Fast Simulation of Cellular Automata by
Self-Composition

Joseph Natal

Institute for Beam Physics and Technology

Karlsrube Institute of Technology

Hermann-Von-Helmboltz-Platz 1

Eggenstein-Leopoldshafen, Baden-Wuerttemberg 76344, Germany

Oleksiy Al-saadi

Department of Computer Science, Sonoma State University
1801 East Cotati Avenue

Rohnert Park, CA 94928, United States

Computing the configuration of any one-dimensional cellular automa-
ton at generation # can be accelerated by constructing and running a
composite rule with a radius proportional to log 7. The new automaton
is the original one, but with its local rule function composed with itself.
Consequently, the asymptotic time complexity to compute the configu-
ration of generation # is reduced from O(n?)-time to O(n? /logn) but
with O(n? / (log 7)*)-space, demonstrating a time-memory tradeoff.
Experimental results are given in the case of rule 30.
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I 1. Introduction

Compositions of cellular automata (CAs) have been discussed in dif-
ferent contexts since their inception decades ago [1], but their rele-
vance for time complexity improvements has yet to be determined
using formal asymptotic analysis. Indeed, compositions were explored
by Israeli and Goldenfeld [2] as so-called “coarse-graining,” and were
shown to have implications for understanding emergent phenomena
in complex systems. Riedel and Zenil [3, 4] further explored coarse-
graining, finding subsets of elementary cellular automata (ECAs) that
emulate all others, giving evidence of a pervasive universality. Perhaps
the most similar algorithm in concept to the one described herein is
given by Gosper’s hashed implementation of the Game of Life [5].
This algorithm memorizes local recurrent spacetime patterns for Life-
like automata, but performs poorly for chaotic structures. Our focus
on rule 30 in this paper stems from its notoriously chaotic nature and
perceived lack of structure. The naive method of computing the
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configuration at generation 7 of an elementary cellular automaton
(ECA) is simply to update row by row, requiring O(n?*)-time. In con-
trast, CAs with nested patterns such as the well-studied rules 90 or
150 contain a fractal structure that allows for a given spacetime coor-
dinate to be determined in O(log 7) [6].

| 2. Preliminaries

A cellular automaton (CA) is composed of a regular grid of colored
cells whose colors are updated according to a certain rule that may be
described by a rule icon. For example, the complete rule icon of the
well-studied rule 30 CA is:

I B NFE N (W (W MW 00
O O O | " N | O

The rule icon is applied to a row of cells in a one-dimensional CA by
iterating through every cell in the row, comparing the colors of a cell
along with its two adjacent neighbors, and then updating the color of
the cell in the succeeding row (see Figure 1). Let ¥ be a CA with grid
colors indexed by the integers Z;, = {0, 1, ..., k — 1}, a given initial
state and local update rule f : Z3"*! » Z,. Here, r is a positive integer
that denotes the radius of the CA: the number of neighbor cells to the
left and right of the current cell that are taken into account when
applying the rule icon. These cells are sometimes referred to as a
neighborbood. For example, the rule icon of rule 30 shows that the
rule has radius 1 (see the above rule icon).

We will restrict our study of CAs to those with two colors by defin-
ing 2 =2, =1{0, 1} = {O, m}. A CA will subsequently and informally
refer to one that is one dimensional and two color. If a two-color CA
¥ has radius 1, then we call F an elementary cellular automaton
(ECA). Wolfram popularized a systematic numbering scheme for ECA
where for any given rule k, the corresponding rule icon can be
obtained by taking the binary digits of integer k& and assigning them
as outputs to the set of binary three-tuples: the numbers 0 through 7
in decimal. Using the above example rule icon, the output cells are,
sequentially, 00011 110,, which is 3019. There are 22 = 256 ECAs,
though many are mirrored and therefore exhibit the same behavior.

A configuration X = (x_(n-1y2, --- » XN-1y2) efers to a row of cells
having N € 2N + 1 indices. It will be convention that the median ele-
ment in the array has index i = 0. When necessary to distinguish, X7
denotes the bi-infinite configuration of ¥ at generation 7 (i.e., after
n — 1 applications of its local rule beyond the specified initial configu-
ration). It follows that X7 = (..., x7,, x7, x7, x%,, x5, ...). We
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explicitly define the global update of a configuration as

X = EBf[EBxH,] (1)

i=—oc0 \j=-r1

and for an individual cell in X*_,

X = [EBxH,] 2)
j=-r

where @ denotes concatenation of cells. Borrowing from physics ter-
minology, 7 reflects a dimension in time, while spatial dimension is
reflected by the i index of X7. A CA ¥ has a simple seed if
X{=(-0,0,0m000 )

The rule icons of any CA with radius 7 can be equivalently repre-
sented through an algebraic form as a function f:X**! » . For
example, for any generation #+ 1 and index i, the color x/*! of
rule 150 can be expressly computed by the following trivariate
function:

X = X+ X7+ x%, mod 2. 3)

The rule 150 CA is well known for its fractal self-symmetry, and its
algebraic form is similarly straightforward. Meanwhile, the following
nonlinear discrete dynamical equation governs rule 30:

rule 150 nonlinear term

4
b = X+ xl g+ xPxl, mod?2 )
or equivalently, using Boolean algebra:

X=X @ (v xfg) 5

Notice that the rule function of rule 30 contains the algebraic form of
rule 150. Although this component of the function is rather simple in
and of itself, the abrupt complexity of rule 30 arises from the nonlin-
ear term. We introduce a special class of graphs that will be used for
algorithmic analysis in Lemmas 1-4.

Definition 1. A de Bruijn graph is a directed graph representing over-
laps between sequences of symbols. For a two-color CA ‘H of radius »
and local rule b, its de Bruijn graph B* will have |22’| = 2% vertices,
each representing a cell neighborhood of length 27. The vertices each
have two outgoing edges corresponding to the color of cell (2r + 1).
These edges are directed to the vertices that represent the neighbor-
hood realized after a unit shift of the original neighborhood. We asso-
ciate a color with every edge that corresponds to the output of the
rule function » applied to the traversed neighborhood.

The de Bruijn graphs have been well studied by Wolfram [1] in the
context of cellular automata (CAs). Figure A.1 details the de Bruijn
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graph of rule 30, and Figure A.3 shows that these graphs have a very
regular structure. These graphs are used for DNA sequence assembly,
and so optimization and compression of them is an active area of
research [7].

I 3. Automata Self-Composition

In this section, we show the local rule function of a CA can be com-
posed with itself in order to create a new CA satisfying special con-
straints on its configurations.

Definition 2. Let the composition of two rules with functions f; and f,

be defined as

(f2 0 f1)(X) =f2[é29f1(é19xi+,‘])- (6)

i=-r; \j=-n
This composite rule is therefore a local rule with radius 7y + 7, and a
function mapping X € X2r+2+1 5 3,

By Definition 2, the composite rule f, of; consists of applying f; to
all contiguous subarrays of length 27; + 1 in X with truncated bound-
ary conditions in indexed order and then f, to the concatenated
results. In short, the configuration is updated according to f1, then f;.

Lemma 1 is vital to the correctness of our algorithm.

Lemma 1. Given a CA H with local rule » and radius 7, there exists a
CA G with local rule g and radius 2r such that for every n e N we
have that X} | =

Proof. For self—composition, equation (6) is reduced to

o oh)(X):{zw . z:xHh(éh(éxiﬂ])}. o)

i=-r \J=-r

Replacing » with b ob in the global update (equation (1)) and assign-
ing a generation 7 gives

00 2r
X4, = @D ¢ Oh)[ © L

i=—co j==2r

- @ h[éh(éx?+;+kJ), ®)

i=—c0 \j=-7 \k=-r

and substituting x5! = h(@}__,x7, . ,) from equation (2)

- & h(@xﬁf] Xt ©)
i=—oc0 \j=-r

Then the composite update is simply two global updates according to
b in sequence. Hence, we construct G as follows: Let g = hoh be the
local rule function of G with the same initial configuration as H (i.e.,
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X} = X9). Then we have that X} = X§ by equation (9). It follows
that by repeated application of the global update for G for
n=1,2,3, ..., the evolution for H will have 1, 3,5,7,...=2n-1
and X}!_, = X9. Intuitively, running G for a single generation pro-
vides the same output configuration as running H for two generations
(Figure 1). O

k-fold of rule 30 ‘ 2r +1 Rule
1 3 30
2 5 535945230
3 7 4245223...81390
4 9 1672702...88750

Table 1. Several rules are shown that can be constructed through self-compo-
sition of rule 30, along with their radii.

535945230

42452238130157741347683853444557381390

-y "= .

Figure 1. Evolution of rule 30 beginning with a simple seed and its two-fold
and three-fold composition with itself (see Definition 3). Highlighted rows
show a sample of equivalent configurations.

Now we extend this composition of automata to arbitrary k& and
define a new terminology to describe CA that are of this type:

Definition 3. Given a CA H with local rule » and a CA F with local
rule f, let h; = b for each 1 < i. We say that F is a k-fold composition
of Hif f = hyohy o---0hy_q ohy. Equivalently, we write f = h®,

It follows by the conclusion of Lemma 1 that G is a two-fold com-

position of H. It is obvious self-composition is associative because the
composing functions are identical by definition.
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Lemma 2. Given a CA ¥ that is a k-fold composition of H, if
X7 = X} then X}

{ | = X7. The composite local rule f has radius kr.

Proof. The k-fold composition of b is

h(k)(X) . X = ]/][ é h( é h[ é x(1/1+(1/2+"'+ﬂ/k)]} (]—O)

a=—r \ar=-r ap=-r

and maps X e x2k*1 5 3 The proof is given by induction on

repeated application of Lemma 1. Instead of two updates (k = 2),

there are k configuration updates per input configuration, correspond-

ing to the number of nested applications of /# by equation (10). O
Lemma 3 shows that a k-fold composition of a CA can be quickly

computed.

Lemma 3. Given a CA H, the k-fold composition F can be computed

in O(kZZZkr)-time. Moreover, B can be constructed with no addi-

tional runtime complexity.

Proof. Note that r, the initial rule radius, is constant. It is the time
complexity scaling with & that is to be resolved. By Lemma 2, »® has
radius k7. In order to compute h®, the local rule that governs 7,
there are |21 =22¢*1 configurations (i.e., (2kr+ 1)-tuples) that
need to be iterated over. Each configuration requires O(/ez)—time to
compute (see Example 1).

The corresponding de Bruijn graph B” = (V, E) is straightforward
to construct. We have that |V| = 2% vertices. By Definition 1, the
de Bruijn graph B” (see Figure A.3) has outgoing edges

E={v; e V|v; > W2imod |V]> YQ2i+1ymod |V])}>

where index 7 in binary is equal to the corresponding cell configura-
tion in Z?”. The color of each edge is determined by the computation
in the first half of this lemma. O

Example 1. We illustrate the time complexity with a concrete example
for r =1, k = 3 and b as rule 30. This is a three-fold composition of
rule 30. Since we have 2(kr) + 1 = 7, there are 27 possible input con-
figurations. Let X = (0, 0, m, m, O, m, O) € 7. Applying the rule 5
once to X in accordance with Definition 2 gives (m, m, O, O, m).
Applying b twice more gives (O, M, m) and then m. So »¥(X) = m.
Clearly, there is an O(kz) array of cells that have been updated.

The use of a de Bruijn graph will provide sufficient algorithmic
analysis for running a k-fold composition.

Lemma 4. Let H be a CA having a local rule » and radius 7. Let X’/
be the current configuration and let B* be the de Bruijn graph of H.
Then, X*!, can be computed in O(7)-time.
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Proof. To compute X, a walk is made on the graph B* (see Fig-
ure A.2 for an example where H is rule 30). Each edge traversed is
constant time, where the edge chosen is based on the color of the next
cell in the configuration. For any finite configuration length, the walk
will begin and end at {0}*. Because X’ has size O(n), iterating
through each color in the configuration to compute X', requires

O(m)-time. O
We are prepared to complete our main result:

Theorem 1. Let H be a CA with an arbitrary initial configuration, a
local rule 4 and radius 7. The configuration X% can be computed in
O(n2 /log n)-tirne.

Proof. By Lemma 3, we require O(k?22*")-time to generate the k-fold
composition »® of H. Let ¥ be the CA governed by the local rule
h® and by the same lemma we construct B”. By Lemma 4, we can
compute the next generation of any configuration of F in O(#n).

From a simple geometric argument, it follows that the k-fold com-
position h® reduces the time complexity from O(n?) to O(n? / k): for
each row that is computed, k are skipped relative to the original rule.
Then there exists an optimal maximum k such that the time complex-
ity to run the simulation from the initial configuration to # and com-
pose the rule is equivalent:

n2
== k22K (11

up to an arbitrary constant. It is assumed that 7, & are much larger
than 7, the initial rule radius. If the time complexities are equal, the
total complexity is the complexity of either operation multiplied by a
constant factor. The solution to the equation is then the Lambert W
function (also called the “product logarithm”)

3 2rIn(2
_ [ 7 In( )112/3] ~ log n (12)
2r1n(2) 3

by using Wy(n) ~ log n for large » and simplifying. Thus it is shown
that the time complexity is dominated by the exponential number of
states for a given k. In fact, the prefactor k? in the cost to generate the
composite rule output can be any positive polynomial and not change
the asymptotic time complexity. O

k(n)

Corollary 1. The configuration X' satisfying the conclusion of Theo-
rem 1 can be computed using O(n2 / (log 1)*)-space.

Proof. Rearranging equation (11) to solve for the number of states
|p2kr+l| = 22kl - 52 [k3 and in the asymptotic limit of large 7, we

arrive at ~ n* /(log n)*. O
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I 4. Experimental Results

In this section, we present experimental results of the method
described in Theorem 1, managing to remove a log factor from the
base runtime complexity of trivially running an ECA. The results are
presented in Figures 2 through 4. The practicality of implementing the
code on a general-purpose computer is limited by two things: (1) mem-
ory access is not sequential and so is not cache friendly; (2) random-
access memory (RAM) is limited. As it turns out, the bitwise optimiza-
tions described by Wolfram [8] are several times faster than this
method for any reasonable number of generations because computers
parallelize packed bitwise operations and are efficient at reading mem-
ory linearly along an array.

x10°
10° 4 r=2
— r=3
—r=4
— — r=5
§ — r=6
£ —_—r=T
g 4] — r=8
S0 o,
& — r=1
=
103 4
10~3 10~2 1071 10° 0.0 0.5 1.0 1.5 2.0 2.5 3.0
t (seconds) t (seconds)

-=--- optimal radius

radius overtaken

104 10-3 102 10! 10°
t (seconds)

Figure 2. Constructing a larger-radius automaton improves simulation speed
on a given machine (Intel® Xeon® Gold 6230 CPU @ 2.10GHz). The bottom
panel shows the optimal radius as a function of time. It also shows the times
at which a simulation at a given radius surpasses those of a smaller radius
given on the vertical axis. Given a fixed amount of simulation time ¢ seconds,
the optimal radius is approximated by [0.37 log, () + 9.4].
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Figure 3. The machine in this experiment obeys an 7> / k time complexity scal-
ing law (k =7) to compute the next generation, validating the use of equa-
tion (11). The ideal curve uses r = 1 as a reference, so if f(r) is the measured
number of seconds per squared generation, the ideal is figea () = f(r = 1) /7.
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Figure 4. The 27-fold composition (4.5 petabytes) will overtake the bitwise-
optimized implementation in about 60 years on an Intel® Xeon® Gold CPU.
This takes the principle of delayed gratification to its extreme. This algorithm
might only be practical with special hardware. The curves were generated by

extrapolating the quadratic time versus generation curves and the exponential
dependence on 7 for composite rule creation.
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These memory problems could be reduced if contiguous memory is
indexed in a de Bruijn sequence [9] of order 2r + 1 on the alphabet Z.
This is because, given a rule input (m, O, m), the adjacent one in the
configuration is either (0O, m, m) or (O, M, O) which is a bit shift left
and rewriting of the rightmost bit (flipped depending on the endian-
ness). If the index in memory is g, then the next transition will map to
memory location |q/2] or |q/2]+ 2%, which may be a large jump.
For two-color CAs with an equal probability of being black or white,
there would be an equal chance that the next state would be in the
neighboring memory address.

Nonetheless, Figure 3 shows that computers access memory at
speeds independent of address size in the plotted regime. And despite
the aforementioned memory inefficiencies, creating large composi-
tions would eventually overtake the bitwise-optimized implementa-
tion, as shown in Figure 4.

| 5. Discussion

This result is a single point on the domain of spacetime functional
dependencies that are possible for computing an arbitrary generation
of an elementary cellular automaton (ECA), and its method is straight-
forward. On a computer, it relies on a model of computation that
treats accessing memory with an address of size O(log #n) as taking a
single unit of time—the canonical RAM model. This model is a con-
vention brought about by advances in physical machinery [10]. One
might argue that a proper machine must be a Boolean circuit that uses
the standard basis of Boolean operations. But in this computational
model of circuit complexity, the interpretation of our result is clear:
our algorithm increases circuit size while decreasing circuit depth in
accordance with our equations. The operation of traversing an edge
on the de Bruijn graph is realizable in constant circuit depth, which is
what we would define as time in that model. With the contemporary
interest in interaction nets, graph rewriting and category theory, per-
haps a different model of computation will become standard.

There may exist faster machines to compute certain cellular
automata (CAs), and maybe some that can be described by a simple
equation over the integers. Open questions remain about the possibil-
ity of such formal machines, their potential for practical instantiation
and their implications for emergent phenomena in complex systems.

Appendix

Figures A.1 through A.3 show several de Bruijn graph examples.
Available source code can be compiled using the C++17 standard.
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Alternatively, the functions are implemented in a few lines of com-

piled Wolfram Language code. See

github.com/Joseph459459/automata-compositions.

-]

Figure A.1. Rule 30’s state transition (colored de Bruijn) diagram. The left cell
in the edge rule {00, m} - {0, W} is read in from the cell configuration, and the
right cell is written fo the configuration. Red edges visually indicate this out-
put cell is m and green edges indicate the output is O. As an edge is traversed,
the neighborhood is shifted left by one cell.

Figure A.2. Computing the next generation of the ECA rule 30 is taking a
walk in the state transition graph. The figure on the right shows the walk

taken in the graph in order to produce (m, m, m).
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Figure A.3. One-fold, two-fold and three-fold composition state transition dia-
grams of the rule 30 ECA in circular embeddings [11]. They have a regular
structure, with any vertex at index i along the circular embedding having out-
going connections to vertices at 2i and 27 + 1 modulo the number of vertices.
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