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Computing  the  configuration  of  any  one-dimensional  cellular  automa-
ton  at  generation  n  can  be  accelerated  by  constructing  and  running  a
composite rule with a radius proportional to log n. The new automaton
is the original one, but with its local rule function composed with itself.
Consequently,  the  asymptotic  time  complexity  to  compute  the  configu-

ration  of  generation  n  is  reduced  from  On2-time  to  On2  log n  but

with  On2  (log n)3-space,  demonstrating  a  time-memory  tradeoff.

Experimental results are given in the case of rule 30. 
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Introduction1.

Compositions  of  cellular  automata  (CAs)  have  been  discussed  in  dif-
ferent  contexts  since  their  inception  decades  ago  [1],  but  their  rele-
vance  for  time  complexity  improvements  has  yet  to  be  determined
using formal asymptotic analysis. Indeed, compositions were explored
by Israeli and Goldenfeld [2] as so-called “coarse-graining,” and were
shown  to  have  implications  for  understanding  emergent  phenomena
in  complex  systems.  Riedel  and  Zenil  [3,  4]  further  explored  coarse-
graining,  finding  subsets  of  elementary  cellular  automata  (ECAs)  that
emulate all others, giving evidence of a pervasive universality. Perhaps
the  most  similar  algorithm  in  concept  to  the  one  described  herein  is
given  by  Gosper’s  hashed  implementation  of  the  Game  of  Life  [5].
This algorithm memorizes local recurrent spacetime patterns for Life-
like  automata,  but  performs  poorly  for  chaotic  structures.  Our  focus
on rule 30 in this paper stems from its notoriously chaotic nature and
perceived  lack  of  structure.  The  naive  method  of  computing  the
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configuration  at  generation  n  of  an  elementary  cellular  automaton

(ECA)  is  simply  to  update  row  by  row,  requiring  On2-time.  In  con-

trast,  CAs  with  nested  patterns  such  as  the  well-studied  rules  90  or
150 contain a fractal structure that allows for a given spacetime coor-
dinate to be determined in O(log n) [6].

Preliminaries2.

A  cellular  automaton  (CA)  is  composed  of  a  regular  grid  of  colored
cells whose colors are updated according to a certain rule that may be
described  by  a  rule  icon.  For  example,  the  complete  rule  icon  of  the
well-studied rule 30 CA is: 

■■■ ■■□ ■□■ ■□□ □■■ □■□ □□■ □□□

□ □ □ ■ ■ ■ ■ □

The rule icon is applied to a row of cells in a one-dimensional CA by
iterating through every cell in the row, comparing the colors of a cell
along with its two adjacent neighbors, and then updating the color of
the cell in the succeeding row (see Figure 1). Let ℱ  be a CA with grid
colors  indexed  by  the  integers  k  {0, 1, … , k - 1},  a  given  initial

state and local update rule f : k
2r+1  k. Here, r is a positive integer

that denotes the radius of the CA: the number of neighbor cells to the
left  and  right  of  the  current  cell  that  are  taken  into  account  when
applying  the  rule  icon.  These  cells  are  sometimes  referred  to  as  a
neighborhood.  For  example,  the  rule  icon  of  rule  30  shows  that  the
rule has radius 1 (see the above rule icon).

We will restrict our study of CAs to those with two colors by defin-
ing  Σ  2  {0, 1}  {□, ■}.  A  CA  will  subsequently  and  informally
refer to one that is one dimensional and two color. If a two-color CA
ℱ  has  radius  1,  then  we  call  ℱ  an  elementary  cellular  automaton
(ECA). Wolfram popularized a systematic numbering scheme for ECA
where  for  any  given  rule  k,  the  corresponding  rule  icon  can  be
obtained  by  taking  the  binary  digits  of  integer  k  and  assigning  them
as  outputs  to  the  set  of  binary  three-tuples:  the  numbers  0  through  7
in  decimal.  Using  the  above  example  rule  icon,  the  output  cells  are,

sequentially,  00011 1102,  which  is  3010.  There  are  22
3
 256  ECAs,

though many are mirrored and therefore exhibit the same behavior. 
A configuration X  〈x-(N-1)/2, … , x(N-1)/2〉 refers to a row of cells

having  N ∈ 2 + 1  indices.  It  will  be  convention  that  the  median  ele-

ment in the array has index i  0. When necessary to distinguish, Xn
ℱ

denotes  the  bi-infinite  configuration  of  ℱ  at  generation  n  (i.e.,  after
n - 1 applications of its local rule beyond the specified initial configu-

ration).  It  follows  that  Xn
ℱ  〈… , xi-2

n , xi-1
n , xi

n, xi+1
n , xi+2

n , …〉.  We
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explicitly define the global update of a configuration as 

Xn+1
ℱ  ⊕

i-∞

∞

f ⊕
j-r

r

xi+j
n

 (1)

and for an individual cell in Xn+1
ℱ

xi
n+1  f ⊕

j-r

r

xi+j
n

(2)

where  ⊕  denotes  concatenation  of  cells.  Borrowing  from  physics  ter-
minology,  n  reflects  a  dimension  in  time,  while  spatial  dimension  is

reflected  by  the  ith  index  of  Xn
ℱ .  A  CA  ℱ  has  a  simple  seed  if

X1
ℱ  ⋯□, □, □, ■, □, □, □, ⋯.

The  rule  icons  of  any  CA  with  radius  r  can  be  equivalently  repre-

sented  through  an  algebraic  form  as  a  function  f : Σ2r+1  Σ.  For

example,  for  any  generation  n + 1  and  index  i,  the  color  xi
n+1

 of
rule 150  can  be  expressly  computed  by  the  following  trivariate
function: 

xi
n+1  xi-1

n + xi
n + xi+1

n mod 2. (3)

The  rule  150  CA  is  well  known  for  its  fractal  self-symmetry,  and  its
algebraic  form  is  similarly  straightforward.  Meanwhile,  the  following
nonlinear discrete dynamical equation governs rule 30:

xi
n+1  xi-1

n + xi
n + xi+1

n

rule 150

+ xi
nxi+1

n

nonlinear term

mod 2
(4)

or equivalently, using Boolean algebra:

xi
n+1  xi-1

n ⊕ (xi
n ⋁ xi+1

n ). (5)

Notice that the rule function of rule 30 contains the algebraic form of
rule 150. Although this component of the function is rather simple in
and of itself, the abrupt complexity of rule 30 arises from the nonlin-
ear  term.  We  introduce  a  special  class  of  graphs  that  will  be  used  for
algorithmic analysis in Lemmas 1–4.

Definition 1. A  de  Bruijn  graph  is  a  directed  graph  representing  over-
laps between sequences of symbols. For a two-color CA ℋ  of radius r

and  local  rule  h,  its  de  Bruijn  graph  Bℋ
 will  have  Σ2r  22r  vertices,

each  representing  a  cell  neighborhood  of  length  2r.  The  vertices  each
have  two  outgoing  edges  corresponding  to  the  color  of  cell  (2r + 1).
These  edges  are  directed  to  the  vertices  that  represent  the  neighbor-
hood realized after a unit shift of the original neighborhood. We asso-
ciate  a  color  with  every  edge  that  corresponds  to  the  output  of  the
rule function h applied to the traversed neighborhood. 

The de Bruijn graphs have been well studied by Wolfram [1] in the
context  of  cellular  automata  (CAs).  Figure  A.1  details  the  de  Bruijn
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graph of rule 30, and Figure A.3 shows that these graphs have a very
regular structure. These graphs are used for DNA sequence assembly,
and  so  optimization  and  compression  of  them  is  an  active  area  of
research [7]. 

Automata Self-Composition3.

In  this  section,  we  show  the  local  rule  function  of  a  CA  can  be  com-
posed  with  itself  in  order  to  create  a  new  CA  satisfying  special  con-
straints on its configurations.

Definition 2.  Let  the  composition  of  two  rules  with  functions  f1  and  f2
be defined as

(f2 ◦ f1)(X)  f2 ⊕
i-r2

r2

f1 ⊕
j-r1

r1

xi+j . (6)

This  composite  rule  is  therefore  a  local  rule  with  radius  r1 + r2  and  a

function mapping X ∈ Σ2(r1+r2)+1  Σ.

By Definition 2, the composite rule f2 ◦ f1  consists of applying f1  to
all contiguous subarrays of length 2r1 + 1 in X with truncated bound-
ary  conditions  in  indexed  order  and  then  f2  to  the  concatenated
results. In short, the configuration is updated according to f1, then f2. 

Lemma 1 is vital to the correctness of our algorithm. 

Lemma 1. Given a CA ℋ  with local rule h and radius r, there exists a
CA    with  local  rule  g  and  radius  2r  such  that  for  every  n ∈   we

have that X2n-1
ℋ  Xn

. 

Proof. For self-composition, equation (6) is reduced to 

(h ◦h)(X) : Σ4r+1  Σ :X ↦ h ⊕
i-r

r

h ⊕
j-r

r

xi+j . (7)

Replacing h with h ◦ h in the global update (equation (1)) and assign-
ing a generation n gives

Xn+1


 ⊕
i-∞

∞

(h ◦h) ⊕
j-2r

2r

xi+j
n  ⊕

i-∞

∞

h ⊕
j-r

r

h ⊕
k-r

r

xi+j+k
n , (8)

and substituting xi+j
n+1  h⊕k-r

r xi+j+k
n  from equation (2)

 ⊕
i-∞

∞

h ⊕
j-r

r

xi+j
n+1  Xn+2

H . (9)

Then the composite update is simply two global updates according to
h in sequence. Hence, we construct  as follows: Let g  h ◦ h be the
local rule function of  with the same initial configuration as ℋ  (i.e.,
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X1
ℋ  X1

).  Then  we  have  that  X3
ℋ  X2


 by  equation  (9).  It  follows

that  by  repeated  application  of  the  global  update  for    for
n  1, 2, 3, … ,  the  evolution  for  ℋ  will  have  1, 3, 5, 7, …  2n - 1

and  X2n-1
ℋ  Xn

.  Intuitively,  running    for  a  single  generation  pro-
vides the same output configuration as running ℋ  for two generations
(Figure 1). □ 

k-fold of rule 30 2r + 1 Rule

1 3 30

2 5 535 945230

3 7 4245223…81390

4 9 1672 702…88750

Table 1. Several rules are shown that can be constructed through self-compo-
sition of rule 30, along with their radii.

Figure 1. Evolution  of  rule  30  beginning  with  a  simple  seed  and  its  two-fold
and  three-fold  composition  with  itself  (see  Definition  3).  Highlighted  rows
show a sample of equivalent configurations.

Now  we  extend  this  composition  of  automata  to  arbitrary  k  and
define a new terminology to describe CA that are of this type: 

Definition 3.  Given  a  CA  ℋ  with  local  rule  h  and  a  CA  ℱ  with  local
rule f , let hi  h for each 1 ≤ i. We say that ℱ  is a k-fold composition

of ℋ  if f  h1 ◦ h2 ◦⋯◦ hk-1 ◦ hk. Equivalently, we write f  h(k). 

It follows by the conclusion of Lemma 1 that  is a two-fold com-
position of ℋ . It is obvious self-composition is associative because the
composing functions are identical by definition. 
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Lemma 2.  Given  a  CA  ℱ  that  is  a  k-fold  composition  of  ℋ ,  if

X1
ℱ  X1

ℋ
 then Xkn-1

ℋ  Xn
ℱ . The composite local rule f  has radius kr. 

Proof. The k-fold composition of h is

h(k)(X) :X ↦ h ⊕
α1-r

r

h ⊕
α2-r

r

…h ⊕
αk-r

r

xα1+α2+⋯+αk (10)

and  maps  X ∈ Σ2(kr)+1  Σ.  The  proof  is  given  by  induction  on
repeated  application  of  Lemma  1.  Instead  of  two  updates  (k  2),
there are k configuration updates per input configuration, correspond-
ing to the number of nested applications of h by equation (10). □ 

Lemma 3 shows that a k-fold composition of a CA can be quickly
computed. 

Lemma 3. Given a CA ℋ , the k-fold composition ℱ  can be computed

in  Ok222kr-time.  Moreover,  Bℱ
 can  be  constructed  with  no  addi-

tional runtime complexity.

Proof.  Note  that  r,  the  initial  rule  radius,  is  constant.  It  is  the  time

complexity scaling with k that is to be resolved. By Lemma 2, h(k)  has

radius  kr.  In  order  to  compute  h(k),  the  local  rule  that  governs  ℱ ,

there  are  Σ2kr+1  22kr+1  configurations  (i.e.,  (2kr + 1)-tuples)  that

need  to  be  iterated  over.  Each  configuration  requires  Ok2-time  to

compute (see Example 1). 

The  corresponding  de  Bruijn  graph  Bℱ  (V, E)  is  straightforward

to  construct.  We  have  that  V  22r  vertices.  By  Definition  1,  the

de Bruijn graph Bℱ
 (see Figure A.3) has outgoing edges 

E  {vi ∈ V vi  (v2imod V, v(2i+1)mod V)},

where  index  i  in  binary  is  equal  to  the  corresponding  cell  configura-

tion  in  Σ2r.  The  color  of  each  edge  is  determined  by  the  computation
in the first half of this lemma. □ 

Example 1. We  illustrate  the  time  complexity  with  a  concrete  example
for r  1, k  3 and h as rule 30. This is a three-fold composition of

rule  30.  Since  we  have  2(kr) + 1  7,  there  are  27  possible  input  con-

figurations.  Let  X  〈□, □, ■, ■, □, ■, □〉 ∈ Σ7.  Applying  the  rule  h
once  to  X  in  accordance  with  Definition  2  gives  〈■, ■, □, □, ■〉.

Applying  h  twice  more  gives  〈□, ■, ■〉  and  then  ■.  So  h(3)(X)  ■.

Clearly, there is an Ok2 array of cells that have been updated.

The  use  of  a  de  Bruijn  graph  will  provide  sufficient  algorithmic
analysis for running a k-fold composition. 

Lemma 4. Let  ℋ  be  a  CA  having  a  local  rule  h  and  radius  r.  Let  Xn
ℋ

be the current configuration and let Bℋ
 be the de Bruijn graph of ℋ .

Then, Xn+1
ℋ

 can be computed in O(n)-time. 
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Proof.  To  compute  Xn+1
ℋ ,  a  walk  is  made  on  the  graph  Bℋ

 (see  Fig-
ure A.2  for  an  example  where  ℋ  is  rule  30).  Each  edge  traversed  is
constant time, where the edge chosen is based on the color of the next
cell in the configuration. For any finite configuration length, the walk

will  begin  and  end  at  {0}2r.  Because  Xn
ℋ

 has  size  O(n),  iterating

through  each  color  in  the  configuration  to  compute  Xn+1
ℋ

 requires
O(n)-time. □ 

We are prepared to complete our main result: 

Theorem 1.  Let  ℋ  be  a  CA  with  an  arbitrary  initial  configuration,  a

local  rule  h  and  radius  r.  The  configuration  Xn
ℋ

 can  be  computed  in

On2  log n-time. 

Proof. By Lemma 3, we require Ok222kr-time to generate the k-fold

composition  h(k)  of  ℋ .  Let  ℱ  be  the  CA  governed  by  the  local  rule

h(k),  and  by  the  same  lemma  we  construct  Bℱ .  By  Lemma  4,  we  can
compute the next generation of any configuration of ℱ  in O(n). 

From a simple geometric argument, it follows that the k-fold com-

position h(k)  reduces the time complexity from On2 to On2  k: for

each row that is computed, k are skipped relative to the original rule.
Then there exists an optimal maximum k such that the time complex-
ity to run the simulation from the initial configuration to n and com-
pose the rule is equivalent: 

n2

k
 k222kr (11)

up  to  an  arbitrary  constant.  It  is  assumed  that  n, k  are  much  larger
than  r,  the  initial  rule  radius.  If  the  time  complexities  are  equal,  the
total complexity is the complexity of either operation multiplied by a
constant  factor.  The  solution  to  the  equation  is  then  the  Lambert  W
function (also called the “product logarithm”) 

k(n) 
3

2r ln(2)
W0

2r ln(2)

3
n2/3 ∼ log n (12)

by  using  W0(n) ∼ log n  for  large  n  and  simplifying.  Thus  it  is  shown
that  the  time  complexity  is  dominated  by  the  exponential  number  of

states for a given k. In fact, the prefactor k2 in the cost to generate the
composite rule output can be any positive polynomial and not change
the asymptotic time complexity. □ 

Corollary 1. The  configuration  Xn
ℋ

 satisfying  the  conclusion  of  Theo-

rem 1 can be computed using On2  (log n)3-space. 

Proof.  Rearranging  equation  (11)  to  solve  for  the  number  of  states

Σ2kr+1  22kr+1 ∼ n2  k3  and  in  the  asymptotic  limit  of  large  n,  we

arrive at ∼ n2  (log n)3. □ 
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Experimental Results4.

In  this  section,  we  present  experimental  results  of  the  method
described  in  Theorem  1,  managing  to  remove  a  log  factor  from  the
base  runtime  complexity  of  trivially  running  an  ECA.  The  results  are
presented in Figures 2 through 4. The practicality of implementing the
code on a general-purpose computer is limited by two things: (1) mem-
ory  access  is  not  sequential  and  so  is  not  cache  friendly;  (2)  random-
access memory (RAM) is limited. As it turns out, the bitwise optimiza-
tions  described  by  Wolfram  [8]  are  several  times  faster  than  this
method for any reasonable number of generations because computers
parallelize packed bitwise operations and are efficient at reading mem-
ory linearly along an array. 

Figure 2. Constructing  a  larger-radius  automaton  improves  simulation  speed
on a given machine (Intel® Xeon® Gold 6230 CPU @ 2.10GHz). The bottom
panel shows the optimal radius as a function of time. It also shows the times
at  which  a  simulation  at  a  given  radius  surpasses  those  of  a  smaller  radius
given on the vertical axis. Given a fixed amount of simulation time t seconds,
the optimal radius is approximated by ⌊0.37 log2(t) + 9.4⌋.
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Figure 3. The machine in this experiment obeys an n2  k time complexity scal-

ing  law  (k  r)  to  compute  the  next  generation,  validating  the  use  of  equa-
tion (11).  The  ideal  curve  uses  r  1  as  a  reference,  so  if  f (r)  is  the  measured
number of seconds per squared generation, the ideal is fideal(r)  f (r  1) / r.

Figure 4. The  27-fold  composition  (4.5  petabytes)  will  overtake  the  bitwise-
optimized implementation in about 60 years on an Intel® Xeon® Gold CPU.
This takes the principle of delayed gratification to its extreme. This algorithm
might  only  be  practical  with  special  hardware.  The  curves  were  generated  by
extrapolating the quadratic time versus generation curves and the exponential
dependence on r for composite rule creation.
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These memory problems could be reduced if contiguous memory is
indexed in a de Bruijn sequence [9] of order 2r + 1 on the alphabet Σ.
This  is  because,  given  a  rule  input  〈■, □, ■〉,  the  adjacent  one  in  the
configuration  is  either  〈□, ■, ■〉  or  〈□, ■, □〉  which  is  a  bit  shift  left
and  rewriting  of  the  rightmost  bit  (flipped  depending  on  the  endian-
ness). If the index in memory is q, then the next transition will map to

memory  location  ⌊q / 2⌋  or  ⌊q / 2⌋ + 22r,  which  may  be  a  large  jump.
For two-color CAs with an equal probability of being black or white,
there  would  be  an  equal  chance  that  the  next  state  would  be  in  the
neighboring memory address. 

Nonetheless,  Figure  3  shows  that  computers  access  memory  at
speeds  independent  of  address  size  in  the  plotted  regime.  And  despite
the  aforementioned  memory  inefficiencies,  creating  large  composi-
tions  would  eventually  overtake  the  bitwise-optimized  implementa-
tion, as shown in Figure 4. 

Discussion5.

This  result  is  a  single  point  on  the  domain  of  spacetime  functional
dependencies  that  are  possible  for  computing  an  arbitrary  generation
of an elementary cellular automaton (ECA), and its method is straight-
forward.  On  a  computer,  it  relies  on  a  model  of  computation  that
treats  accessing  memory  with  an  address  of  size  O(log n)  as  taking  a
single  unit  of  time—the  canonical  RAM  model.  This  model  is  a  con-
vention  brought  about  by  advances  in  physical  machinery  [10].  One
might argue that a proper machine must be a Boolean circuit that uses
the  standard  basis  of  Boolean  operations.  But  in  this  computational
model  of  circuit  complexity,  the  interpretation  of  our  result  is  clear:
our  algorithm  increases  circuit  size  while  decreasing  circuit  depth  in
accordance  with  our  equations.  The  operation  of  traversing  an  edge
on the de Bruijn graph is realizable in constant circuit depth, which is
what  we  would  define  as  time  in  that  model.  With  the  contemporary
interest  in  interaction  nets,  graph  rewriting  and  category  theory,  per-
haps a different model of computation will become standard.

There  may  exist  faster  machines  to  compute  certain  cellular
automata  (CAs),  and  maybe  some  that  can  be  described  by  a  simple
equation over the integers. Open questions remain about the possibil-
ity of such formal machines, their potential for practical instantiation
and their implications for emergent phenomena in complex systems. 

Appendix

Figures  A.1  through  A.3  show  several  de  Bruijn  graph  examples.
Available  source  code  can  be  compiled  using  the  C++17  standard.
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Alternatively,  the  functions  are  implemented  in  a  few  lines  of  com-
piled Wolfram Language code. See
github.com/Joseph459459/automata-compositions.

Figure A.1. Rule 30’s state transition (colored de Bruijn) diagram. The left cell
in the edge rule {□, ■}  {□, ■} is read in from the cell configuration, and the
right cell is written to the configuration. Red edges visually indicate this out-
put cell is ■ and green edges indicate the output is □. As an edge is traversed,
the neighborhood is shifted left by one cell. 

Figure A.2. Computing  the  next  generation  of  the  ECA  rule  30  is  taking  a
walk  in  the  state  transition  graph.  The  figure  on  the  right  shows  the  walk
taken in the graph in order to produce 〈■, ■, ■〉.
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Figure A.3. One-fold, two-fold and three-fold composition state transition dia-
grams  of  the  rule  30  ECA  in  circular  embeddings  [11].  They  have  a  regular
structure, with any vertex at index i along the circular embedding having out-
going connections to vertices at 2i and 2i + 1 modulo the number of vertices.
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