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Control  of  chaos  methods  have  been  successfully  applied  to  many
small,  closed,  chaotic  systems;  however,  there  is  a  difficulty  in  expand-
ing them to be applicable to large, open, chaotic systems. In this paper,
a  novel  method  of  manipulating  chaotic  systems  using  hybrid  cellular
automata  is  proposed  and  evaluated.  Four  experiments  are  performed.
The first experiment examines hybrid cellular automata in the presence
of  perturbations  to  the  initial  conditions.  The  second  experiment  ana-
lyzes  the  relationship  between  the  total  number  of  perturbations  and
the  certainty  that  hybrid  states  will  change.  The  third  experiment  ana-
lyzes the reachability of hybrid systems using complexity measures. The
fourth  experiment  analyzes  how  phase  transitions  are  affected  by  high-
impact hybrid schemes. 

Keywords:  control of chaos; cellular automata; hybrid cellular automata; 
reachability; block entropy; structural entropy; block decomposition 

method; algorithmic information dynamics

Introduction1.

Chaotic and complex systems often have large nonlinear responses to
miniscule changes in conditions. Control of chaos methods attempt to
steer  a  system  toward  a  desired  behavior  by  giving  calculated  minute
adjustments to the trajectory of a system in its dynamic attractor. 

Hybrid  cellular  automata  are  proposed  as  a  method  of  chaos  con-
trol for real-world, open systems, specifically in cases where the manip-
ulator  wants  to  change  a  local  state  but  not  remove  chaotic  behavior
from the general system.

Control of Chaos 1.1

Many  proposed  control  of  chaos  applications  involve  a  delicate  bal-
ancing  act  of  only  perturbing  the  conditions  when  absolutely  neces-
sary.  This  is  done  under  the  physical  interpretation  of  conserving
energy. Unfortunately, in large enough systems, it becomes difficult to
computationally determine these exact points in time. 

In the presence of other introduced uncertainties, these small, inten-
tional perturbations can be canceled out by noise. This is unfortunate
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news  for  the  practical  implementation  of  chaos  control  in  large-scale,
open, real-world systems.

Recently,  control  of  chaos  has  been  applied  to  the  Lorenz  63
model:  a  simplified  model  of  atmospheric  convection  [1].  In  that
study,  an  oscillation  around  a  single  loop  of  the  attractor  was  imple-
mented  using  perturbations  that  were  less  than  3%  of  the  size  of  the
measurement error. 

Control  of  chaos  has  also  been  applied  in  some  cases  to  coupled
lattice  maps,  which  can  be  argued  are  a  generalization  of  cellular
automata.  Many  real  systems  that  can  be  modeled  as  coupled  lattice
maps  are  impossible  to  control  completely,  and  it  would  be  much
more beneficial to manipulate them locally into desired states. 

Traditional  control  of  chaos  methods  require  large  computations
to determine the optimal control placement. Also, the control is reana-
lyzed at time steps much smaller than the Lyapunov time.

Hybrid/Nonuniform Cellular Automata1.2

Hybrid/nonuniform  cellular  automata  are  cellular  automata  where
the  rules  applied  across  the  input  are  nonuniform.  This  has
interesting  implications  for  reachability  and  complexity  of  these
hybrid systems [2]. 

An  example  of  hybrid  rule  configuration  is  illustrated  in  Figure  1.
The original cells are shown in white, and the hybrid cell is shown in
red.  Nonuniform  cellular  automata  can  demonstrate  behavior  that  is
not found in uniform cellular automata.

54 54 54 30 54 54 54 54 54 54 54 54

Figure 1. A rule scheme of a hybrid cellular automaton.

One-Dimensional Hybrid Cellular Automata1.2.1

In  one-dimensional  hybrid  cellular  automata,  the  Hamming  distance
between  hybrid  and  nonhybrid  states  is  exaggerated  because  the
hybrid  cell  can  restrict  the  flow  of  information.  This  can  lead  to
behavior  like  Figure  2,  where  rule  30  is  hybridized  with  a  single
instance of rule 156. In this paper, two-dimensional cellular automata
are studied to avoid this property.

Unfortunately,  many  previous  studies  of  chaos  control  and  hybrid
cellular  automata  employ  one-dimensional  systems  where  this  prob-
lem is apparent. In [3], a control of chaos system is implemented on a
one-dimensional  coupled  map  lattice  system  that  acts  over  its  two
nearest  neighbors,  similar  to  a  one-dimensional  cellular  automaton.
Because  it  only  acts  over  its  two  nearest  neighbors,  information  can
be restricted by a single hybrid cell or control pinning. 
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Figure 2. Elementary cellular automaton rule 30 hybridized with rule 156.

Methods2.

In this section, the method of hybrid cellular automata for manipulat-
ing complex and chaotic cellular automata is presented. Additionally,
complexity  measures  are  proposed  as  bounds  to  estimate  the  reacha-
bility of a system from various hybrid schemes.

Hybrid Cellular Automata for Manipulating Complex and 

Chaotic Systems
2.1

Cellular  automata  are  governed  by  the  exchange  of  information
between  locally  interacting  cells.  Resulting  from  this,  a  cellular
automaton  attractor  will  be  characterized  from  how  information
moves between the cells. 

In chaotic and complex systems, perturbations may have nonlinear
or critical effects. However, the effects of one small perturbation may
cancel  out  another  perturbation,  and  this  is  undesirable  for  develop-
ing robust control and manipulation techniques. In this situation, per-
turbations travel over the system’s attractor. 

A  much  more  robust  method  is  when  the  attractor  actually
changes.  Hybrid  cellular  automata  do  this  simply  by  changing  the
rules in certain locations, which causes the behavior of local points to
differ.  This  will  lead  to  different  behavior  in  the  unperturbed  state,
and thus the attractor has been modified. 

As  an  example,  an  “attractor  sample”  of  a  77  two-dimensional
cellular  automaton  is  compared  with  a  77  two-dimensional  hybrid
cellular  automaton  in  Figure  3.  The  original  system  is  the  Game  of
Life  cellular  automaton;  the  modified  system  changes  a  single  cell’s
rule with two-dimensional totalistic code 797.  
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 An attractor sample is generated using a large set of random initial
conditions,  evaluated  by  the  system  for  several  iterations.  The  condi-
tions  are  then  enumerated,  and  the  connections  between  input  and
output are put into a graph. For both systems, the same initial condi-
tions  are  used  to  generate  the  graphs  of  their  respective  attractor
samples.

(a) (b)

Figure 3. (a) An attractor sample of a 77 cellular automaton; and (b) a 77
hybrid cellular automaton using the same set of initial conditions. 

Reachability of States and Complexity Measures2.2

Many  complex  and  chaotic  systems  will  eventually  thermalize  into
equilibrium  states  or  limit  cycles.  For  cellular  automata,  this  means
that the rate of formation and dissipation of structures within the sys-
tem has become equal.

The equilibrium states and long-term behavior of these systems can
be  analyzed  using  different  complexity  measures.  The  measures  are
applied  to  the  global  state  at  each  time  step  to  analyze  the  dynamics
of these systems with respect to time. 

Four  complexity  measures  are  employed:  block  entropy,  structural
entropy,  lossless  compression  and  the  block  decomposition  mea-
sure [4]. 

Block Entropy2.2.1

Block  entropy  is  the  application  of  Shannon  entropy  [5]  to  a  system
decomposed  into  blocks  of  a  predetermined  size.  Block  entropy  was
first applied to study cellular automata in [6], where it was employed
as  a  first  predictor  before  other  complexity  measures  were  employed.
The  histograms  of  the  block  entropy  of  6000  random  binary  strings
of  200  bits  are  shown  in  Figure  4.  This  is  done  for  block  sizes  of  5
and 10. 
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Figure  4. Histograms  showing  the  distribution  of  6000  random  strings  sorted
by block entropy for: (a) size 5; and (b) size 10.

 The  Wolfram  classes  describe  cellular  automaton  behavior  as  sta-
ble  (class  I),  periodic  (class  II),  chaotic  (class  III)  or  complex
(class IV).  Figure  5  shows  the  Wolfram  classes  with  spacetime  dia-
grams  of  different  cellular  automata.  The  horizontal  axis  shows
space,  while  the  vertical  axis  going  down  displays  time.  In  Figure  5,
(a) is stable, (b) is periodic, (c) is chaotic, and (d) is complex.

(a) (b)

(c) (d)

Figure 5. Examples of the Wolfram classes: (a) rule 8 stable (class I); (b) rule 7
periodic  (class  II);  (c)  rule  30  chaotic  (class  III);  and  (d)  rule  110  complex
(class IV).
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For  systems  that  form  permanent  structures,  such  as  Wolfram
class II  and  class  IV  systems,  the  shape  of  block  entropy  with  respect
to  time  will  appear  different  for  different  sizes  of  block  entropy.  In
Figure  6,  the  block  entropy  versus  time  for  the  four  systems  from
Figure 5  is  evaluated  with  a  random  string  of  200  bits  for  2000
time steps. 

While  the  block  entropy  can  be  used  to  distinguish  between  the
behavioral  classes,  the  behavior  trending  toward  equilibrium  differs
for  both  measurements  for  rule  110.  When  block  entropy  of  size  5  is
used,  the  behavior  increases  to  an  equilibrium  level,  while  block
entropy of size 10 shows a decrease to an equilibrium level.
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Figure 6. The block entropy of the example systems in Figure 5 run over 2000
iterations for: (a) block entropy size 5; and (b) block entropy size 10.

Structural Entropy2.2.2

Structural  entropy  is  a  generalization  of  block  entropy  to  blocks  of
nonuniform  size.  Unlike  block  entropy,  structural  entropy  is  not
dependent upon measurement parameters. 

Definition 1. Let  a  structure  be  defined  as  a  group  of  cells  adjacent  to
each other sharing the same value.

Structural entropy S is a measure of the total entropy of the struc-
tures  present  within  a  string.  This  is  taken  from  the  log  of  the  multi-
plicity of the total number of unique combinations for which a string
can  be  configured  while  preserving  the  size  and  count  of  structures
within said string. Structures will only be preserved if they are next to
their  opposite  color,  so  the  multiplicity  of  configurations  of  each
color can be separated. The multiplicities of both color structures MW

(white  structure  multiplicity)  and  MB  (black  structure  multiplicity)
can be separated, as seen in

S = log(MW *MB). (1)

The  multiplicity  of  each  color  is  found  by  finding  the  total  multi-
plicity of all possible structures, then removing the duplicates. This is
done  by  taking  the  factorial  of  the  total  number  of  structures  and
dividing  by  the  product  of  the  factorials  of  the  count  of  occurrences
of each structure. The structural multiplicity M of a color is expressed
in equation (2).

Definition 2. Let  A  be  the  total  number  of  structures  and  D  be  the  list
containing the occurrences of each structure:

M =
A !

∏n=1
A Dn !

. (2)
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In Figure 7, a histogram shows the structural entropy of 6000 ran-
dom strings of 200 bits. It can be observed that the average is around
115,  with  a  deviation  of  around  5.  The  left  skew  is  due  to  the  fact
that there is a maximal structural entropy for strings of finite size. 
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Figure 7. A histogram of the structural entropy of strings of size 200 bits. 

The  plots  in  Figure  8  show  the  example  structural  entropy  applied
to  the  example  systems  from  the  four  Wolfram  classes  [7].  For  each
cellular automaton shown in Figure 6, random strings of 200 bits are
generated and then run for 2000 iterations. (The class I system is only
shown  for  20  iterations  to  emphasize  its  transition  to  stability.)  For
each iteration, the structural entropy is measured.

Similarly to block entropy, the behavior of structural entropy with
respect  to  time  varies  considerably  for  each  of  the  systems  shown
above.  Class  I  and  II  systems  are  trivially  distinguishable  by  the  drop
to a constant structural entropy and oscillations, respectively. 

Class  III  systems  appear  random  with  respect  to  time,  showing  an
average  similar  to  the  average  structural  entropy  for  random  strings.
The  distribution  matches  up  quite  well  with  the  distribution  for  ran-
domly generated strings. 
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Figure  8.  Structural  entropy  of  the  systems  shown  in  Figure  6  run  over  2000
iterations of time.

From  random  initial  conditions,  class  IV  systems  will  drop  to  an
equilibrium  level  of  structure  formation  until  they  appear  to  be
bounded  above.  It  can  be  observed  that  the  structural  entropy  of
rule 110 in the plot drops to a maximum of around 100. This can be
useful  for  estimating  whether  or  not  states  will  be  reachable  from  a
given configuration. 

Multidimensional  structural  entropy  is  implemented  by  flattening
the  two-dimensional  state  and  taking  the  one-dimensional  structural
entropy of the string. 

Compression Measures2.2.3

Compression has also been employed to study the complexity of cellu-
lar  automata.  Compression  was  the  first  qualitative  non-entropy-
based measure used to study the behavior of cellular automata [4]. 

Figure 9 shows a histogram of the compressed size of 6000 random
strings of 200 bits. It can be observed that the average is around 170,
with a deviation of around 7. It is notable how the bin sizes are much
larger for the compression metric.
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Figure 9. A histogram of the size of compressed random strings of 200 bits. 
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Block Decomposition Method2.2.4

The block decomposition method (BDM) [4] is a method for estimat-
ing  algorithmic  complexity  of  large  objects.  It  decomposes  a  large
object  into  a  set  of  blocks  with  known  algorithmic  complexity,  then
applies a grading based upon the algorithmic complexity of the block
along with its frequency. 

Figure 10 shows a histogram of the BDM measure of 6000 random
2020  blocks.  It  can  be  observed  that  the  BDM  measure  is  notably
less skewed than the other measures analyzed thus far.
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Figure 10. A histogram of the BDM measures of 6000 random 2020 blocks. 

Comparison of Methods2.2.5

While  all  four  methods  have  the  ability  to  distinguish  between  the
behavior classes of cellular automata, some measures can detect more
details  than  others.  To  compare  measures,  a  Wolfram  class  III  struc-
tural oscillator is examined.

A  structural  oscillator  is  a  system  that  oscillates  between  random-
ness and structure formation; however, the structures are unrelated to
each  other.  No  information  is  effectively  transmitted  in  class  III
systems.  Figure  11  shows  the  structural  oscillator  for  the  first  four
time steps.

Figure  11.  The  first  four  steps  of  the  two-dimensional  totalistic  cellular
automaton rule 797: a structural oscillator. 
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The  four  complexity  measures  are  compared  in  Figure  12  for  the
first 50 time steps of the structural oscillator. 
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Figure  12.  The  four  complexity  measures  applied  to  the  structural  oscillator
shown in Figure 11.

Structural  entropy  and  the  BDM  identify  this  structural  oscillation
and display similar trends of damped oscillation toward a mean. Com-
pression  also  captures  this  somewhat;  however,  after  enough  time
steps,  no  distinction  is  found.  Block  entropy  captures  some  oscilla-
tion;  however,  it  shows  the  equilibrium  state  as  having  greater  com-
plexity than the initial conditions. 

Results3.

This  section  shows  the  results  of  two  experiments  measuring  the
impact of measurement uncertainty on hybrid cellular automata. Addi-
tionally,  an  example  application  of  hybrid  cellular  automata  is
shown,  and  the  ability  of  the  complexity  measures  to  predict  the
reachability  of  hybrid  systems  is  examined.  Finally,  the  ability  of
hybrid schemes to affect system dynamics is examined. 

Performance of Hybrid Cellular Automata with Measurement 
Uncertainty 

3.1

To  analyze  the  impacts  of  hybrid  cellular  automata,  a  perturbation
analysis  [8]  is  performed.  Perturbation  analyses  use  perturbations  to
study  the  algorithmic  information  dynamics  [9]  in  complex  systems
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and  can  be  employed  to  attempt  to  reconstruct  a  phase  space  from
incomplete  information.  Here,  the  effect  of  perturbations  introduced
into  the  initial  conditions  of  hybrid  cellular  automata  is  compared
with perturbations introduced into a control system.

Initially  a  control  initial  condition  (7575)  is  prepared  and  run
over  20  iterations.  This  initial  condition  is  then  perturbed  by  a  single
cell 200 different times. The set of perturbed initial conditions is then
evaluated over 20 iterations, then the absolute differences between the
final  perturbed  states  and  the  final  control  state  are  taken,  then  this
is averaged  for  all  perturbed  states.  This  is  performed  for  both  the
hybrid  system  and  the  control  system.  The  control  system  is  simply
the  Game  of  Life  cellular  automaton,  while  the  hybrid  rule  is
code 797.

Figure 13 shows the averaged absolute differences between the con-
trol system and hybrid system after 20 iterations. Darker-colored cells
indicate  a  higher  probability  of  that  cell  changing.  For  reference,  a
scale  at  the  top  of  the  figure  shows  the  probabiity  of  cells  changing
ranging from 0 (white far left) to 100% (black far right). The red dot
in Figure 13(b) shows the location of the hybrid cell.

(a) b

Figure 13. The averaged difference between perturbed states and control states
for: (a) the uniform cellular automata; and (b) the hybrid cellular automata.

It  can  be  observed  that  the  hybrid  cell  (as  shown  in  Figure  13(b))
has  a  region  surrounding  itself  where  the  probability  of  the  cells
changing  is  significantly  high.  This  can  be  attributed  to  the  modified
attractor. 

Hybrid Systems in Varying Levels of Uncertainty 3.2

In  this  section,  the  certainty  of  changes  caused  by  hybrid  systems  is
examined as the total number of perturbations of initial conditions of
the system is varied. 
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Initially  a  control  initial  condition  (7575)  is  prepared  and  run
over 20 iterations. In Figure 14, three sets of perturbations are shown;
the  first  set  has  been  perturbed  in  a  single  instance,  the  second  set  in
five instances, and the third in 10 instances.  

Each  set  of  perturbed  initial  conditions  is  then  evaluated  over  20
iterations,  then  the  absolute  differences  between  the  final  perturbed
states  and  the  final  control  state  are  taken,  then  this  is  averaged  over
all  perturbed  states  for  each  set.  This  is  performed  for  both  the  con-
trol system and the hybrid system. 

Similarly to Figure 13, a scale at the top of the each plot shows the
probability  of  cells  changing  ranging  from  0  (white  far  left)  to  100%
(black  far  right).  Additionally,  a  red  dot  marks  the  location  of  the
hybrid cell. 

(a) (b)

(c) (d)

Figure 14. (continues).
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(e) (f)

Figure  14. The  averaged  differences  between  perturbed  states  and  control
states for the  control system (left) and  hybrid system (right) with  1 perturba-
tion (top), 5 perturbations (middle), 10 perturbations (bottom). 

It is important to observe that as the total number of perturbations
increases,  the  probability  of  some  cells  changing  and  the  respective
structures forming increases. This is partially due to the higher surface
area  the  perturbations  occupy,  leading  to  a  higher  probability  of
changing  the  same  states.  Also,  this  is  partially  due  to  some  different
states evolving into the same final result. 

As  found  with  the  control  system,  the  probability  of  some  states
changing and respective structures forming increases as the total num-
ber  of  perturbations  is  increased.  It  can  be  observed  that  the  hybrid
changes  are  still  present  and  generally  are  more  probable  than
changes due to random environmental perturbations. 

It  is  important  to  note  that  perturbations  that  occur  near  hybrid
cells  will  have  an  impact  on  the  hybrid  behavior,  leading  to  uncer-
tainty  regarding  which  cells  change.  This  will  decrease  the  effective-
ness  of  the  hybrid  perturbations,  so  it  is  important  to  have  accurate
measurements  and  minimize  potential  error  near  regions  of  active
hybridization. 

Applied Example: Manipulating the Belousov–Zhabotinsky 

Reaction
3.3

In this section, the method of hybrid cellular automata for manipulat-
ing  chaotic  systems  is  applied  to  the  Belousov–Zhabotinsky  reaction
[10].  The  Belousov–Zhabotinsky  reaction  is  an  oscillating  chemical
reaction  that  displays  nonlinear  chaotic  behavior.  When  placed  upon
a  microemulsion,  it  can  be  characterized  by  growing  swirls  that
replace  each  other;  a  good  demonstration  of  this  is  available  in  [11].
In  this  demonstration,  the  Belousov–Zhabotinsky  reaction  on  a
microemulsion is modeled using cellular automata. 

286 B. LuValle

Complex Systems, 34 © 2025



Control of chaos methods have been implemented for this reaction
[12];  however,  these  control  methods  deal  with  controlling  global
properties,  while  the  applications  of  hybrid  cellular  automata  focus
on  implementing  specific  local  changes.  A  direct  parallel  can  be
drawn  between  the  application  of  hybrid  cellular  automata  and  plac-
ing physical reagents. 

To start, a control experiment is done under random initial condi-
tions (200200) and evolved for 90 steps (Figure 15). For real-world
applications,  this  will  serve  as  our  idealized  model  based  upon  the
knowledge of our setup. 

Figure  15:  The  final  state  of  the  control  evaluation  for  the  Belousov–
Zhabotinsky reaction. 

Random  perturbations  are  then  added  to  the  initial  conditions  to
analyze  common  ways  the  system  will  deviate  from  the  initial  setup
when  perturbed.  It  can  be  observed  in  Figure  16  that  there  are  many
possibilities  for  squarish  regions  (similar  to  the  ones  shown  in  Fig-
ure 15) forming along the unoccupied upper-left region. A scale at the
top  of  the  each  plot  shows  the  probability  of  cells  changing  ranging
from 0 (white far left) to 100% (black far right). 

Next, hybrid cells are scattered throughout the rule matrix to start
to  understand  patterns  that  are  reachable  from  hybrid  perturbation.
This  is  evaluated  over  the  same  set  of  perturbations  used  in  the  per-
turbed control trial done in Figure 16. The results of the hybridization
are shown in Figure 17. 
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Figure  16.  The  averaged  difference  between  the  control  state  and  perturbed
states.

Figure  17.  The  averaged  difference  between  the  control  state  and  perturbed
states run through a hybrid scheme.

From the random sparse hybridization, it can be seen that patterns
are likely to form in radial blobs or along edges. The radial blobs can
be  chosen  as  a  basis  for  implementing  change  in  the  Belousov–
Zhabotinsky reaction.

Control plans can be drawn up by finding the most effective meth-
ods  for  implementing  radial  blobs.  A  square  block  of  hybrid  cells  is
analyzed  with  respect  to  the  perturbations  previously  employed  (Fig-
ure 18). The pattern is found satisfactory, so it will be employed as a
basis for constructing more interesting changes.

Because  cellular  automata  have  local  interactions,  superposition
(prior  to  the  mutual  interaction  of  modified  hybrid  behavior)  can  be
employed when constructing patterns. If the desired pattern is concen-
tric  circles,  this  can  be  approximated  by  arranging  the  hybrid  blocks
in a circular formation.
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(a) b

Figure  18.  The  rule  configurations  of:  (a)  a  hybrid  basis;  and  (b)  its  average
difference  between  the  control  state  and  perturbed  states  run  through  the
hybrid scheme. 

The  behavior  of  the  system  after  the  mutual  interaction  of  hybrid
patterns  varies  significantly  according  to  synchronization  as  well  as
environmental  factors  (Figure  19).  Synchronization  is  easy  to  control
by  adjusting  the  distance  between  the  hybrid  structures;  however,
environmental factors are often uncontrollable and can be difficult to
resolve. 

(a) b

Figure  19.  A  rule  configuration  employing  multiple  hybrid  basis  states:
(a)  arranged  in  a  circle;  and  (b)  its  average  difference  between  the  control
state and perturbed states run through this hybrid scheme. 

To resolve this, a different basis can be employed that interacts dif-
ferently  with  its  environment.  Before  attempting  to  manipulate  a  sys-
tem, it is wise to have a large and varied hybrid basis.
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Figure  20  shows  the  final  output  state  of  the  control  initial  condi-
tion  run  through  the  hybrid  scheme  in  Figure  19.  Concentric  circles
are approximated around the inner ring and outer ring.

Figure  20.  The  final  state  of  the  control  initial  condition,  run  through  the
hybrid scheme from Figure 17.

Complexity Measures for Qualifying Reachable States3.4

This  experiment  studies  the  effect  of  hybridization  on  the  complexity
measures. Specifically, the purpose of this experiment is to understand
which  complexity  measures  can  provide  an  estimate  of  the  reachabil-
ity  of  states  under  realistic  hybrid  schemes  and  also  see  how  hybrid
schemes impact dynamics. 

Obviously, this will depend on the concentration of hybrid cells. In
the  context  of  the  systems  that  hybrid  cellular  automata  should  be
applied  to,  the  total  concentration  of  cells  from  the  original  system
should dominate over the concentration of hybrid cells.

In  Figure  21,  five  different  hybrid  schemes  are  compared  for  their
ability to affect the complexity measures. The first hybrid scheme fea-
tures an instance of a single hybrid cell. The second hybrid scheme fea-
tures  a  sparse  spread  of  cells  over  the  entire  map.  The  third  hybrid
scheme features a clustering of hybrid cells concentrated near the cen-
ter. The fourth hybrid scheme expands the size of the hybrid perturba-
tions,  establishing  large  clusters  of  hybrid  cells.  The  fifth  hybrid
scheme features a much denser spread of hybrid cells. The control sys-
tem is the Game of Life cellular automaton, while the hybrid system is
code 797.

First  a  set  of  200  random  initial  conditions  is  generated;  each
hybrid  scheme  is  then  evaluated  over  each  initial  condition  for  75
steps.  The  average  and  standard  deviations  of  the  four  measures
applied for each scheme are plotted in Figures 22 and 23. 
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(a) (b) (c)

(d) (e) (f)

Figure 21. Five different hybrid schemes compared to the control: (a) control;
(b) single hybrid cell; (c) sparse spread of hybrid cells; (d) localized concentra-
tion;  (e)  large  clusters;  and  (f)  a  high  concentration  of  randomly  distributed
hybrid cells.
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Figure 22. The average of the complexity measures for the 200 random initial
conditions run through each hybridization scheme.
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Figure 23. The standard deviation of the complexity measures for the 200 ran-
dom initial conditions run through each hybridization scheme.

It  can  be  noted  that  the  measures  all  act  similarly  to  each  other.
Out  of  all  hybrid  schemes,  generally  the  control  hybrid  scheme  has
the  highest  standard  deviation,  while  the  high-concentration  system
has  the  lowest.  This  trend  continues  for  the  other  schemes:  the  stan-
dard  deviations  appear  in  roughly  the  same  places  as  they  do  in  the
other  measures.  The  notable  exception  is  the  BDM  measure,  where
the standard deviations are grouped together. 

The  terminating  value  of  a  system  tells  us  the  measured  value  of
the final evaluated state after a set number of evaluations. The ranges
of  terminating  values  for  each  complexity  measure  are  plotted  for
each hybrid scheme in Figure 24. 
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Figure 24. Box plots showing the distribution of terminating values of the four
complexity measures for the six cases of hybridization. 

The range for the control system spans over almost all of the other
ranges,  with  the  notable  exception  of  the  large  cluster  hybrid  scheme
and the high-concentration scheme. This is most likely due to the high
quantity  of  hybrid  cells,  which  would  actually  shift  the  average  of
these  measures.  Sometimes  the  sparse  spread  system  exceeds  the
boundaries of complexity, however, not by much.

Compression  shows  that  the  large  clusters  and  high-concentration
systems exceed the bounds of the control system; however, this effect
is  not  very  pronounced.  BDM  displays  the  highest  deviation  where
large clusters far exceed the control range; however, the high-concen-
tration  scheme  is  less  pronounced.  Structural  entropy  and  block
entropy are similar in this assessment.

Analysis of the Dynamics of Deviating Hybrid Schemes3.5

In  [4],  phase  transitions  of  cellular  automata  are  studied  using  com-
pression and gray codes to analyze the dynamics with respect to differ-
ent  initial  conditions.  In  this  section,  the  time  dynamics  of  BDM  and
structural  entropy  for  the  high-impact  hybrid  schemes  are  analyzed
with respect to the complexity of the initial conditions. 

The  selected  hybrid  schemes  exceeded  the  bounds  of  complexity
outlined by the control system in the previous experiment. The candi-
dates  are  the  sparse  spread  scheme,  the  cluster  scheme  and  the  high-
concentration scheme. These are shown in Figure 25 with respect to a
control  system.  The  light  green  represents  the  control  rule  (Game  of
Life), while the dark green shows the hybrid rule (code 797). 

Initial  conditions  are  generated  according  to  their  complexity,
using  a  hybrid  cellular  automaton  applied  to  random  initial  condi-
tions. Elementary cellular automaton rule 8 is hybridized with rule 7,
and the probability of cells that are rule 7 is varied up to a maximum
of 0.5. The hybrid system is then evaluated for 20 steps, and the final
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state  is  taken  as  the  initial  condition.  The  conditions  are  then  parti-
tioned into a 7575 grid of binary initial conditions.

(a) (b)

(c) (d)

Figure  25.  The  control  state  and  three  hybrid  schemes  found  to  exceed  the
bounds  of  the  control  state:  (a)  control  state;  (b)  sparse  spread;  (c)  clusters;
and (d) high concentration.

Initial  conditions  are  generated  according  to  their  complexity,
using  a  hybrid  cellular  automaton  applied  to  random  initial  condi-
tions. Elementary cellular automaton rule 8 is hybridized with rule 7,
and the probability of cells that are rule 7 is varied up to a maximum
of 0.5. The hybrid system is then evaluated for 20 steps, and the final
state  is  taken  as  the  initial  condition.  The  conditions  are  then  parti-
tioned into a 7575 grid of binary initial conditions.

The  BDM  measure  and  the  structural  entropy  with  respect  to  the
proportion  of  hybrid  cells  are  shown  in  Figure  26.  It  can  be  noted
that the BDM measure has a different initial concavity than the struc-
tural entropy. This is because the simpler conditions have a lower Kol-
mogorov complexity, which decreases the rate of change of the BDM
measure.  
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Figure  26.  The  structural  entropy  and  BDM  measure  compared  with  respect
to the hybrid proportion for generated initial conditions. 

 Initially, five hybrid distributions are chosen along the curve in Fig-
ure 26. For each distribution, 200 random initial conditions are gener-
ated.  These  initial  conditions  are  then  run  over  the  hybrid  schemes
(Figure  27),  after  which  BDM  and  structural  entropy  measures  are
applied  (Figure  28).  The  measures  are  averaged  for  each  distribution
group,  and  the  behavior  of  the  complexity  measures  is  analyzed  with
respect to time. 
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Figure  27.  The  four  schemes  compared  with  initial  conditions  of  different
structural  entropies.  The  colors  of  the  lines  correspond  to  the  structural
entropy of the initial condition shown in the legend on the bottom. 
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Figure  28.  The  four  schemes  compared  with  initial  conditions  of  different
BDM  measures.  The  colors  of  the  lines  correspond  to  the  BDM  measure  of
the initial condition shown in the legend on the bottom. 

The sparsely distributed system shows little deviation from the con-
trol system with its dynamic behavior. This was partially expected, as
it did not deviate as much as the other hybrid schemes. 

The high-concentration scheme seems to raise the average complex-
ity  levels;  however,  it  seems  to  affect  most  states  the  same  way.  The
cluster scheme is much more interesting, because the behavior of high-
complexity  states  seems  unchanged  with  respect  to  the  control;
however,  the  lower-complexity  states  are  changed.  The  minimal-
complexity states are elevated compared to the other hybrid schemes.
This  is  most  likely  because  the  hybrid  systems  have  enough  space  in
the  clusters  to  produce  their  own  structures,  which  dissipate  into  the
environment. 

It  can  be  noted  that  structural  entropy  and  the  BDM  measure
behave extremely similarly in this application. 

Discussion4.

Hybrid  cellular  automata  have  demonstrated  their  ability  to  create
certain  changes  that  can  withstand  initial  measurement  error  or  envi-
ronmental  perturbations.  As  the  environmental  error  increases,  the
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probability  of  certain  other  states  occurring  also  increases.  This  can
compete  with  hybrid  changes  at  large  enough  error  concentrations.
However, as hybrid systems modify an attractor, generally the hybrid
changes will be hardy to measurement error in the initial conditions.

When  manipulating  chaotic  systems  using  hybrid  cellular
automata, the principle of superposition can be applied to hybrid dif-
ferences.  Thus,  hybrid  control  can  be  developed  using  basis  functions
of  hybrid  states.  An  appropriate  hybrid  basis  can  be  applied  for  time
steps  similar  to  the  Lyapunov  time,  effectively  reducing  the  total
amount of computation required to construct control algorithms. 

The  complexity  measures  seems  to  bound  reasonable  hybrid
changes  to  a  system.  In  the  third  experiment,  it  was  observed  that
only the hybrid schemes with high concentrations of hybrid cells were
able  to  exceed  the  bounds  of  these  measures  from  the  control  state.
Then  it  was  found  in  the  fourth  experiment  that  these  systems  were
able  to  modify  the  general  dynamic  behavior  of  the  system  with
respect to the complexity of the initial conditions. 

This  would  suggest  that  these  complexity  measures  can  be
employed to find hybrid schemes that significantly change the dynam-
ics  with  respect  to  the  control.  It  was  found  that  the  clusters  had  the
highest deviation from the range of the control system across all mea-
sures, and the clusters displayed the most interesting behavior. 

Future Work4.1

It is known that many cellular automata can emulate each other from
a  fixed  perturbation  [13].  This  effectively  allows  cellular  automata  to
compile  other  cellular  automata.  The  use  of  hybrid  cellular  automata
to  compile  other  systems  can  be  studied  to  implement  chaos  control
algorithms in larger dynamic systems.

Additionally,  the  connection  between  structural  entropy  and  the
block  decomposition  method  (BDM)  measure  should  be  further
explored. 
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