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The  evolution  of  universal  systems  has  been  of  great  interest  to
computer  scientists.  In  particular,  the  role  of  Turing  machines  in  the
study  of  computational  universality  is  widely  recognized.  Even  though
the patterns emerging from the evolution of this kind of dynamical sys-
tem  have  been  studied  in  much  detail,  the  transition  functions  them-
selves  have  received  less  attention.  In  the  present  paper,  the  iota-delta
function  is  used  to  encode  the  transition  function  of  one-head  Turing
machines. In order to illustrate the methodology, we describe the transi-
tion  functions  of  two  universal  Turing  machines  in  terms  of  the  latter
function.  By  using  the  iota-delta  function  in  this  setting,  Turing
machines  can  be  represented  as  a  system  of  transition  functions.  This
new  representation  allows  us  to  write  the  transition  functions  as  a  lin-
ear  combination  of  evolution  variables  wrapped  by  the  iota-delta  func-
tion.  Thus,  the  nonlinear  part  of  the  evolution  is  totally  described  by
the iota-delta function. 
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Introduction1.

The  study  of  Turing  machines  (TMs)  has  been  of  great  interest  to
computer  scientists.  Since  the  pioneering  work  of  Turing  [1],  exten-
sive  work  has  been  done  on  the  subject.  In  fact,  one  of  the  key
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concepts  in  this  area,  computational  universality,  has  its  basis  deeply
related to TMs [2, 3].

In  short,  a  Turing  machine  (TM)  consists  of  four  main  parts:  a
tape, a head, a state register and a transition function [2]. The core of
the updating process is how the transition function updates the states
and heads of this type of machine. In general, transition functions are
implemented as tables or replacement rules. When the number of pos-
sible  states  (also  represented  as  colors  in  [2])  and  heads  (represented
as directions in [2]) is large, defining replacement rules and transition
tables becomes impractical due to the large number of input and out-
put combinations. 

Boolean  functions  can  represent  truth  tables;  however,  when  the
number  of  input  and  output  variables  increases,  functional  complex-
ity also increases. This way, Boolean algebra may not always provide
the most compact notation [4]. 

Regarding  other  representations  of  Boolean  functions  (and  truth
tables),  real  polynomials  are  alternatives  [5,  6].  Simply  using
Lagrange  interpolating  polynomials  to  describe  Boolean  functions  is
also possible [4]. 

The  transition  functions  of  elementary  cellular  automata  (ECAs)
can  be  represented  in  terms  of  Boolean  functions,  as  discussed  in  [2].
It is worth noticing that ECAs are nothing but three-variable Boolean
truth  tables.  Wolfram  [2]  also  discussed  algebraic  representations  for
the  evolution  of  a  few  rules,  considering  polynomials  modulo  2  in
such cases. 

In a series of recent papers [7, 8], a new function that can represent
transition  functions  of  ECAs  has  been  introduced.  The  so-called
iota-delta function can be used to describe transition functions of not
only  one-dimensional  but  also  of  two-dimensional  cellular  automata
(CAs) [9]. 

The  Boolean  universality  [4]  and  functional  structure  of  the  iota-
delta  function  allow  it  to  represent  truth  tables  in  a  straightforward
and compact way. In addition, since the iota-delta representations are
surjective (in the sense that every representation can only be linked to
one  rule),  enumeration  schemes  can  easily  be  built  for  the  considered
computational  systems.  By  representing  the  transition  functions  of
computational  systems  in  terms  of  a  well-defined  mathematical  func-
tion,  standard  analysis  tools,  such  as  differentiation  and  integration,
can be used. Differentiation, for example, can be used to study stabil-
ity, as indicated in [10]. 

Representing the evolution of TMs plays a central role in determin-
ing if the iota-delta function can be used to properly represent dynami-
cal systems that are different from CAs. 

Finally,  since  different  dynamical  systems  can  be  encoded  in  terms
of this new function, a comparison of the evolution of these systems is
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simplified by comparing the transition function rather than the evolu-
tion patterns. 

In  the  present  paper,  a  generic  procedure  for  obtaining  the  transi-
tion functions of TMs in terms of the iota-delta function is proposed.
In  particular,  the  transition  functions  of  two  universal  TMs  are
obtained in terms of the iota-delta function. 

In  Section  2,  we  introduce  the  iota-delta  function  and  formally
define TMs and CAs. In Section 3, we describe the methodology pro-
posed in the present paper to convert TMs into a sequence of CAs. In
Section 4, two TMs are studied. Finally, Section 5 presents the conclu-
sion of the present paper. 

Preliminaries 2.

Elementary Cellular Automata2.1

A comprehensive study of ECAs can be found in [2]. In short, an ele-
mentary  cellular  automaton  (ECA)  consists  of  a  one-dimensional
array  of  cells,  each  colored  black  or  white  (1  or  0,  respectively,  in  a
binary  description).  At  discrete  time  steps,  a  transition  function
assigns the new color (or value) of a given cell by considering the col-
ors  (or  values)  of  that  cell  and  its  immediate  left  and  right  neighbors
at the last time step [2]. 

Mathematically,  let  g(.)  be  the  transition  function  of  an  ECA.
Then, the color C at position k and time step i + 1 is given by: 

Ck
i+1  gCk-1

i , Ck
i , Ck+1

i . (1)

Turing Machines2.2

Turing defined the class of abstract machines that now bear his name.
A TM is a finite-state machine associated with a special kind of envi-
ronment—its tape—in which it can store (and later recover) sequences
of  symbols  [1,  11].  A  TM  consists  of  a  tape,  a  head,  a  state  register
and  a  transition  function  [2].  The  tape  can  be  interpreted  as  a  one-
dimensional  grid.  The  head  can  be  thought  of  as  two  discrete  vari-
ables,  namely,  head  existence  H  and  head  state  HS.  The  head
indicates how the colors C of the cells are updated.

Mathematically, let h(.) be the set of transition functions of a TM.
Then, the color, head existence and head state at tape position k and
time step i + 1 can be symbolically expressed as: 

Ck
i+1, Hk

i+1, HSk
i+1  hHk

i , Ck
i , HSk

i . (2)

The  universal  TMs  considered  in  the  present  paper  are  the  2-state,
3-color  and  2-state,  5-color  ones  presented  in  Figure  1  and  discussed
in [2]. The evolution of such TMs can be visualized in Figure 2. 
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(a)

(b)

HeadStateCode
0 1

ColorCode
-1 0 1 2 3 4

Figure 1. Transition functions of universal Wolfram (a) 2,3 and (b) 2,5 TMs.

Figure 2. Evolution of universal TMs for 10 time steps: (a) Wolfram 2,3 TM
with  initial  configuration  of  an  up  head  state  at  a  blank  color  cell,  and
(b)  2,5  TM  with  an  initial  configuration  of  a  down  head  state  at  the  third
position  of  a  colored  tape  with  colors {1,  0,  1,  2}.The  color  and  head  state
codes are presented at the right of the figure.

The  next  subsections  present  the  fundamentals  of  the  iota-delta
function, as well as the general idea behind its usage to represent CA
transition functions. 

The Iota-Delta Function2.3

The iota-delta function is defined as follows [7, 8]:

ιδn
m[x]  mod[mod[…mod[mod[x, pm], pm-1], …, pj], n], (3)

where  m ≥ j;  m, n ∈ +;  x ∈ ;  j  π[n] + 1  and  mod[o, p]  denotes
the  modulus  operator,  which  gives  the  remainder  of  the  division  of  o
by p if o is greater than p or o itself. Otherwise, m and n are parame-

ters  of  the  iota-delta  function,  pm  is  the  mth
 prime  number  and  π[n]
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stands  for  the  prime  counting  function,  which  gives  the  number  of
primes less than or equal to n. Note that p1  2. Essentially, n deter-
mines  how  many  different  outputs  the  function  may  have.  Thus,  for
binary  outputs,  n  2;  for  ternary  ones,  n  3;  for  quaternary  ones,
n  4  and  so  on.  On  the  other  hand,  m  gives  a  notion  of  functional
complexity.  As  m  increases,  more  mod  functions  need  to  be  nested.
Also,  the  iota-delta  function  is  taken  to  be  non-negative  and
max[ιδn

m[x]]  n  when  x ∈   [7,  8].  The  iota-delta  function  is  peri-

odic with period pm.

The Iota-Delta Function and Elementary Cellular Automata2.4

It  has  been  shown  [7]  that  every  ECA  can  be  represented  by  the  fol-
lowing transition function:

Ck
i+1  ιδ2

mα1Ck-1
i + α2Ck

i + α3Ck+1
i + α4, (4)

where  the  coefficients  are  αj  {r r ≤ pm - 1; r ∈ Z+};  j  1, 2, 3, 4.

Also,  in  equation  (4),  the  indices  k  and  i  relate  to  the  position  of  the
cell  in  the  bidimensional  (space  and  time,  respectively)  state  space  of
the  CA.  In  the  case  of  ECAs,  the  minimum  value  of  m  that  enables
encoding every rule is m  5, that is: 

ιδ2
5[x]  mod[mod[mod[mod[mod[x, 11], 7], 5], 3], 2]. (5)

In  this  way,  every  ECA  is  characterized  by  a  set  of  tuples
{α1, α2, α3, α4} [7]. For example, rule 110 can be described by [7]: 

Ck
i+1  ιδ2

52Ck-1
i + 4Ck

i + 4Ck+1
i , (6)

so α1  2, α2  4, α3  4 and α4  0. A possible iota-delta represen-
tation of rule 30 is given by: 

Ck
i+1  ιδ2

5Ck-1
i + 4Ck

i + 4Ck+1
i . (7)

Clearly,  the  iota-delta  function  is  a  powerful  tool  to  represent
the  transition  functions  of  ECAs.  As  can  be  seen  from  equation  (6),
the  nonlinearity  of  the  transition  function  is  totally  concentrated  in
the  iota-delta  function,  while  the  dependency  on  the  neighbor  cells  is
linear. 

We refer the reader to [9] to obtain the transition functions of two-
dimensional CAs in terms of the iota-delta function. 

Usage2.5

The philosophy behind the usage of the iota-delta function for the rep-
resentation  of  transition  functions  is  to  identify  the  variables  that  are
important  for  determining  the  value  of  a  given  cell  [9].  For  example,
in the case of ECAs, the value of a given cell depends on the value of
its immediate left and right neighbors and the value of the cell itself in
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the  current  step.  So,  three  variables  determine  the  value  of  the  cell  of
interest in the next step. This way, the iota-delta function representa-
tion given by equation (4) fits the need. It is worth noting that in addi-
tion  to  the  coefficients  multiplying  each  variable,  a  fourth  coefficient
is needed to represent odd rules.

The main advantage of the iota-delta function comes from the fact
that its representation isolates the transition function’s nonlinearity in
the  function  itself,  while  the  dependency  on  the  neighborhood  cells
becomes  linear.  Besides  that,  by  representing  the  transition  functions
in terms of a mathematical function, regular operations such as differ-
entiation  and  integration  can  be  easily  performed.  This  allows  us  to
analyze  the  transition  functions  using  the  robust  tools  mathematical
analysis has to offer. 

This  separation  of  linearity  and  nonlinerarity  may  be  fundamental
to  link  computational  systems  to  real-world  physical  phenomena.  In
[12],  the  iota-delta  representation  of  ECAs  made  it  possible  to  link
such  dynamical  systems  and  partial  differential  equations  describing
advective-dispersive phenomena. 

The  next  section  discusses  how  to  interpret  TMs  as  a  sequence
of CAs. 

Turing Machines as a Sequence of Cellular Automata 3.

As  stated  in  the  Section  2,  the  representation  of  the  transition  func-
tion of a CA in terms of the iota-delta function requires knowledge of
the variables that govern the updating process.

In a TM of the type presented in Figure 1, it is clear that there are
three entities of interest, namely, the color of the cell, the state of the
head and finally its position. This suggests that three mutually depen-
dent entities should be taken into account by different transition func-
tions. This will be outlined in the remainder of this section. 

The Color Rule3.1

Figure  1  reveals  that  the  color  of  a  given  cell  at  the  next  step  i + 1
depends  on  its  color  in  the  present  step  i.  Also,  by  definition,  only
the cells in which a head is present are updated; thus, the color at the
next step also depends on the existence of heads. Finally, besides these
two  variables,  the  color  at  the  next  step  depends  on  the  state  of
the head.

This way, there are three variables that control the evolution of the

colors in TMs like the one shown in Figure 1, namely, the jth  color of

the  cell  in  the  present  state,  denoted  by  Ck
i ∈ {0, 1, …, j - 1};  the
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existence of a head, Hk
i ∈ {0, 1}; and finally, the qth  state of the latter,

HSk
i ∈ {0, 1, …, q - 1}. 

It  is  straightforward  to  suppose  that  the  transition  function  of  the
color is given by: 

Ck
i+1  1 -Hk

i Ck
i +Hk

i ιδn1
m1α1,1Ck

i + α1,2HSk
i + α1,3 (8)

where  the  double  subscripts  for  the  α  values  are  just  an  indexation
trick. These indices will be used to build a matrix of coefficients later
on and will indicate the position of the α as (row, column) inside the
matrix.

In  short,  equation  (8)  states  that  the  colors  of  all  k  tape  positions
are updated at time step i + 1 according to a rule of the type 

ιδn1
m1α1,1Ck

i + α1,2HSk
i + α1,3

when the head is present. Otherwise, the color remains the same.

The Head Rule3.2

There  are  two  possibilities,  either  a  head  exists  or  it  does  not.  This
way,  it  is  important  to  investigate  how  a  given  head  is  displaced  at
each time step.

In order to better understand the update process, a parameter μk
i
 is

defined: 

μk
i  Hk

i 1 - 2ιδn2
m2α2,1Ck

i + α2,2HSk
i + α2,3. (9)

This  parameter  indicates,  based  on  the  color  Ck
i ,  head  state  HSk

i

and  head  existence  Hk
i ,  how  the  head  should  move.  Note  that  we

must  have  n2  2,  since  the  heads  may  move  at  most  one  cell  to  the

left  or  to  the  right  at  each  subsequent  time  step.  Thus,  if  μk
i  0,  the

head  does  not  move.  On  the  other  hand,  when  μk
i  1,  the  head

moves  one  cell  to  the  right  and  when  μk
i  -1,  the  head  moves  one

cell to the left. 
The allocation parameter can have the following values: 

μk
i 

0, if Hk
i  0,

1, if Hk
i  1 and ιδ2

m2α2,1Ck
i + α2,2HSk

i + α2,3  0,

-1, if Hk
i  1 and ιδ2

m2α2,1Ck
i + α2,2HSk

i + α2,3  1.

(10)

The  allocation  parameter  is  then  used  to  update  the  existence  of
heads as follows: 
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Hk
i+1  Hk-μk-1

i +μk
i +μk+1

i 
i

(11)

where:

μk
i  μk-1

i + μk
i + μk+1

i . (12)

The Head State Rule3.3

It can be seen from Figure 1 that the head state at position k depends

on the color of a given cell at position k - μk
i
 and, if a head is present

in the latter, the head state of this cell (position k - μk
i
 as well). Thus,

a suitable transition function is:

HSk
i+1  Hk-μk

i
i ιδn3

m3α3,1Ck-μk
i

i + α3,2HSk-μki
i + α3,3. (13)

Equations  (8),  (9)  and  (13)  can  be  expressed  in  a  compact  way  by
means  of  the  matrix  of  coefficients  of  the  involved  iota-delta  func-
tions as: 

m1 n1 α1,1 α1,2 α1,3

m2 n2 α2,1 α2,2 α2,3

m3 n3 α3,1 α3,2 α3,3 ιδ

. (14)

Implementing the Iota-Delta Representation of Single-Head 

Turing Machines 

3.4

The  implementation  of  the  equations  presented  is  quite  straightfor-
ward.  We  coded  them  in  Wolfram  Language,  but  they  can  be  easily
written in any other programming language.

In  Figure  3,  the  dotted  arrows  in  the  flow  chart  represent  the  last
iteration. Dashed arrows represent the current iteration and full paths
represent the next iteration. 

Figure  3  shows  that  the  value  of  the  allocation  parameter  μk
i

 at

time step i depends on the values of the other parameters at this time
step. This is why the order presented in equation (15) becomes impor-
tant, as the subsequent equations depend on previous ones. 

By  drawing  a  parallel  to  the  standard  evolution  of  TMs,  the  well-
known visualization of each evolution step can be achieved by super-
posing  the  rows  of  the  matrices  C,  H  and  HS,  as  Figure  3  indicates.
The  code  used  to  implement  the  update  process  in  Figure  3  is  avail-
able upon request. 

To illustrate how the evolution is carried out, Figure 4 presents the
updating process at an intermediate set of stages. 
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Figure 3. Update process of the iota-delta representation of TMs.

The Colors

i = 1 and k = 3.

The HeadExistence

i = 1 and k = 3.

The HeadState

i = 1 and k = 3.

The Shifting Parameter

i = 1 and k = 3.
The Colors

i = 1 and k = 4.

The HeadExistence

i = 1 and k = 4.

The HeadState

i = 1 and k = 4.

The Shifting Parameter

i = 1 and k = 4.
The Colors

i = 1 and k = 5.

The HeadExistence

i = 1 and k = 5.

The HeadState

i = 1 and k = 5.

The Shifting Parameter

i = 1 and k = 5.
The Colors

i = 2 and k = 3.

The HeadExistence

i = 2 and k = 3.

The HeadState

i = 2 and k = 3.

The Shifting Parameter

i = 2 and k = 3.
The Colors

i = 2 and k = 4.

The HeadExistence

i = 2 and k = 4.

The HeadState

i = 2 and k = 4.

The Shifting Parameter

i = 2 and k = 4.
The Colors

i = 2 and k = 5.

The HeadExistence

i = 2 and k = 5.

The HeadState

i = 2 and k = 5.

The Shifting Parameter

i = 2 and k = 5.

ColorCode
-1 0 1 2 3 4

Figure 4. Evolution of universal Wolfram 2,3 TM for two time steps between
tape positions 3 and 5. The initial condition is an up head state at a blank cell
at position k  4.
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Transition Functions of Turing Machines in Terms of the
Iota-Delta Function 

4.

By  means  of  the  representation  in  equation  (14),  the  transition  func-
tions  of  single-headed  TMs  with  n1  colors  and  n3  head  states  are
expressible  in  terms  of  iota-delta  functions.  To  illustrate  our  method-
ology,  the  transition  functions  of  two  universal  TMs  are  constructed
in  terms  of  the  iota-delta  function.  For  simplicity,  up  head  states  are
taken as 0, while down head states are taken as 1, and the color range
is from 0 to n1 - 1.

In  general,  finding  the  iota-delta  representation  of  a  given
TM  comes  down  to  solving  the  system  of  equations  given  by  equa-
tions  (8),  (9)  and  (13).  These  three  equations  lead  to  a  nonlinear
system  whose  solution  is  not  unique;  therefore,  more  than  one  set  of
coefficients  provides  a  solution.  The  simplest  approach  to  finding  a
solution is: given the inputs and outputs, use search algorithms to find
the  coefficients  that  solve  the  equations.  The  naive  approach,  which
was  considered  in  the  present  paper,  was  to  perform  a  brute  force
search. Depending on how intricate the TM evolution is, other alterna-
tives such as Bayesian optimization with probabilistic reparameteriza-
tion  can  be  useful  tools  to  find  the  discrete-valued  coefficients  [13].
Continuous-valued  counterparts  are  the  focus  of  future  research
efforts. 

The 2,3 Wolfram Universal Turing Machine4.1

As  shown  in  Figure  1,  the  2,3  Wolfram  universal  TM  has  one  head,
two  head  states  and  three  colors,  so  the  approach  proposed  in  Sec-
tion 3  can  be  used.  By  means  of  equations  (8),  (11)  and  (13),  the
update process of the TM can be represented as:

Ck
i+1  1 -Hk

i Ck
i +Hk

i ιδ3
1025Ck

i + 19HSk
i + 6,

Hk
i+1  Hk-μk

i
i ,

HSk
i+1  Hk-μk

i
i ιδ2

22Ck-μk
i

i +HSk-μki
i + 1,

(15)

where  μk
i+1  Hk

i+11 - 2ιδ2
32Ck

i+1 + 4HSk
i+1 + 2.  Alternatively,  equa-

tion (15) can be written as:

10 3 25 19 6

3 2 2 4 2

2 2 2 1 1 ιδ

. (16)

The 2,5 Wolfram Universal Turing Machine4.2

Figure  1  reveals  that  the  2,5  Wolfram  universal  TM  has  one  head,
two head states and five colors. Again, by means of equations (8), (9),
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(11) and (13), the update process of this TM can be represented as:

Ck
i+1  1 -Hk

i Ck
i +Hk

i ιδ5
45119Ck

i + 58HSk
i + 72,

Hk
i+1  Hk-μk

i
i ,

HSk
i+1  Hk-μk

i
i ιδ2

33Ck-μk
i

i + 2,

(17)

where  μk
i+1  Hk

i+11 - 2ιδ2
32Ck

i+1 + 1.  The  more  compact  formula-

tion of equation (17) reads:

45 5 119 58 72

3 2 2 0 1

3 2 3 0 2 ιδ

. (18)

Equation (17) reveals that the position of the head in the next step
i + 1  does  not  depend  on  its  state  in  the  previous  step,  and  similarly
for the head state.

Possible Physical Interpretation4.3

The  physical  interpretation  of  the  iota-delta  representation  of  ECAs
was  given  in  [12].  In  that  paper,  the  authors  compared  the  iota-delta
transition  function  to  a  finite  difference  scheme  of  the  one-dimen-
sional advective-dispersive equation. For the system of equations sum-
marized  in  equation  (14),  a  possible  physical  interpretation  would  be
to  link  the  system  of  iota-delta  transition  functions  to  a  system  of
finite  difference  approximations  of  a  system  of  partial  differential
equations. A possible candidate would be the system of equations that
model  shallow  water  flow  [14],  but  further  exploration  of  this
approach is out of the scope of the present paper.

Conclusion5.

Computational universality has been of great interest to computer sci-
entists.  Ways  of  achieving  universality  are  often  related  to  Turing
machines  (TMs).  In  particular,  the  transition  functions  of  the  latter
are of special interest in such studies.

In the present paper, a general framework for describing the transi-
tion functions of single-head TMs was proposed. In short, the method-
ology  is  based  on  understanding  a  Turing  machine  (TM)  as  a
sequence  of  mutually  dependent  cellular  automata  (CAs).  In  order  to
provide  a  solid  mathematical  representation  of  the  transition  func-
tions, the iota-delta function was employed. 

By  using  the  iota-delta  function,  questions  concerning  universality
of TMs will find a better mathematical framework to be addressed. 
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