, the

head does not move. On the other hand, when μk
i  1, the head

moves one cell to the right and when μk
i  -1, the head moves one

cell to the left.
The allocation parameter can have the following values:

μk
i 

0, if Hk
i  0,

1, if Hk
i  1 and ιδ2

m2α2,1Ck
i + α2,2HSk

i + α2,3  0,

-1, if Hk
i  1 and ιδ2

m2α2,1Ck
i + α2,2HSk

i + α2,3  1.

(10)

The allocation parameter is then used to update the existence of
heads as follows:

Representating Turing Machines with the Iota-Delta Function 387

https://doi.org/10.25088/ComplexSystems.32.4.381

https://doi.org/10.25088/ComplexSystems.32.4.381

Hk
i+1  Hk-μk-1

i +μk
i +μk+1

i 
i

(11)

where:

μk
i  μk-1

i + μk
i + μk+1

i . (12)

The Head State Rule3.3

It can be seen from Figure 1 that the head state at position k depends

on the color of a given cell at position k - μk
i
 and, if a head is present

in the latter, the head state of this cell (position k - μk
i
 as well). Thus,

a suitable transition function is:

HSk
i+1  Hk-μk

i
i ιδn3

m3α3,1Ck-μk
i

i + α3,2HSk-μki
i + α3,3. (13)

Equations (8), (9) and (13) can be expressed in a compact way by
means of the matrix of coefficients of the involved iota-delta func-
tions as:

m1 n1 α1,1 α1,2 α1,3

m2 n2 α2,1 α2,2 α2,3

m3 n3 α3,1 α3,2 α3,3 ιδ

. (14)

Implementing the Iota-Delta Representation of Single-Head

Turing Machines

3.4

The implementation of the equations presented is quite straightfor-
ward. We coded them in Wolfram Language, but they can be easily
written in any other programming language.

In Figure 3, the dotted arrows in the flow chart represent the last
iteration. Dashed arrows represent the current iteration and full paths
represent the next iteration.

Figure 3 shows that the value of the allocation parameter μk
i

 at

time step i depends on the values of the other parameters at this time
step. This is why the order presented in equation (15) becomes impor-
tant, as the subsequent equations depend on previous ones.

By drawing a parallel to the standard evolution of TMs, the well-
known visualization of each evolution step can be achieved by super-
posing the rows of the matrices C, H and HS, as Figure 3 indicates.
The code used to implement the update process in Figure 3 is avail-
able upon request.

To illustrate how the evolution is carried out, Figure 4 presents the
updating process at an intermediate set of stages.

388 L. C. S. M. Ozelim, A. L. B. Cavalcante, T. Rowland and J. M. Baetens

Complex Systems, 32 © 2024

Figure 3. Update process of the iota-delta representation of TMs.

The Colors

i = 1 and k = 3.

The HeadExistence

i = 1 and k = 3.

The HeadState

i = 1 and k = 3.

The Shifting Parameter

i = 1 and k = 3.
The Colors

i = 1 and k = 4.

The HeadExistence

i = 1 and k = 4.

The HeadState

i = 1 and k = 4.

The Shifting Parameter

i = 1 and k = 4.
The Colors

i = 1 and k = 5.

The HeadExistence

i = 1 and k = 5.

The HeadState

i = 1 and k = 5.

The Shifting Parameter

i = 1 and k = 5.
The Colors

i = 2 and k = 3.

The HeadExistence

i = 2 and k = 3.

The HeadState

i = 2 and k = 3.

The Shifting Parameter

i = 2 and k = 3.
The Colors

i = 2 and k = 4.

The HeadExistence

i = 2 and k = 4.

The HeadState

i = 2 and k = 4.

The Shifting Parameter

i = 2 and k = 4.
The Colors

i = 2 and k = 5.

The HeadExistence

i = 2 and k = 5.

The HeadState

i = 2 and k = 5.

The Shifting Parameter

i = 2 and k = 5.

ColorCode
-1 0 1 2 3 4

Figure 4. Evolution of universal Wolfram 2,3 TM for two time steps between
tape positions 3 and 5. The initial condition is an up head state at a blank cell
at position k  4.

Representating Turing Machines with the Iota-Delta Function 389

https://doi.org/10.25088/ComplexSystems.32.4.381

https://doi.org/10.25088/ComplexSystems.32.4.381

Transition Functions of Turing Machines in Terms of the
Iota-Delta Function

4.

By means of the representation in equation (14), the transition func-
tions of single-headed TMs with n1 colors and n3 head states are
expressible in terms of iota-delta functions. To illustrate our method-
ology, the transition functions of two universal TMs are constructed
in terms of the iota-delta function. For simplicity, up head states are
taken as 0, while down head states are taken as 1, and the color range
is from 0 to n1 - 1.

In general, finding the iota-delta representation of a given
TM comes down to solving the system of equations given by equa-
tions (8), (9) and (13). These three equations lead to a nonlinear
system whose solution is not unique; therefore, more than one set of
coefficients provides a solution. The simplest approach to finding a
solution is: given the inputs and outputs, use search algorithms to find
the coefficients that solve the equations. The naive approach, which
was considered in the present paper, was to perform a brute force
search. Depending on how intricate the TM evolution is, other alterna-
tives such as Bayesian optimization with probabilistic reparameteriza-
tion can be useful tools to find the discrete-valued coefficients [13].
Continuous-valued counterparts are the focus of future research
efforts.

The 2,3 Wolfram Universal Turing Machine4.1

As shown in Figure 1, the 2,3 Wolfram universal TM has one head,
two head states and three colors, so the approach proposed in Sec-
tion 3 can be used. By means of equations (8), (11) and (13), the
update process of the TM can be represented as:

Ck
i+1  1 -Hk

i Ck
i +Hk

i ιδ3
1025Ck

i + 19HSk
i + 6,

Hk
i+1  Hk-μk

i
i ,

HSk
i+1  Hk-μk

i
i ιδ2

22Ck-μk
i

i +HSk-μki
i + 1,

(15)

where μk
i+1  Hk

i+11 - 2ιδ2
32Ck

i+1 + 4HSk
i+1 + 2. Alternatively, equa-

tion (15) can be written as:

10 3 25 19 6

3 2 2 4 2

2 2 2 1 1 ιδ

. (16)

The 2,5 Wolfram Universal Turing Machine4.2

Figure 1 reveals that the 2,5 Wolfram universal TM has one head,
two head states and five colors. Again, by means of equations (8), (9),

390 L. C. S. M. Ozelim, A. L. B. Cavalcante, T. Rowland and J. M. Baetens

Complex Systems, 32 © 2024

(11) and (13), the update process of this TM can be represented as:

Ck
i+1  1 -Hk

i Ck
i +Hk

i ιδ5
45119Ck

i + 58HSk
i + 72,

Hk
i+1  Hk-μk

i
i ,

HSk
i+1  Hk-μk

i
i ιδ2

33Ck-μk
i

i + 2,

(17)

where μk
i+1  Hk

i+11 - 2ιδ2
32Ck

i+1 + 1. The more compact formula-

tion of equation (17) reads:

45 5 119 58 72

3 2 2 0 1

3 2 3 0 2 ιδ

. (18)

Equation (17) reveals that the position of the head in the next step
i + 1 does not depend on its state in the previous step, and similarly
for the head state.

Possible Physical Interpretation4.3

The physical interpretation of the iota-delta representation of ECAs
was given in [12]. In that paper, the authors compared the iota-delta
transition function to a finite difference scheme of the one-dimen-
sional advective-dispersive equation. For the system of equations sum-
marized in equation (14), a possible physical interpretation would be
to link the system of iota-delta transition functions to a system of
finite difference approximations of a system of partial differential
equations. A possible candidate would be the system of equations that
model shallow water flow [14], but further exploration of this
approach is out of the scope of the present paper.

Conclusion5.

Computational universality has been of great interest to computer sci-
entists. Ways of achieving universality are often related to Turing
machines (TMs). In particular, the transition functions of the latter
are of special interest in such studies.

In the present paper, a general framework for describing the transi-
tion functions of single-head TMs was proposed. In short, the method-
ology is based on understanding a Turing machine (TM) as a
sequence of mutually dependent cellular automata (CAs). In order to
provide a solid mathematical representation of the transition func-
tions, the iota-delta function was employed.

By using the iota-delta function, questions concerning universality
of TMs will find a better mathematical framework to be addressed.

Representating Turing Machines with the Iota-Delta Function 391

https://doi.org/10.25088/ComplexSystems.32.4.381

https://doi.org/10.25088/ComplexSystems.32.4.381

Acknowledgments

This study was financed in part by the Coordination for the Improve-
ment of Higher Education Personnel (CAPES)—Finance Code 001.
The authors also acknowledge the support of the National Council
for Scientific and Technological Development (CNPq Grant
305484/2020-6) and of the Research Support Foundation of the Fed-
eral District (FAP-DF 00193.00000920/2021-12).

References

[1] A. M. Turing, “On Computable Numbers, with an Application to the
Entscheidungsproblem,” Proceedings of the London Mathematical Soci-
ety, 2(42), 1936–1937 pp. 230–265. doi:10.2307/2268808.

[2] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[3] M. Cook, “Universality in Elementary Cellular Automata,” Complex
Systems, 15(1), 2004 pp. 1–40. complex-systems.com/pdf/15-1-1.pdf.

[4] L. Ozelim and A. Cavalcante, “The Iota-Delta Function as an Alterna-
tive to Boolean Formalism,” International Journal of Foundations
of Computer Science, 29(3), 2018 pp. 415–423.
doi:10.1142/S0129054118500120.

[5] D. A. Mix Barrington, R. Beigel and S. Rudich, “Representing Boolean
Functions as Polynomials Modulo Composite Numbers,” Computa-
tional Complexity, 4(4), 1994 pp. 367–382. doi:10.1007/BF01263424.

[6] N. Nisan and M. Szegedy, “On the Degree of Boolean Functions as Real
Polynomials,” Computational Complexity, 4(4), 1994 pp. 301–313.
doi:10.1007/BF01263419.

[7] L. Ozelim, A. Cavalcante and L. Borges, “On the Iota-Delta Function:
Universality in Cellular Automata’s Representation,” Complex Systems,
21(4), 2013 pp. 283–296. doi:10.25088/ComplexSystems.21.4.283.

[8] L. Ozelim, A. Cavalcante and L. Borges, “Continuum versus Discrete: A
Physically Interpretable General Rule for Cellular Automata by Means
of Modular Arithmetic,” Complex Systems, 22(1), 2013 pp. 75–99.
doi:10.25088/ComplexSystems.22.1.75.

[9] L. Ozelim and A. Cavalcante, “On the Iota-Delta Function: Mathemati-
cal Representation of Two-Dimensional Cellular Automata,” Complex
Systems, 22(4), 2013 pp. 405–422.
doi:10.25088/ComplexSystems.22.4.405.

[10] J. M. Baetens and B. De Baets, “Phenomenological Study of Irregular
Cellular Automata Based on Lyapunov Exponents and Jacobians,”
Chaos: An Interdisciplinary Journal of Nonlinear Science, 20(3), 2010
033112. doi:10.1063/1.3460362.

392 L. C. S. M. Ozelim, A. L. B. Cavalcante, T. Rowland and J. M. Baetens

Complex Systems, 32 © 2024

https://doi.org/10.2307/2268808
https://complex-systems.com/pdf/15-1-1.pdf
https://doi.org/10.1142/S0129054118500120
https://doi.org/10.1007/BF01263424
https://doi.org/10.1007/BF01263419
https://doi.org/10.25088/ComplexSystems.21.4.283
https://doi.org/10.25088/ComplexSystems.22.1.75
https://doi.org/10.25088/ComplexSystems.22.4.405
https://doi.org/10.1063/1.3460362

[11] M. L. Minsky, Computation: Finite and Infinite Machines, Englewood
Cliffs, NJ: Prentice-Hall, 1967.

[12] L. Ozelim, A. Cavalcante and J. Baetens, “On the Iota-Delta Function:
A Link between Cellular Automata and Partial Differential Equations
for Modeling Advection–Dispersion from a Constant Source,” The Jour-
nal of Supercomputing, 73(2), 2017 pp. 700–712.
doi:10.1007/s11227-016-1795-7.

[13] S. Daulton, X. Wan, D. Eriksson, M. Balandat, M. A. Osborne and
E. Bakshy, “Bayesian Optimization over Discrete and Mixed Spaces via
Probabilistic Reparameterization,” in Advances in Neural Information
Processing Systems 35: Annual Conference on Neural Information Pro-
cessing Systems 2022, (NeurIPS 2022), New Orleans, (S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho and A. Oh, eds.), 2022.
proceedings.neurips.cc/paper_files/paper/2022/file/
531230cfac80c65017ad0f85d3031edc-Paper-Conference.pdf.

[14] C. B. Vreugdenhil, Numerical Methods for Shallow-Water Flow,
Boston: Kluwer Academic Publishers, 1994.

Representating Turing Machines with the Iota-Delta Function 393

https://doi.org/10.25088/ComplexSystems.32.4.381

https://doi.org/10.1007/s11227-016-1795-7
https://proceedings.neurips.cc/paper_files/paper/2022/file/531230cfac80c65017ad0f85d3031edc-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/531230cfac80c65017ad0f85d3031edc-Paper-Conference.pdf
https://doi.org/10.25088/ComplexSystems.32.4.381

