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Analytical thinking is dominated by binary ideas. From pairwise interac-
tions  to  algebraic  operations,  to  compositions  of  processes,  to  network
models, binary structures are deeply ingrained in the fabric of most cur-
rent  scientific  paradigms.  In  this  paper,  we  introduce  arity  as  the
generic  conceptualization  of  the  order  of  an  interaction  between  a  dis-
crete  collection  of  entities  and  argue  that  there  is  a  rich  universe  of
higher  arity  ideas  beyond  binarity  waiting  to  be  explored.  To  illustrate
this,  we  discuss  several  higher-order  phenomena  appearing  in  a  wide
range of research areas, paying special attention to instances of ternary
interactions.  From  the  point  of  view  of  formal  sciences  and  mathemat-
ics, higher arity thinking opens up new paradigms of algebra, symbolic
calculus  and  logic.  In  particular,  we  delve  into  the  special  case  of
ternary structures, as that itself reveals ample surprises: new notions of
associativity  (or  lack  thereof)  in  ternary  operations  of  cubic  matrices,
ternary  isomorphisms  and  ternary  relations;  the  integration  problem  of
3-Lie  algebras;  and  generalizations  of  adjacency  in  3-uniform  hyper-
graphs.  All  these  are  open  problems  that  strongly  suggest  the  need  to
develop  new  ternary  mathematics.  Finally,  we  comment  on  potential
future research directions and remark on the transdisciplinary nature of
higher arity science. 
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Introduction1.

Discrete  bits  of  quantifiable  and  communicable  information—words
in  speech  and  text,  digits  in  computers  and  records,  and  symbols  in
formulas and algorithms—are the building blocks of the human intel-
lectual  edifice.  However,  the  architectural  integrity  of  this  construc-
tion  relies  on  much  more  than  the  mere  collection  of  its  parts:  basic
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ideas  are  connected,  organized  and  composed  thanks  to  the  cohesive
power  of  conceptual  relations  and  associations.  Our  aim  is  to  bring
this structural aspect of modern science to the foreground and to illus-
trate  how  our  understanding  of  its  underpinnings  may  lead  to  the
development of new theories and paradigms. 

To  this  end,  we  will  introduce  the  general  concept  of  “arity,”
which  refers  to  the  order  or  degree  of  a  relation  between  a  family  of
countable entities. For example, a predator-prey dynamic in an ecosys-
tem  is  an  instance  of  arity  2,  that  is,  a  binary  relation  between  two
species,  and  the  chemical  bond  of  a  methane  molecule  is  an  instance
of  arity  5,  that  is,  a  quinary  relation  among  five  atoms.  Motivating
our  discussion  with  elementary  examples  of  ternary  structures  in
mathematics,  we  argue  that  restricting  ourselves  to  the  use  of  binary
ideas, which currently dominate the intellectual landscape, has a limit-
ing  effect  on  our  capacity  to  develop  new  conceptual  paradigms.  We
also  present  several  ternary  (and  higher)  phenomena  appearing  in  a
wide range of disciplines to illustrate the untapped potential of higher
arity  science.  A  short  video  summary  by  one  of  the  authors  can  be
found  here:  www.youtube.com/watch?v=62UFbGsj5Jg.  For  reasons
we discuss in the following, the full scope of arity, particularly in theo-
retical  frameworks  involving  higher-order  structures,  is  yet  to  be
realized.

In recent years, an increasing number of voices coming from multi-
ple research communities, including network science [1, 2], mathemat-
ical  physics  [3–6],  biology  [7,  8],  neuroscience  [9,  10],  ecology  [11,
12],  complexity  science  [1,  13,  14]  and  computer  science  [9,  15,  16],
are  echoing  concerns  about  the  shortcomings  of  mainstream  theoreti-
cal  and  computational  paradigms  due  to  their  limited  binary  nature.
This trend was succinctly captured in a recent Quanta Magazine arti-
cle [17]. The preponderance of binarity and its potential limiting con-
sequences  to  the  development  of  new  science  can  only  be  adequately
understood  in  the  context  of  a  general  framework  integrating  higher
forms  of  arity.  This  paper  aims  to  provide  a  first  step  toward  such  a
framework. 

From  a  purely  mathematical  point  of  view,  higher  arity  has  been
largely  historically  ignored—almost  to  a  surprising  degree.  Although
relational  structures  [18,  19],  higher-order  matrices  [20]  and  n-ary
operations  [21]  have  been  known  since  the  inception  of  modern
mathematics  more  than  a  century  ago,  nonbinary  instances  of  such
structures have received much less attention than their binary counter-
parts.  More  recently,  the  development  of  higher-category  theory  [22,
23],  operads  [24,  25],  opetopes  [26,  27],  hypercompositional  algebra
[28,  29]  and  hyperstructures  [30,  31]  shows  a  growing  interest  in
ideas  involving  higher  arity,  despite  none  of  these  approaches  fully

410 C. Zapata-Carratalá and X. D. Arsiwalla

Complex Systems, 32 © 2024

https://www.youtube.com/watch?v=62UFbGsj5Jg


embracing it. In order to capture the essential features of higher arity,
we  will  pay  particular  attention  to  ternarity—the  next  step  above
binarity  in  the  arity  ladder—as  even  the  simplest  cases  display  ample
perplexing behavior. Associativity (or lack of thereof) in ternary com-
positions  and  ternary  products  of  3-matrices,  adjacency  in  3-uniform
hypergraphs,  and  the  integration  problem  for  3-Lie  algebras  are  all
instances  where  existing  binary  mathematical  formalisms  fail  to  ade-
quately  capture  the  relevant  properties  of  ternary  objects.  Our  obser-
vations  in  the  following  strongly  suggest  the  need  to  develop  new
mathematical  formalisms  to  faithfully  encode  genuinely  ternary  (and
higher) structures. 

All  this  compels  us  to  claim  that  technical  and  conceptual  chal-
lenges aside, the potential for scientific discovery and the unparalleled
opportunity for mathematical creativity make higher arity research an
almost irresistible proposition. 

The  outline  of  this  paper  is  as  follows:  we  start  with  a  conceptual
definition of arity in Section 2; we discuss the ubiquity of binary struc-
tures  and  the  need  to  search  for  genuine  higher  arity  in  Section  3;
we  analyze  a  series  of  ternary  mathematical  structures  and  argue  for
the  development  of  new  ternary  mathematical  theories  in  Section  4;
we  present  multiple  phenomena  from  several  scientific,  social  and
artistic  disciplines  to  illustrate  the  ubiquity  of  higher-order  phenom-
ena in Section 5; last, we comment on potential future research direc-
tions  and  emphasize  the  transdisciplinary  nature  of  higher  arity
science in Section 6. 

What Is Arity?2.

The  term  arity  [32]  is  a  noun  derived  from  words  such  as  binary,
ternary, n-ary and others, typically used to describe the number of ele-
ments involved in a relation or the number of arguments of an opera-
tion.  Other  terms  such  as  order,  degree,  adicity,  valency,  rank  or
dimension are sometimes used to refer to the same concept. However,
given  the  myriad  other  meanings  and  connotations  that  these  terms
carry  across  the  mathematical  sciences,  here  we  propose  to  fix  the
meaning of the far less frequently used term arity. Still on the topic of
nomenclature,  we  will  refer  to  the  fundamental  notion  of  perceived
countable  amount  as  numerosity  [33]  to  distinguish  it  from  the  more
technically loaded quantity or cardinality. 

We propose a concise conceptual definition of arity as follows. 

Definition 1. Arity is the exact numerosity of a relational or functional
interdependence between a countable collection of separate entities or
discernible parts of a system. 
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Arity may be generally understood as an elementary property of an
interaction  between  parts  of  a  system  quantifying  the  amount  of  dis-
crete  components  involved  in  the  interaction.  In  this  sense,  arity
appears  as  a  rudimentary  measure  of  atomic  complexity.  An  effective
way  to  isolate  the  notion  of  arity  from  neighboring  basic  concepts
related  to  numerosity  is  to  counterpoise  it  with  cardinality  (quantity,
size)  and  ordinality  (order,  sequence).  Figure  1  (figures  are  original
unless otherwise stated) illustrates the difference between the concepts
of three, third and ternary. 

Figure 1. The  numerosity  3  (orange)  in  multiple  guises  for  a  collection  of
three  objects  (teal).  Cardinality,  perhaps  the  most  direct  expression  of
numerosity, refers to notions of quantity (comparisons of a set with its parts)
or  size  (comparisons  of  a  set  with  other  sets).  Ordinality  refers  to  notions  of
sequence,  time  evolution  or  process  between  the  objects.  Arity  refers  to  rela-
tions or operations involving all three objects simultaneously.

The Binarity Bias and Irreducible Higher Arity 3.

Beyond the trivial arity 1, that is, the concept of oneness, current intel-
lectual discourse is dominated by one kind of arity alone: binarity. As
exemplified by the following cases, the vast majority of formal devices
frequently  used  to  articulate  models  and  theories  have  a  very  strong
binary flavor:

◼ “0 + 1.”  Operations,  ranging  from  elementary  arithmetic  to  sophisti-
cated notions in abstract algebra, predominantly take two arguments. 

◼ “x ∼ y.”  Relations  are  commonly  taken  between  pairs  of  objects;  cru-
cially,  equivalence  relations  and  symbolic  equality  “”  are  defined  to
be binary. 

◼ “A  B.”  Processes,  connections  and  transformations,  abstracted  in
functions,  graphs  and  categories,  rely  on  input-output  or  source-and-
target paradigms for pairs of objects. 
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◼ “cogito ergo sum.” Natural language and truth-valued logic are primar-
ily  built  from  unary  assignments  or  binary  operations  between  sen-
tences  and  propositions,  for  example,  subject-verb-object  constructions
and syllogisms. 

Without  a  broader  understanding  of  the  neurobiological  and  cul-
tural basis of arity, we can only speculate as to what causes this ubiq-
uity  of  binary  structures.  We  can,  nonetheless,  identify  some  factors
that are likely to contribute to the status quo: 

◼ Biological  and  cognitive  predispositions.  Some  notable  features  of
human  biology  appear  compatible  with  a  preference  for  binary  ideas:
bilateral body plan, the perception of chirality (left-right distinction) or
sexual  reproduction  in  a  binary  mating  pattern  are  some  examples.
Experience  of  time,  causal  thinking,  perceived  sameness  of  stimuli  and
limited working memory are aspects of human cognition that also seem
to favor binary structures. 

◼ Symbolic language constraints. Most recorded human languages have a
strong  sequential  nature  and  tend  to  string  symbols  in  linear  arrays.
This  is  particularly  true  for  the  Indo-European  languages  that  found
their  way  into  the  modern  standards  of  science  and  mathematics.  The
development  of  pre-digital  printing  technology  only  exacerbated  the
preponderance  of  linear  written  languages  among  early  scholars,  as  it
rendered  the  efficient  communication  of  nonsequential  symbolic  infor-
mation  practically  impossible.  Only  recently,  with  the  advent  of  digital
environments,  diagrammatic  languages  and  other  forms  of  nonsequen-
tial symbolic communication started gaining some traction. 

◼ Historical bias. Beyond just language, the influence of idiosyncratic cul-
tural  evolution  stretching  millennia  into  the  past  can  be  easily  recog-
nized  in  present-day  conventions  and  customs.  Modern  science  and
mathematics  are  relatively  recent  inventions  and,  despite  the  large  vol-
ume of research output that already exists, only a minuscule fraction of
the  virtual  universe  of  all  possible  ideas  has  been  charted.  Given  their
relative  simplicity  alone,  binary  structures  are  expected  to  be  studied
extensively before other higher arity generalizations are explored. 

The  thesis  that  most  of  current  science  and  mathematics  is  domi-
nated  by  binary  structures  could  be  contested  on  the  basis  of  the
existence  of  many  examples  of  operations  and  relations  effectively
involving  large  amounts  of  elements,  for  example,  large  datasets,
multivariable  functions  and  complex  algorithms.  Although  coarse
descriptions  of  such  examples  will  indeed  lead  to  instances  of  higher
arity,  a  closer  look  would  likely  reveal  a  composite  arrangement  of
fundamentally  binary  structures.  This  leads  us  to  the  contrasting
notions of irreducible arity and composite arity. 

To articulate these notions, we introduce the concept of ariton (this
term was first suggested by I. Altman during a private conversation).
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Definition 2. An  ariton  is  a  minimal  expression  of  a  fixed  arity.  More
precisely,  a  collection  of  n  objects  together  with  an  elementary
relation  or  operation  between  them  will  be  called  an  n-ariton;  a  con-
crete  pair  of  related  objects  is  a  binariton,  a  concrete  trio  of  related
objects is a ternariton, and so on.

Let  us  clarify  this  definition  with  a  few  examples.  Take,  for
instance, a field of numbers (, + , ·) and consider some elements in it
x, y, z ∈ .  The  expressions  x + y  and  y · z  are  binaritons  constructed
from  the  basic  operations  in  .  Expressions  involving  three  elements,
such as x + y + z or x · (y + z), formally define ternary operations, how-
ever, we would not call these ternaritons, but rather composite binari-
tons,  since  they  are  constructed  by  concatenating  binary  operations.
An example from Euclidean geometry is the operation that takes three

concurring segments a, b, c as arguments and gives the volume of the

parallelepiped  spanned  by  them;  the  object  V(a, b, c)  is  a  ternariton,
since  the  volume  of  a  region  of  space  is  a  primitive  notion  and  all
three  segments  are  needed  in  simultaneous  conjunction  to  define  the
parallelepiped.  In  contrast,  the  analogous  construction  in  linear  alge-
bra, that is, the determinant of the three vectors representing the seg-

ments in a three-dimensional space deta, b, c, is not a ternariton but

rather  a  composite  binariton,  since  it  can  be  written  in  terms  of  the

dot and cross products deta, b, c  a · bc or, choosing a basis, as a

polynomial  expression  of  the  vector  components,  which  uses  the
binary addition and multiplication operations of scalars. 

The  well-known  case  of  the  Borromean  rings  [13,  34]  is  perhaps
the  most  illustrative  example  of  composite  versus  irreducible  arity.
Consider  the  linkedness  relation  between  rings  depicted  in  Figure  2.
By carefully arranging multiple rings in space, it is easy to see that we
can define several linkedness relations of arbitrary arity. Then a natu-
ral  question  arises:  Given  a  particular  arrangement  of  rings,  are  any
two of the rings pairwise linked when considered in isolation from the
rest? Knot diagrams help us catalog topologically different configura-
tions  of  rings;  Figure  3  shows  some  possible  configurations  of  three
rings  based  on  crossing  patterns.  The  Borromean  configuration  is
remarkable,  since  the  isolated  pairs  of  rings  are  unlinked  despite  all
three being linked in conjunction. In other words, a physical model of
the Borromean rings will, in fact, hold together, while breaking one of
the  rings  will  unlock  the  other  two  from  each  other.  This  is  in  stark
contrast to the closed-chain configuration depicted in Figure 3, where
breaking one ring does not compromise the linkedness of the remain-
ing  two.  We  thus  see  that,  under  the  linkedness  relation,  a  chain  is  a
composite  binariton,  while  the  Borromean  configuration  is  a  ternari-
ton (Figure 4). 
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Figure 2. Two rings forming a binariton via the linkedness relation.

Figure 3. Knot  diagrams  for  three  rings  forming  (left)  an  open  chain  or  con-
catenation  of  binary  links,  (center)  a  closed  chain  or  triangle  of  binary  links
and (right) the Borromean configuration.

Figure 4. Three rings in Borromean configuration forming a ternariton via the
linkedness relation.

Aritons  appear  in  a  broad  spectrum  of  complex  systems  as  atomic
cells  of  interaction:  fundamental  forces  in  multi-particle  systems  [35,
36],  processing  nodes  in  computational  frameworks  [16,  37],  basic
chemical  reactions  in  metabolic  networks  [38,  39],  interspecies  rela-
tions in ecosystems [11, 40, 41], protein-protein interactions determin-
ing  biological  function  [42–44],  and  elsewhere.  The  notion  of  ariton
is  implicit  in  integrated  information  theory  [45],  it  appears  in  higher-
order  organization  [46,  47],  aritons  occurring  across  different  size
scales  appear  as  coarse  graining  [48],  and  aritons  persistent  in  time
give  rise  to  the  notion  of  individuality  [49].  From  this  viewpoint,  the
general  phenomenon  of  emergence  [50]  may  be  hypothesized  to  be  a
manifestation  of  arity  discrepancies  across  time  and  scale  that  could
be measured by some form of arity cohomology.
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These  first  few  examples  of  ternaritons  already  suggest  that  the
ubiquity  of  binary  structures  in  the  current  intellectual  mainstream
is  largely  a  historical  and  anthropocentric  artifact.  This  claim  will  be
further  consolidated  in  the  following  sections  by  the  many  examples
of  higher  aritons  appearing  in  multiple  areas  of  science  and  mathe-
matics. 

Ternary Mathematics4.

If  we  are  interested  in  finding  instances  of  arity  higher  than  2,  it  is
natural  to  reach  for  the  next  rung  in  the  arity  ladder:  ternarity.  The
benefits of focusing on arity 3 are twofold. First, the fact that it is the
smallest  arity  above  2  minimizes  the  cognitive  load  when  thinking
about  concrete  examples  of  multi-object  systems,  as  imagining  simul-
taneous  interacting  components  becomes  practically  unfeasible  for
human  minds  beyond  numerosities  not  much  larger  than  3  [51,  52].
Second,  a  good  understanding  of  ternarity,  in  combination  with  our
current  knowledge  of  binarity,  will  provide  a  manner  of  first  induc-
tion step in the arity ladder, similar to how we can think about higher
geometric dimensions aided by lower-dimensional analogies [53].

The  abstract  realm  of  mathematics  provides  the  ideal  grounds  to
systematically  investigate  ternarity  and  to  get  a  general  sense  of  its
fundamental  features.  Ternary  structures,  although  rarely  found  in
the existing literature, occupy a natural place in the landscape of math-
ematical  objects,  and  many  simple,  nontrivial  examples  are  readily
available. We introduce several such examples in this section by gener-
alizing familiar binary notions such as graphs, matrices, relations, cate-
gories  and  groups.  Interestingly,  however,  making  any  substantial
progress in developing a mathematical theory about these ternary gen-
eralizations,  one  that  is  at  least  comparable  to  those  available  for
their binary counterparts, will turn out to be very challenging. We sus-
pect that among the underlying causes for this difficulty are the limita-
tions imposed by the binarity bias, as explained in Section 3. 

A question that can hardly be avoided when thinking about gener-
alizations of binary structures is how to extend the notion of sequen-
tiality  into  higher  arities.  A  sequence  can  be  understood  as  iterated
binarity, as clearly exemplified by the simple case of a set with a suc-
cessor function. What are the higher arity analogs of sequences? And,
particularly,  what  is  the  ternary  analog  of  a  successor  function?
Although  approaches  using  simplicial  complexes  [1]  or  paths  on
hypergraphs  [54]  may  offer  some  preliminary  answers,  there  is  little
consensus on the full extent of these questions. 

A  particularly  profound  and  far-reaching  manifestation  of  the
prevalence  of  binary  structures  in  mathematics  is  the  ubiquity  of
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associativity.  From  transitivity  of  relations  in  sets  to  operations  in
algebras,  to  sequences  of  processes  in  algorithms,  to  composition  of
morphisms in categories, to concatenation of paths in networks, asso-
ciativity  is  deeply  ingrained  in  the  vast  majority  of  mathematical  for-
malisms  in  use  today.  Given  how  universal  associativity  seems  to  be
for binarity, we may hypothesize that a similar property plays an anal-
ogous  role  for  ternarity.  Could  a  form  of  generalized  associativity,
such as the naïve ternary extension of binary associativity 

(abc)de  a(bcd)e  ab(cde),

have  a  similarly  privileged  place  at  the  core  of  ternary  mathematics?
Excitingly, the answer to this question is not yet known. Ternary asso-
ciativity  is  a  very  elusive  concept,  and  it  appears  that  the  obvious
generalizations of binary associativity are ill suited to capture the alge-
braic  properties  of  even  the  simplest  examples  of  ternary  structures.
Despite  these  difficulties,  we  will  present  compelling  evidence  that
points  to  the  existence  of  a  well-defined,  if  perhaps  non-unique,
notion of ternary associativity.

In  the  following  sections,  we  aim  to  highlight  fundamental  struc-
tural properties of ternary objects; therefore, we will prioritize describ-
ing  their  compositional  and  algebraic  features  over  combinatorial
ones.  More  concretely,  this  means  that  we  will  remain  deliberately
agnostic with respect to the precise formalization of higher arity order-
ing  and  permutation  symmetry,  using  unordered  sets  whenever
possible  and  otherwise  choosing  convenient  (possibly  non-unique)
orderings  in  the  interest  of  conciseness.  A  more  detailed  treatment  of
these topics will follow in future work by the authors [55]. 

3-Uniform Hypergraphs4.1

The most minimalist mathematical expression of arity is encapsulated
in  the  notion  of  hypergraph.  Ordinary  graphs,  which  we  take  as
2-uniform  simple  hypergraphs  on  a  set  of  vertices  [56,  57],  encode
information  in  the  form  of  links  between  pairs  of  vertices,  and  we
thus  regard  them  as  binary  structures.  A  natural  ternary  generaliza-
tion is to consider 3-uniform simple hypergraphs, which encode infor-
mation in the form of ternary links between trios of vertices. Research
on  hypergraphs  typically  focuses  on  general  traits  and  large-scale
structure,  as  seen  in  recent  work  on  combinatorics  [58–60],  complex
networks  [14,  61],  higher-order  dynamics  [54,  62,  63]  or  computa-
tional  complexity  [64,  65].  In  contrast,  our  interest  in  hypergraphs  is
much  more  humble,  as  we  simply  need  to  discuss  some  elementary
topological properties of small uniform hypergraphs.

A connected k-uniform simple hypergraph will be called a k-graph
for  short.  We  will  regard  hypergraphs  as  a  general  template  to  study
the  basic  compositional  properties  of  n-ary  relations  and  operations.
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In this view, the emphasis is placed on hyperedges and their connectiv-
ity  instead  of  the  underlying  vertices—a  similar  perspective  to  how
category  theory  emphasizes  morphisms  and  their  compositions  over
individual  objects  [66].  Accordingly,  we  define  the  size  of  a  k-graph
simply  as  the  total  number  of  edges,  that  is,  the  cardinality  of  the  set
of  edges.  For  any  given  k-graph,  we  distinguish  two  kinds  of  vertices
according  to  their  degree,  that  is,  the  number  of  edges  containing
them: vertices of minimum degree are called external vertices, and all
other  vertices  are  called  internal  vertices;  if  all  the  vertices  have  the
same  degree,  they  are  all  defined  to  be  internal  except  when  the
k-graph  is  of  size  one  (the  unique  smallest  k-graph),  in  which  case
they  are  defined  to  be  external.  The  number  of  external  vertices  of  a
k-graph will be called its externality (Figure 5). 

Figure 5. Some 2-graphs and 3-graphs displaying degree counts; orange high-
lights correspond to the minimum degrees defining the external vertices.

The  central  notion  that  we  would  like  to  put  forward  in  this  sec-
tion is what we call motif adjacency. To motivate this idea, let us first
reinterpret the familiar notion of adjacency in ordinary graphs. Given
a particular graph G, adjacency is simply captured as a Boolean func-
tion on pairs of vertices defined to be 1 when there is an edge between
them  and  0  otherwise;  the  information  of  this  Boolean  function  is
encoded  in  the  so-called  adjacency  matrix  AG.  It  is  well  known  that

powers of the adjacency matrix AG
l

 encode information about the exis-

tence of paths of length l  between pairs of vertices. Conversely, keep-
ing  the  matrix  algebra  on  Boolean  values,  each  higher  power  of  the

adjacency  matrix  encodes  the  data  of  a  graph  that  we  denote  by  Gl.

The  graph  Gl
 has  the  same  vertex  set  as  G,  and  an  edge  between  a

pair  of  vertices  of  Gl
 is  drawn  if  and  only  if  there  exists  at  least  one

path  of  length  l  in  the  original  graph  G  connecting  them.  Our  key

observation is that the graph Gl
 can be generated by a motif detection

algorithm:  we  choose  our  motif  to  be  the  graph  Pl+1,  consisting  of  a
chain  of  l  edges  with  an  external  vertex  at  each  end,  and  define  an

edge of Gl
 between a pair of vertices whenever there exists a subgraph
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of  G that  is  isomorphic to  the motif  Pl+1  and  whose external  vertices
coincide  with  the  pair  of  vertices  under  consideration.  A  pair  of  ver-

tices  of  G  that  are  linked  by  an  edge  in  Gl
 are  said  to  be  motif  adja-

cent or, specifically, Pl+1 adjacent. 
Although anyone familiar with ordinary graph theory would proba-

bly  find  this  characterization  of  adjacency  unnecessarily  convoluted,
our  approach  opens  up  a  straightforward  way  to  define  adjacency  in
general  hypergraphs:  consider  a  hypergraph  H  and  a  k-graph  M  of
externality  m ≥ 2  to  be  taken  as  the  motif,  then  a  collection  of  ver-
tices {i1, i2, …, im} of H  is said to be M adjacent if there exists a sub-
hypergraph  S ⊂ H  whose  external  vertices  are  precisely  {i1, i2, …, im}
and  such  that  S ≅ M.  We  define  the  M-adjacent  hypergraph  derived
from H by the motif detection algorithm described earlier in the obvi-
ous  way.  Note  that  the  M-adjacent  hypergraph  is  m  regular  by
construction. A thorough treatment of motif adjacency, involving mul-
tiway  systems  of  hypergraph  rewrites  based  on  adjacency  relations,
would  take  us  too  far  beyond  the  scope  of  the  present  article.  The
authors  will  revisit  this  topic  in  connection  with  ternary  associativity
in future work [67]. 

Under  the  lens  of  motif  adjacency,  the  conventional  treatment  of
adjacency  in  ordinary  graphs  appears  somewhat  accidental,  in  that
the  motifs  chosen  Pl  always  happen  to  have  two  external  vertices,
thus  making  adjacency-derived  hypergraphs  always  2-regular,  that  is,
ordinary  graphs  again.  This  may  give  the  false  impression  that  adja-
cency  rewrites  are  internal  operations  in  the  class  of  2-graphs,  how-
ever, as illustrated in Figure 6, this is not the case when more general
motifs  are  considered.  Our  notion  of  motif  adjacency  can  be  thought
of  as  a  way  to  allow  for  more  topological  diversity  in  the  probing
tools  to  investigate  graph  structure:  all  Pl  graphs  are  topologically
equivalent  (homeomorphic  to  a  segment  regarded  as  topological
spaces), while equally simple motifs, such as the claw K1, 3 [68] in Fig-

ure 6 or small graphs containing cycles like the bull [69], display dif-
ferent  topologies.  This  being  said,  there  is  good  reason  for  the
extended  use  of  Pl  as  a  motif  in  ordinary  graphs:  a  Pl  motif  corre-
sponds  to  the  notion  of  path  of  length  l,  arguably  the  most  central
concept in graph theory. 

Recall  that  our  goal  was  to  extend  familiar  ideas  of  graph  theory
from  2-graphs  to  3-graphs.  Although  it  may  be  debatable  whether  it
is  worthwhile  to  consider  general  motif  adjacency  in  2-graphs,  the
reality  is  that  when  it  comes  to  3-graphs  we  do  not  have  much  of  a
choice.  This  is  directly  connected  with  the  sequentiality  problem:
there  is  no  consensus  on  what  constitutes  a  satisfactory  higher-order
generalization of a path or a sequence. Even if we accept some of the
definitions  of  paths  in  hypergraphs  that  have  been  proposed  [54,  70,
71], we must reconcile the fact that ternary (and higher) sequentiality
is no longer uniquely characterized.
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Figure 6. Adjacency rewrites.

A parsimonious and unbiased approach would suggest that we con-
sider  all  possible  isomorphism  classes  of  small  k-graphs  as  potential
motifs  for  adjacency  rewrites.  To  this  end,  we  catalog  small  2-graphs
and  3-graphs  according  to  their  size  and  externality  in  Figure  7,  giv-
ing  them  short,  suggestive  names  for  later  reference.  We  use  a  hyper-
graph  generalization  of  the  NAUTY  graph  isomorphism  algorithm
[72,  73]  implemented  in  the  SageMath  software  [74]  to  generate  all
the  isomorphism  classes  of  hypergraphs  of  a  fixed  size.  If  we  simply
count the number of isomorphism classes of 2-graphs and 3-graphs of
increasing  size,  we  find  a  first  instance  of  the  stark  contrast  between
binarity and ternarity: 

size 1 2 3 4 5 6 7 8 9 

# 2-graph 

isomorphism classes
1 1 3 5 12 30 79 227 710 

# 3-graph 

isomorphism classes
1 2 9 51 361 3683 47853 780725 15338226 

Similar  to how  adjacency in  ordinary  graphs can  be understood  as
iterated vee motif detection, that is, paths are sequences of edges, it is
natural  to  first  consider  the  smallest  3-graphs  of  Figure  7  as  motifs
and then build larger motifs by iteration. In this sense, given a collec-
tion  of  k-graphs,  we  define  their  splicings  as  new  k-graphs  resulting
from  attachments  of  external  vertices.  It  is  easy  to  see  that  2-graphs
and  3-graphs  in  Figure  7  are  generated  in  this  way  from  splicings  of
smaller  graphs.  Also  note  how  splicings  recombine  externalities  in
multiple  ways:  from  the  atomic  2-graph  of  externality  2  and  the
atomic 3-graph of externality 3 we find splicings of externalities 0, 1,
4, 5…. This motivates the notion of externality-preserving splicings or
compositions,  defined  as  any  splicing  of  a  collection  of  k-graphs  of
the  same  externality  n  that  results  in  a  k-graph  of  externality  n.  The
smallest  composition  in  the  class  of  2-graphs  is  given  by  the  vee
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shape, and its iteration recovers the usual notion of paths in ordinary
graph  theory.  In  contrast,  the  smallest  composition  in  the  class  of
3-graphs  is  no  longer  unique:  the  cone,  blades,  fish  and  triforce
shapes all represent splicings preserving externality 3.

Figure 7. Isomorphism  classes  of  2-graphs  and  3-graphs  of  increasing  size
labeled by externality.

Sections  4.2–4.4  will  vindicate  the  compositional  framework  of
k-graphs  described  in  this  section  as  an  effective  notational  paradigm
to  capture  the  basic  features  of  higher-order  matrix  multiplications,
higher arity relation composition and higher-order isomorphism com-
positions,  respectively.  Particularly,  we  will  see  how  the  cone,  the
blades,  the  triforce  and  the  fish  shapes  appear  naturally  as  canonical
ternary compositional patterns in all those different contexts. 

3-Matrix Algebras 4.2

Consider some field of numbers (, + , ·). (We could take a ring more
generally, since we really only make use of the additive and multiplica-
tive  structures;  the  existence  of  multiplicative  inverses  or  commuta-
tivity  plays  no  role  in  our  discussion.)  We  define  an  n-matrix  as  a
multi-index array of the form [ai1i2…in ], where ai1i2…in ∈  and each of

the  n  indices  ranges  in  some  finite  interval  ij ∈ {1, 2, , Nj}.  The  total

number  of  indices  n  is  called  the  dimension  of  a  and  the  tuple  of
lengths  of  the  index  ranges  (N1, N2, …, Nn)  is  called  the  size  of  a.
Although  known  to  the  pioneers  of  matrix  theory  J.  Sylvester  and
A. Cayley as far back as the mid-nineteenth century [20], such higher-
order matrices have been largely ignored during the history of modern
mathematics.  In  recent  years,  however,  n-matrices  have  received
renewed  interest  from  multiple  communities:  they  appear  in  modern
revisions of the classical theory of discriminants [75]; they offer natu-
ral examples of n-ary algebras [4, 76–78], particularly in applications
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in  mathematical  physics  [3,  79];  they  encode  the  adjacency  informa-
tion of regular hypergraphs [1, 2, 80]; they capture the algebraic data
of  association  schemes  [81,  82];  computer  scientists  use  them  as  data
structures  [83,  84];  and  they  provide  the  natural  grounds  to  explore
higher-order generalizations of the eigenvalue problem [85], invertibil-
ity [86, 87] or canonical forms [88]. 

Our  goal  is  to  investigate  the  basic  algebraic  structure  of  n-matri-
ces,  but  before  we  begin  our  discussion,  we  must  warn  against  the
temptation  to  consider  n-matrices  as  tensors  in  the  ordinary  sense  of
linear algebra. This is, in fact, a common practice—and the source of
a  great  deal  of  confusion—in  some  of  the  research  areas  mentioned,
particularly in machine learning [89] and physics [79]. It is important
to  keep  in  mind  that  the  basis  expression  of  a  tensor  in  conventional
linear  algebra  is  not  just  a  multi-index  array  of  scalars  but  an  entire
equivalence  class  of  such  arrays  defined  by  the  covariance  relation
induced  by  all  the  possible  choices  of  basis.  We  emphasize  that  we
take n-matrices simply as arrays of scalars, without any further struc-
ture,  and,  although  they  will  be  shown  to  share  many  features  with
ordinary  (rectangular)  matrices,  we  will  remain  open-minded  and  let
them speak for themselves before we discard them in an existing math-
ematical formalism. 

An  n-matrix  a  [ai1i2…in ]  can  be  effectively  thought  of  as  an  ele-

ment  of  the  set  N1N2⋯Nn .  This  suggests  a  hypergraphic  notational
convention  where  we  place  the  n-matrix  a  as  a  hyperedge  on  vertices

{N1 , N2 , …, Nn }.  As  can  be  seen  in  the  many  applications  men-
tioned, the most commonly occurring elementary n-matrix operations
are what we call index splicings. Given a collection of matrices of gen-
erally different dimensions and sizes, index splicings are constructions
that  produce  new  matrices,  provided  some  of  the  indices  range  over
the same interval. There are two kinds of splicing operations: by inci-
dence,  defined  simply  as  multiplication  of  matrix  elements  along  the
common  indices,  and  by  contraction,  defined  by  summing  over  or
tracing  out  the  common  indices.  Let  us  illustrate  these.  Take  an

n-matrix  ai1i2…in ,  an  m-matrix  bj1 j2…jm  and  an  l-matrix  ck1k2…kl  and

suppose  that  the  indices  i1,  j2  and  kl  all  range  over  the  same  interval

{1, 2, …, N}, an incidence splicing of a and b results in an (n +m - 1)-
matrix r whose entries are given by 

rki2…in j1…jm  aki2…in · bj1k…jm ,

and  a  contraction  splicing  of  a,  b  and  c  results  in  an  (m + n + l - 3)-
matrix s whose entries are given by

si2…in j1…jmk1k2…kl-1  

p1

N

api2…in · bj1p…jm · ck1k2…p.
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Note that general splicing constructions may combine several simulta-
neous  incidences  and  contractions  of  matrices.  Index  splicings  are
natural  minimal  operations  that  only  exploit  the  array  structure  of
matrices and the additive and multiplicative operations of their scalar
entries. Since splicings can only be defined on indices of the same size,
the  hypergraph  notation  suggested  above  naturally  captures  index
splicing  operations  as  n-graph  splicings  in  the  sense  defined  in  Sec-
tion 4.1. Let us illustrate the matrix splicing notation by applying it to
some elementary constructions with 2-matrices. Given two 2-matrices

a,  b  sharing  an  index  of  common  size,  we  can  define  their  ordinary
associative multiplication by a contraction splicing or we can define a
3-matrix by an incidence splicing:

where  both  splicings  correspond  to  the  same  underlying  2-graph

shape,  the  vee.  For  three  2-matrices  a,  b,  c,  more  2-graph  shapes  are
available  to  define  splicings.  Here  are  two  splicings  defined  with  the
cycle and claw shapes:

We  recognize  the  familiar  multiplication  and  trace  operations  for
ordinary  (rectangular)  matrices  in  the  splicings  shown,  but  we  also
find  two  operations  that  combine  2-matrices  to  give  a  3-matrix;  this
illustrates  that  splicings  of  matrices  generally  mix  dimensions.  The
hypergraph  notation  we  have  introduced  allows  us  to  see  that  an
effort  to  catalog  matrix  splicings  of  increasing  dimension  would  be
analogous  to  our  classification  of  the  isomorphism  classes  of  small
n-graphs  in  Section  4.1.  If  we  account  for  two  kinds  of  vertices
corresponding  to  incidence  and  contraction  splicings,  finding
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dimension-preserving splicings, like the familiar case of 2-matrix mul-
tiplication,  becomes  a  simple  combinatorial  task  on  the  vertices  of
small isomorphism classes of hypergraphs.

According  to  Figure  7,  the  next  higher  instances  of  dimension-
preserving splicings occur for a pair of 3-matrices in diamond configu-
ration and for trios of 3-matrices in cone, blades, triforce, clamp, boat
and fish configurations. Let us define some of these explicitly by mak-

ing  use  of  our  matrix  splicing  notation.  Given  two  3-matrices  a,  b
sharing  two  indices  of  common  size,  we  can  arrange  them  in  a  dia-
mond  shape  with  an  incidence  and  a  contraction  to  yield  a  3-matrix
again: 

Now  take  three  3-matrices  a,  b,  c.  Using  the  cone  shape  with  a  con-
traction in the index shared by the three 3-matrices and incidences in
the other pairs of shared indices, we define the following operation:

Using  the  triforce  shape  with  contractions  over  all  shared  indices  we
find:

As  we  anticipated  in  our  note  about  ternary  order  at  the  start  of
Section  4,  orderings  are  left  deliberately  loose  to  emphasize  composi-
tional  patterns  over  combinatorial  ones.  For  instance,  by  fixing  a
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sequential  order  of  indices,  the  formulas  we  have  given  become  well
defined  in  terms  of  standard  multi-index  array  notation;  however,  in
doing  so,  we  are  making  non-canonical  choices  and  multiple  order-
inequivalent  splicings  can  then  be  defined  by  combinatorial  permu-
tations  of  indices.  We  will  not  discuss  such  order-inequivalent
splicings here.

Dimension-preserving  splicings  induce  internal  operations  for
classes  of  regular  n-matrices,  that  is,  n-matrices  [ai1i2…in ]  whose

indices  all  range  over  the  same  interval  ij ∈ {1, 2, , N}.  We  call  a

dimension-preserving  splicing  operation  a  multiplication.  The  lowest-
dimensional  instance  of  such  an  internal  operation  is  the  single-index
contraction in the class of regular 2-matrices, that is, the familiar uni-
tal associative algebra of square matrices. Going one arity step higher,
we see from the examples above that splicings give ternary multiplica-
tions for regular 3-matrices. We will devote the rest of this section to
the study of the basic properties of these ternary algebras. 

A  regular  3-matrix  is  often  called  a  “cubic  matrix”  in  the  existing
literature  [3,  77,  79].  In  the  interest  of  brevity,  we  propose  the  port-
manteau  cubix  to  refer  to  the  same  concept.  The  space  of  cubices  of

size N over a field (or ring) , denoted by N
3
, is defined as the set of

regular  3-matrices  a  aijk,  where  i, j, k ∈ {1, 2, …, N},  endowed

with  the  obvious  entry-wise  -vector  space  structure.  By  considering
the 3-graphs of size 3 from Figure 7 and all the topologically distinct
distributions  of  index  incidences  and  contractions,  we  can  define  the
following  inequivalent  ternary  multiplications  for  any  given  trio  of

cubices a, b, c ∈ N
3
:

p1(a, b, c)ijk := ∑p1
N aijpbipkcpjk (cone)

p2(a, b, c)ijk := ∑p, q1
N aipqbpjqcpqk (blades)

p3(a, b, c)ijk := ∑p, q, r1
N aipqbpjrcqrk (triforce)

p4(a, b, c)ijk := ∑p, q, r1
N aijpbpqrcqrk (fish)

p5.1(a, b, c)ijk := ∑p, q1
N aijpbpjqcqjk (boat)

p5.2(a, b, c)ijk := ∑p, q1
N aipqbpjqcpjk (boat)

p6.1(a, b, c)ijk := ∑p, q1
N aijpbijqcpqk (clamp)

p6.2(a, b, c)ijk := ∑p, q1
N aijpbipqcqjk (clamp)
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p6.3(a, b, c)ijk := ∑p, q1
N aijkbpjqcpqk (clamp)

p7(a, b, c)ijk := ∑p1
N aijkbijpcpjk (cone)

Some  of  these  have  been  identified  in  the  literature:  p1  was  origi-
nally found in the context of relational schemes [81, 82] and has been
called  the  Bhattacharya–Mesner  product  in  later  work  that  further
investigated  its  properties  [86];  p3  and  p4  appeared  in  early  work  on
ternary  relational  structures  [90]  and  are  both  well  known  in  recent
cubic  matrix  research  [77].  To  the  best  of  our  knowledge,  p2,  p5,  p6
and p7 are novel and introduced here for the first time. 

Each  of  the  ternary  multiplications  induces  a  different  ternary

algebra  structure  on  the  space  of  cubices  N
3
, pi.  Although  they  all

coexist  simultaneously  on  N
3
,  we  will  consider  them  separately  and

postpone for future work the study of their interaction. This is particu-
larly  useful  to  highlight  the  analogies  between  ternary  algebras  of
cubices and the binary algebra of square matrices. Note that multipli-
cations p1, p2  and p3  all involve index incidences and contractions of
three  cubices  in  symmetrical  roles,  similar  to  how  multiplication  of
ordinary matrices involves index contractions of two matrices in sym-
metrical  roles.  Therefore,  we  argue  that  p1,  p2  and  p3  are  the  direct
ternary  generalizations  of  the  ordinary  multiplication  of  matrices.  In
contrast,  all  the  other  multiplications  are  asymmetric  in  their  splicing
patterns.  For  instance,  p4  involves  cubices  arranged  in  a  manner  of
input-throughput-output  scheme  or,  as  pictorially  suggested  by  the
fish  shape,  a  tail-body-head  scheme.  We  will  focus  on  the  algebras

N
3
, pi  i  1, 2, 3, 4,  which  we  call  the  cone,  blades,  triforce  and

fish cubix algebras, respectively. 
The  notion  of  identity  matrix  [δij]  as  the  neutral  element  for  ordi-

nary  matrix  multiplication  finds  natural  analogs  in  the  space  of

cubices N
3
. We can define the partial identities i1, i2  and i3  as stacks

of  ordinary  identity  matrices  in  each  of  the  three  directions  of  the
cubic arrays: 

[i1]ijk  δij

[i2]ijk  δjk

[i3]ijk  δik.

We can also define the tridentity as the unit diagonal cubix:

[I]ijk  δijk.

These four special cubices i1, i2, i3, I ∈ N
3
 satisfy identity-like proper-

ties  with  respect  to  ternary  cubix  multiplications.  With  the  aid  of  a
simple computer algebra implementation of cubix multiplication writ-
ten in Wolfram Language, we were able to systematically list all such
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properties. Let an arbitrary a ∈ N
3
, then we have the identity proper-

ties of the cone algebra:

p1(a, i2, i3)  a

p1(i2, a, i1)  a

p1(i3, i1, a)  a

the identity properties of the blades algebra:

p2(a, i1, i3)  a

p2(i1, a, i3)  a

p2(i3, i1, a)  a

the identity properties of the triforce algebra: 

p3(a, i1, I)  a

p3(i1, a, I)  a

p3(i3, I, a)  a

p3(a, I, i3)  a

p3(I, a, i2)  a

p3(I, i2, a)  a

and the identity properties of the fish algebra:

p4(a, i1, I)  a

p4(a, i3, I)  a

p4(a, I, i2)  a

p4(a, I, i3)  a

p4(a, I, I)  a.

Furthermore, the four identity cubices {i1, i2, i3, I} form partial subal-
gebras in each of the cubix algebras, in the sense that properties such
as  p1(i2, i1, i3)  I  or  p3(I, I, I)  I  hold.  With  some  possible  redun-
dancies  due  to  the  general  identity  equations  given,  there  are  63  such
properties in the cone algebra, 52 in the blades algebra, 31 in the tri-
force  algebra  and  28  in  the  fish  algebra.  All  these  represent  another
staggering  contrast  between  binarity  and  ternarity:  what  was  a  single
element  satisfying  a  single  identity  property  in  the  binary  algebra  of
square  matrices  turns  into  several  identity  elements  satisfying  a
plethora  of  identity-like  properties  in  the  ternary  algebras  of  cubices.
To  further  underline  the  kaleidoscopic  nature  of  the  phenomenon  of
identity  in  cubix  algebras,  note  that  currying  identity  matrices  into
cubix  multiplications  gives  binary  operations  of  cubices,  for  instance,
p1( · , · , i3) or p3( · , I, ·). There are a total (resulting from all the pos-
sible curryings of four identity cubices in each of the three arguments)
of 12 different such binary operations in each cubix algebra. To make
matters  more  interesting,  most  of  them  satisfy  no  obvious  axioms;  in
particular, they are non-associative, such as p3( · , I, ·), while some of
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them  turn  out  to  be  very  well-behaved,  as  is  the  case  for  p1( · , · , i3),
which is associative and unital.

Finally, we turn to the question of generalized associativity: what is
the  analog  of  binary  matrix  multiplication  associativity  for  ternary
multiplications  of  cubices?  More  specifically,  we  are  interested  in
knowing whether compositions of multiple ternary multiplications sat-
isfy some generic properties such as

p1(p1(a, b, c), d, e) 
?
p1(a, p1(b, c, d), e) 

?
p1(a, b, p1(c, d, e))

p2(a, p2(b, c, d), p2(e, f , g)) 
?
p2(p2(a, b, d), c, p2(e, f , g)),

etc.

This  question  was  partially  addressed  in  [76,  77],  whence  it  was
found  that  no  ternary  multiplication  of  cubices  satisfies  naïve  ternary
associativity (first line of equalities above) and that p4  satisfies the so-
called ternary associativity of the second kind:

p4(p4(a, b, c), d, e)  p4(a, p4(d, c, b), e)  p4(a, b, p4(c, d, e)).

This  axiom  corresponds  to  the  associativity-like  property  of  heaps
[91, 92], which are ternary algebraic structures that have been known
since  the  early  twentieth  century.  We  suspect  that  the  relatively  well-
developed  understanding  of  the  fish  algebra  found  in  the  existing
literature is due to the strongly sequential nature of the fish multiplica-
tion.  Ongoing  work  by  the  authors  [67]  indeed  suggests  that  there  is
an  elegant  argument  to  relate  the  heap  axiom  to  the  hypergraphic
properties  of  the  fish  shape.  Using  the  computer  algebra  implementa-
tion, we were able to check that p1, p2, p3 satisfy no axioms involving
five  or  seven  elements.  Axioms  involving  nine  or  more  elements  were
not  checked  due  to  the  limited  computing  power  available  to  the
authors.  For  all  we  know,  the  p1,  p2  and  p3  multiplications  may  sat-
isfy  relatively  intelligible  associativity-like  properties  involving  nine
elements,  they  may  satisfy  obscure  complicated  properties  involving
large amounts of elements or they may simply not be amenable to this
kind of axiom and fail to satisfy any form of higher associativity. The
mystery remains.

In our view, the question of ternary associativity perfectly encapsu-
lates  the  current  impasse  in  the  understanding  of  higher  arity  struc-
tures.  We  seem  to  have  a  confident  understanding  of  the  ingredients
involved; after all, cubices are just arrays of numbers and their multi-
plications  are  defined  by  simple  arithmetical  operations,  and  we  have
grasped  the  ternary  generalization  of  concepts  such  as  composition
and  identity.  Yet,  something  as  apparently  elementary  as  the  analog
of  associativity  defies  our  intuition  and  eludes  a  concrete  definition.
Making  any  significant  progress  on  this  front  will  surely  result  in  a
qualitative leap toward the general understanding of higher arity.

428 C. Zapata-Carratalá and X. D. Arsiwalla

Complex Systems, 32 © 2024



Ternary Relations4.3

Higher-order  relations  have  been  occasionally  studied  in  the  context
of logic and set theory since the mid-nineteenth century, as seen in the
pioneering  work  of  C.  S.  Peirce  [21,  93]  containing  explicitly  higher
arity  ideas.  However,  developments  in  logic  [94],  the  theory  of  rela-
tions  [19,  95]  and  formal  languages  [96]  focused  almost  exclusively
on  binary  relations  and  sequential  constructions.  We  do  find  select
research  pieces  on  relational  structures  [90,  97–100],  association
schemes  [81]  and  semantics  [101]  that  have  investigated  concrete
higher  arity  relations  in  detail,  although  most  work  in  these  areas  is
often  directed  toward  generalist  questions  such  as  algorithmic  com-
plexity  [102]  or  universality  [103,  104].  Our  goal  is  to  focus  on
binary  and  ternary  relations  to  highlight  their  elementary  composi-
tional properties.

A  binary  relation  between  two  sets  A  and  B  is  a  set  of  pairs
R ⊂ AB.  Diagrammatically,  we  represent  a  relation  as  an  edge  in  a
graph  whose  vertices  represent  the  related  sets.  When  elements  a ∈ A

and  b ∈ B  are  related,  we  write  Rab,  that  is,  (a, b) ∈ R ⇔ Rab.  Two
relations  can  be  composed  if  they  share  a  common  set:  let  two  rela-
tions  R ⊂ AB  and  S ⊂ BC;  the  composed  relation  is  defined  by
middle-element transitivity 

S◦R :  {(a, c) ∈ AC ∃ b ∈ B, Rab ⋀ Sbc}.

Composition  of  binary  relations  is  associative  by  construction,  and
the diagonal relations iA := {(a, a)) a ∈ A} act as compositional identi-
ties for any set A. A ternary relation is simply defined as a set of trios
of  elements  from  three  sets  T ⊂ ABC  and  we  will  write

(a, b, c) ∈ T ⇔ Tabc. Ternary relations are thus represented as triangu-
lar  hyperedges  in  the  relational  graph.  In  general,  n-ary  relations  are
defined  as  sets  of  n-tuples  and  are  represented  as  hyperedges  of  arity
n.  Note  that  our  order  agnosticism  clashes  here  with  the  need  to  use
Cartesian products of sets to define relations. We shall again leave out
any matters of order and sequentiality for ternary relations.

It  is  easy  to  see  that  compositions  of  n-ary  relations  via  middle-
element  transitivity,  generalizing  the  binary  composition  formula
given  and  middle-element  equality,  are  formally  indistinguishable
from  index  contractions  and  incidences  of  n-matrices  as  defined  in
Section  4.2.  It  follows  from  this  observation  that  the  compositional
theory  of  ternary  relations  can  be  developed  following  the  template
provided  by  the  compositional  framework  of  3-graphs.  The  discus-

sion in Section 4.2 applies here mutatis mutandis replacing N  spaces
by general sets and 3-matrices by ternary relations. 

Following  Figure  7,  ternary  arity-preserving  compositions  are
defined  analogously  to  the  3-matrix  multiplications  p1–p7  in
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Section 4.2.  We  give  here  the  explicit  set-theoretic  formulas  for  the
compositions induced by the cone, blades, triforce and fish shapes:

△1(R, S, T) := {(a, b, c) ∈ ABC ∃ x ∈ X,
Rabx ⋀ Saxc ⋀Txbc}

(cone)

△2(R, S, T) := (a, b, c) ∈ ABC ∃ x ∈ X,

y ∈ Y, Raxy ⋀ Sxby ⋀Txyc
(blades)

△3(R, S, T) := {(a, b, c) ∈ ABC ∃ x ∈ X,
y ∈ Y, z ∈ Z, Raxy ⋀ Sxbz ⋀Txzc}

(triforce)

△4(R, S, T) := {(a, b, c) ∈ ABC ∃ x ∈ X,
y ∈ Y, z ∈ Z, Rabx ⋀ Sxyz ⋀Tyzc}

(fish)

where  R, S, T  are  arbitrary  ternary  relations  among  the  sets  A, B,  C,
placed in external vertices in the hypergraph diagrams, and sets X, Y,
Z,  placed  in  internal  vertices.  Composition  △1  was  defined  indirectly
in  [81]  as  part  of  a  ternary  association  scheme,  and  △3,  △4  were
defined in [90] in a pioneering attempt to understand compositions of
ternary  relations.  To  our  knowledge,  △2,  △5,  △6,  △7  are  novel  and
introduced here for the first time.

The  question  of  ternary  associativity  remains  as  mysterious  for
ternary  relations  as  it  appeared  for  3-matrices  in  Section  4.2.  Never-
theless,  it  turns  out  that  ternary  relations  display  the  properties  of
ternary  identities  much  more  transparently  than  3-matrices.  Ternary
identity  relations  are  defined  by  partial  diagonal  subsets

iAAB := {(a, a, b) a ∈ A, b ∈ B} ⊂ AAB,  called  partial  identity
relations,  and  diagonal  subsets  IA := {(a, a, a) a ∈ A} ⊂ AAA,
called tridentity relations. Not only are these definitions direct general-
izations  of  the  binary  notion  of  identity  relation  as  diagonal  subset,
but  they  also  operate  diagrammatically  in  entirely  analogous  ways.
To see this, note that we can easily adapt the matrix splicing notation
introduced in Section 4.2 to represent relations between sets: a binary
relation  R ⊂ AB  and  a  ternary  relation  T ⊂ ABC  are  simply
denoted as 

The  compositional  behavior  of  binary  identity  relations  can  be  effi-
ciently captured in the following diagrammatic property:
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Similarly, two partial identities simplify a cone composition:

and  a  partial  identity  together  with  a  tridentity  simplifies  a  triforce
composition:

Ternary Categories4.4

The basic definition of a category [66, 105] has a strongly binary and
sequential  flavor:  morphisms  are  directed  assignments  between  pairs
of  objects.  Throughout  the  second  half  of  the  twentieth  century,  sev-
eral  developments  in  category  theory  gradually  introduced  higher
notions  that  extended  the  basic  binary  structure  of  categories:  multi-
categories  [106],  n-categories  [107],  weak  n-categories  [108],  poly-
categories  [109],  operads  [110]  and  opetopes  [26].  Despite  the
manifestly  higher-order  nature  of  these  generalizations,  they  all  carry
the intrinsic binary nature of arrow-like morphisms at their core. The
recent  work  of  N.  Baas  [30,  31]  underlines  this  aspect  of  typical
categorical  formalisms  and  addresses  its  limitations  by  proposing
so-called  hyperstructures,  which  serve  as  a  general  template  that  will
fit  higher  arity  generalizations  of  categories.  The  first  (and,  to  our
knowledge,  only)  attempt  to  systematically  investigate  category-like
structures  whose  morphisms  relate  general  collections  of  objects  can
be found in the work of V. Topentcharov in the late twentieth century
[103,  111].  The  concluding  remarks  of  [111]  include  a  mention  of
3-matrix  algebras  and  ternary  relations  as  putative  examples  of
ternary  categories  to  be  studied  in  detail  in  subsequent  work.  To  this
day,  it  seems  that  there  has  been  no  further  research  picking  up  that
thread.

Similar  to  how  the  class  of  binary  relations  on  sets  serves  as  a
model for the definition of ordinary categories [66], our discussion on
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ternary  relations  in  Section  4.3  offers  a  glimpse  at  what  ternary  cate-
gories may look like. Given the vast scope and high levels of abstrac-
tion  of  modern  algebra  and  category  theory  [112],  it  may  seem
surprising  at  first  that  there  is  no  agreed-upon  definition  of  ternary
category. Although we suspect that the binarity bias of Section 3 is at
play again here as a broad cause of the status quo, given our investiga-
tion into ternary operations in Sections 4.2 and 4.3, we can neverthe-
less confidently attribute the lack of a definition of ternary categories
to the poor understanding of ternary associativity. As soon as associa-
tivity-like properties are successfully captured for ternary objects such
as  3-matrices  or  ternary  relations,  natural  definitions  of  ternary  cate-
gories are likely to follow easily. 

Despite  the  fundamentally  binary  nature  of  ordinary  categories,
we  can  exploit  their  basic  properties  to  construct  ternary  structures.
We  will  see  that  this  is  not  dissimilar  to  how  in  Sections  4.2  and  4.3
we  defined  genuinely  ternary  operations  of  matrices  and  relations
despite  relying  on  strongly  binary  and  sequential  structures  such  as
number  fields,  arrays,  Cartesian  products  and  Boolean  algebra.  Our
goal  is  to  define  the  ternary  analog  of  the  elementary  notion  of  iso-
morphism in a category . Recall that an isomorphism between a pair
of objects A, B ∈  is defined as a pair of morphisms fitting in the fol-
lowing  commutative  diagram,  where  commutativity  amounts  to  the
property of inverse: 

We  can  easily  extend  this  notion  to  a  finite  family  of  n  objects  and
define  an  n-ary  isomorphism  as  a  commuting  cycle  of  morphisms
between  them.  In  particular,  due  to  our  interest  in  the  ternary  case,
we  define  a  ternary  isomorphism,  or  trisomorphism  for  short,
between a trio of objects A, B, C ∈  as a trio of morphisms fitting in
the following commutative diagram:

(triso)

It  follows  from  this  definition  that  each  of  the  morphisms  in  a  triso-
morphism is also a binary isomorphism; however, not any triangle of
binary  isomorphisms  between  a  trio  of  objects  forms  a  trisomor-
phism.  Although  trisomorphisms  are  determined  by  any  pair  of  the
trio  of  morphisms,  we  will  discuss  all  three  explicitly  to  highlight  the
ternary nature of the constructions we propose later. In this sense, we
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will  regard  trisomorphisms  as  a  manner  of  ternary  morphisms
between objects.

Binary  isomorphisms  in  ordinary  categories  can  be  represented  by
graph-like  diagrams,  as  directedness  of  morphisms  is  lost  due  to  the
existence  of  inverses.  Similarly,  we  may  represent  trisomorphisms  by
3-graphs  where  the  vertices  are  objects  and  the  hyperedges  are  given
by  commuting  cycles  of  trios  of  morphisms.  We  are  looking  for  ele-
mentary  ways  to  define  trisomorphism  compositions.  Let  us  begin  by
considering  the  simple  case  of  two  trisomorphisms  sharing  two
objects: 

This  diagram  suggests  that  two  trisomorphisms  arranged  this  way
may  be  spliced  somehow  to  define  a  binary  isomorphism  between A
and B. Indeed,  the morphisms α  h2◦f1  and β  h1◦f2  map between
the  correct  objects,  but  the  trisomorphism  condition  alone  does  not
imply that α and β are inverses. A sufficient condition for this to hap-
pen  is  the  natural  requirement  of  isomorphism  uniqueness:  in  any
arrangement  of  a  collection  of n-ary  isomorphisms,  whenever  more
than  one  binary  isomorphism  occurs  between  a  pair  of  objects,  they

must  all  be  equal.  In  the  case  at  hand,  this  amounts  to  g1  g2
-1,  and

it  is  a  simple  check  to  verify  that  this,  together  with  the  trisomor-

phism condition, implies that α  β-1.
Given  a  collection  of  higher  arity  isomorphisms  sharing  some

objects,  we  define  a  general  splicing  as  a  new  higher  arity  isomor-
phism  constructed  from  compositions  of  individual  morphisms  when
the  isomorphism  uniqueness  condition  holds  between  pairs  of  shared
objects. We can see, once more, that plausible splicings of higher arity
isomorphisms  are  suggested  by  hypergraph  splicings  defined  in  Sec-
tion  4.1.  Concretely  for  trisomorphisms,  Figure  7  offers  the  template
to define the simplest splicings. By parsing 3-graph shapes in different
ways, we find many possibilities to construct ternary compositions of
trisomorphisms, that is, arity-preserving splicings involving three triso-
morphisms. Given their particular ternary symmetry and the attention
we devoted to them in previous sections, we will focus on three partic-
ular constructions using the cone, blades and triforce shapes. 

The  definition  of  ternary  compositions  of  trisomorphisms  can  be
easily  understood  by  a  straightforward  diagrammatic  procedure:  we
begin with three objects A, B, C that we label as outer, then progres-
sively  throw  in  inner  objects  X,  Y,  Z  linked  by  trisomorphisms  with
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the  outer  objects  in  a  pattern  so  as  to  form  the  cone,  blades  and  tri-
force shapes. The goal is to get a trisomorphism diagram between the
outer objects as in equation (triso) by imposing the necessary isomor-
phism  uniqueness  conditions.  We  will  draw  compositional  diagrams
following simplicial-like orientations of labeled morphisms for ease of
notation. The cone composition is given by the diagram: 

Here, isomorphism uniqueness demands that the morphisms from the

outer  objects  to  X  all  be  the  same;  that  is,  g1  h2
-1,  g2  h3

-1,

g3  h1
-1;  then  the  outer  trisomorphism  is  simply  given  by  α  f1,

β  f2, γ  f3. The blades composition results from the diagram: 

Here,  isomorphism  uniqueness  demands  that  the  morphisms  between
X  and  Y  all  be  equal  g1  g2  g3  z  and  the  outer  trisomorphism
be  given  by  α  h2◦z◦f1,  β  h3◦z◦f2,  γ  h1◦z◦f3.  The  triforce  com-
position is given by the diagram:

Here,  isomorphism  uniqueness  demands  that  multiple  paths  between
outer  objects  compose  the  same  morphism,  which  turns  out  to  be
equivalent  to  the  condition  that  the  triangle  of  morphisms  between

434 C. Zapata-Carratalá and X. D. Arsiwalla

Complex Systems, 32 © 2024



the  inner  objects  be  a  trisomorphism.  Explicitly,  the  composability

condition  is  given  by  g1  g2
-1◦g3

-1,  g2  g3
-1◦g1

-1,  g3  g1
-1◦g2

-1,  so

that the outer trisomorphism is then defined by α  h2◦f1, β  h3◦f2,
γ  h1◦f3.

The  existence  of  identity  morphisms  on  all  objects  of  a  category
induces  notions  of  ternary  identities  similar  to  those  described  for
compositions  of  ternary  relations  in  Section  4.3.  Any  binary  isomor-
phism  induces  a  partial  identity  trisomorphism  by  trivially  inserting
an identity arrow to complete the triangle: 

Similarly,  the  tridentity  trisomorphism  can  be  constructed  on  any
object:

In order to clearly distinguish partial identities and tridentities in cate-
gorical diagrams, we use equal signs:

The  compositional  behavior  of  these  special  trisomorphisms  indeed
appears  identity-like  in  a  diagrammatic  sense  when  considering  the
compositions defined earlier. The cone composition satisfies a compat-
ibility condition between tridentity and partial identities:
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and a general simplifying property for partial identities:

Similarly,  an  identities  compatibility  property  holds  for  the  blades
composition:

and the triforce composition:

Finally,  a  general  simplifying  property  also  holds  for  the  blades
composition:
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and the triforce composition:

Note  the  similarities  between  these  diagrammatic  equalities  and  the
compositional  properties  of  identity  ternary  relations  shown  at  the
end of Section 4.3.

Although  so  far  in  our  research  on  trisomorphisms  we  have  not
been  able  to  make  any  further  progress  on  the  question  of  ternary
associativity, being able to work with precisely defined notions in cate-
gories  poses  a  great  advantage  over  other  set-theoretic  approaches,
such  as  cubix  algebras  (Section  4.2)  and  ternary  relations  (Sec-
tion 4.3), which tend to be formally heavier and slightly more ambigu-
ously  defined.  We  currently  place  our  hope  in  the  fact  that
trisomorphism compositions are ultimately defined in terms of binary
morphisms,  and  so  one  expects  binary  associativity  to  somehow per-
meate upwards into ternary and higher arity compositions. 

3-Lie Algebras4.5

Among all the mathematical structures that generalize binarity, higher
arity algebras are perhaps the ones that have received the most atten-
tion  [24,  113–118].  The  sustained  interest  in  n-ary  algebras  is  likely
to have been fueled by the developments in theoretical and mathemati-
cal  physics  discussed  in  Section  5.2.  This  has  been  particularly  true
for  n-ary  Lie  algebras,  also  known  as  Filippov  algebras  [119],  as
explained  in  the  excellent  review  [4].  We  will  focus  on  the  ternary
instance  of  these  algebras:  a  3-Lie  algebra  is  a  vector  space  endowed
with  a  trilinear  operation  (, [ , , ])  that  is  totally  skew  symmetric,

that is, [ , , ] : ⋀3  , and that satisfies the ternary Jacobi identity,
sometimes also called the fundamental identity: 

[x, y, [a, b, c]]  [[x, y, a], b, c] + [a, [x, y, b], c] + [a, b, [x, y, c]].

Ordinary  (2-)Lie  algebras  play  a  central  role  in  modern  physical
theories,  since  they  encode  the  infinitesimal  symmetry  of  Lie  groups
[120,  121].  A  celebrated  result  in  the  theory  of  Lie  groups  and  Lie
algebras  is  the  so-called  Lie’s  third  theorem  [122],  which  states  that
for  any  finite-dimensional  Lie  algebra  there  exists  a  unique  simply
connected  Lie  group  that  integrates  it.  This  means  that,  aside  from
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global  topological  aspects,  Lie  algebras  and  Lie  groups  are  conceptu-
ally  equivalent.  A  natural  question  then  arises:  Is  there  an  analog  of
Lie’s  third  theorem  for  3-Lie  algebras?  As  it  stands,  this  is  an  open
problem [4]. 

That this question remains unresolved to this day is perplexing for
several  reasons.  First,  given  the  highly  sophisticated  mathematical
theories  and  the  immense  computational  power  at  our  disposal,  we
might think that the relatively simple axioms of a 3-Lie algebra would
pose  no  significant  challenge.  But  perhaps  more  puzzling  is  the  fact
that,  among  the  vast  diversity  of  group-like  algebraic  structures  that
have  been  defined  over  the  years,  we  find  no  apparent  candidates  for
3-Lie  algebra  integrators.  Higher  arity  groups  with  naïvely  general-
ized  associativity  axioms  [117,  123–125],  hypergroups  with  opera-
tions  defined  on  subsets  instead  of  single  elements  [28,  29]  and  the
n-categorical  generalizations  of  groups  [126,  127]—despite  some
recent  partial  results  [128],  all  fail  to  act  as  3-Lie  algebra  integrators
in any significant degree of generality. 

What  makes  the  problem  of  3-Lie  algebra  integration  particularly
enticing  is  that  simple  examples  of  3-Lie  algebras  abound.  The  most
natural  instance  of  3-Lie  algebra  occurs  in  four-dimensional

Euclidean space: let {ei}i1
4

 be a basis in 4
 (regarded as an Euclidean

vector  space  with  the  standard  inner  product)  and  take  three  generic

elements  a, b, c ∈ 4,  then  the  manifestly  skew-symmetric  ternary
bracket defined by 

[a, b, c] :=

 e1  e2  e3  e4 

 a1  a2  a3  a4 

 b1  b2  b3  b4 

 c1  c2  c3  c4 

can  be  easily  checked  to  satisfy  the  ternary  Jacobi  identity.  Note  that
this is the canonical codimension-1 orthogonal complement operation

present in all Euclidean spaces: in 2
 it manifests as the complex struc-

ture  or  rotation  by  π / 2,  in  3
 as  the  usual  cross  product  Lie  algebra

(3)  and  in  n+1
 as  an  n-Lie  algebra  structure  in  general.  These

so-called  Euclidean  n-Lie  algebras  have  received  considerable  atten-
tion in the mathematical physics literature due to the famous Bagger–
Lambert–Gustavsson  model  [129]  that  used  a  3-Lie  bracket  to
describe  M2  brane  interactions.  Another  example  of  a  3-Lie  algebra
was found in efforts to quantize Nambu–Poisson structures [130]: for

three ordinary square matrices A, B, C ∈ N
2
, the bracket

[A, B, C] := tr(A)[B, C] + tr(B)[C, A] + tr(C)[A, B]

is  skew  symmetric  and  satisfies  the  ternary  Jacobi  identity.  Similar
constructions of 3-Lie brackets have also been found for cubices [78].
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n-Lie algebras have been related to their higher-categorical analogous
Lie  n-algebras  [131].  Despite  the  dangerously  similar  notation,  Lie
n-algebras  are  a  particular  kind  of  L∞-algebras,  which  are  structures
generalizing  ordinary  (2-)Lie  algebras  via  higher  homotopy  encom-
passing  many  important  objects  in  differential  geometry  and  mathe-
matical physics [132].

A  first  approach  to  the  general  problem  of  3-Lie  algebra  integra-
tion  is  to  simply  search  for  candidates  of  integrators:  Can  we  find  a
smooth  manifold  carrying  a  ternary  operation,  presumably  with
appropriate notions of identity and invariance, that somehow induces
an  infinitesimal  3-Lie  algebra  structure  on  (some  submodule  of  sec-
tions  of)  the  tangent  bundle?  By  analogy  with  the  case  of  2-Lie  alge-
bra  integration,  we  would  expect  the  integrating  ternary  structure  to
be  group-like,  satisfying  some  form  of  ternary  associativity.  If  this
turns out to be the case, the lack of integrator candidates comes as no
surprise  after  our  discussion  on  ternary  associativity  in  previous
sections. We thus conclude that a better understanding of higher asso-
ciativity  is  likely  to  result  in  substantial  progress  toward  the  long-
standing problem of n-Lie algebra integration. 

The difficulties resulting from the lack of general understanding of
ternary  structures  are  compounded  by  a  subtle  issue  already  present
in  the  binary  case:  J.  L.  Loday’s  coquecigrue  problem  [133].  Leibniz
algebras  are  noncommutative  analogs  of  Lie  algebras,  that  is,  vector
spaces  with  a  bilinear  operation  that  satisfies  the  Jacobi  identity  but
has  no  particular  symmetry  properties.  Leibniz  algebras  have  been
shown  to  be  integrated  by  Lie  racks  [134],  which  are  smooth
manifolds  carrying  a  compatible  binary  operation  that  satisfies  a  dis-
tributivity  property  instead  of  associativity.  All  Lie  groups  have  an
associated  Lie  rack  given  by  the  conjugation  operation.  The  coqueci-
grue  problem  emerges  because  two  inequivalent  results  are  obtained
when integrating a Lie algebra with a Lie group (in the usual fashion)
and  with  a  Lie  rack  (regarding  the  Lie  algebra  as  a  Leibniz  algebra).
This is particularly relevant to the ternary case because an elementary
way  to  obtain  a  ternary  operation  is  by  nesting  binary  operations.  In
the case of a Lie algebra (, [, ]), the ternary nested bracket [, [, ]] satis-
fies  the  ternary  Jacobi  identity  but  it  is  not  totally  skew-symmetric.
This is an instance of a 3-Leibniz algebra, more concretely a Lie triple
system  [135].  As  in  the  binary  case,  a  complete  solution  to  the  3-Lie
algebra integration problem would also need to account for 3-Leibniz
algebras. 

Recent  work  on  non-associative  ternary  algebras  [3,  77,  136]
shows  that  the  symmetry  properties  of  ternary  operations  should  not
be  limited  to  the  usual  skew-symmetrization  based  on  the  ±1  signa-
ture  of  permutations  and  invites  us  to  consider  more  general  repre-
sentations  of  3  and  S3.  This  suggests  that  the  definition  of  3-Lie
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algebras  with  totally  skew-symmetric  brackets  is  likely  to  represent
only  a  small  family  within  the  zoology  of  3-Leibniz  algebras.  Beyond
symmetry  considerations,  there  is  increasing  evidence  that  points  to
other ternary generalizations of the Jacobi identity. For instance, moti-
vated  by  the  ternary  commutator  of  bounded  operators  on  a  Hilbert
space, a modified version of the ternary derivation property appeared
in  a  recent  paper  examining  the  role  of  ternary  algebras  in  quantum
mechanics [137]. 

Topology and Geometry4.6

The  Borromean  rings  were  presented  in  Section  3  as  the  most  com-
pact  and  intuitive  manifestation  of  irreducible  ternarity.  Beyond  the
knot-theoretic generalization of the Borromean rings, known as Brun-
nian  links  [138,  139],  the  fields  of  topology  and  geometry  are  rich
sources  of  higher  arity.  We  suspect  that  the  spatial  nature  of  these
branches  of  mathematics  somehow  keeps  binarity  at  bay  and  favors
the  naturally  higher-order  notions  of  shape,  locus  and  structure.  A
synthesis of these ideas is beautifully captured in the work of N. Baas
on higher topological structures [140].

Although  we  postpone  discussing  any  concrete  ternary  topological
structures  for  future  work,  we  would  like  to  remark  that  topology
offers  a  highly  developed  toolkit  of  concepts  and  mathematical  theo-
ries that may aid in the systematic investigation of higher arity. Partic-
ularly,  the  theory  of  simplicial  complexes  and  topological  manifolds
[141] provides some useful notions to begin a systematic inquiry into
ternary  sequentiality.  A  sequence  is  a  very  special  kind  of  simplicial
complex, one whose pairs of 0-simplices are all connected by a single
1-simplex.  In  other  words,  topologically,  a  sequence  is  a  connected,
oriented  1-manifold  with  boundary.  The  natural  next  step  is
2-simplices,  which  match  the  representation  of  ternary  structures  by
3-graphs  (note  that  an  oriented  3-hyperedge  with  boundary  is  a
2-simplex)  used  in  previous  sections.  We  could  define  ternary
sequences  as  simplicial  complexes  triangulating  2-manifolds  with  the
same general topological properties as ordinary sequences. Under this
approach,  the  notion  of  ternary  sequence  is  far  from  unique,  since
there  exist  many  classes  of  topologically  inequivalent,  connected,  ori-
ented  2-manifolds  with  boundary.  A  disk  may  serve  as  the  simplest
obvious  template  for  the  topology  of  ternary  sequences;  however,
other  nontrivial  topologies  will  certainly  play  a  significant  role  in  a
complete theory of ternary sequentiality.

Ternary Science5.

In  this  section,  we  present  a  broad  spectrum  of  phenomena  that  dis-
play  explicitly  ternary  or  higher  qualities.  Our  intention  is  merely  to
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illustrate  the  far-reaching  scope  of  the  concept  of  arity  across
disciplines.  Depending  on  the  field  of  study,  the  higher  arity  perspec-
tive  may  provide  suggestive  new  approaches,  help  reconceptualize
established knowledge or simply offer a neat recollection of anecdotal
information.

Biology5.1

Ecology.  The  need  to  account  for  higher-order  interactions  between
species  has  long  been  noted  by  ecologists  [11,  12,  142–146].  More
specifically,  detailed  accounts  of  three-way  symbiotic  relations  have
been documented [147, 148].

Macromolecule  function.  The  biological  function  of  many  molecu-
lar  complexes  can  often  be  linked  to  low-arity  interactions  between
structural subunits [42–44]. Two explicitly ternary examples of molec-
ular complexes are porins, found in human cells [149], and the triple-
helix  configuration  of  DNA  strands,  which  is  less  stable  than  the
double helix but still occurs spontaneously in nature [150]. 

Gene  expression.  Single  discernible  traits  of  a  phenotype  are  often
the  result  of  complicated  interactions  of  several  gene  expression
processes  [151,  152].  Typical  approaches  to  gene  co-expression
employ  binary  network  methods  [153,  154];  however,  it  has  recently
been noted that higher-order gene interactions also play an important
role [155]. 

Organism  anatomy.  Higher-order  models  of  tissue  connectivity
have become increasingly popular in recent years [7, 156]. The struc-
ture of slime mold outgrowths [157], plant vascular systems and cog-
nition [158] or the function of glial cells in the brain [159] appear as
promising  applications  of  higher-order  tissue  connectivity.  Further-
more, in nervous systems, whose study has been dominated by binary
network  methods  [160,  161],  there  is  mounting  evidence  for  higher-
order connectivity and structure [10, 162–166]. 

Epidemiology.  The  propagation  of  infectious  diseases  is  typically
modeled  by  diffusion  mechanisms  on  binary  networks  [167];  how-
ever,  new  higher-order  approaches  based  on  simplicial  complexes
[168] and hypergraphs [169, 170] are becoming increasingly popular. 

Physics5.2

Multi-body  systems.  Beginning  with  the  classical  three-body  problem
[171],  there  is  a  long-documented  history  of  the  difficulties  faced  in
the  study  of  multi-particle  interactions  and  higher-order  effects  [35,
36,  61,  172].  Here  we  list  a  few  fascinating  examples  of  ternariton
interactions  in  classical,  quantum,  statistical  and  chemical  systems:  a
ternary Boltzmann gas equation [173], three-body interactions in col-
loids  [174,  175],  chemical  compounds  that  display  Borromean-like
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molecular  structure  [176–180],  Borromean-like  interaction  of  light
nuclei  [181–183]  and  Efimov  states  of  trios  of  particles  [184–186].
More generally, there is evidence that points at Brunnian-like interac-
tions (the higher-order generalizations of Borromean-like interactions)
in a range of condensed-matter systems [187]. 

Nuclear  interaction.  The  study  of  the  strong  nuclear  force  is  note-
worthy both in terms of the influence it has had in the development of
many-particle  formalisms  [188]  and  the  marked  ternary  flavor  of
quark  models  [189–192].  Furthermore,  the  search  for  quantization
schemes  to  derive  such  models  led  to  the  first  use  of  an  explicitly
ternary algebra in theoretical physics [193, 194]. 

Mathematical  physics.  This  discipline  deserves  our  special  atten-
tion,  since  most  of  our  mathematical  discussion  on  ternary  structures
in Section 4 is directly motivated by open problems in theoretical and
mathematical  physics.  Higher  arity  ideas  appear  in  mathematical
physics in four different flavors: 

◼ n-ary algebras. Since the first uses of cubic and ternary structures in the
mid-twentieth  century,  particularly  in  nuclear  physics,  as  discussed
earlier  [191,  193],  n-ary  algebras  have  appeared  in  physics-inspired
mathematical  research  as  n-ary  associative  algebras  [3,  114],  n-ary  Lie
algebras  (also  known  as  Filippov  algebras)  [4,  119,  129,  195],  cubic
matrix  algebras  [76,  79],  3-graded  algebras  [136,  196],  ternary  Clif-
ford algebras [118, 197], and Nambu–Poisson structures [198–201]. 

◼ Higher  field  theories.  The  application  of  modern  category  theory  to
theoretical  physics  has  led  to  the  development  of  higher  gauge  theories
[5],  higher  algebras  in  supergravity  [202],  homotopical  extensions  of
quantum  field  theories  [203],  homotopical  pregeometric  theories  [204,
205],  higher  topos  theory  [22],  polycategory-based  theories  [206]  and
operad-based  theories  [6].  Although,  as  we  pointed  out  in  Section  4.4,
most of these higher categorical notions are still firmly based on binary
morphisms,  they  represent  a  general  trend  toward  higher-order  con-
cepts.  The  notion  of  generalized  field  theory  (GFT)  recently  introduced
by  N. Baas  [207]  constitutes  an  explicit  instance  of  higher  arity  con-
cepts applied in the context of field theories. 

◼ Many-particle  systems.  The  mathematical  modeling  of  classical  many-
particle systems has led to the use of higher arity devices such as higher
generalization of the Boltzmann equation [173] or multi-particle instan-
taneous  interactions  [36].  On  the  quantum  side,  the  most  prominent
appearance  of  higher  arity  ideas  is  in  the  phenomenon  of  higher-order
entanglement [208, 209]. 

◼ Generalizations  of  duality.  The  notion  of  duality  appears  both  as  a
fundamental  aspect  of  the  mathematical  underpinnings  of  physics—for
example,  dual  vector  spaces  or  duality  functors—and  as  a  tool  to
capture equivalences between two seemingly different physical theories,
for example, dualities in string theory [210]. Recent research has found
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ternary  analogs  of  these  two  notions  of  duality:  a  triality  of  vector
spaces,  generalizing  the  notion  of  dual  pairing  in  the  context  of  the
study  of  the  SO(8)  symmetry  group  [211–214],  and  a  triality  of
equivalent  theories  in  physics,  algebraic  geometry  and  algebraic
topology [215]. 

Cognition5.3

Color  perception.  The  particulars  of  human  color  perception  [216,
217] offer an intuitive source of ternary phenomena in the form of the
experience  of  whiteness  as  emergent  from  the  simultaneous  combina-
tion of red, green and blue.

Flavor  perception.  In  the  subjective  experience  of  taste,  it  is  com-
mon to abstract and name a flavor from a complicated mix of chemi-
cal  components,  each  having  its  distinctive  individual  flavor  [218].
Interestingly,  recent  research  on  the  ion  channels  involved  in  the  ner-
vous  impulse  for  flavor  and  odor  perception  has  shown  that  this
higher  arity  is  present  even  at  the  structural  molecular  level:  several
molecules can engage with multiple binding sites of a single ion chan-
nel simultaneously [219]. 

Linguistics. Valency of verbs takes arity up to 4. 

Gestalt  psychology.  The  birth  of  gestalt  psychology  in  the  early
twentieth  century  was  an  attempt  to  describe  certain  phenomenologi-
cal aspects of visual perception such as “gist” or “context” that could
not be adequately explained by merely taking into account properties
of  individual  components  of  a  stimulus  [220,  221].  This  led  gestalt
theorists  to  operationalize  the  idea  of  “the  whole  being  greater  than
the sum of its parts” [222]. This notion of holism proposed in gestalt
psychology  precisely  alludes  to  higher  structures  and  organizational
principles  in  perception.  From  this  perspective,  illusions  such  as  the
Kanizsa  triangle  [223]  are  interpreted  as  perceptually  emergent  phe-
nomena  resulting  from  the  global  organization  of  the  parts  compris-
ing  the  stimulus.  It  has  been  reported  that  the  specific  processes  that
explain  the  emergence  of  these  phenomena  range  from  local  feature
detection to global strategies of perceptual organization [224]. A com-
plete  description  of  such  perceptual  phenomena  will  arguably  require
notions of higher arity. 

Conceptual  spaces.  A  conceptual  space  is  a  nonsymbolic  cognitive
model  for  higher-level  associative  representation  of  mental  constructs
and concept learning [225]. Conceptual spaces consist of a number of
quality dimensions derived from perceptual mechanisms and based on
geometric  similarity  measures.  For  example,  the  concept  of  taste  is
represented as a geometric shape, a tetrahedron, whose vertices corre-
spond  to  the  basic  tastes  (sweet,  sour,  bitter,  saline—associated  to
four types of receptors). Then any other of a plethora of representable
tastes  is  a  point  or  region  on  this  geometric  structure.  More  recently,
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this  has  been  extended  to  a  cognitive  theory  of  semantic  representa-
tions  [226].  This  framework  heavily  relies  on  higher-order  structures
and  would  immensely  benefit  from  a  mathematical  theory  of  higher
arity for classifying mental representations. 

Consciousness.  Considerations  of  holism  similar  to  gestalt  theory
have also influenced the neuroscientific study of consciousness, where
a  particular  informational  complexity  of  the  brain,  known  as  inte-
grated  information,  has  been  postulated  as  a  measure  of  conscious-
ness  [227,  228].  According  to  the  integrated  information  theory  of
consciousness, conscious experience is quantified in terms of the inte-
grated information generated by the brain as a whole over and above
the  information  generated  individually  by  any  of  its  parts  [229–231].
This  integrated  information  captures  the  processing  complexity
associated  to  simultaneous  integration  and  differentiation  of  the
brain’s  structural  and  dynamical  motifs  at  all  architectural  scales
[232–234]. The qualia of consciousness are thus represented as infor-
mationally  irreducible  structures  that  strongly  allude  to  notions  of
higher aritons [235]. 

Computation5.4

Hypernetworks.  Data  scientists  have  long  been  noting  the  short-
comings  of  binary  networks.  Abundant  research  has  been  published
advocating the use of hypergraphs and higher-order networks in data
science  and  computation  [2,  236].  The  need  for  higher-order  net-
works  and  models  has  also  been  proposed  in  the  artificial  neural
network and machine learning communities [9]. More recently, hyper-
network  architectures  have  been  used  for  addressing  the  weight-
sharing  problem  across  layers  of  deep  convolutional  and  recurrent
networks [237].

Generalized  logic.  The  core  limitations  of  ordinary  formal  lan-
guages  when  it  comes  to  describing  higher  arity  arise  from  (i)  the
sequential  nature  of  most  symbolic  representations  (typically,  strings
of  characters)  and  (ii)  from  the  use  of  binary  truth  values.  Progress
concerning  the  first  point  has  been  made  via  the  use  of  symbolic  rea-
soning  systems  that  exploit  two-  and  three-dimensional  diagrams  to
articulate  formal  reasoning.  In  particular,  automated  reasoning
systems  using  string  diagram  rewriting  methods  make  use  of  hyper-
graph structures formalized as tensor network diagrams [238]. As for
the second limitation, potential higher arity generalizations have been
formulated  as  formal  systems  equipped  with  multiple  symmetrical
truth values. Specific examples of this case are type theories and their
associated  semantics  that  do  away  with  the  law  of  the  excluded
middle [239]. 

Distributed  processing.  Modern  computer  science  is  undergoing
new  paradigm  shifts  from  single  input-output-based  sequential
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computation to distributed computation [240] on one hand and multi-
computation-based  processes  [16,  241,  242]  on  the  other.  While  the
former  is  concerned  with  distributed  algorithms  involving  simultane-
ous  message-passing,  [243];  the  latter  is  concerned  with  all  possible
threads  of  computation  in  parallel,  requiring  a  model  of  an  observer
to  determine  states  [16].  Both  of  these  paradigms  do  away  with
sequential  processes  and  offer  new  testing  grounds  for  higher  arity
representation  of  computational  processes.  Recent  examples  utilizing
these  paradigms  include  distributed  consensus  networks  and
blockchain systems [244]. 

Diagrammatic  quantum  computing.  In  recent  years,  categorical
quantum mechanics arose as a diagrammatic formalism for describing
quantum  processes  and  protocols  [245].  This  uses  two-dimensional
category-theoretic  string  diagrams—as  opposed  to  the  conventional
sequential  representation  of  operator  actions—for  formal  reasoning
within systems of parallel quantum processes [246]. A particular class
of  this  diagrammatic  quantum  process  algebra,  called  ZX-calculus,  is
used to represent and reason within quantum circuits [247]. This dia-
grammatic quantum formalism in fact gives a representation of quan-
tum  tensor  networks  and  has  been  extremely  successful  at  addressing
problems  related  to  quantum  circuit  simplification  and  optimization
[248–252].  This  framework  of  quantum  computing  naturally  allows
for  higher  arity  operators  and  has  recently  been  related  to  a  class  of
multiway rewriting systems [253, 254]. 

Economics5.5

Multiplayer  games.  The  competitive  paradigm  of  dyadic  games  has
been  extensively  studied  [255,  256];  however,  the  mere  addition  of  a
third  competitor  introduces  diplomacy  and  cooperation  effects  that
dramatically  increase  the  complexity  of  the  strategy  space  that  the
players  navigate  [257,  258].  A  multiplayer  game  that  requires  inputs
from  all  players  for  its  progression  can  be  naturally  regarded  as  a
higher arity relation between agents. Although relatively understudied
when  compared  to  two-player  game  theory,  multiplayer  game  theory
is already finding some promising applications in evolutionary theory
[259], linguistics [260] and machine learning [261].

Concurrent competition. The dynamics of competition, particularly
in  economic  and  financial  systems,  have  been  typically  modeled  suc-
cessfully  with  binary  networks  [262,  263],  though  in  recent  years
there  have  been  an  increasing  number  of  studies  that  approach  the
phenomenon of competition with higher-order methods [146, 264]. 

Tokenomics.  Digital  and  cryptographic  currency  technologies
[265,  266]  offer  a  flexible  template  where  generalized  paradigms  of
transaction,  for  example,  requiring  the  concurrent  participation  of
three  parties  in  any  exchange,  can  be  easily  implemented,  deployed
and studied. 
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Sociology5.6

Collaboration.  Human  societies  are  known  to  be  a  rich  source  of
instances  of  higher-order  organization  [236].  Collaborative  activities,
such as scientific research [267] or governance [268], give rise to natu-
ral aritons of concurrent human participation.

Association.  At  a  smaller  scale,  relationships  between  individuals
offer significant instances of low arity in the form of affectional bonds
[269] and small-group dynamics [270]. Romantic and sexual associa-
tions  are  perhaps  particularly  interesting,  given  the  observed  fre-
quency  disparity  between  pairs  and  multi-party  arrangements  [271],
which  we  may  hypothesize  as  a  socio-sexual  analog  of  the  predomi-
nance of binary structures in intellectual disciplines. 

Identity.  Belonging  and  group  recognition  in  complex  societies
often result in the intersection of multiple notions of identity on a sin-
gle individual [272, 273]. Higher arity concepts might become helpful
when  navigating  complex  social  environments  by  reducing  the  cogni-
tive load on the individual when dealing with conflict. 

Arts5.7

Music.  Western  classical  music  composition  [274]  and  repertoire
[275]  has  been  recently  investigated  under  the  lens  of  higher-order
information.  From  a  practitioner’s  point  of  view,  harmonic  relations
between tones in a tuning system are natural examples of higher arity
[276–278]. In this picture, chords can be regarded as harmony aritons
and  the  harmonic  development  of  a  piece  of  music  can  be  accurately
represented as a path in the harmony hypergraph. 

Architecture.  The  rigidity  properties  of  triangles  make  them  com-
monplace  as  structural  elements  in  construction  and  architecture
[279]. From the point of view of equilibrium mechanics, ternary struc-
tures appear as the manifestation of a basic and intuitive statics fact: a
tripod is the only piece of furniture that never wobbles. 

Ritual  and  spirituality.  Multiple  human  traditions  have  captured
cultural  and  mystical  beliefs  in  ternary  concepts  such  as  trios  of  enti-
ties or objects with some form of ternary symmetry [280]. Two promi-
nent  examples  are  the  concept  of  the  Christian  holy  trinity  [281]  and
the beliefs attached to symbols such as the triquetra or the valknut in
pre-Christian Norse and Germanic culture [282]. 

Toward Transdisciplinary Higher Arity Science6.

Although  higher  arity  methods  are  becoming  increasingly  popular
across disciplines and higher-order phenomena are something of a hot
topic among some research communities these days, most approaches
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are  often  limited  to  theories  and  methodologies  that  merely  extend
conventional  binary  ideas.  We  believe  that  higher  arity  concepts  and
techniques should be embraced in their own right, challenges notwith-
standing,  as  they  present  immense  potential  for  scientific  discovery
and  mathematical  creativity.  Indeed,  the  many  natural  phenomena
and  mathematical  structures  we  have  discussed  in  this  paper  offer
ample evidence for the existence of a rich universe of genuinely higher
arity ideas waiting to be explored.

In  the  early  stages  of  any  field  of  inquiry,  particularly  those  that
push  the  boundaries  of  human  intuition  as  higher  arity  does,  it  is
paramount  that  theoretical  accounts  do  not  venture  too  far  away
from  the  phenomena  they  attempt  to  describe  and  that  preliminary
models  remain  in  a  tight  feedback  loop  with  experiments.  Successful
development of higher arity science in the intellectual landscape of the
twenty-first  century  would  require  the  merging  of  formal  and  empiri-
cal disciplines and the blurring of boundaries among mathematics, sci-
ence  and  computation.  The  transdisciplinary  nature  of  higher  arity
ideas  is  perhaps  best  illustrated  by  the  potential  application  of  irre-
ducible  arity  as  a  measure  of  atomic  complexity  or  arity  cohomology
as a measure of emergent behavior. 

The prospect of these future lines of research becomes all the more
exciting  when  we  consider  how  poorly  we  currently  understand  the
simplest forms of higher arity. Beyond the well-documented history of
the  difficulties  faced  when  modeling  systems  with  ternary  or  higher
interactions,  even  the  most  elementary  examples  of  ternary  structures
behave in unexpected ways that cannot be easily grasped as direct gen-
eralizations of familiar binary phenomena. This intangible conceptual
barrier limiting all kinds of intellectual disciplines is what we may call
an  “unthought  frontier  of  science.”  The  present  paper  should  be
taken as a declaration of our determination to venture into uncharted
territories and a rallying call for others to join what promises to be a
thrilling expedition. 
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