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Cellular  automata  (CAs)  are  used  to  model  rule-based  evolution-
ary systems with standard CAs applying unitary, fixed rules to an
entire  generation  at  a  time.  A  sequential  updating  asynchronous
cellular  automaton  (CA)  with  more  than  one  rule  for  each  input
sequence is studied. These multiway sequential CAs (MSCAs) can
model  complex  systems  with  multiple  branching  rule  sets  where
changes  propagate  through  the  system.  This  paper  examines  the
case of one-dimensional, two-cell, two-branch MSCAs in order to
better  understand  their  structure  and  the  impact  of  parameters.
The  complete  set  of  1296  M-type  rule  sets  possible  for  this  type
of  multiway  sequential  CA  (MSCA)  is  applied  to  a  full  set  of  32
initial  conditions,  representing  all  possibilities  of  a  six-cell  initial
condition,  generating  41472  state  graphs.  Machine  learning  is
used  to  classify  a  subset  of  these  state  graphs  into  10  classes.
Analytical data enables characterization of these classes of graphs
and investigation of the role of rule sets in these state graphs. Tar-
get  distribution  analysis  of  the  M-type  rule  sets  is  performed
within each class of graphs to tease out intrinsic characteristics of
the classes.
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Introduction1.

Cellular  automata  (CAs)  are  discrete  models  of  computation
also  referred  to  as  tessellation  automata,  cellular  structures  and
tessellation  structures  [1–16].  CAs  of  many  geometries  have
been  studied  [17–19].  CAs  have  been  applied  to  a  variety  of
applications,  including  viral  spread  [20],  drug  therapy  [21],
urban  development  [22,  23],  pattern  recognition  [24–28],  VLSI
[29–31], image processing [32, 33], cryptology [34–39], bioinfor-
matics [40], solitons [41] and fractals [42–45], to name a few.

In  the  one-dimensional  binary  case,  a  cellular  automaton
(CA)  consists  of  an  array  of  binary  cells  defined  by  an  initial
state  and  a  list  of  evolutionary  rules  that  describe  how  previous
cell values determine current cell values. Figure 1 shows a space-
time visualization of the behavior of the rule 30 CA, where each
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row  in  the  two-dimensional  grid  represents  one  application  of
the  rule  set  to  the  row  of  cells.  In  other  words,  the  vertical  axis
moving downward is the time axis.

While  typical  CAs  update  the  entire  array  synchronously,  the
sequential  CA  (SCA)  uses  asynchronous  updating  [2].  The  main
difference in an SCA is that cell updates are based on new values
of  cells  rather  than  old,  which  results  in  significantly  different
behavior than a standard CA. Figure 2 shows a spacetime visual-
ization of the behavior of the rule 30 SCA.

Figure  1.  A  spacetime  visualization  of  the  behavior  of  the  rule  30  CA.
The  initial  condition  is  an  array  of  white  cells  with  one  black  center
cell. Each row represents one application of the rule set to the previous
row of cells.

Figure  2.  A  spacetime  visualization  of  the  behavior  of  the  rule  30  SCA.
The initial condition is an array of white cells with one black center cell.

This paper presents a systematic analysis of multiway sequen-
tial  CAs  (MSCAs),  which  are  an  extension  of  traditional  CAs
and SCA models that allow for asynchronous updating of multi-
branching rule sets. This paper makes key contributions in graph
representation, classification of graph structures and comprehen-
sive  rule  set  analysis  of  the  MSCAs,  potentially  opening  new
directions  for  modeling  systems  where  multiway  propagation
occurs,  such  as  quantum  field  theory  or  biological  distributed
systems.
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Sequential Cellular Automata and Multiway Sequential 
Cellular Automata

2.

Sequential Cellular Automata2.1

Sequential  CAs  (SCAs)  can  be  defined  to  operate  on  r-dimen-
sional  arrays  and  have  been  described  for  a  variety  of  geome-
tries.  One-dimensional  arrays  are  the  most  common  form;
however, these evolutionary rule sets may operate on two-dimen-
sional  images,  three-dimensional  volumes  or  even  higher-dimen-
sion arrays. In the SCA, one step is considered as the application
of  the  rule  set  to  a  subset  of  cells,  updating  a  portion  of  the
r-dimensional  array.  One  generation  consists  of  the  successive
application  of  the  rule  set  to  the  continually  updated  array,  fol-
lowing  a  predetermined  path  covering  the  entire  r-dimensional
array once.

Examples  of  SCA  rule  sets  are  given  in  Figures  3–5.  Figure  3
shows  the  well-known  rule  30  rule  set,  in  which  three  contigu-
ous cells are used as the input to determine the new value of the
center  cell.  Figure  4  shows  an  SCA  that  is  discussed  in  more
detail  later,  wherein  two  input  cells  yield  two  output  cells.  Both
rule sets in Figures 3 and 4 are examples of r = 1 SCAs. Figure 5
shows  an  example  of  an  r = 2  SCA  where  the  rules  are  applied
to a 22 portion of the array. Note that Figure 5 only displays a
subset of the complete rule set for concision.

Figure 3. The SCA rule 30 rule set with three input cells and one output
cell.  The  three  input  cells  determine  the  new  value  of  the  center  cell  in
this r = 1 SCA.

Figure  4.  An  SCA  rule  set  with  two  input  cells  and  two  output  cells.
This is an r = 1 SCA.

⟶ ⟶ ⟶ ⟶

⟶ ⟶ ⟶ ⟶

Figure  5.  A  subset  of  the  rules  comprising  a  two-dimensional  SCA  rule
set,  meaning  r = 2.  Each  rule  operates  on  a  22  portion  of  the  two-
dimensional array.
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The  SCAs  considered  in  this  paper  operate  on  one-
dimensional  arrays,  meaning  r = 1,  and  have  a  fixed  order  of
application; that is, the array is traversed in one direction. A step
transforms  a  fixed  number  of  cells,  determined  by  the  output
size of the rule set. In the classic rule 30 example, this results in
transforming a single cell of the array. A generation is the succes-
sive  application  of  the  rule  set  over  the  entire  one-dimensional
array, using updated values as the inputs after each step.

In order to define the evolutionary rule set for the SCA, let N
be the length of the one-dimensional array upon which the SCA
will operate. Let g ∈ , g ≥ 0, where g represents the current gen-
eration of the SCA. Let s ∈ , 1 ≤ s ≤ N - 1, where s denotes the
current  step  of  the  SCA  within  generation  g.  Let  as, g  be  a  finite

array  of  length  N  that  results  after  application  of  the  rule  set  in
step  s  of  generation  g  of  the  SCA.  Note  that  aN-1, 0  represents

the  initial  condition,  which  is  the  original  array  input  into  the
SCA.  Let  I  be  the  input  cell  values,  T  be  the  target  cell  values,
and D be the cardinality of I. Then the function f , which defines
the rule set being applied by the SCA, is given by

f : Ik  Tk Ik ∈ I, Tk ∈ T, k ∈ , 1 ≤ k ≤ D. (1)

Consider,  for  example,  an  SCA  that  operates  on  2-cell  inputs
and  yields  2-cell  outputs  (2:2),  with  binary  values  in  the  cells.
The evolutionary update for the SCA for this 2:2 case is defined
in  equation  (2).  Note  when  s = 1,  the  updated  values  are  based
on the last step s = N - 1 of the previous generation, g - 1:

as, g [s], as, g[s + 1] = f as-1, g[s], as-1, g[s + 1]

i = s, s + 1, s > 1

as, g [i] = as-1, g [i]

i ≠ s, s + 1, s > 1

as, g [s], as, g[s + 1] = f aN-1, g-1[s], aN-1, g-1[s + 1]

i = s, s + 1, s = 1

as, g [i] = aN-1, g-1[i]

i ≠ s, s + 1, s = 1.

(2)

The operation of this SCA starts from the leftmost cell of the
array  in  a  particular  step  s  and  generation  g,  as, g[1].  The  SCA

progresses one cell to the right at each successive step. When the
rightmost cell in the array as, g[N] has been updated, one genera-

tion  is  complete.  As  a  result,  the  first  and  last  cells  of  the  array
will be updated once, while all other cells will be updated twice,
in  two  consecutive  steps,  in  each  generation.  The  rule  set  for  an
SCA  will  map  each  input  cell  pair  to  only  one  output  cell  pair.
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The  set  of  input  cell  values  is  the  four  ordered  pairs
I = {(0, 0), (0, 1), (1, 0), (1, 1)}.  For  clarity,  these  ordered  pairs
will be denoted I = {00, 01, 10, 11}. The set of target cell values
is  the  same  four  binary  options,  T = {00, 01, 10, 11}.  An  exam-
ple  of  the  rule  set  is  f = {00  01, 01  10, 10  11, 11  00}.
Table  1  shows  the  first  three  steps  of  a  2:2  SCA  on  an  array,  a.
The  first  row  indicates  the  initial  condition,  with  each  column
representing one element of the array. Each row represents a suc-
cessive  step  in  the  SCA.  The  shaded  cells  indicate  the  cells  that
are  transformed  in  each  step,  based  on  the  values  of  those  same
two cells in the previous step. In Table 1, the letters α and β are
appended  to  the  index  when  there  is  a  change  in  that  value.  A
white  cell  indicates  one  whose  value  is  copied  from  the  cell
above with no change.

Initial Condition aN-1, 0[1] aN-1, 0[2] aN-1, 0[3] aN-1, 0[4] …

Step 1 a1, 1[1α] a1, 1[2α] a1, 1[3] a1, 1[4] …

Step 2 a2, 1[1α] a2, 1[2β] a2, 1[3α] a2, 1[4] …

Step 3 a3, 1[1α] a3, 1[2β] a3, 1[3β] a3, 1[4α] …

Table 1. Initial steps of a 2:2 SCA. Light blue regions show cells that are
updated  during  that  step.  The  letter  α  or  β  is  appended  to  the  index  to
indicate a change in that value.

As  shown  in  Table  1,  the  first  step  applies  the  rule  set  to
aN-1, 0[1]  and  aN-1, 0[2]  to  generate  new  values  for  those  two

cells,  a1, 1[1α]  and  a1, 1[2α].  Then,  the  second  step  applies  the

rule  set  to  a1, 1[2α]  and  a1, 1[3]  and  updates  those  two  values,

generating  a2, 1[2β]  and  a2, 1[3α].  Note  that  the  second  element

of the array has been updated twice, influenced by the values of
aN-1, 0[1],  aN-1, 0[2]  and  aN-1, 0[3],  generating  a2, 1[2β],  the  final

value  of  the  second  element  of  the  array  in  this  generation.  The
influence  of  both  neighbors  on  a  cell’s  value  mimics  the  three-
cell rule sets of the most common regular CA but in a sequential
manner  where  the  rule  set  is  applied  twice  and  the  intermediate
value  is  operated  on  by  the  SCA.  The  differences  become  more
obvious when the evolution of the SCA is examined further. The
next step will apply the rule set to a2,1[3α] and a2,1[4], updating

those  values,  generating  a3, 1[3β]  and  a3, 1[4α].  Note  that  the

final  value  of  the  third  cell  is  a3, 1[3β],  and  it  is  also  influenced

by  values  of  its  neighboring  cells.  However,  the  difference
between the SCA and CA is that in the traditional CA, the origi-
nal  values  of  aN-1, 0[2],  aN-1, 0[3]  and  aN-1, 0[4]  impact  the  new
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value  of  a3, 1[3β],  whereas  in  the  SCA  a1, 1[2α],  a2, 1[3α]  and

a2, 1[4],  which  has  carried  down  the  value  of  aN-1, 0[4],  govern

the  new  value  of  a3, 1[3β]  instead.  The  incorporation  of  a1, 1[2α]

is the key difference and highlights a major attribute of the SCA:
propagation.  As  can  be  seen  in  Figure  2,  the  value  of  aN-1, 0[1]

impacts  a1, 1[2α],  the  value  of  a1, 1[2α]  impacts  a2, 1[3α],  and  the

value  of  a2, 1[3α]  impacts a3, 1[4α].  Therefore,  the  effects  of

aN-1, 0[1] continue to propagate down the array within one gen-

eration.  Similarly,  the  impact  of  each  cell  propagates  to  the  rest
of the cells in the array as the SCA evolves through a generation.
The SCA is a variant of a CA as opposed to a Post tag system, as
the  evolution  is  still  based  on  the  previous  values  of  the  array
and  cell  values  are  neighbor  dependent,  simply  in  a  more  com-
plex and interwoven manner.

Multiway Sequential Cellular Automata2.2

This  paper  introduces  multiway  SCAs  (MSCAs)  where  addi-
tional  complexity  is  added  by  using  nonhomogeneous  rule  sets,
or, in other words, an MSCA maps one input to several targets.
Each  state  of  an  MSCA  has  several  evolutionary  possibilities,
with  each  state  propagating  information  from  previous  states
due  to  its  sequential  nature.  MSCAs  can  be  defined  to  operate
on  r-dimensional  arrays  like  SCAs.  MSCAs  operating  on
r-dimensional arrays have a fixed geometric order of application
of  the  b-maximal  branch  rule  sets.  In  other  words,  the  r -dimen-
sional  array  has  a  preset  order  in  which  the  cells  are  traversed
and updated. At each update, there are up to b different rules for
updating  the  current  cell,  yielding  up  to  b  different  outputs.  For
a particular rule set, each input will have a predetermined set of
outputs.  However,  instead  of  a  1:1  mapping,  one  input  might
have  three  outputs,  while  another  input  might  have  one  output.
Note that this means in MSCAs, different inputs can yield differ-
ent numbers of outputs as b is the maximum, not fixed, number
of outputs.

Examples  of  MSCA  rule  sets  or  subsets  of  these  rules  are
shown  in  Figures  6–10.  Figure  6  shows  an  MSCA  that,  like  the
SCA  in  Figure  3,  maps  three  input  cells  to  a  single  output  cell.
However, in Figure 6, there are two outputs for each input. This
is  an  example  of  a  3:1  r = 1, b = 2  MSCA.  Figure  7  shows  an
example of an MSCA rule set that has two input cells, two out-
put  cells  and  two  output  possibilities  for  each  input  cell.  This  is
a  2:2  r = 1, b = 2  MSCA.  Figure  8  shows  a  subset  of  rules  of
what  will  be  referred  to  as  the  quad  flex  MSCA.  In  this  case,
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there  are  again  two  input  cells  and  two  output  cells.  However,
there  are  between  one  and  four  outputs  for  each  rule.  This  is
thus  a  2:2  r = 1, b = 4  MSCA.  Figure  9  shows  a  subset  of  rules
of  a  5:3  r = 1, b = 8  MSCA.  Finally,  Figure  10  shows  a  two-
dimensional  case  where  rules  are  applied  to  a  22  subset  of  the
array. The subset of rules shown is from an r = 2, b = 2 MSCA.

Figure  6.  An  r = 1  MSCA  rule  set  where  each  rule  has  three  input  cells
and one output cell. For this MSCA, b = 2, meaning there are up to two
outputs  for  each  input.  This  case  has  exactly  two  outputs  for  each
input. 

Figure  7.  An  r = 1  MSCA  rule  set,  where  each  rule  has  two  input  cells
and  two  output  cells.  For  this  MSCA,  b = 2,  meaning  there  are  up  to
two  outputs  for  each  input.  This  case  has  exactly  two  outputs  for  each
input.

Figure  8.  A  subset  of  the  rules  of  an r = 1  MSCA  rule  set  where  each
rule  has  two  input  cells  and  two  output  cells.  For  this  MSCA,  b = 4,
meaning  there  are  between  one  and  four  outputs  for  each  input.  This
case will be referred to as a quad flex MSCA.
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Figure  9.  A  selection  of  the  rules  comprising  an  r = 1  MSCA  rule  set
where  each  rule  has  five  input  cells  and  three  output  cells.  For  this
MSCA,  b = 8,  meaning  there  are  between  one  and  eight  outputs  for
each input.

⟶

⟶
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Figure  10.  A  selection  of  the  rules  comprising  an  r = 2  MSCA  rule  set.
Each  rule  has  a  22  array  of  input  and  output  cells.  For  this  MSCA,
b = 2, meaning there are up to two outputs for each input. This case has
exactly two outputs for each input.

Due to the b-maximal branch character of MSCAs, more com-
plex  definitions  of  step  and  generation  are  required.  In  MSCAs,
when  the  rule  set  is  applied,  if  there  are  two  possible  outputs,
then  there  are  now  two  versions  of  the  updated  r-dimensional
array.  Each  time  the  rules  are  applied,  up  to  b  versions  of
r-dimensional  arrays  are  created.  Therefore,  instead  of  a  simple
series  of  updated  arrays,  there  is  now  a  tree-like  structure  of
updated  arrays.  However,  further  complicating  this  is  that  some
of  the  updated  arrays  can  be  identical  to  arrays  created  else-
where on the tree, yielding a graph structure where the nodes are
versions of the r-dimensional arrays. Within this MSCA progres-
sion,  a  step  is  defined  as  the  application  of  the  rule  set  to  the
identical  cells  in  every  current  array.  The  current  arrays  are
those  created  in  the  previous  step.  For  example,  in  a  2:2  MSCA
rule set operating on a one-dimensional array, where the rule set
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is being applied to the third and fourth cells of the array, a step
would  consist  of  applying  the  MSCA  rule  set  to  the  third  and
fourth cells of every current one-dimensional array. A generation
then  is  complete  when  the  rule  set  has  been  applied  along  the
prescribed  path  covering  the  entire  r-dimensional  array  once.  In
the  same  2:2  one-dimensional  array  example,  a  generation  is
complete when the application of the rule set to the last two cells
of the array is completed.

The mapping h representing the rule set of a unique MSCA is
shown  in  equation  (3),  where  b  is  the  maximum  number  of
branches allowed at each step, k indicates the current element of

the  set  of  inputs,  Ik  is  the  kth  element  of  I  (i.e.,  one  of  the

inputs),  Jk  indicates  the  number  of  branches  or  mappings  that

occur for element Ik, and D is the cardinality of I. Note that the

function h is defined as the complete rule set, including the vary-
ing number of branches for each input:

h : Ik  Tk
Jk Ik ∈ I, Tk

Jk ∈ TJk ,

Jk ∈ 1, ... , b, k ∈ , 1 ≤ k ≤ D, .
(3)

This  paper  will  examine  MSCAs  that  operate  on  one-dimen-
sional  arrays  with  2-cell  inputs  that  yield  2-cell  outputs  (2:2),
with binary values in the cells, similar to the SCA discussed ear-
lier. Thus the updating scheme for the MSCA is shown in equa-
tion  (4),  where  a  new  subscript  has  been  added  to  the  array
element indicating the branch number. Again, j indicates the cur-
rent  branch  being  constructed,  that  is,  1 ≤ j ≤ Jk.  Let  q  be  the

branch  of  the  tree  from  the  previous  generation,  whose  descen-
dants are being constructed. Let k be determined by the value of
input  cells.  Note  when  s = 1,  the  updated  values  are  based  on
the last step s = N - 1 of the previous generation, g - 1:

aj,s, g [s], aj, s, g[s + 1] = h aq, s-1, g[s], aq, s-1, g[s + 1]

i = s, s + 1, s > 1

aj, s, g [i] = aq, s-1, g [i]

i ≠ s, s + 1, s > 1

aj, s, g[s], aj, s, g[s + 1] = h aq,N-1, g-1[s], aq,N-1, g-1[s + 1]

i = s, s + 1, s = 1

aj, s, g [i] = aq,N-1, g-1[i]

i ≠ s, s + 1, s = 1.

(4)

Due  to  the  added  b-maximal  branch  complexity,  MSCA  results
cannot  be  displayed  as  a  series  of  updated  arrays  forming  an
image.  Thus,  we  introduce  a  graph  structure  in  the  next  section
for the display and analysis of MSCA results. 
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Multiway Sequential Cellular Automata Graph Structures3.

Evolutionary Graphs of Sequential Cellular Automata in 

the Context of Multiway Sequential Cellular Automata
3.1

In order to narrowly focus on studying the impact of rule sets on
the  final  graph  structure  of  the  MSCA,  the  underlying  SCA  of
the  particular  MSCA  studied  in  this  paper  will  remain  a  2-cell
input and output (2:2) structure; however, for every 2-cell input
there  will  be  multiple  rules  enabling  several  possible  outputs.
There  is  no  longer  a  single  output  array  for  each  generation,  as
found in the regular SCA, and as such, the standard two-dimen-
sional  grid  representing  several  generations  of  output  can  no
longer  be  used.  The  evolution  of  the  MSCA  can  be  visualized
using a series of graphs that indicate branching due to the multi-
way rule sets. While a tree-like structure can be used to show the
time component of evolution, this representation is not ideal for
the  MSCA,  as  it  fails  to  show  repetitive  nodes.  Therefore,  a
multiway state graph will be used, where each node represents a
unique array and edges show the evolution pattern.

An  MSCA  has  b-maximal  branch  rule  sets,  meaning  at  each
application of rules, an input pattern will map to at most b possi-
ble  output  patterns.  To  distinguish  them  from  regular  CA  rule
sets,  these  MSCA  rule  sets  will  be  called  M-type  rule  sets.  Since
the M-type rule sets studied in this paper use a 2:2 input output
structure, I = {00, 01, 10, 11}. Since each input has four possible
outputs  as  shown  in  Table  2,  there  are  16  possible  cell-level
rules.  Each  of  these  rules  has  been  color-coded  as  shown  in
Table  2  to  allow  the  impact  of  these  individual  rules  to  be  seen
in  the  state  graphs.  An  M-type  rule  set  is  a  subset  of  these  16
rules.  These  16  cell-level  rules  will  be  referred  to  in  the  paper
with  the  color  and  mapping.  For  example,  rule  1  will  be  repre-
sented in the form rule 1 ( : 00 → 00).

A  table  of  state  graphs  will  show  one  complete  generation  of
the SCA or MSCA in a column, with each successive entry in the

Rule # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Color

Input 00 00 00 00 01 01 01 01 10 10 10 10 11 11 11 11

Output 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

Table  2.  Cell-level  rules  that  are  used  to  form  two-cell  MSCA  M-type
rule  sets.  Colors  are  assigned  to  each  rule  to  enable  identification  of
rules  in  the  state  graphs.  This  table  is  for  a  one-dimensional  MSCA,
that  is,  operating  on  a  single  row  of  cells,  with  rules  applied  to  blocks
of  two  cells  at  a  time,  using  a  two-branch  MSCA.  This  color  legend  is
used for all of the subsequent figures in this paper.
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column  displaying  the  results  of  one  step  of  the  SCA  or  MSCA.
For each step, a state graph is shown, with every node represent-
ing  a  particular  state  of  the  one-dimensional  array,  with  white
cells  indicating  a  0  value  and  black  cells  indicating  a  1  value.
These  nodes  are  connected  by  colored  edges  to  show  the  evolu-
tion  of  the  MSCA.  Step  i  of  a  generation  transforms  cells  i  and
i + 1.  The  colored  edges  are  as  defined  in  Table  2  to  indicate
which  of  the  cell-level  rules  were  applied  to  progress  from  one
state  to  the  next.  Duplicate  edges  of  the  same  color  are  not
shown in these state graphs in order to maximize clarity, due to
the  high  complexity  of  the  multiway  graphs  shown  in  later
sections.

The  b = 1  case  of  the  MSCA  is  simply  the  straightforward,
deterministic  SCA.  This  can  be  displayed  as  a  multiway  state
graph  where  no  branching  occurs.  Table  3  shows  the  step-by-
step evolution of the state graph of an example of the most basic
SCA,  where  only  one  rule  changes  cell  values.  The  M-type  rule
set  in  this  example  includes  rules  2  ( :  00  →  01),  6  ( :  01  →

01),  11  ( :  10  →  10)  and  16  ( :  11  →  11).  Each  step  refers  to
the application of the rule set to two cells. In step 1, the first two
cells of the initial condition (00110) are transformed from 00 to
01,  resulting  in  a  node  of  01110.  A  pink  arrow  can  be  seen
because  this  is  the  result  of  applying  rule  2  ( :  00 →  01).  The
next  step  operates  on  the  second  and  third  cells  of  the  current
state  (01110),  transforming  them  using  rule  16  ( :  11  →  11).
Thus,  the  state  maps  back  to  itself,  generating  the  orange  loop
pointing back to the same state. In step 3, rule 16 ( : 11 → 11)
is  applied.  The  third  step  in  Table  3  shows  no  change  because
the third and fourth cells of the current state (01110) are 11 and
the  self-returning  orange  edge  is  already  shown.  Step  4  displays
the addition of a bright green loop as the fourth and fifth cells of
the current state (01110) are transformed using rule 11 ( : 10 →

10).  As  the  end  of  the  array  has  been  reached,  the  first  genera-
tion is complete. The second generation begins with step 1 oper-
ating  on  the  first  and  second  cells  of  the  current  state  (01110).
Applying rule 6 ( : 01 → 01) creates the blue loop and results in
no  change  in  the  current  state  (01110).  However,  the  conver-
gence  criterion  is  met,  terminating  the  process.  Convergence  is
achieved if all children states have been previously reached in the
same  step  of  a  previous  generation.  It  must  be  in  the  same  step
because  the  step  number  governs  which  cells  will  be  processed
next. If the state is reached in the same step of a previous genera-
tion, then the same rules will be applied in the same order on the
same cells in future steps, yielding no new unique edges or states
in the states graph. At this point, the algorithm concludes.
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Generation 1

Step 1

Step 2

Step 3

Step 4

Generation 2

Step 1

Table 3. Step-by-step state graphs for an SCA with two input, two out-
put structure, using rules 2 ( : 00 → 01), 6 ( : 01 → 01), 11 ( : 10 →

10) and 16 ( : 11 → 11) and starting with the initial condition 00110.

As seen in Table 3, SCAs are often linear or at least have a lin-
ear  component.  Table 4  shows  the  mapping  where  only  the  01
pair  changes  and  the  M-type  rule  set  includes  rules  1  ( :  00  →

00),  7  ( :  01  →  10),  11  ( :  10  →  10)  and  16  ( :  11  →  11).
Although it is more complex than the previous case and does not
converge  for  three  generations,  it  is  still  linear,  augmented  by
loops that indicate a mapping back to the same state.

Generation 1

Step 1

Step 2

Step 3

Step 4
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Generation 2

Step 1

Step 2

Step 3

Step 4

Generation 3

Step 1

Step 2

Step 3

Step 4

Table 4. State graphs for the SCA with rules 1 ( : 00 → 00), 7 ( : 01 →

10),  11  ( :  10  →  10)  and  16  ( :  11  →  11).  The  initial  condition  is
00110.

Not  all  SCA  graphs  are  linear  in  appearance  as  shown  in
Table  5.  However,  the  branching  in  SCA  graphs  is  not  due  to
multiway  rule  sets;  rather,  it  is  due  to  states  that  reoccur  but  at
different  steps  of  their  respective  generations.  The  step  indicates
which two cells are to be processed next, regardless of the gener-
ation.  Thus,  even  if  the  same  state  is  reached,  if  different  cell
pairs within the state are processed next, it can lead to different
subsequent  states.  In  Table  5,  the  evolution  of  an  SCA  with  a
rule set consisting of rules 2 ( : 00 → 01), 7 ( : 01 → 10), 12 ( :
10  →  11)  and  13  ( :  11  →  00)  displays  a  distinctly  nonlinear
pattern  after  initially  appearing  linear.  Note  that  the  rules  are
“circular,”  meaning  each  pair  maps  to  a  different  pair,  and  no
two pairs map to the same pair. Selected generations of the SCA
evolution  are  shown,  with  this  SCA  converging  in  the  ninth
generation.
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Generation 1

Step 1

Step 2

Step 3

Step 4

Generation 3

Step 1

Step 2

Step 3

Step 4

Table 5. Generations 1 and 3.
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Generation 5

Step 1

Step 2

Step 3

Step 4

Table 5. Generation 5.
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Generation 9

Step 1

Table  5.  Generations  1,  3,  5  and  9  of  the  evolutionary  state  graphs  for
the  SCA  with  rules  2  ( :  00  →  01),  7  ( :  01  →  10),  12  ( :  10  →  11)
and 13 ( : 11 → 00). The initial condition is 00110.

Evolutionary Graphs of Simple Multiway Sequential 
Cellular Automata

3.2

In  this  section,  the  most  elementary  MSCAs  will  be  examined,
where  only  one  input  does  not  map  to  itself.  Consider  first  the
most  basic,  one-dimensional,  b = 2  MSCA,  where  only  one  rule
has two possible outputs and all other inputs map back to them-
selves. Table 6 shows each step of the MSCA for a rule set with
rules  1  ( :  00  →  00),  2  ( :  00  →  01),  6  ( :  01  →  01),  11  ( :
10  →  10)  and  16  ( :  11  →  11).  The  difference  between  this
MSCA  and  the  SCA  examined  in  Section  2  is  that  00  maps  to
two possible outputs rather than one. As only one of the options
of  the  multiway  does  not  map  back  to  itself,  the  graph  still
appears linear, with loops returning to states.

Generation 1

Step 1

Step 2
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Generation 1

Step 3

Step 4

Generation 2

Step 1

Table  6.  State  graphs  for  the  MSCA  with  the  rule  set  containing  rules
1 ( : 00 → 00), 2 ( : 00 → 01), 6 ( : 01 → 01), 11 ( : 10 → 10) and
16 ( : 11 → 11). The initial condition is 00110.

A  rule  set  where  the  multiway  options  for  one  input  pair  do
not  include  the  identity  mapping  back  to  itself  displays  typical
MSCA  branching  in  its  state  graph.  Table  7  shows  the  state
graphs for the MSCA with a rule set containing rules 2 ( : 00 →

01), 3 ( : 00 → 10), 6 ( : 01 → 01), 11 ( : 10 → 10) and 16 ( :
11  →  11).  Immediately,  the  first  step  shows  the  initial  condition
branching  into  two  new  states.  As  00  no  longer  appears  in  the
states,  the  remaining  steps  merely  add  loops  as  rules  6,  11  and
16 are applied, as determined by the cell values as the MSCA tra-
verses each child state graph.

Generation 1

Step 1

Table 7. (continues).
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Generation 1

Step 2

Step 3

Step 4

Generation 2

Step 1

Table  7.  State  graphs  for  the  MSCA  with  a  rule  set  containing  rules
2 ( : 00 → 01), 3 ( : 00 → 10), 6 ( : 01 → 01), 11 ( : 10 → 10) and
16 ( : 11 → 11). The initial condition is 00110.

Table  8  shows  a  b = 3  MSCA  where  00  maps  to  the  three
other  cell  pairs  and  not  back  to  itself.  The  other  cell  pairs  map
back  to  themselves.  The  rule  set  therefore  contains  rules  2  ( :
00  →  01),  3  ( :  00  →  10),  4  ( :  00  →  11),  6  ( :  01  →  01),
11  ( :  10  →  10)  and  16  ( :  11  →  11).  The  expected  three-way
branch  is  seen  immediately  in  step  1.  Again,  as  that  is  the  only
occurrence  of  the  cell  pair  00,  no  further  branching  is  seen,
only the addition of identity loops.
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Generation 1

Step 1

Step 2

Step 3

Step 4

Generation 2

Step 1

Table  8.  State  graphs  for  the  MSCA  with  the  rule  set  containing  rules
2 ( : 00 → 01), 3 ( : 00 → 10), 4 ( : 00 → 11), 6 ( : 01 → 01), 11 ( :
10 → 10) and 16 ( : 11 → 11). The initial condition is 00110.

Table  9  shows  a  b = 4  MSCA  where  00  maps  to  all  four  cell
pairs  and  the  other  cell  pairs  map  back  to  themselves.  The  rule
set  therefore  contains  rules  1  ( :  00  →  00),  2  ( :  00  →  01),
3 ( : 00 → 10), 4 ( : 00 → 11), 6 ( : 01 → 01), 11 ( : 10 → 10)
and  16  ( :  11  →  11).  The  expected  three-way  branch  is  seen
immediately  in  step  1,  along  with  an  identity  loop.  Again,  as
that is the only occurrence of the cell pair 00, no further branch-
ing is seen, only the addition of identity loops.
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Generation 1

Step 1

Step 2

Step 3

Step 4

Generation 2

Step 1

Table  9.  State  graphs  for  the  MSCA  with  the  rule  set  containing  rules
1 ( : 00 → 00), 2 ( : 00 → 01), 3 ( : 00 → 10), 4 ( : 00 → 11), 6 ( :
01 → 01), 11 ( : 10 → 10) and 16 ( : 11 → 11). The initial condition is
00110.

Two-Branch Multiway Sequential Cellular Automata3.3

It  is  clear  that  when  more  than  one  input  has  multiple  outputs,
the  graph’s  complexity  increases  significantly.  To  better  under-
stand the structure of these graphs and the relationship between
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rule sets and graph structure, a more detailed analysis of the one-
dimensional,  2:2  input  output,  b = 2,  no  repeated  MSCA  is  dis-
cussed  in  this  section.  The  reason  for  these  choices  is  that  b = 2
is  the  first-level  multiway  case.  This  allows  the  multiway  effects
to  be  seen  most  clearly  in  graphs,  as  the  number  of  nodes  and
edges is smaller than in systems with higher b values. By enforc-
ing  two  separate  rules  at  each  rule  application,  the  full  effect  of
the branching can be seen.

In Table 2, there are four possible outputs for each input. For
a  two-branch  MSCA,  each  rule  set  contains  two  of  these  four
possible  outputs  for  each  input.  Since  the  two  outputs  are
required  to  be  distinct,  there  are  two  branches  at  each  node.
Thus, for the first output, there are four choices, and for the sec-
ond output, there are three choices, resulting in 12 possible pairs
of distinct outputs in the rule set. However, within these 12 pos-
sible pairs, for every pair of rule x and rule y, there is also a pair
of rule y and rule x. These duplicates are eliminated, leaving six
possible output cell pairs for each input cell pair. Since there are

four input cell pairs, this results in 64  or 1296 possible rule sets.
These 1296 rule combinations will be referred to as M-type rule
sets,  with  a  number  specifying  their  identity  to  distinguish  them
from  both  the  16  possible  cell-level  rules  shown  in  Table  2  and
the  standard  CA  rules  [2].  More  generally,  for  a  one-dimen-
sional MSCA with a b-branch multiway system, where z-size cell
blocks of the current state are evaluated at a time, the number of
possible M-type rule sets is given by

number of rule sets =
2z

b

2z

. (5)

The  MSCA  diagrammed  in  Table  10  is  a  two-branch  MSCA
with a shorter initial condition 011 but with a more complex M-
type rule set M1044. M1044 contains the rules 2 ( : 00 → 01),
4  ( :  00  →  11),  6  ( :  01  →  01),  8  ( :  01  →  11),  11  ( :  10  →

10), 12 ( : 10 → 11), 15 ( : 11 → 10) and 16 ( : 11 → 11). The
initial  condition  of  011  is  represented  by  the  rightmost  node  in
the first panel. After the first step of evolution, the multiway evo-
lution  of  the  state  011  yields  the  states  011  and  111.  The  blue
arrow  from  011  back  to  itself  shows  that  rule  6  ( :  01  →  01)
was applied to the initial condition. The cyan arrow from 011 to
111  shows  that  rule  8  ( :  01  →  11)  was  applied  to  the  initial
condition.  Thus,  the  children  states  from  this  step  of  evolution
are  011  and  111.  In  the  second  panel  (Generation  1,  Step  2),
each of the children states from panel 1 has undergone multiway
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Generation 1 Generation 2

Step 1

Step 2

Generation 3

Step 1

Table  10.  Example  of  the  evolution  of  a  two-dimensional  MSCA.  The
initial  condition  of  this  graph  was  011  and  the  rule  set  was  M1044,
which contains rules 2 ( : 00 → 01), 4 ( : 00 → 11), 6 ( : 01 → 01), 8
( : 01 → 11), 11 ( : 10 → 10), 12 ( : 10 → 11), 15 ( : 11 → 10) and
16 ( : 11 → 11).
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evolution,  so  there  are  two  new  arrows  emanating  from  both
states  011  and  111.  These  are  the  dark  orange  ( )  and  light
orange  ( )  edges.  Note  that  there  are  two  new  states:  010  and
110.  The  evolution  continues  in  generation  2,  shown  in  the  sec-
ond column. The MSCA stops when convergence is reached.

Classification of the Multiway Sequential Cellular
Automata Graphs

4.

Considerable  work  has  been  done  studying  classification  of
regular  CAs  [46–58].  The  nature  of  the  MSCA  is  significantly
different  from  the  traditional  CA.  As  shown  in  Section  3,  the
evolution  of  an  MSCA  rule  set  cannot  be  shown  in  a  single
spacetime  visualization  commonly  used  to  examine  and  classify
traditional  CA  characteristics;  rather,  the  branching  is  displayed
in a directed graph, or digraph, with nodes representing evolved
states of the cells. The standard spacetime visualization is equiva-
lent  to  a  single  directed  walk  on  the  graph  that  makes  a  choice
at  each  node  visited  on  which  subsequent  direction  to  take.
There is no counterpart in traditional CA rules that could gener-
ate  the  resulting  visualization  unless  for  every  input  the  same
output is chosen, which is a single special case in the entire set of
possible walks. Furthermore, each rule set in the MSCA yields a
multitude  of  different  visualizations  corresponding  to  each
directed  walk.  Especially  for  more  complex  MSCAs,  for  the
same rule set, there can be a set of nodes traversed that yields a
CA  sensitive  to  initial  conditions,  orderly,  and  with  high  com-
pression,  while  the  same  rule  set  with  a  different  traversal  of
nodes  may  yield  a  CA  with  low  sensitivity  to  initial  conditions,
chaotic behavior and low compression. Therefore, the classifica-
tion that is examined in this paper is a classification of the multi-
way  graph  structure,  not  a  classification  of  the  typical  cellular
automata  visualizations.  It  should  also  be  noted  that  although
each node represents a specific state of the array, the MSCA clas-
sification does not consider these states or cell values.

In order to characterize the MSCA and to study the impact of
various parameters on the evolution of MSCA graphs, six differ-
ent  initial  conditions  with  six  cells  each  were  tested,  namely
000100,  001110,  010110,  101011,  110011  and  111001.  These
initial  conditions  represented  a  good  variety  of  configurations,
and  were  long  enough  to  show  the  evolutionary  impact  of
sequential  evaluation  of  the  rules  yet  short  enough  for  most
cases  to  converge  reasonably  quickly  in  the  two-branch  MSCA
case.  As  will  be  seen  in  Section  5,  the  rule  set  is  the  dominating
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factor as opposed to initial condition, thus six diverse initial con-
ditions  were  sufficient  for  classification.  The  1296  possible
M-type rule sets were individually applied to each of the six ini-
tial conditions, yielding a robust set of 7776 cases.

Graphs  from  two  initial  conditions,  a  total  of  2592  cases,
were  examined  to  determine  unique  graph  classes.  Ten  different
classes  were  manually  identified  based  on  features  and  structure
such as node structure, node clustering and edge density: Class 1
Radials,  Class  2  Central  Clusters,  Class  3  Skewed  Clusters,
Class 4  Arcs,  Class  5  Bimodals,  Class  6  Periodic  Clusters,
Class 7  Grids,  Class  8  Even  Grids,  Class  9  Axials  and  Class  10
Lattices.  The  classes  were  distinct  enough  that  manual  training
data  was  consistent  and  reproducible.  Then,  962  of  the  2592
manually  classified  graphs,  or  12%  of  the  total  7776  graphs,
were  used  to  form  a  training  dataset.  A  machine  learning  classi-
fier  was  created  using  the  Wolfram  Classify  function.  This
function determines model specifics such as a method and hyper-
parameters  through  an  automated  procedure  of  experiments  on
training  data  subsets.  For  example,  four  method  types  were
attempted:  logistic  regression,  decision  tree,  nearest  neighbors
and random forest. The logistic regression learning curve with a
limited  memory  Broyden–Fletcher–Goldfarb–Shanno  optimiza-
tion  algorithm  was  best,  thus  was  used  for  the  final  classifier.
The  logistic  regression  method  uses  linear  combinations  of
numerical  features  to  model  the  log  probabilities  of  each  class.
This  classifier  was  used  to  classify  the  remaining  5184  graphs
into  the  10  predetermined  classes.  335  of  the  graphs  that  had
been  hand  classified  that  were  not  used  for  the  training  data  or
parameter  tuning  were  used  to  check  the  level  of  agreement
between  hand  classification  and  the  trained  classifier  function.
Of  these  335  graphs,  93.7%  were  classified  the  same  compared
to the model’s predicted accuracy of (94.4 ± 2.2)%.

The  10  classes  of  graphs  are  presented  in  this  section.  As
these graphs are more complex than the ones studied in the pre-
vious  section,  they  will  be  simplified  by  showing  the  nodes  as
black  circles  instead  of  displaying  the  entire  array  at  each  node.
As an example, the step-by-step evolution of an exemplar of the
first  class  will  be  examined.  Class  1  graphs  are  referred  to  as
Radials  and  have  two  characteristic  nodes  in  the  center  and  a
radial  structure.  Rings  of  evenly  spaced  nodes  emanate  outward
from the center. Figure 11 is an exemplar of this class.

Table  11  shows  the  step-by-step  evolution  of  the  exemplar
graph  for  class  1.  The  graph  in  generation  2,  step  2  is  notewor-
thy for its bimodal nature. The graph converges by the fifth step
of the third generation.
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Figure 11. Example of an MSCA class 1 Radial graph generated from an
initial  condition  of  010110  and  the  rule  set  M372  containing  rules  1
( : 00 → 00), 3 ( : 00 → 10), 6 ( : 01 → 01), 8 ( : 01 → 11), 9 ( : 10
→ 00), 11 ( : 10 → 10), 15 ( : 11 → 10) and 16 ( : 11 → 11). Class 1
Radial graphs show a circular, radial structure.

Generation 1

Step 1

Step 2

Step 3

Step 4

Table 11. Steps 1–4, Generation 1.
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Generation 1

Step 5

Generation 2

Step 1

Step 2

Table 11. Step 5, Generation 1. Steps 1 and 2, Generation 2.
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Generation 2

Step 3

Step 4

Table 11. Steps 3 and 4, Generation 2.
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Generation 2

Step 5

Generation 3

Step 1

Step 2

Table 11. Step 5, Generation 2. Steps 1 and 2, Generation 3.
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Generation 3

Step 3

Step 4

Table 11. Steps 3 and 4, Generation 3.
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Step 5

Table  11.  Step-by-step  evolution  of  the  MSCA  class  1  Radial  exemplar
with initial condition 010110 and rule set M372, whose constituent cell-
level rules can be found in Table 13.

Table 12 shows exemplars of the 10 graph classes. Significant
differences can be seen in the distribution of nodes and edges as
well  as  overall  structure.  Table  13  provides  the  cell-level  rules
that  form  each  of  the  M-type  rule  sets  used  to  generate  each  of
the  exemplars  in  Table  12.  As  stated  before,  class  1  graphs,
labeled  Radials,  have  a  radial  structure  and  rings  of  evenly
spaced  nodes  emanating  outward  from  the  center.  Radials  have
fewer  nodes,  are  symmetric,  and  the  overall  density  of  edges  is
lower. Class 2 Central graphs have a cluster of nodes in the cen-
ter,  evenly  spaced  nodes  around  the  outside  of  the  graph,  and
are  symmetric  in  nature.  The  distribution  of  nodes  in  the  exem-
plar is classic for this class of graphs. Class 3 Skewed graphs are
asymmetric  and  have  a  larger  concentration  of  edges  and  nodes
on one side of the graph. Notable features include strong curva-
ture  on  one  side,  resulting  from  a  series  of  unidirectional  edges
connecting  a  series  of  nodes,  as  well  as  denser  but  smaller
groups  of  edges  on  the  more  sparse  side  of  the  graph.  Class  4
graphs, Arcs, have an arc-like shape on one side and a cluster of
edges  on  the  other  that  emanates  from  the  center.  Class  5
graphs,  Bimodals,  have  two  clusters  of  nodes  and  edges  con-
nected  by  a  relatively  sparse  region  of  nodes  and  edges.  Typi-
cally,  the  color-coded  edges  show  two  distinct  groups  of  rules
generating  the  edges  that  connect  the  two  regions.  Class  6  Peri-
odic  graphs  are  sparse  and  have  an  elongated  structure  with
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Class 1: Radial Class 2: Central

Class 3: Skewed Class 4: Arc

Class 5: Bimodal Class 6: Periodic

Class 7: Grid Class 8: Even

Table 12. (continues).
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Class 9: Axial Class 10: Lattice

Table  12. Exemplars for all 10 classes of MSCA generated from an ini-
tial condition of 010110 with the rule sets indicated in Table 13.

three  or  four  repeating  dense  regions  that  contain  all  of  the
nodes. Class 7 graphs, Grids, have a symmetric and orderly grid
of  64  nodes.  Each  node  belongs  to  two  groups  of  nodes  and
edges,  which  are  seen  as  columns  and  rows  that  are  each  two
nodes  wide.  Class  8  graphs,  Evens,  appear  as  distorted  grids  of
64  nodes.  The  edges  are  more  uniformly  spread  throughout  the
grid  than  in  class  7  graphs,  and  the  color  is  very  uniform,  with
all colors in all areas of the graph. Class 9 Axial graphs are less
uniform  and  orderly  than  class  6,  7  or  8  graphs.  Axials  feature
two groups of denser edges that manifest as vertical and horizon-
tal  axes.  The  remaining  nodes  are  sparsely  scattered  with  fewer
edges  between  them.  Class  10  graphs,  Lattice  graphs,  are  more
sparse and have a lattice-like structure surrounding a central clus-
ter of nodes.

Cell-Level Rule Radial Central Skewed Arc Bimodal Periodic Grid Even Axial Lattice

M372 M718 M94 M641 M551 M731 M289 M1060 M1214 M266

1 ( : 00 → 00) x x x x x x

2 ( : 00 → 01) x x x x

3 ( : 00 → 10) x x x x x x

4 ( : 00 → 11) x x x x

5 ( : 01 → 00) x x x x x

6 ( : 01 → 01) x x x

7 ( : 01 → 10) x x x x x x

8 ( : 01 → 11) x x x x x x

9 ( : 10 → 00) x x x x x x

10 ( : 10 → 01) x x x x

11 ( : 10 → 10) x x x x x

12 ( : 10 → 11) x x x x x

13 ( : 11 → 00) x x x

14 ( : 11 → 01) x x x x x x x

15 ( : 11 → 10) x x x x x x

16 ( : 11 → 11) x x x x

Table 13. Cell-level rules comprising the M-type rule sets used to gener-
ate each MSCA class exemplar in Table 12.
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Recall that there are eight cell-level rules contained in each M-
type  rule  set  for  the  2:2  two-branch,  no  repetition  case  of
MSCAs being studied. Table 13 shows that there is a good distri-
bution of cell-level rules among the M-type rule sets used to gen-
erate  the  MSCA  exemplars.  Each  of  the  16  cell-level  rules  is
found  in  at  least  three  exemplars,  with  a  maximum  of  seven
occurrences.  Similarly,  the  rule  sets  show  considerable  variation
in  their  underlying  cell-level  rules.  There  is  a  maximum  corre-
spondence of five cell-level rules between any two of the 10 rule
sets  in  Table  13.  The  most  common  overlap  is  three  cell-level
rules. Thus, the distinct character of the exemplars is reflected in
the  rules  that  comprise  the  M-type  rule  sets  from  which  the
exemplars are generated. 

Graph Analysis5.

Analysis of Initial Conditions5.1

In  order  to  study  the  impact  of  initial  conditions  on  the  graph
structure, a total of 41472 state graphs were generated by apply-
ing the 1296 M-type rule sets to 32 initial conditions. This repre-
sents all possible length-six binary initial arrays, because each of
the  64  possibilities  has  a  duplicate  by  zero/one  symmetry,  for
example,  000000  and  111111.  For  each  case,  the  MSCA  was
run until convergence. The 41472 MSCA graphs were examined
to determine if the initial condition impacted the final graph clas-
sification. The percentage of each class that originated from each
initial  condition  was  determined  and  shown  in  the  bar  charts  in
Figure 12. The distribution is fairly uniform for each class, indi-
cating that initial condition is not a good indicator of final graph
structure. The only outlier is the relatively fewer instances of the
initial  condition  000000  in  the  Arc  class,  which  is  likely  due  to
classification errors.

Another study was performed examining the resulting behav-
iors  of  each  of  the  1296  rules.  Within  the  41472  graphs,  there
were 32 different initial conditions for each M-type rule set. The
resulting graph structures were classified, then the number of ini-
tial conditions that yielded the same graph class was counted for
each  M-type  rule.  Of  the  1296  rules,  over  85%  of  the  rule  sets
yielded  at  least  30  of  32  graphs  in  the  same  class.  Over  93%
yielded 26 or more graphs in the same class. Combined with Fig-
ure 12, this clearly indicates that the rule set is the dominant fac-
tor in final graph structure.
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Figure  12.  Bar  charts  for  the  10  MSCA  classes  showing  the  percentage
of graphs in that class that originates from each initial condition. A rela-
tively even distribution is seen for every class.
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Graph Analytics5.2

As  initial  conditions  have  been  shown  to  be  less  impactful  than
rule  sets  in  determining  the  behavior  of  MSCAs,  the  more
focused  subset  of  7776  graphs  generated  using  the  initial  condi-
tions  000100,  001110,  010110,  101011,  110011  and  111001
introduced in Section 4 was used for a deeper dive into the char-
acteristics  of  the  MSCA  classes.  Analytical  data  was  calculated
for each of the 7776 graphs, including vertex count, edge count,
mean  vertex  degree  and  mean  betweenness  centrality  as  mea-
sures  of  graph  structure.  Vertex  degree,  also  called  valence,  is
the number of edges incident to the vertex. Betweenness central-
ity measures a node’s centrality based on the number of shortest
paths  between  other  vertex  pairs  that  include  the  node.  The
mean  and  standard  deviation  were  calculated  for  each  class  for
each  graphical  measure,  as  shown  in  Tables  14  and  15.  Class  1
Radial graphs were a distinct outlier in all four measures. Radial
graphs have roughly half the number of vertices as other graphs
from  other  classes  and  fewer  than  half  the  edge  count,  which
points to a far sparser graph. Class 8 Evens had the highest num-
ber of vertices and edges as well as the highest average mean ver-
tex  degree.  This  is  apparent  in  the  visual  appearance  of  class  8
Even  graphs,  as  there  are  no  regions  of  sparse  edges.  There  is
remarkable  similarity  in  vertex  count  between  all  the  classes  of
graphs except the class 1 Radials. The higher standard deviation
in all measures for the class 10 Lattices points to the far greater
variation in Lattice graphs, suggesting possible subclasses within
the Lattice class.

Class # Class

Vertex

Count μ

Vertex

Count σ

Edge

Count μ

Edge

Count σ

1 Radial 32.0 0.152 260.0 19.1

2 Central 63.9 2.160 589.0 39.0

3 Skewed 62.6 4.910 549.0 64.1

4 Arc 63.0 1.430 549.0 28.6

5 Bimodal 64.0 0.541 578.0 30.0

6 Periodic 60.9 7.510 520.0 74.5

7 Grid 63.3 4.470 587.0 54.3

8 Even 64.0 0.000 613.0 21.3

9 Axial 63.7 1.590 560.0 40.2

10 Lattice 52.4 10.60 315.0 87.5

Table 14. Vertex and edge counts for each MSCA class.
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Class # Class

Mean

Vertex

Degree μ

Mean
Vertex

Degree σ

Mean
Betweenness

Centrality μ

Mean
Betweenness

Centrality σ

1 Radial 16.2 1.19 49.9 7.64

2 Central 18.4 0.988 129.0 17.3

3 Skewed 17.5 1.21 129.0 22.7

4 Arc 17.4 0.769 126.0 14.2

5 Bimodal 18.1 0.901 106.0 14.8

6 Periodic 17.0 0.753 122.0 31.9

7 Grid 18.5 0.916 104.0 13.5

8 Even 19.2 0.664 104.0 8.76

9 Axial 17.6 1.04 112.0 14.9

10 Lattice 11.9 1.85 109.0 35.4

Table 15. Broader data analytics for each MSCA class.

Rule Analysis5.3

The  7776  state  graphs  were  used  to  examine  the  impact  of  spe-
cific  cell-level  rules  within  M-type  rule  sets,  as  described  in
Table 2,  on  resulting  graph  behaviors.  The  goal  is  to  determine
if  particular  cell-level  rules  or  sets  of  cell-level  rules  lead  to  spe-
cific  classes  of  graphs.  Furthermore,  similarities  between  classes
can  be  illuminated,  as  well  as  classes  that  are  outliers  in  behav-
ior.  For  each  class,  the  various  M-type  rules  responsible  for
generating  the  graphs  were  inventoried.  The  16  cell-level  rules
comprising  each  of  these  M-type  rule  sets  were  then  collated.
The  bar  charts  of  the  resulting  rule  frequencies  are  shown  for
each  class  in  Figure  13.  It  should  be  noted  that  the  bar  charts
show the number of occurrences of each cell-level rule within the
M-type  rule  sets,  not  the  number  of  applications  of  these  cell-
level rules in the evolution of the MSCA.
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Figure  13.  Bar  charts  for  the  10  MSCA  classes  showing  the  relative
impact of the 16 possible rules from Table 2. All 1296 M-type rule sets
were  run  until  convergence.  Comparison  across  the  bar  charts  shows
the similarities between various classes.

By  comparing  the  bar  charts  of  Figure  13,  relationships
between state graphs of various classes can be observed. The bar
chart  for  Radial  and  Periodic  graph  rule  frequencies  shows
remarkable  relative  similarity  for  all  rules,  which  is  surprising
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given  the  nature  of  the  graphs  is  quite  different.  This  points  to
underlying  evolutionary  similarities  not  evident  in  the  final
graph  structure.  Similar  to  the  Radial  and  Periodic  bar  charts,
the  bar  chart  for  Skewed  graphs  has  relatively  higher  occur-
rences of rules 1 ( : 00 → 00), 6 ( : 01 → 01), 11 ( : 10 → 10)
and 16 ( : 11 → 11) and relatively lower occurrences of rules 4
( : 00 → 11), 7 ( : 01 → 10), 10 ( : 10 → 01) and 13 ( : 11 →

00).  However,  the  relative  differences  between  rule  frequency
are  not  as  great  as  those  of  Radial  and  Periodic  graphs.  Again,
the Skewed graphs bear little resemblance to the Radial and Peri-
odic  classes  of  graphs,  making  the  similarity  of  bar  charts
notable.

Another  three  classes  that  are  worth  comparing  are  the  Arc,
Axial and Bimodal classes. Their bar charts all have greater rule
frequency for rules 1 ( : 00 → 00), 4 ( : 00 → 11), 6 ( : 01 →

01), 7 ( : 01 → 10), 10 ( : 10 → 01), 11 ( : 10 → 10), 13 ( :
11 → 00) and 16 ( : 11 → 11). The Axial and Bimodal are more
similar  than  the  Arc  bar  chart,  although  in  the  Axial  bar  chart,
the  rules  that  occur  with  higher  frequency  occur  significantly
more  than  the  others  in  comparison  to  the  Bimodal  bar  chart.
Again,  the  graphs  of  these  three  classes  do  not  appear  to  physi-
cally resemble each other.

The  Grid  bar  chart  has  some  similarity  with  the  Bimodal  bar
chart.  Most  notable  is  that  these  classes  have  high  frequency  of
rules  4  ( :  00  →  11),  7  ( :  01  →  10),  10  ( :  10  →  01)  and  13
( :  11  →  00).  While  the  Bimodal  has  moderately  high  frequen-
cies  of  rules  1  ( :  00  →  00),  6  ( :  01  →  01),  11  ( :  10  →  10)
and  16  ( :  11  →  11)  making  it  relate  to  the  Arc  and  Axial  bar
charts, the Grid bar chart shows those four rules occurring with
the  lowest  frequency.  Once  again,  despite  the  similarity  in  bar
charts, the graphs do not appear similar in the Grid and Bimodal
classes.

Finally,  the  Central,  Even  and  Lattice  classes  all  have  distinct
bar  charts.  In  fact,  the  Central  bar  chart  appears  to  be  the
inverse  of  the  Bimodal  bar  chart  with  high-  and  low-frequency
rules reversed and moderate rules remaining the same. The Even
Grid  bar  chart  shows  rules  1  ( :  00  →  00),  6  ( :  01  →  01),  11
( : 10  →  10) and  16 ( : 11  →  11) to  be distinctly  lower in  fre-
quency  than  the  other  rules,  which  is  the  opposite  of  the  group
of  Periodic,  Radial  and  Skewed  bar  charts,  in  which  those  are
the  rules  of  highest  frequency.  Finally,  all  rules  occur  with
roughly  the  same  frequency  in  the  Lattice  bar  chart,  which  sug-
gests that possibly there are subclasses to the Lattice class.
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Target Analysis5.4

The preceding analysis examined the frequency of usage of each
of  the  16  cell-level  rules  in  Table  2  within  the  M-type  rule  sets
and  the  correlation  to  the  graph  classes.  This  analysis  instead
examines  the  distribution  of  the  output,  or  targeted  cell  pairs  of
the cell-level rules in each rule set. Since the MSCAs studied are
two-block,  there  are  four  possible  output  targets  cell  pairs,
T = {00, 01, 10, 11}. Eight rules from Table 2 comprise each M-
type  rule  set  in  the  two-branch  MSCAs  examined  in  this  paper.
These  cell-level  rules  map  each  of  the  four  possible  input  cell
pairs I = {00, 01, 10, 11} to two targets from T. In other words,
there are eight targets for every rule set. Note these eight targets
must  have  duplicates,  given  T  has  a  cardinality  of  four.  Let  the
counter Vw  be the number of occurrences of the target Tw  in the

rule set h:

Vw = 1Tw∈h
for 1 ≤ w ≤ 4.

(6)

Define  a  target  distribution  (TD)  for  a  rule  set  as  follows,
where the TD is the concatenation, not the multiplication, of the
digits of Vw:

TD = V0 || V1 || V2 || V3. (7)

There  are  two  examples  that  demonstrate  the  utility  of  the
TD.  Consider  the  case  {00  00, 00  01, 01  00, 01  01,
10  00, 10  01, 11  00, 11  01},  where  every  input  cell
pair is mapped to either 00 or 01. Then, out of the total eight tar-
get cell pairs, half are 00 and half are 01. In other words, four tar
get  cell  pairs  are  00,  four  are  01,  zero  are  10  and  zero  are  11.
Thus,  that  case  has  a  TD = 4400,  where  the  TD’s  digits  display
the  number  of  occurrences  of  each  type  of  target  in  the  rule  set.
Consider  a  second  case  {00  00, 00  01, 01  00, 01  01,
10  10, 10  11, 11  10, 11  11}, where  two  of  the  target
blocks  are  00,  two  are  01,  two  are  10,  and  two  are  11,  hence
TD = 2222.  In  the  previous  4400  case,  where  there  were  only
two targets, the behavior of the MSCA was limited by the TD as
reflected  by  the  state  graph’s  final  structure.  Contrastingly,  in
the  2222  case,  there  is  an  even  distribution  of  the  targeted  cell
pairs,  thus  fewer  limitations  on  the  behavior  of  the  MSCA.
Examining  the  relationship  between  the  TD  and  graph  classes
gives different insight into the fundamental graph evolution.

Each  M-type  rule  set  contains  eight  cell-level  rules,  as
described  in  Table  2.  Thus,  each  TD  must  be  four  digits  that
sum  to  eight.  Since  the  two  targets  for  each  input  cell  pair  must
be  distinct,  there  at  most  are  four  occurrences  of  one  target,
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meaning  each  digit  must  be  between  zero  and  four.  Therefore,
the  possible  digit  combinations  are  the  permutations  of  TDs
2222,  3221,  3311,  3320,  4211,  4220,  4310  and  4400.  This
yields 85 different TD possibilities, one of which corresponds to
each  of  the  1296  M-type  rule  sets.  However,  it  is  the  frequency
of  targets,  rather  than  the  frequency  of  specific  targets,  that  is
fundamental  to  this  analysis.  Consider  TD  4040  and  TD  0404.
The distinction between them is simply which specific targets are
in  the  rule  set  four  times.  This  is  unnecessary  when  examining
the  frequency  of  targets  in  a  generalized  sense.  As  such,  the  85
TDs  are  grouped  into  the  original  eight  base  TD  cases:  2222,
3221, 3311, 3320, 4211, 4220, 4310 and 4400.

Let the number of rule sets with a particular TDu be the num-

ber of rule sets with a TD that is any permutation of TDu. Then,

define  the  normalized  base  target  distribution  value  (NBTD)  as

follows in equation (8), where TDu is the uth TD:

NBTDu =
# of rule sets with TDu

total # of rule sets
for 1 ≤ u ≤ 8. (8)

The  NBTD  describes  the  likelihood  of  any  given  M-type  rule
set having a certain TD. The number of graphs corresponding to
each  TD  for  every  class  was  determined,  then  these  counts  were
normalized  by  the  size  of  the  class  to  find  the  normalized  class
target  distribution  value  (NCTD).  Since  this  analysis  focuses  on
TD, the size of the class is not of interest:

NCTDc,u =
# of graphs with TDu in class c

# of graphs in class c
for 1 ≤ u ≤ 8 and 1 ≤ c ≤ 10.

(9)

Each NCTD was normalized by the NBTD to achieve the nor-
malized target distribution ratio (NTDR):

NTDRc,u =

NCTDc, u

NBTDu

for 1 ≤ u ≤ 85 and 1 ≤ c ≤ 10.

(10)

An NTDR value of one for a particular TD indicates that the
number of graphs in the specified class with that TD aligns with
the  expected  number  given  the  NBTD.  A  larger  NTDR  demon-
strates  a  higher  number  of  graphs  than  expected,  while  a  lower
value  means  fewer  graphs  resulted  from  the  TD  than  expected.
Ultimately,  analyzing  the  NTDR  as  a  function  of  graph  class
enables  analysis  of  the  relationship  between  particular  TDs  and
classes,  along  with  highlighting  similarities  and  differences
between classes. The NTDR for each of the eight base TD cases
for each class is shown in Figure 14.
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Figure 14. (continues).
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Radial Target Analysis
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Figure  14.  Bar  charts  of  the  NTDR  for  each  of  the  eight  base  target
distributions for each class of graphs. The case number shows the target
cell pair distribution among the four possible cell pairs (00, 01, 10, 11),
with  each  digit  representing  a  cell  pair.  All  permutations  of  a  base  tar-
get distribution case are included in the same data point. For each class,
the NTDR shows on a relative basis how many of the M-type rules had
the indicated target distribution.

Figure  14  shows  that  there  are  distinct  differences  between
classes  of  graphs  in  terms  of  the  targeting  of  output  cell  pairs.
Recall that an NTDR of one is the expected value. The y axis of
the majority of bar charts has the same range; however, Arc and
Periodic  classes  have  slightly  larger  range  and  the  Lattice  class
has a significantly larger range.

In  looking  at  the  targeting  data,  the  Axial,  Central,  Grid,
Skewed  and  Even  classes  share  strong  influence  of  cases  2222,
3221, 3311 and 4211. The difference between these classes is in
the  relative  amounts  of  each  TD  case.  Axial,  Central  and  Grid
classes  are  weighted  toward  2222  and  3221,  whereas  Skewed
and  Even  classes  are  weighted  toward  the  4211  case.  The  Peri-
odic bar chart also resembles that of the Axial, Central and Grid
classes but notably lacks influence from the 4211 case. Similarly,
the Bimodal class is similar to the Even and Skewed classes; how-
ever,  it  also  lacks  influence  from  the  4211  case.  The  Arc  bar
chart  also  resembles  that  of  the  Even  and  Skewed  classes;  how-
ever, it lacks participation from the 2222 case.

Of note are the completely distinct natures of the Lattice and
Radial  bar  charts.  The  Lattice  is  the  opposite,  in  terms  of  case
participation,  of  the  five  classes  discussed  above:  Axial,  Central,
Grid,  Skewed  and  Even.  The  Radial  bar  chart  is  the  only  one
where  all  cases  except  for  the  4400  case  participate  in  strong
numbers.  In  fact,  the  4400  case  is  only  seen  in  the  Lattice  case
and  would  appear  to  be  a  strong  predictor  of  that  class.  Recall
that  this  is  the  only  case  where  there  are  only  two  targets.  Ulti-
mately,  the  distinct  similarities  and  differences  between  classes
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indicate that target analysis can reveal intrinsic characteristics of
each class.

Conclusions and Future Work6.

A  systematic  analysis  of  multiway  sequential  cellular  automata
(MSCAs),  an  asynchronous  updating,  multi-branching  extension
of  traditional  cellular  automata  (CAs)  that  allows  for  propaga-
tion  of  effects,  has  been  presented.  A  complete  set  of  32  initial
conditions  was  run  through  the  entire  group  of  1296  possible
M-type  rule  sets  for  a  two-cell  input,  two-cell  output,  two-
branch  base  case  of  the  MSCA,  generating  41472  state  graphs.
A  machine  learning  classifier  was  trained  and  used  to  determine
10  classes  with  distinct  characteristics  such  as  node  structure,
node clustering and edge density. 

These  classes  were  analyzed  to  gain  insight  into  the  parame-
ters  that  yielded  each  class  and  the  characteristic  of  each  class.
Analytical data on the graphs of each class were calculated, high-
lighting  the  variance  in  the  tenth  Lattice  class,  hinting  at  the
existence of subclasses. For the short arrays studied, initial condi-
tions were shown to be of little consequence through both analy-
sis of the percentage of each class that resulted from each of the
32 initial conditions and a study on how many initial conditions
resulted in the same graph class for a given rule set. By analyzing
the  frequency  of  usage  of  cell-level  rules,  relationships  between
various classes and supporting evidence for the existence of sub-
classes were found. Finally, the target distribution of the M-type
rules  was  studied  to  determine  a  target  distribution  profile  for
each  class  of  MSCA.  This  analysis  relates  graph  structure  to
structure of the rule set.

The MSCA holds promise for modeling systems with multiple
updating  schemes.  Future  work  will  focus  on  the  distribution  of
color  in  graphs,  which  represents  the  specific  cell-level  rules
within each graph. It has been noted that some graphs show con-
centrations  of  color,  while  others  show  colors  linked  to  specific
graph  features.  Additionally,  a  study  is  underway  on  the  quad
flex MSCA with each input cell pair mapping to a varying num-
ber  of  output  cells,  ranging  from  one  to  four.  This  case  yields
additional  complexities  as  well  as  non-branching  nodes.  Also  of
interest  is  examining  the  impact  of  the  length  of  the  array  on
graph characteristics.
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