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The agent-based model (ABM) and multi-agent system (MAS) computa-
tional approaches have gained significant attention in various scientific
disciplines. While these terms are sometimes used interchangeably, an
ABM and an MAS share common principles, but they differ in their
underlying philosophies, modeling approaches and applications. This
review paper aims to elucidate the differences between the ABM and
MAS approaches, highlighting their individual strengths and exploring
the potential synergies. Understanding these distinctions is crucial for
researchers and practitioners seeking to employ these approaches effec-
tively in their respective fields.
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| 1. Introduction

The world comprises a myriad of systems, each exhibiting unique
characteristics and behaviors that dictate their functioning. Caws and
Bertalanffy defined the system as a whole consisting of several
parts/members [1, 2]. Systems are intricately interconnected entities
and play vital roles across a spectrum of domains, spanning from the
biological to the social and technological spheres. Systems can be clas-
sified based on various criteria. Kurtz and Snowden have developed
the Cynefin framework to classify systems based on their complexity.
This framework includes five domains, with four designated cate-
gories (chaotic, complex, complicated and simple), and a central fifth
area referred to as the domain of disorder [3-5].

Simple systems are characterized by clear cause-and-effect relation-
ships that are predictable, repeatable and often linear in nature. In
contrast, complicated systems feature logical relationships between
cause and effect, but they are not self-evident and therefore require
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analysis or expertise. Moving further along the complexity spectrum,
complex systems exhibit emergent properties where cause and effect
are not readily apparent, making outcomes unpredictable and non-
linear. Finally, chaotic systems are marked by high turbulence and
lack clear cause-and-effect relationships [3, 5]. By delineating these
complexities, we can gain not only a better understanding of their
diverse natures but also the tools to effectively study, simulate and
manage the behaviors of these systems in various fields of study and
application.

Meanwhile, another classification can be taken into consideration,
which distinguishes between natural and human-made systems. Natu-
ral systems are frequently characterized as complex systems due to
their intricate structure, dynamic behavior and emergent properties
[6]. These systems include fireflies, ant colonies, bird flocks, schools
of fish, organizations, customer behavior, party competition [7], and
the list is endless. However, human-made systems, such as computer
systems or social organizations, are designed to meet specific objec-
tives. In today’s context, artificial intelligence (Al) is a significant com-
ponent of many modern human-made systems, offering advanced
capabilities in data analysis, decision-making, automation and prob-
lem solving.

In both the study of complex systems and the field of Al, the con-
cept of agents emerges as a central and foundational principle [8]. In
the context of complex systems, agents are the smallest unit of organi-
zation in the system capable of producing a given response for a
specific stimulus. This stimulus/response behavior of an agent is gov-
erned by a few very simple rules [9]. The concept of an agent is
indeed founded on a radical critique of classical Al, considering that
both simple and complex activities, such as problem solving, establish-
ing a diagnosis, coordinating actions or building systems, result from
the interaction among relatively autonomous and independent enti-
ties, referred to as agents. These agents operate within communities,
sometimes employing intricate modes of cooperation, conflict and
competition to survive and perpetuate themselves. From these interac-
tions emerge organized structures that, in turn, constrain and modify
the behaviors of these agents [10].

The agent-based model (ABM) and multi-agent system (MAS) com-
putational methodologies are based on the concept of agents. In an
MAS, the focus is on numerous independent agents interacting within
a defined environment, collectively working toward specific objectives
or tasks. These agents possess different degrees of autonomy and intel-
ligence, allowing them to make decisions and influence their surround-
ings. Conversely, an ABM is focused on simulating the behavior of
individual agents and their interactions within a system to provide
insights into emergent phenomena and to study and analyze various

Complex Systems, 34 © 2025



Agent-Based Models and Multi-Agent Systems 301

real-world phenomena. While an MAS and an ABM share common
principles, they differ in their underlying philosophies, modeling
approaches and applications.

This review paper aims to provide a comparative analysis of multi-
agent systems and agent-based models, examining their similarities
and differences. Through a critical review of literature, we aim to elu-
cidate their strengths and limitations, offering guidance to researchers
and practitioners in selecting appropriate modeling approaches for
their specific research questions and objectives.

The rest of the paper is organized as follows: Section 2 discusses
the core concept of agents. Section 3 focuses on multi-agent systems,
highlighting their properties and applications in various domains.
Section 4 provides an in-depth exploration of agent-based modeling,
elucidating its features, advantages and applications. A comparative
analysis between the computational approaches is presented in Sec-
tion 5. Finally, the paper concludes with a synthesis of the findings
and discussions presented.

I 2. Agent

There is no universally accepted definition of an agent. Various defini-
tions exist in the literature, from concise to elaborate and rigorous
ones. These definitions are heavily influenced by the field of agent
technology, including Al, software engineering, cognitive science,
computer science and engineering. Rather than enumerating and dis-
cussing numerous definitions, we present two definitions of an agent
that appear to be broad and commonly accepted across different
research communities [11].

The first definition proposed by Wooldridge and Jennings [12]
characterizes an agent as a hardware- or (more usually) software-
based computer system that enjoys several defining properties. These
properties include autonomy, allowing agents to operate without the
direct intervention of humans or others, and enabling some kind of
control over their actions and internal state. Additionally, the concept
of social ability involves agents interacting with other agents via some
form of agent-communication language. Reactivity refers to the
agent’s capability to perceive its environment and respond promptly
to changes that occur within it. Proactivity is another critical trait
where agents do not simply act in response to their environment; they
are able to exhibit goal-directed behavior by taking the initiative.

The second definition, as proposed by Ferber [13], defines an agent
as a software or hardware entity (a process) situated in either a virtual
or a real environment, possessing various attributes. This entity is
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capable of acting within an environment, driven by a set of tendencies
(individual objectives, goals, drives, satisfaction/survival function).
This entity possesses resources of its own and has only a partial
representation of the environment. It can communicate directly or
indirectly with other agents and may have the potential for self-repro-
duction. The autonomous behavior exhibited by the agent arises from
its perceptions, representations and interactions with the world and
other agents. Ferber emphasizes the significance of each term in this
definition, elaborating that a physical entity refers to something that
operates in the tangible world, like a robot, airplane or car. Con-
versely, a software component or computer module is considered a
virtual entity since it lacks a physical presence.

Most authors agree that although there are multiple definitions of
the term “agent,” several properties can be pointed out (as outlined
by Wooldridge and Jennings in 1995 [12], Franklin and Graesser in
1996 [14], Chaib-draain et al. in 2001 [15], Macal and North in
2005 [16], Epstein in 2006 [17] and Crooks in 2011 [18]). These
properties may help us further classify agents in useful ways. Table 1
lists several of the properties mentioned.

Property Meaning

Autonomous Exercises control over its own actions without
direct intervention from humans or other
agents.

Heterogenous Every agent is explicitly represented. These

agents may differ from one another in myriad
ways: by preferences, memories, decision rules,
social network, locations and so forth, some or
all of which may adapt or change
endogenously over time.

Reactive Sensing and Responds in a timely fashion to changes in the

Acting environment and modifies its behavior when
environmental conditions change.

Bounded Rationality There are two components of this: bounded

information and bounded computing power.
Agents have neither global information nor
infinite computational capacity. Although they
are typically purposive, they are not global
optimizers; they use simple rules based on local

information.
Goal-Oriented Does not simply react to the environment
Proactive/Purposeful stimuli.

Temporally Continuous |Is a continuously running process.
Communicative Social Communicates with other agents, perhaps

Ability including humans.
Learning Adaptive Changes its behavior based on its previous
experience.
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Property Meaning

Mobile Capability to change its physical or virtual
position within its environment.

Flexible Actions are not scripted.

Table 1. Computational agent properties [12, 14, 16-18].

Agents are classified based on various characteristics, functionali-
ties and capabilities. They are commonly categorized according to
their behavior, level of autonomy and purpose. Here is an overview of
agent classification.

Combining autonomy, cooperation and learning characteristics,
Nwana [19] categorized agents into seven types based on their
architecture and function (see Figure 1(a)): (i) collaborative agents;
(i) interface agents; (i) mobile agents; (iv) information agents;
(v) reactive agents; (vi) hybrid agents; and (vii) intelligent agents.

Smart Agents — - —
Autonomous
Collaborative Learning Agents
Agents Agents —

[ T N 1

b .
) Biological Robotic Computational
Agents Agents Agents
I ! .
Cooperate Software Artificial Life
L Agents L Agents
R
| Task E -
Collaborative Specific ntertainment Viruses
Learning Agents Agents Agents <
(a) Agents’ categories defined by Nwana (b) Agents’ categories defined by Franklin and Graesser

Figure 1. Agent taxonomies [14, 19].

Franklin and Graesser [14] proposed a taxonomy tree as repre-
sented in Figure 1(b), which divides the autonomous agents into three
main groups: biological, robotic and computational, based on the dis-
tinction between animate organisms, artifacts and abstract concepts.
Computational agents are subclassified into software agents and artifi-
cial life agents. At the class level, software agents are also subclassi-
fied into task-specific agents, entertainment agents and computer
viruses. Some classification schemes for software agents are possible.

Brustoloni [20] suggests another classification that includes
regulation, planning and adaptive agents. A regulation agent
promptly responds to each sensory input and consistently knows its
course of action without the need for planning or learning. Planning
agents engage in planning using various methodologies. Brustoloni’s
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adaptive agents not only engage in planning but also possess the abil-
ity to learn. A binary taxonomy approach can also be considered,
including central or distributed control, planning or nonplanning,
learning or nonlearning, mobile or nonmobile, communicative or non-
communicative.

Agents can additionally be categorized according to the application
areas. These fields commonly encompass supply chain, consumer
behavior, social networks, distributed computing, transportation and
environmental studies. Agents have also been applied to several social
and society fields, comprising population dynamics, epidemics out-
breaks, biological applications, civilization development and military
applications [21].

These taxonomies provide a comprehensive framework for under-
standing the diversity of agents, their functionalities and their roles
across various application domains. In conclusion, agents represent a
diverse and adaptable technology that is applied across a broad spec-
trum of fields. The classification and categorization of agents span
various criteria, including their behavior, functionality and applica-
tion domains.

Both MAS and ABM approaches fundamentally revolve around the
concept of individual agents operating within a larger system. In an
MAS, the emphasis is on multiple autonomous agents interacting
within a given environment, contributing collectively to achieve spe-
cific goals or tasks. These agents possess varying degrees of autonomy
and intelligence, allowing them to make decisions and influence their
surroundings. On the other hand, the ABM focuses on simulating and
understanding the behavior of individual agents and their interactions
within a system, aiming to capture the emergent properties and
dynamics that arise from these interactions. The common ground lies
in recognizing that both the MAS and ABM approaches share a focus
on the behavior and interactions of individual agents as fundamental
determinants of overall system behavior.

I 3. Multi-Agent System

I 3.1 Background

For a long time, in the realm of Al and computational systems,
programs have been considered as individualized entities capable of
competing with humans in specific domains. Given the complexity of
computer systems, it became necessary to break them down into
“loosely coupled” modules, independent units with limited and per-
fectly controlled interactions. Thus, instead of dealing with a
“machine,” we find a collection of interacting entities, each defined
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locally, without a detailed global view of all system actions. This way
of approaching programs introduced new software engineering design
methods and a change of perspective; we shifted from the concept of
a program to that of organization.

The resolution of simple or complex problems thus became the
result of interactions among relatively autonomous and independent
entities, called agents, who work within communities using sometimes
complex modes of cooperation, coordination, negotiation and compe-
tition to survive and perpetuate themselves. From these interactions
emerge organized structures that, in turn, constrain and modify the
behaviors of these agents [10]. The MAS can be traced back to the
early days of research into distributed artificial intelligence (DAI) in
the 1970s—indeed, to Carl Hewitt’s concurrent Actor model [22]. In
this model, Hewitt proposed the concept of a self-contained, interac-
tive and concurrently executing object that he termed “actor.” This
object is an individual unit of computation that has its own state and
behavior, and individuals can communicate with each other through
message passing. The MAS gained formal recognition as a distinct
research area in the 1980s and 1990s. Notable contributions by
researchers like Les Gasser [23, 24], Michael Wooldridge and Nick
Jennings [12, 25-27], Brahim Chaib-Draa et al. [15] and Jacques Fer-
ber [10, 13] have shaped the theoretical foundations and practical
applications of the MAS.

Before delving into a comprehensive exploration of MAS
approaches, it is imperative to provide clear definitions for the term
“multi-agent system.” Regrettably, this task presents challenges
because certain fundamental concepts do not possess universally
accepted definitions [12]. Researchers and authors often tailor their
definitions to the specific needs of their studies and projects, leading
to a range of interpretations. Here we present two MAS definitions,
which are considered quite general and have garnered broad accep-
tance across diverse research communities. As outlined by Ferber
[10], an MAS is comprised of the following components:

= An environment E, that is, a space generally having a metric.

m A set of objects O, situated in the space, which can be perceived, cre-
ated, destroyed and modified by the agent.

A set of agents A, which are special objects (AcO); they are the active
entities of the system.

A set of relationships R that unite objects (and therefore agents) with
each other.

A set of operations Op, allowing agents of A to perceive, produce, con-
sume, transform or manipulate objects of O.
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= A set of operators Oe, charged with representing the application of
these operations and the world’s reaction to this attempt at modifica-
tion, which will be called the laws of the universe.

According to Chaib-draa et al. [15], an MAS is designed and imple-
mented ideally as a set of interacting agents, typically organized based
on modes of cooperation, competition or coexistence. Additionally,
he noted that an MAS is generally characterized by the following fea-
tures: each agent has limited information or problem-solving abilities,
thus each agent has a partial point of view, there is no global control
of the MAS, the data is decentralized, and the calculation is asyn-
chronous.

I 3.2 The Key Principles of Multi-Agent Systems

These definitions typically revolve around common properties. There
is no official international or industry-wide agreement regarding a
standardized list of properties for an MAS. The properties provided in
the following are commonly recognized and discussed in the research
community. The properties of an MAS can vary depending on the con-
text and the specific goals of a research project or application (see
Figure 2). Different researchers and practitioners may emphasize
different properties based on their particular interests and the charac-
teristics of the MAS they are studying. In the absence of an official
agreement, researchers typically define and analyze properties based
on the specific problem they are addressing. As a result, the properties
of an MAS can be flexible and adaptable to suit the needs of individ-
ual research projects and applications.

| Interaction

Organization

Coordination

Competition Cooperation

Communication

| |

Figure 2. MAS properties.

Interactions. An MAS distinguishes itself from a collection of inde-
pendent agents by the fact that agents interact with the aim of jointly
accomplishing a task or achieving a specific goal [15]. These interac-
tions are not only the result of actions performed by multiple agents
simultaneously but also the essential element in the formation of
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social organizations [10]. Each agent can be characterized by three
dimensions: their goals, their capabilities to perform and the resources
at their disposal. The interactions among agents in an MAS are driven
by the interdependence of agents along these three dimensions: their
goals may be compatible or not, agents may desire resources pos-
sessed by others, and an agent X may possess a capacity necessary for
agent Y to accomplish one of Y’s action plans [15]. In the MAS
realm, the benefit lies in incorporating sophisticated interaction pat-
terns, enabling agents to coexist, compete or cooperate.

Organization. Organization, along with interaction, is one of the
fundamental concepts in an MAS. Numerous definitions of the con-
cept of organization have been put forth by different authors, includ-
ing Morin [28] and Ferber [10, 29]. Common MAS organizational
paradigms exist, and these paradigms enjoy broad recognition and uti-
lization across diverse applications. Here are a few prevalent MAS
organizational paradigms: hierarchical organization, holonic organiza-
tion, team-based organization, coalitions, societies and self-organiza-
tion [30]. In an MAS, there are numerous interrelations between
agents, including task delegation, information transfer, commitments,
action synchronizations and more. These interrelations are only possi-
ble within an organization, but conversely, organizations require the
existence of these interrelations. Organizations therefore constitute
both the support and the manner in which these interrelations are
achieved [10].

Coordination. Coordination stands at the core of an MAS design.
Rarely do agents operate in isolation; instead, agents often work in
parallel to achieve a common goal. When multiple agents are
employed to achieve a goal, there is a necessity to coordinate or syn-
chronize the actions to ensure the stability of the system. Coordina-
tion between agents increases the chances of attaining an optimal
global solution [30]. According to Nwana and Jennings [31], there
are various reasons why agents need to coordinate: preventing chaos
and anarchy, meeting global constraints, utilizing distributed
resources, expertise and information, preventing conflicts between
agents and improving the overall efficiency of the system [32]. In an
MAS, coordinating the actions of different agents ensures system
coherence. There are several coordination mechanisms, including orga-
nization, planning and synchronization [33].

Cooperation. Cooperation refers to the collaborative behavior and
interactions among multiple agents to achieve shared goals or objec-
tives. According to Ferber, cooperation involves agents working
together, often by sharing information, resources or tasks, to collec-
tively achieve better outcomes or solve complex problems [10]. How-
ever, agents can cooperate with no intention of doing so, and if this is
the case, then the cooperation is emergent [34].
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Competition. In contrast to cooperation, competition in an MAS
pertains to situations where agents pursue their objectives indepen-
dently and may even have conflicting interests. Competition can arise
when agents have limited resources, compete for access to shared
resources or have different goals that are not aligned.

Communication. Communication is one of the crucial components
in an MAS that enables autonomous agents to interact, collaborate
and achieve their objectives. Communication in an MAS can be
mainly classified as two types. This is based on the architecture of the
agent system and the type of information that is to be communicated
between the agents [30]. The widely used approaches are local com-
munication or message passing, where agents directly message each
other, and network communication or Blackboard, where agents can
collaboratively share data with each other using a central repository
called Blackboard [35].

|l 3.3 Application Areas

Various authors and researchers have proposed categorizations and
classifications of the domains of MAS applications, depending on per-
spectives and research goals. Here is a broad suggestion provided by
Chaib-Draa [15] that pursues two major objectives:

» The first concerns the theoretical and experimental analysis of the mech-
anisms that take place when several autonomous entities interact: they
are placed within the cognitive sciences, social sciences and natural sci-
ences to both model, explain and simulate natural phenomena and gen-
erate models of self-organization.

» The second focuses on the creation of distributed programs capable of
accomplishing complex tasks via cooperation and interaction: they
present themselves as a practice, a technique that aims to create com-
plex computer systems based on the concepts of agent, communication,
cooperation and coordination of actions.

According to Ferber [13], the main MAS applications are:

» Problem solving. An MAS offers an alternative to centralized problem
solving, particularly effective when problems are distributed or when
organizing problem solving among different agents proves more effi-
cient.

» Multi-agent simulation. An MAS facilitates the creation of artificial uni-
verses for simulating and studying complex systems.

» Construction of synthetic worlds. The goal of an MAS is to develop
societies of agents characterized by significant flexibility and adaptabil-
ity, enabling them to function efficiently despite individual failures.
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» Collective robotics. Utilized to coordinate multiple robots, an MAS is
used where each subsystem has a specific goal, contributing to the
achievement of a larger task. MAS approaches are valuable for coordi-
nating different mobile robots in shared space.

» Kinetic program design. An MAS can also be viewed as a highly effec-
tive modular approach to programming.

I 4. Agent-Based Model

1 4.1 Background

Computer modeling and simulation (CMS) has emerged as a crucial
research domain with practical applications in various industries and
services. Given the complexity of most real-world systems, analytical
methods often fall short, making numerical methods like simulation
essential for studying system performance, understanding internal
dynamics and exploring alternative scenarios [36]. Various modeling
approaches exist, employing diverse representation formalisms and
simulation methods. The selection of the most suitable modeling
paradigm depends on the characteristics of the system being studied
and the objectives of the simulation. Paradigms differ based on fac-
tors such as the representation of time (continuous or discrete) and
the granularity of model elements (macroscopic or microscopic) [37].
The interest in incorporating the concept of agents into modeling and
simulation primarily arises when dealing with the simulation of
complex systems, which forms the foundation of the individual-based
modeling (IBM) approach. The ABM is categorized within the
broader spectrum of individual-based models. Within this category,
closely related techniques such as cellular automata (CAs) and
microsimulation are also prominent.

CAs are “discrete spatiotemporal dynamic systems governed by
local rules” [38]. Despite their simplicity, CAs can exhibit extremely
complex behavior and emergence. They are capable of modeling and
simulating complex behavior with minimal rules. CAs consist of four
key elements: a grid of cells with finite states, a neighborhood
typically defined by the Moore (eight-cell) neighborhood, initial condi-
tions for each cell and rules dictating state changes based on neigh-
borhood properties. The model progresses by iteratively applying
these rules to cells, followed by swapping the grid and repeating the
process [39].

Schelling applied notions of CAs to study housing segregation pat-
terns to create the first social agent-based simulation in which agents
represent people and agent interactions represent a socially relevant
process [40]. Schelling demonstrated that emergent patterns could
arise that were not necessarily intended by individual agents, sparking
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significant interest and guiding development of agent-based modeling
simulation (ABMS). Notably, Schelling’s initial models were con-
ducted without computer assistance, representing agents as coins mov-
ing on a checkerboard.

In 1987, Craig Reynolds developed the Boids model [41] that simu-
lated flocking behavior, further demonstrating how local, individual
rules could give rise to collective phenomena. Each simulated bird is
implemented as an independent actor that navigates according to its
local perception of the dynamic environment, using three simple rules
that govern the behavior of individuals within the group. The ABM
continues to evolve, from the Sugarscape model by Joshua M. Epstein
and Robert Axtell in 1996 [42] to applications in epidemiology, eco-
nomics and social sciences, expanding its reach and influence. Today,
the ABM is applied in diverse fields, from modeling disease spread
and financial markets to simulating complex societal behaviors,
reflecting the ongoing evolution and significance of this modeling
approach.

Agent-based modeling is known by many names. ABM (agent-
based model), ABS (agent-based system), multi-agent system (MAS),
multi-agent simulation (MAS), multi-agent-based simulation (MABS)
or individual-based modeling (IBM), due to the wide range of applica-
tions that utilize the concept of agent as a fundamental element in
simulation models [16, 21]. An ABM is a computational modeling
technique that has gained significant popularity in various disciplines
including economics, ecology, social sciences and epidemiology. It is
particularly well suited for studying complex systems where individ-
ual agents interact with each other and their environment, giving rise
to emergent behavior. The core idea of ABMS is that, instead of
merely describing the overall global phenomenon, this phenomenon
can rather be generated from the actions and interactions of agents.
This bottom-up nature is the most important feature of ABMS [43].
Thus, the ABM is particularly suitable for analyzing complex adap-
tive systems and emergent phenomena [37, 44-46].

|l 4.2 Concepts, Features and Advantages

An ABMS is a group of heterogeneous autonomous agents; each has
its own objectives and is generally able to interact with the others and
with its environment. In general, an ABM has three elements [16,
47-49]:

= A set of agents, their attributes and behaviors.

= A set of agent relationships and interaction methods: an underlying
topology of connectivity defines how and with whom agents interact.

= Agent environment: agents interact with their environment in addition
to other agents.
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The ABM is a modeling approach that focuses on individual agents
and their interactions to comprehend complex systems across various
domains. It is characterized by several distinctive features [18, 50]:

Stochastic nature. Involves randomness, leading to different outcomes
across multiple runs.

Aggregative. Predicts changes at a micro level and then combines these
changes to understand larger-scale effects, following a bottom-up
approach.

Empbhasis on individual units. An ABM analyzes individual agents that
constitute the system, typically adaptive and capable of learning from
experience.

The ABM allows researchers to track the origins of specific decisions
made by individual agents and analyze their decision-making processes.

The ABM has the capacity to employ a vast number of parameters.

The agents in an environment can be spatially explicit, which means
that the agents have a location in geometric space, or they can be
implicit, which means that their location in the environment is not
relevant.

In an ABM, the environment is shaped by the actions of the agents. In
certain simulations, agents may even have the ability to alter the initial
assumptions of the model.

Capable of modeling nonlinear structures.

An ABM offers several advantages for simulating and understand-
ing complex systems across various domains. These advantages can
be summarized in three key statements:

0.

An ABM captures emergent phenomena, which arise from interactions
between individual entities. An ABM is suitable when:

» Individual behavior is nonlinear.

» There is a heterogeneous population of agents with varying ratio-
nality.

= Agent interactions exhibit complex and heterogeneous topologies.

= Agents display complex behaviors, including learning and adap-
tation.

. An ABM provides a natural description of a system: an ABM is well-

suited for describing and simulating systems composed of behavioral
entities.

The ABM offers flexibility in several dimensions:

= Simplifying the addition of more agents.
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» Providing a natural framework for adjusting agent complexity,
including behavior, rationality, learning, evolution and interaction
rules.

= Allowing for changes in levels of description and aggregation [47].

| 4.3 Application Areas

The ABM is a versatile and powerful tool with a wide range of appli-
cations across diverse domains that is particularly valuable for simu-
lating complex systems characterized by interactions between
autonomous agents. The ABM allows us to model a wide spectrum of
systems, from those in the distant past to those that have yet to
emerge in the future. It is widely applied in fields such as social
sciences, economics, supply chains, ecology, agriculture, crime, epi-
demiology, tourism, urban planning and more. Its flexibility and
adaptability make it a powerful method for better understanding com-
plex and dynamic systems and addressing real-world challenges.
Researchers and practitioners continue to explore new avenues for
applying the ABM, making it an indispensable and evolving modeling
approach. Some example applications in these fields can be found in
Table 2.

Application Area | Application Examples

Social Sciences “Agent-Based Computational Models and Generative
Social Science” (Epstein 1999) [51], Simulation for the
Social Scientist (Gilbert and Troitzsch 2005) [52].
Economics Handbook of Computational Economics: Agent-
Based Computational Economics (Tesfatsion and
Judd 2006) [53], Agent-Based Modelling in
Economics (Hamill and Gilbert 2016) [54].

Supply Chains “Agent-Based Modeling and Simulation for Supply
Chain Risk Management: A Survey of the State-of-the-
Art” (Chen, et al. 2013) [55], “An Agent-Based Model
of Supply Chains with Dynamic Structures” (Li and
Chan 2013) [56].

Ecology Individual-Based Modeling and Ecology (Grimm and
Railsback 2005) [57].

Agriculture “A Review of Agent Based Modeling for Agricultural
Policy Evaluation” (Kremmydas et al. 2018) [58].

Crime “State of the Art in Agent-Based Modeling of Urban
Crime: An Overview” (Groff et al. 2018) [59].

Epidemiology “An Agent-Based Approach for Modeling Dynamics

of Contagious Disease Spread” (Perez and Dragicevic
2009) [60], “An Agent-Based Modeling Approach
Applied to the Spread of Cholera” (Crooks and
Hailegiorgis 2014) [61].
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Application Area | Application Examples

Tourism “Agent-Based Modeling: A Powerful Tool for
Tourism Researchers” (Nicholls et al. 2016) [62], “An
Agent-Based Model of Tourism Destinations Choice”
(Alvarez and Brida 2019) [63].

Urban “Agent-Based Modeling in Urban and Architectural
Research: A Brief Literature Review” (Chen 2012)
[64], “Modelling Urban Expansion Using a Multi
Agent—Based Model in the City of Changsha” (Zhang
et al. 2010) [65].

Table 2. Agent-based modeling applications.

4.3.1 Example: Bird Flocking Model

The bird-flocking model, often referred to as the Boids “bird-oid”
model, was introduced by Craig Reynolds in 1987 [41]. It is a classic
example of an ABM used to simulate the flocking behavior of birds.
Here is a detailed description of the model: Objective: To simulate
and understand the collective behavior of a flock of birds, mimicking
the behavior of each individual bird, with only a few simple rules.

Model Description

Agents (Boids). Agents in this model represent individual birds within
a flock. Each Boid has its own position, velocity, orientation and sim-
ple rules governing its movement.

Environment. The environment is typically a two-dimensional
space where the Boids move. It can be represented as a grid.

Rules
See Figure 3:

= Separation rule. Boids avoid collisions with their neighbors by maintain-
ing a certain distance between them.

» Alignment rule. Boids align their velocity with that of nearby
flockmates.

= Cohesion rule. Boids move toward the center of mass of their neighbors
and attempt to stay close to nearby flockmates.
Interactions. Boids interact with their nearby neighbors based on

the three aforementioned rules. They continuously adjust their posi-
tions and velocities according to these rules.

Emergent bebavior. Through these simple local interactions, the
model exhibits emergent behaviors, including flocking, coordinated
movement and the avoidance of collisions. The collective motion of
the flock arises from the individual Boids’ adherence to basic rules.
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Figure 3. Bird-flocking model rules [41].

Model implementation. The Boids model has been implemented in
various programming languages and environments. We can find open-
source implementations and simulations of the Boids model in
platforms like NetLogo (see Figure 4). This model serves as a funda-
mental example of how simple local interactions among agents can
result in the emergence of complex and coordinated group behavior.

Initial random configuration Emergent flocking

Figure 4. Simulation in Netlogo of bird-flocking model [41].

| 5. Comparison

The comparison between an MAS and an ABM delves into two dis-
tinct yet closely related concepts: the domain of complex systems and
agent-based approaches. While both concepts revolve around the
interactions and behaviors of autonomous agents, they address differ-
ent aspects and serve diverse purposes. In this comparison, we explore
the fundamental differences between an MAS as a system and an
ABM as a modeling approach, shedding light on their unique con-
texts, analytical perspectives and areas of application.

An MAS refers to a system composed of multiple autonomous
agents interacting with each other or with their environments to
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achieve specific goals. These agents can be individuals, software enti-
ties or robots, and they typically have their own goals, knowledge and
capabilities. An MAS emphasizes the study of how agents interact and
collaborate to solve complex problems or achieve tasks that may be
challenging for individual agents alone. Conversely, the ABM serves
as a modeling approach that replicates the actions and interactions of
individual agents, aiming to uncover emergent behaviors resulting
from these interactions. ABM applications span across various fields,
including sociology, ecology and economics. An ABM meticulously
scrutinizes the behaviors of individual agents to discern how their
actions contribute to observable outcomes at the system level.

This comparative analysis explores the disparities between an MAS
and an ABM, encompassing their definitions, areas of focus, objec-
tives and tools (Table 3). By distinguishing an MAS as a system and
an ABM as a modeling approach, we gain a deeper understanding of
their distinct roles in the study of complex systems and agent-based
phenomena, offering insights into their applications and implications
in various domains.

Table 3 offers a simplified summary comparing MAS and ABM fea-
tures across various aspects. These aspects include their focus, pur-
pose, scale, emergence, complexity, agent behavior and properties,
programming language and applications. By delineating these differ-
ences, a comparative analysis sheds light on the unique characteristics
of each methodology and how they intersect within the broader
context of studying complex systems and emergent phenomena.

Aspect MAS ABM

Focus A system comprised of Modeling methodology
multiple autonomous that simulates behaviors
agents interacting with and interactions of

each other or their individual agents.
environment.

overall system behavior
and dynamics.

Emphasis Interaction, coordination, |Individual agent behavior
collaboration, competition |and emergent system
and communication properties.
among agents.

Purpose Accomplishing a task, Understanding a
achieving a specific goal phenomenon or predicting
or solving complex the evolution of a system.
problems.

Scale Macro level, studying Micro level, focusing on

agent interactions and
behavior.

Table 3. (continues).
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emergence of system-level
behaviors or properties
that are not explicitly
programmed into the
individual agents.
Examples include self-
organization, swarm
intelligence and adaptive
behavior, which arise
from the interactions and
coordination among
agents.

Aspect MAS ABM

Complexity Arises from interactions Emerges from interactions
among autonomous among individual agents,
agents with diverse goals, |each following simple
knowledge, and rules.
capabilities.

Emergence Refers to the spontaneous | Occurs when simple rules

or behaviors at the
individual agent level give
rise to complex, system-
level patterns or
phenomena.

Agent Behavior

Agents interact and
collaborate to achieve
system objectives.

Agents have simple
behavioral rules and
interact locally among
them at the micro scale.

time to changes in the
environment or actions of
other agents.

Autonomy Agents are autonomous Individual agents are
entities with decision- autonomous and make
making capabilities. decisions based on simple

rules.

Heterogeneity Agents in the system may | Can capture multiple
have diverse capabilities, types of agents, reflecting
behaviors or goals. different attributes,

behaviors or roles within
the model.

Reactivity Agents can react in real Models reactive behavior

where agents respond
dynamically to changes in
the environment or other
agents.

Goal-Oriented

Agents have individual
goals or objectives guiding

their actions and decisions.

Focuses on modeling how
individual agents pursue
specific goals within the
overall system.

Communication

Communication
mechanisms enable agents
to exchange information
and coordinate actions.

May or may not explicitly
model communication,
depending on the specific
application.

Table 3. (continues).
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Aspect MAS ABM
Learning Agents may have the Learning mechanisms are
ability to learn from incorporated to simulate
experience, improving how agents adapt their
their behavior over time. behavior based on their
experiences.
Dynamic The environment in which | Models a dynamic
Environment agents operate is dynamic | environment that
and may change over time. |influences the behavior
and interactions of
individual agents.
Parallelism Agents can perform Utilizes parallel processing
actions concurrently, to represent simultaneous
enabling parallel actions and interactions
processing and efficiency. | among individual agents.
Programming Often implemented using | Typically implemented
Languages Java, Python or specific using languages such as
MAS libraries like JADE Java, Python, NetLogo or
or AgentSpeak for MAS. | specific ABM libraries like
Repast, MASON or
GAMA.
Applications Distributed systems. Social sciences, ecology,
Robotics, problem solving |economics, healthcare and
and program design. tourism.

Table 3. MAS and ABM comparison.

| 6. Conclusion

In conclusion, the comparative analysis between a multi-agent system
(MAS) and an agent-based model (ABM) provides valuable insights
into their distinct yet interconnected nature. An MAS focuses on sys-
tem-level behaviors resulting from interactions among autonomous
agents, offering a macroscopic view of collective dynamics. In con-
trast, an ABM simulates individual agent behaviors to understand
emergent properties, providing a micro-level perspective. The synthe-
sis of findings from this study underscores the foundational principles
that bind multi-agent systems and agent-based models, while simulta-
neously highlighting the nuances that distinguish them. The MAS,
rooted in artificial intelligence (AI) and distributed systems, is charac-
terized by its emphasis on explicit communication structures and for-
malized coordination mechanisms, making it applicable in domains
such as robotics and decentralized control systems. Conversely, the
ABM, originating in social sciences and economics, excels in captur-
ing the emergence of complex phenomena.

In essence, the choice between them hinges on the intricacies and
objectives of the system being studied. When the primary focus is on
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understanding how individual agents interact and influence the
overall system behavior, an ABM may be more suitable. On the other
hand, an MAS may be preferred when the emphasis is on designing
and controlling autonomous agents within a system. An MAS allows
for the development of systems with specific objectives, using coordi-
nation, cooperation or competition mechanisms among agents. There-
fore, the choice between an MAS and an ABM depends on the
modeling goals, level of detail required and the nature of the system
under study.
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