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Control of chaos methods have been successfully applied to many
small, closed, chaotic systems; however, there is a difficulty in expand-
ing them to be applicable to large, open, chaotic systems. In this paper,
a novel method of manipulating chaotic systems using hybrid cellular
automata is proposed and evaluated. Four experiments are performed.
The first experiment examines hybrid cellular automata in the presence
of perturbations to the initial conditions. The second experiment ana-
lyzes the relationship between the total number of perturbations and
the certainty that hybrid states will change. The third experiment ana-
lyzes the reachability of hybrid systems using complexity measures. The
fourth experiment analyzes how phase transitions are affected by high-
impact hybrid schemes.
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| 1. Introduction

Chaotic and complex systems often have large nonlinear responses to
miniscule changes in conditions. Control of chaos methods attempt to
steer a system toward a desired behavior by giving calculated minute
adjustments to the trajectory of a system in its dynamic attractor.

Hybrid cellular automata are proposed as a method of chaos con-
trol for real-world, open systems, specifically in cases where the manip
ulator wants to change a local state but not remove chaotic behavior
from the general system.

I 1.1 Control of Chaos
Many proposed control of chaos applications involve a delicate bal-
ancing act of only perturbing the conditions when absolutely neces-
sary. This is done under the physical interpretation of conserving
energy. Unfortunately, in large enough systems, it becomes difficult to
computationally determine these exact points in time.

In the presence of other introduced uncertainties, these small, inten-
tional perturbations can be canceled out by noise. This is unfortunate
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news for the practical implementation of chaos control in large-scale,
open, real-world systems.

Recently, control of chaos has been applied to the Lorenz 63
model: a simplified model of atmospheric convection [1]. In that
study, an oscillation around a single loop of the attractor was imple-
mented using perturbations that were less than 3% of the size of the
measurement error.

Control of chaos has also been applied in some cases to coupled
lattice maps, which can be argued are a generalization of cellular
automata. Many real systems that can be modeled as coupled lattice
maps are impossible to control completely, and it would be much
more beneficial to manipulate them locally into desired states.

Traditional control of chaos methods require large computations
to determine the optimal control placement. Also, the control is reana-
lyzed at time steps much smaller than the Lyapunov time.

I 1.2 Hybrid/Nonuniform Cellular Automata

Hybrid/nonuniform cellular automata are cellular automata where
the rules applied across the input are nonuniform. This has
interesting implications for reachability and complexity of these
hybrid systems [2].

An example of hybrid rule configuration is illustrated in Figure 1.
The original cells are shown in white, and the hybrid cell is shown in
red. Nonuniform cellular automata can demonstrate behavior that is
not found in uniform cellular automata.

[54]54]54]80] 54] 54]54] 54] 54[ 54 54]54]

Figure 1. A rule scheme of a hybrid cellular automaton.

1.2.1 One-Dimensional Hybrid Cellular Automata

In one-dimensional hybrid cellular automata, the Hamming distance
between hybrid and nonhybrid states is exaggerated because the
hybrid cell can restrict the flow of information. This can lead to
behavior like Figure 2, where rule 30 is hybridized with a single
instance of rule 156. In this paper, two-dimensional cellular automata
are studied to avoid this property.

Unfortunately, many previous studies of chaos control and hybrid
cellular automata employ one-dimensional systems where this prob-
lem is apparent. In [3], a control of chaos system is implemented on a
one-dimensional coupled map lattice system that acts over its two
nearest neighbors, similar to a one-dimensional cellular automaton.
Because it only acts over its two nearest neighbors, information can
be restricted by a single hybrid cell or control pinning.
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Figure 2. Elementary cellular automaton rule 30 hybridized with rule 156.

| 2. Methods

In this section, the method of hybrid cellular automata for manipulat-
ing complex and chaotic cellular automata is presented. Additionally,
complexity measures are proposed as bounds to estimate the reacha-
bility of a system from various hybrid schemes.

2.1 Hybrid Cellular Automata for Manipulating Complex and
I Chaotic Systems
Cellular automata are governed by the exchange of information
between locally interacting cells. Resulting from this, a cellular
automaton attractor will be characterized from how information
moves between the cells.

In chaotic and complex systems, perturbations may have nonlinear
or critical effects. However, the effects of one small perturbation may
cancel out another perturbation, and this is undesirable for develop-
ing robust control and manipulation techniques. In this situation, per-
turbations travel over the system’s attractor.

A much more robust method is when the attractor actually
changes. Hybrid cellular automata do this simply by changing the
rules in certain locations, which causes the behavior of local points to
differ. This will lead to different behavior in the unperturbed state,
and thus the attractor has been modified.

As an example, an “attractor sample” of a 7x7 two-dimensional
cellular automaton is compared with a 7x7 two-dimensional hybrid
cellular automaton in Figure 3. The original system is the Game of
Life cellular automaton; the modified system changes a single cell’s
rule with two-dimensional totalistic code 797.
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An attractor sample is generated using a large set of random initial
conditions, evaluated by the system for several iterations. The condi-
tions are then enumerated, and the connections between input and
output are put into a graph. For both systems, the same initial condi-
tions are used to generate the graphs of their respective attractor
samples.

Figure 3. (a) An attractor sample of a 7x7 cellular automaton; and (b) a 7x7
hybrid cellular automaton using the same set of initial conditions.

I 2.2 Reachability of States and Complexity Measures

Many complex and chaotic systems will eventually thermalize into
equilibrium states or limit cycles. For cellular automata, this means
that the rate of formation and dissipation of structures within the sys-
tem has become equal.

The equilibrium states and long-term behavior of these systems can
be analyzed using different complexity measures. The measures are
applied to the global state at each time step to analyze the dynamics
of these systems with respect to time.

Four complexity measures are employed: block entropy, structural
entropy, lossless compression and the block decomposition mea-
sure [4].

2.2.1 Block Entropy

Block entropy is the application of Shannon entropy [5] to a system
decomposed into blocks of a predetermined size. Block entropy was
first applied to study cellular automata in [6], where it was employed
as a first predictor before other complexity measures were employed.
The histograms of the block entropy of 6000 random binary strings
of 200 bits are shown in Figure 4. This is done for block sizes of 5
and 10.
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Figure 4. Histograms showing the distribution of 6000 random strings sorted
by block entropy for: (a) size 5; and (b) size 10.

The Wolfram classes describe cellular automaton behavior as sta-
ble (class I), periodic (class II), chaotic (class III) or complex
(class IV). Figure 5 shows the Wolfram classes with spacetime dia-
grams of different cellular automata. The horizontal axis shows
space, while the vertical axis going down displays time. In Figure 3,
(a) is stable, (b) is periodic, (c) is chaotic, and (d) is complex.

(@)

© (d

Figure 5. Examples of the Wolfram classes: (a) rule 8 stable (class I); (b) rule 7
periodic (class II); (c) rule 30 chaotic (class III); and (d) rule 110 complex
(class TV).
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For systems that form permanent structures, such as Wolfram
class IT and class IV systems, the shape of block entropy with respect
to time will appear different for different sizes of block entropy. In
Figure 6, the block entropy versus time for the four systems from
Figure 5 is evaluated with a random string of 200 bits for 2000
time steps.

While the block entropy can be used to distinguish between the
behavioral classes, the behavior trending toward equilibrium differs
for both measurements for rule 110. When block entropy of size 5 is
used, the behavior increases to an equilibrium level, while block
entropy of size 10 shows a decrease to an equilibrium level.
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Figure 6. The block entropy of the example systems in Figure 5 run over 2000
iterations for: (a) block entropy size 5; and (b) block entropy size 10.

2.2.2 Structural Entropy

Structural entropy is a generalization of block entropy to blocks of
nonuniform size. Unlike block entropy, structural entropy is not
dependent upon measurement parameters.

Definition 1. Let a structure be defined as a group of cells adjacent to
each other sharing the same value.

Structural entropy S is a measure of the total entropy of the struc-
tures present within a string. This is taken from the log of the multi-
plicity of the total number of unique combinations for which a string
can be configured while preserving the size and count of structures
within said string. Structures will only be preserved if they are next to
their opposite color, so the multiplicity of configurations of each
color can be separated. The multiplicities of both color structures My,
(white structure multiplicity) and Mp (black structure multiplicity)
can be separated, as seen in

The multiplicity of each color is found by finding the total multi-
plicity of all possible structures, then removing the duplicates. This is
done by taking the factorial of the total number of structures and
dividing by the product of the factorials of the count of occurrences
of each structure. The structural multiplicity M of a color is expressed
in equation (2).

Definition2. Let A be the total number of structures and D be the list
containing the occurrences of each structure:

Al
=1 n-
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In Figure 7, a histogram shows the structural entropy of 6000 ran-
dom strings of 200 bits. It can be observed that the average is around
115, with a deviation of around 5. The left skew is due to the fact
that there is a maximal structural entropy for strings of finite size.
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Figure 7. A histogram of the structural entropy of strings of size 200 bits.

The plots in Figure 8 show the example structural entropy applied
to the example systems from the four Wolfram classes [7]. For each
cellular automaton shown in Figure 6, random strings of 200 bits are
generated and then run for 2000 iterations. (The class I system is only
shown for 20 iterations to emphasize its transition to stability.) For
each iteration, the structural entropy is measured.

Similarly to block entropy, the behavior of structural entropy with
respect to time varies considerably for each of the systems shown
above. Class I and II systems are trivially distinguishable by the drop
to a constant structural entropy and oscillations, respectively.

Class III systems appear random with respect to time, showing an
average similar to the average structural entropy for random strings.
The distribution matches up quite well with the distribution for ran-
domly generated strings.
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Figure 8. Structural entropy of the systems shown in Figure 6 run over 2000
iterations of time.

From random initial conditions, class IV systems will drop to an
equilibrium level of structure formation until they appear to be
bounded above. It can be observed that the structural entropy of
rule 110 in the plot drops to a maximum of around 100. This can be
useful for estimating whether or not states will be reachable from a
given configuration.

Multidimensional structural entropy is implemented by flattening
the two-dimensional state and taking the one-dimensional structural
entropy of the string.

2.2.3 Compression Measures

Compression has also been employed to study the complexity of cellu-
lar automata. Compression was the first qualitative non-entropy-
based measure used to study the behavior of cellular automata [4].

Figure 9 shows a histogram of the compressed size of 6000 random
strings of 200 bits. It can be observed that the average is around 170,
with a deviation of around 7. It is notable how the bin sizes are much
larger for the compression metric.
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Figure 9. A histogram of the size of compressed random strings of 200 bits.
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2.2.4 Block Decomposition Method

The block decomposition method (BDM) [4] is a method for estimat-
ing algorithmic complexity of large objects. It decomposes a large
object into a set of blocks with known algorithmic complexity, then
applies a grading based upon the algorithmic complexity of the block
along with its frequency.

Figure 10 shows a histogram of the BDM measure of 6000 random
20%20 blocks. It can be observed that the BDM measure is notably
less skewed than the other measures analyzed thus far.
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Figure 10. A histogram of the BDM measures of 6000 random 20x20 blocks.

2.2.5 Comparison of Methods

While all four methods have the ability to distinguish between the
behavior classes of cellular automata, some measures can detect more
details than others. To compare measures, a Wolfram class IIT struc-
tural oscillator is examined.

A structural oscillator is a system that oscillates between random-
ness and structure formation; however, the structures are unrelated to
each other. No information is effectively transmitted in class III
systems. Figure 11 shows the structural oscillator for the first four
time steps.

Figure 11. The first four steps of the two-dimensional totalistic cellular
automaton rule 797: a structural oscillator.
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The four complexity measures are compared in Figure 12 for the
first 50 time steps of the structural oscillator.
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Figure 12. The four complexity measures applied to the structural oscillator
shown in Figure 11.

Structural entropy and the BDM identify this structural oscillation
and display similar trends of damped oscillation toward a mean. Com-
pression also captures this somewhat; however, after enough time
steps, no distinction is found. Block entropy captures some oscilla-
tion; however, it shows the equilibrium state as having greater com-
plexity than the initial conditions.

| 3. Results

This section shows the results of two experiments measuring the
impact of measurement uncertainty on hybrid cellular automata. Addi-
tionally, an example application of hybrid cellular automata is
shown, and the ability of the complexity measures to predict the
reachability of hybrid systems is examined. Finally, the ability of
hybrid schemes to affect system dynamics is examined.

3.1 Performance of Hybrid Cellular Automata with Measurement
I Uncertainty

To analyze the impacts of hybrid cellular automata, a perturbation
analysis [8] is performed. Perturbation analyses use perturbations to
study the algorithmic information dynamics [9] in complex systems
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and can be employed to attempt to reconstruct a phase space from
incomplete information. Here, the effect of perturbations introduced
into the initial conditions of hybrid cellular automata is compared
with perturbations introduced into a control system.

Initially a control initial condition (75x75) is prepared and run
over 20 iterations. This initial condition is then perturbed by a single
cell 200 different times. The set of perturbed initial conditions is then
evaluated over 20 iterations, then the absolute differences between the
final perturbed states and the final control state are taken, then this
is averaged for all perturbed states. This is performed for both the
hybrid system and the control system. The control system is simply
the Game of Life cellular automaton, while the hybrid rule is
code 797.

Figure 13 shows the averaged absolute differences between the con-
trol system and hybrid system after 20 iterations. Darker-colored cells
indicate a higher probability of that cell changing. For reference, a
scale at the top of the figure shows the probabiity of cells changing
ranging from 0 (white far left) to 100% (black far right). The red dot
in Figure 13(b) shows the location of the hybrid cell.
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Figure 13. The averaged difference between perturbed states and control states
for: (a) the uniform cellular automata; and (b) the hybrid cellular automata.

It can be observed that the hybrid cell (as shown in Figure 13(b))
has a region surrounding itself where the probability of the cells
changing is significantly high. This can be attributed to the modified
attractor.

|l 3.2 Hybrid Systems in Varying Levels of Uncertainty

In this section, the certainty of changes caused by hybrid systems is
examined as the total number of perturbations of initial conditions of
the system is varied.
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Initially a control initial condition (75x75) is prepared and run
over 20 iterations. In Figure 14, three sets of perturbations are shown;
the first set has been perturbed in a single instance, the second set in
five instances, and the third in 10 instances.

Each set of perturbed initial conditions is then evaluated over 20
iterations, then the absolute differences between the final perturbed
states and the final control state are taken, then this is averaged over
all perturbed states for each set. This is performed for both the con-
trol system and the hybrid system.

Similarly to Figure 13, a scale at the top of the each plot shows the
probability of cells changing ranging from 0 (white far left) to 100%
(black far right). Additionally, a red dot marks the location of the
hybrid cell.
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Figure 14. (continues).
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Figure 14. The averaged differences between perturbed states and control
states for the control system (left) and hybrid system (right) with 1 perturba-
tion (top), 5 perturbations (middle), 10 perturbations (bottom).

It is important to observe that as the total number of perturbations
increases, the probability of some cells changing and the respective
structures forming increases. This is partially due to the higher surface
area the perturbations occupy, leading to a higher probability of
changing the same states. Also, this is partially due to some different
states evolving into the same final result.

As found with the control system, the probability of some states
changing and respective structures forming increases as the total num-
ber of perturbations is increased. It can be observed that the hybrid
changes are still present and generally are more probable than
changes due to random environmental perturbations.

It is important to note that perturbations that occur near hybrid
cells will have an impact on the hybrid behavior, leading to uncer-
tainty regarding which cells change. This will decrease the effective-
ness of the hybrid perturbations, so it is important to have accurate
measurements and minimize potential error near regions of active
hybridization.

3.3 Applied Example: Manipulating the Belousov-Zhabotinsky
Reaction

In this section, the method of hybrid cellular automata for manipulat-
ing chaotic systems is applied to the Belousov—Zhabotinsky reaction
[10]. The Belousov—Zhabotinsky reaction is an oscillating chemical
reaction that displays nonlinear chaotic behavior. When placed upon
a microemulsion, it can be characterized by growing swirls that
replace each other; a good demonstration of this is available in [11].
In this demonstration, the Belousov—Zhabotinsky reaction on a
microemulsion is modeled using cellular automata.
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Control of chaos methods have been implemented for this reaction
[12]; however, these control methods deal with controlling global
properties, while the applications of hybrid cellular automata focus
on implementing specific local changes. A direct parallel can be
drawn between the application of hybrid cellular automata and plac-
ing physical reagents.

To start, a control experiment is done under random initial condi-
tions (200x200) and evolved for 90 steps (Figure 15). For real-world
applications, this will serve as our idealized model based upon the
knowledge of our setup.

Figure 15: The final state of the control evaluation for the Belousov—
Zhabotinsky reaction.

Random perturbations are then added to the initial conditions to
analyze common ways the system will deviate from the initial setup
when perturbed. It can be observed in Figure 16 that there are many
possibilities for squarish regions (similar to the ones shown in Fig-
ure 15) forming along the unoccupied upper-left region. A scale at the
top of the each plot shows the probability of cells changing ranging
from 0 (white far left) to 100% (black far right).

Next, hybrid cells are scattered throughout the rule matrix to start
to understand patterns that are reachable from hybrid perturbation.
This is evaluated over the same set of perturbations used in the per-
turbed control trial done in Figure 16. The results of the hybridization
are shown in Figure 17.
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Figure 16. The averaged difference between the control state and perturbed
states.
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Figure 17. The averaged difference between the control state and perturbed
states run through a hybrid scheme.

From the random sparse hybridization, it can be seen that patterns
are likely to form in radial blobs or along edges. The radial blobs can
be chosen as a basis for implementing change in the Belousov—
Zhabotinsky reaction.

Control plans can be drawn up by finding the most effective meth-
ods for implementing radial blobs. A square block of hybrid cells is
analyzed with respect to the perturbations previously employed (Fig-
ure 18). The pattern is found satisfactory, so it will be employed as a
basis for constructing more interesting changes.

Because cellular automata have local interactions, superposition
(prior to the mutual interaction of modified hybrid behavior) can be
employed when constructing patterns. If the desired pattern is concen-
tric circles, this can be approximated by arranging the hybrid blocks
in a circular formation.
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Figure 18. The rule configurations of: (a) a hybrid basis; and (b) its average
difference between the control state and perturbed states run through the
hybrid scheme.

The behavior of the system after the mutual interaction of hybrid
patterns varies significantly according to synchronization as well as
environmental factors (Figure 19). Synchronization is easy to control
by adjusting the distance between the hybrid structures; however,
environmental factors are often uncontrollable and can be difficult to
resolve.

@) (b)

Figure 19. A rule configuration employing multiple hybrid basis states:
(a) arranged in a circle; and (b) its average difference between the control
state and perturbed states run through this hybrid scheme.

To resolve this, a different basis can be employed that interacts dif-
ferently with its environment. Before attempting to manipulate a sys-
tem, it is wise to have a large and varied hybrid basis.
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Figure 20 shows the final output state of the control initial condi-
tion run through the hybrid scheme in Figure 19. Concentric circles
are approximated around the inner ring and outer ring.

,Aw“"-w_,,_,_

Figure 20. The final state of the control initial condition, run through the
hybrid scheme from Figure 17.

I 3.4 Complexity Measures for Qualifying Reachable States

This experiment studies the effect of hybridization on the complexity
measures. Specifically, the purpose of this experiment is to understand
which complexity measures can provide an estimate of the reachabil-
ity of states under realistic hybrid schemes and also see how hybrid
schemes impact dynamics.

Obviously, this will depend on the concentration of hybrid cells. In
the context of the systems that hybrid cellular automata should be
applied to, the total concentration of cells from the original system
should dominate over the concentration of hybrid cells.

In Figure 21, five different hybrid schemes are compared for their
ability to affect the complexity measures. The first hybrid scheme fea-
tures an instance of a single hybrid cell. The second hybrid scheme fea-
tures a sparse spread of cells over the entire map. The third hybrid
scheme features a clustering of hybrid cells concentrated near the cen-
ter. The fourth hybrid scheme expands the size of the hybrid perturba-
tions, establishing large clusters of hybrid cells. The fifth hybrid
scheme features a much denser spread of hybrid cells. The control sys-
tem is the Game of Life cellular automaton, while the hybrid system is
code 797.

First a set of 200 random initial conditions is generated; each
hybrid scheme is then evaluated over each initial condition for 75
steps. The average and standard deviations of the four measures
applied for each scheme are plotted in Figures 22 and 23.

Complex Systems, 34 © 2025



Hybrid CAs for Manipulating Complex and Chaotic CAs 291

(€Y (b) ©

=t L

w !

(d (e) ®

Figure 21. Five different hybrid schemes compared to the control: (a) control;
(b) single hybrid cell; (c) sparse spread of hybrid cells; (d) localized concentra-
tion; (e) large clusters; and (f) a high concentration of randomly distributed

hybrid cells.
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Figure 22. The average of the complexity measures for the 200 random initial
conditions run through each hybridization scheme.
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Figure 23. The standard deviation of the complexity measures for the 200 ran-
dom initial conditions run through each hybridization scheme.

It can be noted that the measures all act similarly to each other.
Out of all hybrid schemes, generally the control hybrid scheme has
the highest standard deviation, while the high-concentration system
has the lowest. This trend continues for the other schemes: the stan-
dard deviations appear in roughly the same places as they do in the
other measures. The notable exception is the BDM measure, where
the standard deviations are grouped together.

The terminating value of a system tells us the measured value of
the final evaluated state after a set number of evaluations. The ranges
of terminating values for each complexity measure are plotted for
each hybrid scheme in Figure 24.
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Figure 24. Box plots showing the distribution of terminating values of the four
complexity measures for the six cases of hybridization.

The range for the control system spans over almost all of the other
ranges, with the notable exception of the large cluster hybrid scheme
and the high-concentration scheme. This is most likely due to the high
quantity of hybrid cells, which would actually shift the average of
these measures. Sometimes the sparse spread system exceeds the
boundaries of complexity, however, not by much.

Compression shows that the large clusters and high-concentration
systems exceed the bounds of the control system; however, this effect
is not very pronounced. BDM displays the highest deviation where
large clusters far exceed the control range; however, the high-concen-
tration scheme is less pronounced. Structural entropy and block
entropy are similar in this assessment.

| 3.5 Analysis of the Dynamics of Deviating Hybrid Schemes

In [4], phase transitions of cellular automata are studied using com-
pression and gray codes to analyze the dynamics with respect to differ-
ent initial conditions. In this section, the time dynamics of BDM and
structural entropy for the high-impact hybrid schemes are analyzed
with respect to the complexity of the initial conditions.

The selected hybrid schemes exceeded the bounds of complexity
outlined by the control system in the previous experiment. The candi-
dates are the sparse spread scheme, the cluster scheme and the high-
concentration scheme. These are shown in Figure 25 with respect to a
control system. The light green represents the control rule (Game of
Life), while the dark green shows the hybrid rule (code 797).

Initial conditions are generated according to their complexity,
using a hybrid cellular automaton applied to random initial condi-
tions. Elementary cellular automaton rule 8 is hybridized with rule 7,
and the probability of cells that are rule 7 is varied up to a maximum
of 0.5. The hybrid system is then evaluated for 20 steps, and the final
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state is taken as the initial condition. The conditions are then parti-
tioned into a 75x 75 grid of binary initial conditions.

©

Figure 25. The control state and three hybrid schemes found to exceed the
bounds of the control state: (a) control state; (b) sparse spread; (c) clusters;
and (d) high concentration.

Initial conditions are generated according to their complexity,
using a hybrid cellular automaton applied to random initial condi-
tions. Elementary cellular automaton rule 8 is hybridized with rule 7,
and the probability of cells that are rule 7 is varied up to a maximum
of 0.5. The hybrid system is then evaluated for 20 steps, and the final
state is taken as the initial condition. The conditions are then parti-
tioned into a 75x 75 grid of binary initial conditions.

The BDM measure and the structural entropy with respect to the
proportion of hybrid cells are shown in Figure 26. It can be noted
that the BDM measure has a different initial concavity than the struc-
tural entropy. This is because the simpler conditions have a lower Kol-
mogorov complexity, which decreases the rate of change of the BDM
measure.
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Figure 26. The structural entropy and BDM measure compared with respect
to the hybrid proportion for generated initial conditions.

Initially, five hybrid distributions are chosen along the curve in Fig-
ure 26. For each distribution, 200 random initial conditions are gener-
ated. These initial conditions are then run over the hybrid schemes
(Figure 27), after which BDM and structural entropy measures are
applied (Figure 28). The measures are averaged for each distribution
group, and the behavior of the complexity measures is analyzed with

respect to time.

Control Scheme Sparse Spread Scheme

Structural Entropy
Structural Entropy
&
s
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Time Time
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2 3000
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Time Time
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Figure 27. The four schemes compared with initial conditions of different

structural entropies. The colors of the lines correspond to the structural
entropy of the initial condition shown in the legend on the bottom.
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Figure 28. The four schemes compared with initial conditions of different
BDM measures. The colors of the lines correspond to the BDM measure of
the initial condition shown in the legend on the bottom.

The sparsely distributed system shows little deviation from the con-
trol system with its dynamic behavior. This was partially expected, as
it did not deviate as much as the other hybrid schemes.

The high-concentration scheme seems to raise the average complex-
ity levels; however, it seems to affect most states the same way. The
cluster scheme is much more interesting, because the behavior of high-
complexity states seems unchanged with respect to the control;
however, the lower-complexity states are changed. The minimal-
complexity states are elevated compared to the other hybrid schemes.
This is most likely because the hybrid systems have enough space in
the clusters to produce their own structures, which dissipate into the
environment.

It can be noted that structural entropy and the BDM measure
behave extremely similarly in this application.

I 4. Discussion

Hybrid cellular automata have demonstrated their ability to create
certain changes that can withstand initial measurement error or envi-
ronmental perturbations. As the environmental error increases, the
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probability of certain other states occurring also increases. This can
compete with hybrid changes at large enough error concentrations.
However, as hybrid systems modify an attractor, generally the hybrid
changes will be hardy to measurement error in the initial conditions.

When manipulating chaotic systems using hybrid cellular
automata, the principle of superposition can be applied to hybrid dif-
ferences. Thus, hybrid control can be developed using basis functions
of hybrid states. An appropriate hybrid basis can be applied for time
steps similar to the Lyapunov time, effectively reducing the total
amount of computation required to construct control algorithms.

The complexity measures seems to bound reasonable hybrid
changes to a system. In the third experiment, it was observed that
only the hybrid schemes with high concentrations of hybrid cells were
able to exceed the bounds of these measures from the control state.
Then it was found in the fourth experiment that these systems were
able to modify the general dynamic behavior of the system with
respect to the complexity of the initial conditions.

This would suggest that these complexity measures can be
employed to find hybrid schemes that significantly change the dynam-
ics with respect to the control. It was found that the clusters had the
highest deviation from the range of the control system across all mea-
sures, and the clusters displayed the most interesting behavior.

1 4.1 Future Work
It is known that many cellular automata can emulate each other from
a fixed perturbation [13]. This effectively allows cellular automata to
compile other cellular automata. The use of hybrid cellular automata
to compile other systems can be studied to implement chaos control
algorithms in larger dynamic systems.

Additionally, the connection between structural entropy and the
block decomposition method (BDM) measure should be further
explored.
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