Multiway Sequential Cellular Automata

Margaux H. Wong
margaux@margauxhwong.com

Cellular automata (CAs) are used to model rule-based evolution-
ary systems with standard CAs applying unitary, fixed rules to an
entire generation at a time. A sequential updating asynchronous
cellular automaton (CA) with more than one rule for each input
sequence is studied. These multiway sequential CAs (MSCAs) can
model complex systems with multiple branching rule sets where
changes propagate through the system. This paper examines the
case of one-dimensional, two-cell, two-branch MSCAs in order to
better understand their structure and the impact of parameters.
The complete set of 1296 M-type rule sets possible for this type
of multiway sequential CA (MSCA) is applied to a full set of 32
initial conditions, representing all possibilities of a six-cell initial
condition, generating 41472 state graphs. Machine learning is
used to classify a subset of these state graphs into 10 classes.
Analytical data enables characterization of these classes of graphs
and investigation of the role of rule sets in these state graphs. Tar-
get distribution analysis of the M-type rule sets is performed
within each class of graphs to tease out intrinsic characteristics of
the classes.

Keywords: cellular automata; multiway sequential cellular
automata; MSCA; multiway systems; asynchronous cellular
automata; nonhomogeneous cellular automata

| 1. Introduction

Cellular automata (CAs) are discrete models of computation
also referred to as tessellation automata, cellular structures and
tessellation structures [1-16]. CAs of many geometries have
been studied [17-19]. CAs have been applied to a variety of
applications, including viral spread [20], drug therapy [21],
urban development [22, 23], pattern recognition [24-28], VLSI
[29-31], image processing [32, 33], cryptology [34-39], bioinfor-
matics [40], solitons [41] and fractals [42-45], to name a few.

In the one-dimensional binary case, a cellular automaton
(CA) consists of an array of binary cells defined by an initial
state and a list of evolutionary rules that describe how previous
cell values determine current cell values. Figure 1 shows a space-
time visualization of the behavior of the rule 30 CA, where each

https://doi.org/10.25088/ComplexSystems.34.3.325

mailto:margaux@margauxhwong.com
https://doi.org/10.25088/ComplexSystems.34.3.325

326 M. H. Wong

row in the two-dimensional grid represents one application of
the rule set to the row of cells. In other words, the vertical axis
moving downward is the time axis.

While typical CAs update the entire array synchronously, the
sequential CA (SCA) uses asynchronous updating [2]. The main
difference in an SCA is that cell updates are based on new values
of cells rather than old, which results in significantly different
behavior than a standard CA. Figure 2 shows a spacetime visual-
ization of the behavior of the rule 30 SCA.

Figure 1. A spacetime visualization of the behavior of the rule 30 CA.
The initial condition is an array of white cells with one black center
cell. Each row represents one application of the rule set to the previous
row of cells.

f’

Figure 2. A spacetime visualization of the behavior of the rule 30 SCA.
The initial condition is an array of white cells with one black center cell.

This paper presents a systematic analysis of multiway sequen-
tial CAs (MSCAs), which are an extension of traditional CAs
and SCA models that allow for asynchronous updating of multi-
branching rule sets. This paper makes key contributions in graph
representation, classification of graph structures and comprehen-
sive rule set analysis of the MSCAs, potentially opening new
directions for modeling systems where multiway propagation
occurs, such as quantum field theory or biological distributed
systems.

Complex Systems, 34 © 2025

Multiway Sequential Cellular Automata 327

2. Sequential Cellular Automata and Multiway Sequential
Cellular Automata

I 2.1 Sequential Cellular Automata

Sequential CAs (SCAs) can be defined to operate on r-dimen-
sional arrays and have been described for a variety of geome-
tries. One-dimensional arrays are the most common form;
however, these evolutionary rule sets may operate on two-dimen-
sional images, three-dimensional volumes or even higher-dimen-
sion arrays. In the SCA, one step is considered as the application
of the rule set to a subset of cells, updating a portion of the
r-dimensional array. One generation consists of the successive
application of the rule set to the continually updated array, fol-
lowing a predetermined path covering the entire 7-dimensional
array once.

Examples of SCA rule sets are given in Figures 3-5. Figure 3
shows the well-known rule 30 rule set, in which three contigu-
ous cells are used as the input to determine the new value of the
center cell. Figure 4 shows an SCA that is discussed in more
detail later, wherein two input cells yield two output cells. Both
rule sets in Figures 3 and 4 are examples of r = 1 SCAs. Figure 5
shows an example of an » =2 SCA where the rules are applied
to a 2x2 portion of the array. Note that Figure 5 only displays a
subset of the complete rule set for concision.

NN -
|| Bad |

| |
Bk |

—

HE-
H—- N

H N

—

Figure 3. The SCA rule 30 rule set with three input cells and one output
cell. The three input cells determine the new value of the center cell in
this » = 1 SCA.

Em- | E NN NN H|

Figure 4. An SCA rule set with two input cells and two output cells.
This is an » = 1 SCA.

—

L

L

I

—

u

—

u

Figure 5. A subset of the rules comprising a two-dimensional SCA rule
set, meaning r = 2. Each rule operates on a 2x2 portion of the two-

dimensional array.

https://doi.org/10.25088/ComplexSystems.34.3.325

https://doi.org/10.25088/ComplexSystems.34.3.325

328 M. H. Wong

The SCAs considered in this paper operate on one-
dimensional arrays, meaning r = 1, and have a fixed order of
application; that is, the array is traversed in one direction. A step
transforms a fixed number of cells, determined by the output
size of the rule set. In the classic rule 30 example, this results in
transforming a single cell of the array. A generation is the succes-
sive application of the rule set over the entire one-dimensional
array, using updated values as the inputs after each step.

In order to define the evolutionary rule set for the SCA, let N
be the length of the one-dimensional array upon which the SCA
will operate. Let g € Z, g = 0, where g represents the current gen-
eration of the SCA. Let s Z, 1 <s < N - 1, where s denotes the
current step of the SCA within generation g. Let a p be a finite
array of length N that results after application of the rule set in
step s of generation g of the SCA. Note that an_1,0 represents

the initial condition, which is the original array input into the
SCA. Let I be the input cell values, T be the target cell values,
and D be the cardinality of I. Then the function f, which defines
the rule set being applied by the SCA, is given by

f:{IkﬁTk|1k€I,Tk€T,k€Z,1SkSD}. (1)

Consider, for example, an SCA that operates on 2-cell inputs
and yields 2-cell outputs (2:2), with binary values in the cells.
The evolutionary update for the SCA for this 2:2 case is defined
in equation (2). Note when s = 1, the updated values are based
on the last step s = N - 1 of the previous generation, g - 1:

(as,g [s], a s + 1])= f(as_l’g[s], gy gls+ 1))
i=s,s+1,s>1
g o [1= dey 4 [7]
i+s,s+1,s>1
(as,g [s1, as,g[s + 1]) :f(aN—],g—l[s]’ aN—l,g—l [s+ 1])
i=s,s+1,s=1

2)

a5 ¢ [i] = aN-1,g-1 (]
i£s,s+1,s=1.

The operation of this SCA starts from the leftmost cell of the
array in a particular step s and generation g, 4, ,[1]. The SCA
progresses one cell to the right at each successive step. When the
rightmost cell in the array a o[N] has been updated, one genera-

tion is complete. As a result, the first and last cells of the array
will be updated once, while all other cells will be updated twice,
in two consecutive steps, in each generation. The rule set for an
SCA will map each input cell pair to only one output cell pair.

Complex Systems, 34 © 2025

Multiway Sequential Cellular Automata 329

The set of input cell values is the four ordered pairs
I=1{0, 0), (0, 1), (1, 0), (1, 1)}. For clarity, these ordered pairs
will be denoted I = {00, 01, 10, 11}. The set of target cell values
is the same four binary options, T = {00, 01, 10, 11}. An exam-
ple of the rule set is f ={00 - 01, 01 - 10, 10 » 11, 11 - 00}.
Table 1 shows the first three steps of a 2:2 SCA on an array, a.
The first row indicates the initial condition, with each column
representing one element of the array. Each row represents a suc-
cessive step in the SCA. The shaded cells indicate the cells that
are transformed in each step, based on the values of those same
two cells in the previous step. In Table 1, the letters @ and g are
appended to the index when there is a change in that value. A
white cell indicates one whose value is copied from the cell
above with no change.

Initial Condition |an_1,0[1]1]{an-1, 0[21|an-1, 0[31|an-1, 0[4]]...
Step 1 ay,1llel | a1, 11201 | a1,1[31 | ay,1[4]
Step 2 a, 1l1lal | a2, 11281 | a2, 1[3a] | a2, 1[4] |...
Step 3 a3, 1llel | a3, 112B] | a3,113B] | a3, 1[4e] |...

Table 1. Initial steps of a 2:2 SCA. Light blue regions show cells that are
updated during that step. The letter a or g is appended to the index to
indicate a change in that value.

As shown in Table 1, the first step applies the rule set to
aN_],O[l] and "N—1,0[2] to generate new values for those two
cells, a1’1[1a] and al’l[Za]. Then, the second step applies the
rule set to al,l[Za] and 41’1[3] and updates those two values,
generating az’l[Z,B] and a2’1[3a]. Note that the second element
of the array has been updated twice, influenced by the values of
aN_l,O[l], aN_l,O[Z] and aN—1,0[3]9 generating a2’1[2,8], the final
value of the second element of the array in this generation. The
influence of both neighbors on a cell’s value mimics the three-
cell rule sets of the most common regular CA but in a sequential
manner where the rule set is applied twice and the intermediate
value is operated on by the SCA. The differences become more
obvious when the evolution of the SCA is examined further. The
next step will apply the rule set to a, ;[3e] and a, ;[4], updating
those values, generating a3,1[3ﬁ] and a3’1[4(x]. Note that the
final value of the third cell is a;, 11381, and it is also influenced
by values of its neighboring cells. However, the difference
between the SCA and CA is that in the traditional CA, the origi-
nal values of aN_l,O[Z], aN—l,O[3] and aN—l,O[4] impact the new

https://doi.org/10.25088/ComplexSystems.34.3.325

https://doi.org/10.25088/ComplexSystems.34.3.325

330 M. H. Wong

value of as 41381, whereas in the SCA a; 112al, a, 4(3al and
a, 441, which has carried down the value of an_1,[41, govern
the new value of a;, 11381 instead. The incorporation of a, 11201

is the key difference and highlights a major attribute of the SCA:
propagation. As can be seen in Figure 2, the value of ay_; (1]

impacts a; {[2c], the value of a4, {[2e] impacts a, ;[3«], and the
value of a, {[3a] impactsa; ([4a]. Therefore, the effects of
an_q ol1] continue to propagate down the array within one gen-

eration. Similarly, the impact of each cell propagates to the rest
of the cells in the array as the SCA evolves through a generation.
The SCA is a variant of a CA as opposed to a Post tag system, as
the evolution is still based on the previous values of the array
and cell values are neighbor dependent, simply in a more com-
plex and interwoven manner.

I 2.2 Multiway Sequential Cellular Automata

This paper introduces multiway SCAs (MSCAs) where addi-
tional complexity is added by using nonhomogeneous rule sets,
or, in other words, an MSCA maps one input to several targets.
Each state of an MSCA has several evolutionary possibilities,
with each state propagating information from previous states
due to its sequential nature. MSCAs can be defined to operate
on r-dimensional arrays like SCAs. MSCAs operating on
r-dimensional arrays have a fixed geometric order of application
of the b-maximal branch rule sets. In other words, the 7-dimen-
sional array has a preset order in which the cells are traversed
and updated. At each update, there are up to b different rules for
updating the current cell, yielding up to b different outputs. For
a particular rule set, each input will have a predetermined set of
outputs. However, instead of a 1:1 mapping, one input might
have three outputs, while another input might have one output.
Note that this means in MSCAs, different inputs can yield differ-
ent numbers of outputs as b is the maximum, not fixed, number
of outputs.

Examples of MSCA rule sets or subsets of these rules are
shown in Figures 6-10. Figure 6 shows an MSCA that, like the
SCA in Figure 3, maps three input cells to a single output cell.
However, in Figure 6, there are two outputs for each input. This
is an example of a 3:1 r=1, b =2 MSCA. Figure 7 shows an
example of an MSCA rule set that has two input cells, two out-
put cells and two output possibilities for each input cell. This is
a 2:2 r=1,b=2 MSCA. Figure 8 shows a subset of rules of
what will be referred to as the quad flex MSCA. In this case,

Complex Systems, 34 © 2025

Multiway Sequential Cellular Automata 331

there are again two input cells and two output cells. However,
there are between one and four outputs for each rule. This is
thus a 2:2 r =1, b =4 MSCA. Figure 9 shows a subset of rules
of a 5:3 r=1, b =8 MSCA. Finally, Figure 10 shows a two-
dimensional case where rules are applied to a 2x2 subset of the
array. The subset of rules shown is from an r =2, b = 2 MSCA.

NN - m - HE- m -
NN —-N EN —-H EE—-ER E N

|| Ead | H N H—-N |

Figure 6. An r = 1 MSCA rule set where each rule has three input cells
and one output cell. For this MSCA, b = 2, meaning there are up to two
outputs for each input. This case has exactly two outputs for each
input.

N - N H — N | Ead | | ad |
N - H - N H—- N - N

Figure 7. An r = 1 MSCA rule set, where each rule has two input cells
and two output cells. For this MSCA, b = 2, meaning there are up to
two outputs for each input. This case has exactly two outputs for each
input.

N - EN
| Bad | |
NN H - N
H-N - N
gl BEE BEdl -
—
N -

Figure 8. A subset of the rules of an r =1 MSCA rule set where each
rule has two input cells and two output cells. For this MSCA, b = 4,
meaning there are between one and four outputs for each input. This
case will be referred to as a quad flex MSCA.

https://doi.org/10.25088/ComplexSystems.34.3.325

https://doi.org/10.25088/ComplexSystems.34.3.325

332 M. H. Wong

AN N - EEN
AN N - NN

HE EN - N
HEEN > EEN HEE BN N

HN EE-E N
HEEE - NN HEE BN
e

AN N AN N NN
N - AN NN .
AEER - N -
AN NN -

NN NN
NN N -

Figure 9. A selection of the rules comprising an r =1 MSCA rule set
where each rule has five input cells and three output cells. For this
MSCA, b =8, meaning there are between one and eight outputs for
each input.

I
I

AN EE = n
] u
|| |

!

g |
N BN BN
!

[|]

!
Hn
|
!
|

| I
u n n u]

Figure 10. A selection of the rules comprising an 7 =2 MSCA rule set.
Each rule has a 2x2 array of input and output cells. For this MSCA,
b = 2, meaning there are up to two outputs for each input. This case has
exactly two outputs for each input.

|]
!

|]
|
||
|

Due to the b-maximal branch character of MSCAs, more com-
plex definitions of step and generation are required. In MSCAs,
when the rule set is applied, if there are two possible outputs,
then there are now two versions of the updated 7-dimensional
array. Each time the rules are applied, up to b versions of
r-dimensional arrays are created. Therefore, instead of a simple
series of updated arrays, there is now a tree-like structure of
updated arrays. However, further complicating this is that some
of the updated arrays can be identical to arrays created else-
where on the tree, yielding a graph structure where the nodes are
versions of the r-dimensional arrays. Within this MSCA progres-
sion, a step is defined as the application of the rule set to the
identical cells in every current array. The current arrays are
those created in the previous step. For example, in a 2:2 MSCA
rule set operating on a one-dimensional array, where the rule set

Complex Systems, 34 © 2025

Multiway Sequential Cellular Automata 333

is being applied to the third and fourth cells of the array, a step
would consist of applying the MSCA rule set to the third and
fourth cells of every current one-dimensional array. A generation
then is complete when the rule set has been applied along the
prescribed path covering the entire r-dimensional array once. In
the same 2:2 one-dimensional array example, a generation is
complete when the application of the rule set to the last two cells
of the array is completed.

The mapping b representing the rule set of a unique MSCA is
shown in equation (3), where b is the maximum number of
branches allowed at each step, k indicates the current element of
the set of inputs, I, is the k™ element of I (i.e., one of the
inputs), J, indicates the number of branches or mappings that
occur for element I, and D is the cardinality of I. Note that the
function b is defined as the complete rule set, including the vary-
ing number of branches for each input:

h:{lk —>Tk]k| I, el, Tk]k e Tk,
Jee{l, ..,bl,kez,1<k=<D,}.

This paper will examine MSCAs that operate on one-dimen-
sional arrays with 2-cell inputs that yield 2-cell outputs (2:2),
with binary values in the cells, similar to the SCA discussed ear-
lier. Thus the updating scheme for the MSCA is shown in equa-
tion (4), where a new subscript has been added to the array
element indicating the branch number. Again, j indicates the cur-
rent branch being constructed, that is, 1 <j =< J,. Let g be the
branch of the tree from the previous generation, whose descen-
dants are being constructed. Let k£ be determined by the value of
input cells. Note when s =1, the updated values are based on
the last step s = N - 1 of the previous generation, g — 1:

3)

(aj’s’g [s], @; ¢ s+ 11)=h (aq’ o1,g15h Ay 51 o5+ 11)
i=s,s+1,s>1
li1=a, . 1 il
i£s,s+1,s>1
(aj’ 6glSh g s+ 11)=h (aq’ N-1,g-105] @y N1 g1l + 11)
i=s,s+1,s=1

djs,g

“

ai, S, 8 li1= aq, N-1, g-1 (2]
i+s,s+1,s=1.
Due to the added b-maximal branch complexity, MSCA results
cannot be displayed as a series of updated arrays forming an

image. Thus, we introduce a graph structure in the next section
for the display and analysis of MSCA results.

https://doi.org/10.25088/ComplexSystems.34.3.325

https://doi.org/10.25088/ComplexSystems.34.3.325

334 M. H. Wong

I 3. Multiway Sequential Cellular Automata Graph Structures

I 3.1 Evolutionary Graphs of Sequential Cellular Automata in
the Context of Multiway Sequential Cellular Automata
In order to narrowly focus on studying the impact of rule sets on
the final graph structure of the MSCA, the underlying SCA of
the particular MSCA studied in this paper will remain a 2-cell
input and output (2:2) structure; however, for every 2-cell input
there will be multiple rules enabling several possible outputs.
There is no longer a single output array for each generation, as
found in the regular SCA, and as such, the standard two-dimen-
sional grid representing several generations of output can no
longer be used. The evolution of the MSCA can be visualized
using a series of graphs that indicate branching due to the multi-
way rule sets. While a tree-like structure can be used to show the
time component of evolution, this representation is not ideal for
the MSCA, as it fails to show repetitive nodes. Therefore, a
multiway state graph will be used, where each node represents a
unique array and edges show the evolution pattern.

An MSCA has b-maximal branch rule sets, meaning at each
application of rules, an input pattern will map to at most b possi-
ble output patterns. To distinguish them from regular CA rule
sets, these MSCA rule sets will be called M-type rule sets. Since
the M-type rule sets studied in this paper use a 2:2 input output
structure, I = {00, 01, 10, 11}. Since each input has four possible
outputs as shown in Table 2, there are 16 possible cell-level
rules. Each of these rules has been color-coded as shown in
Table 2 to allow the impact of these individual rules to be seen
in the state graphs. An M-type rule set is a subset of these 16
rules. These 16 cell-level rules will be referred to in the paper
with the color and mapping. For example, rule 1 will be repre-
sented in the form rule 1 (H: 00 - 00).

A table of state graphs will show one complete generation of
the SCA or MSCA in a column, with each successive entry in the

Rulett |1|2|3(4|5|6|7|8]9(10{11(12|13|14|15|16
Color | | | | | | |DO |00 |90 | |0 |C0 || |0 |
Input [00/00{00/00{01|01{01|01{10|10{10|10|11|11|11|11
Output|00|01{10{11{00({01|10{11{00{01{10({11|00|01|10|11

Table 2. Cell-level rules that are used to form two-cell MSCA M-type
rule sets. Colors are assigned to each rule to enable identification of
rules in the state graphs. This table is for a one-dimensional MSCA,
that is, operating on a single row of cells, with rules applied to blocks
of two cells at a time, using a two-branch MSCA. This color legend is
used for all of the subsequent figures in this paper.

Complex Systems, 34 © 2025

Multiway Sequential Cellular Automata 335

column displaying the results of one step of the SCA or MSCA.
For each step, a state graph is shown, with every node represent-
ing a particular state of the one-dimensional array, with white
cells indicating a 0 value and black cells indicating a 1 value.
These nodes are connected by colored edges to show the evolu-
tion of the MSCA. Step i of a generation transforms cells 7 and
i+ 1. The colored edges are as defined in Table 2 to indicate
which of the cell-level rules were applied to progress from one
state to the next. Duplicate edges of the same color are not
shown in these state graphs in order to maximize clarity, due to
the high complexity of the multiway graphs shown in later
sections.

The b =1 case of the MSCA is simply the straightforward,
deterministic SCA. This can be displayed as a multiway state
graph where no branching occurs. Table 3 shows the step-by-
step evolution of the state graph of an example of the most basic
SCA, where only one rule changes cell values. The M-type rule
set in this example includes rules 2 (M: 00 - 01), 6 (H: 01 -
01), 11 (F: 10 -» 10) and 16 (M: 11 - 11). Each step refers to
the application of the rule set to two cells. In step 1, the first two
cells of the initial condition (00110) are transformed from 00 to
01, resulting in a node of 01110. A pink arrow can be seen
because this is the result of applying rule 2 (H: 00 —» 01). The
next step operates on the second and third cells of the current
state (01110), transforming them using rule 16 (M: 11 - 11).
Thus, the state maps back to itself, generating the orange loop
pointing back to the same state. In step 3, rule 16 (H: 11 - 11)
is applied. The third step in Table 3 shows no change because
the third and fourth cells of the current state (01110) are 11 and
the self-returning orange edge is already shown. Step 4 displays
the addition of a bright green loop as the fourth and fifth cells of
the current state (01110) are transformed using rule 11 (F1: 10 -
10). As the end of the array has been reached, the first genera-
tion is complete. The second generation begins with step 1 oper-
ating on the first and second cells of the current state (01110).
Applying rule 6 (H: 01 - 01) creates the blue loop and results in
no change in the current state (01110). However, the conver-
gence criterion is met, terminating the process. Convergence is
achieved if all children states have been previously reached in the
same step of a previous generation. It must be in the same step
because the step number governs which cells will be processed
next. If the state is reached in the same step of a previous genera-
tion, then the same rules will be applied in the same order on the
same cells in future steps, yielding no new unique edges or states
in the states graph. At this point, the algorithm concludes.

https://doi.org/10.25088/ComplexSystems.34.3.325

https://doi.org/10.25088/ComplexSystems.34.3.325

336

Generation 1

Step 1 [N [N

Step 2 CE-H [.
Step 3 CE-H [.
Step 4 [. [.

Generation 2

)

Step 1 [(1.

U

M. H. Wong

Table 3. Step-by-step state graphs for an SCA with two input, two out-
put structure, using rules 2 (M: 00 -» 01), 6 (W: 01 - 01), 11 (I: 10 -
10) and 16 (M: 11 - 11) and starting with the initial condition 00110.

As seen in Table 3, SCAs are often linear or at least have a lin-
ear component. Table 4 shows the mapping where only the 01
pair changes and the M-type rule set includes rules 1 (H: 00 -
00), 7 (m: 01 - 10), 11 (FI: 10 - 10) and 16 (M: 11 - 11).
Although it is more complex than the previous case and does not
converge for three generations, it is still linear, augmented by

loops that indicate a mapping back to the same state.

Generation 1
Step 1 [
Step 2 EIZIZH—E\:-:D
Step 3 CE\I] (W (.
Step 4 CE\I—»EI]]—»E_]])

Complex Systems, 34 © 2025

Multiway Sequential Cellular Automata 337

Generation 2

Step 1 C ” . U .
Step 2 CE\:-]—>EI:I]—>E-:D—>I:I:D—>-:\:D
A
Step 3 [l:\:-j [[. { B BN -:\:\:l)
[\
Step 4 (E\I—>E.I—>E-:D—>.:-:D—>-:\:\:)

/

Generation 3

Yy

Step 1 (\:\:-_’—PEII—>[-:D—>IZI:D—>-:ED

A v/
Y

Step 2 [E\:-] () (- AN
I\ 'y

Step 3

Step 4

Table 4. State graphs for the SCA with rules 1 (Hl: 00 - 00), 7 (M: 01 -
10), 11 (&: 10 —» 10) and 16 (M: 11 - 11). The initial condition is
00110.

Not all SCA graphs are linear in appearance as shown in
Table 5. However, the branching in SCA graphs is not due to
multiway rule sets; rather, it is due to states that reoccur but at
different steps of their respective generations. The step indicates
which two cells are to be processed next, regardless of the gener-
ation. Thus, even if the same state is reached, if different cell
pairs within the state are processed next, it can lead to different
subsequent states. In Table 5, the evolution of an SCA with a
rule set consisting of rules 2 (H: 00 —» 01), 7 (M: 01 - 10), 12 (IZ:
10 » 11) and 13 (M: 11 - 00) displays a distinctly nonlinear
pattern after initially appearing linear. Note that the rules are
“circular,” meaning each pair maps to a different pair, and no
two pairs map to the same pair. Selected generations of the SCA
evolution are shown, with this SCA converging in the ninth
generation.

https://doi.org/10.25088/ComplexSystems.34.3.325

https://doi.org/10.25088/ComplexSystems.34.3.325

338 M. H. Wong

Generation 1

Step 1 [- {1 .

Step 2 (] - [- rrm

Step 3 [[(T ——> W]
Step 4 [- (I > WT} TEm

Generation 3

Step 1| C— O T M - (T T n n - T T T = maul

Step D | o R T W TR O - (T T T W (T Ml (T T T T W T T} s | ual

[EEEEE, i mam|
T . m | ma|
Step 3| cm O)
m .] rrml
[EE = | N NN
& man RN
o .
-
Step 4 m | Irrm
[mn N
\ Ca—.
[En N TEm

Table 5. Generations 1 and 3.

Complex Systems, 34 © 2025

Multiway Sequential Cellular Automata 339

Generation 5

el "
o s s} T
e S
Step 1 Em:/ _:/ f

Step 3

Step 2| ¢ \;:I.
\ /
[=] /_ - jmnn ']
\-:- o /
T
/E“J_I ™~~~

Step 4

el m\m

Table 5.

Generation 3.

https://doi.org/10.25088/ComplexSystems.34.3.325

https://doi.org/10.25088/ComplexSystems.34.3.325

340 M. H. Wong

Generation 9

[mnnn |

Step 1
- //

[— S =

—

Table 5. Generations 1, 3, 5 and 9 of the evolutionary state graphs for
the SCA with rules 2 (H: 00 -» 01), 7 (M: 01 - 10), 12 (F1: 10 - 11)
and 13 (M: 11 - 00). The initial condition is 00110.

Cellular Automata

In this section, the most elementary MSCAs will be examined,
where only one input does not map to itself. Consider first the
most basic, one-dimensional, b = 2 MSCA, where only one rule
has two possible outputs and all other inputs map back to them-
selves. Table 6 shows each step of the MSCA for a rule set with
rules 1 (H: 00 - 00), 2 (H: 00 - 01), 6 (M: 01 - 01), 11 (=
10 —» 10) and 16 (M: 11 - 11). The difference between this
MSCA and the SCA examined in Section 2 is that 00 maps to
two possible outputs rather than one. As only one of the options
of the multiway does not map back to itself, the graph still
appears linear, with loops returning to states.

I 3.2 Evolutionary Graphs of Simple Multiway Sequential

Generation 1
Step 1| ~mmm D:-:D
Step 2 CE-] uE N

Complex Systems, 34 © 2025

Multiway Sequential Cellular Automata 341

Generation 1

Step 3 CE-:! E\ID

Step 4| mmm) T

Generation 2

RSN
O

Table 6. State graphs for the MSCA with the rule set containing rules
1 (M: 00 - 00), 2 (M: 00 - 01), 6 (W: 01 - 01), 11 (: 10 - 10) and
16 (M: 11 - 11). The initial condition is 00110.

Step 1

A rule set where the multiway options for one input pair do
not include the identity mapping back to itself displays typical
MSCA branching in its state graph. Table 7 shows the state
graphs for the MSCA with a rule set containing rules 2 (M: 00 -
01), 3 (m: 00 - 10), 6 (M: 01 - 01), 11 (F: 10 -» 10) and 16 (M:
11 - 11). Immediately, the first step shows the initial condition
branching into two new states. As 00 no longer appears in the
states, the remaining steps merely add loops as rules 6, 11 and
16 are applied, as determined by the cell values as the MSCA tra-
verses each child state graph.

Generation 1

7.

Step 1

Table 7. (continues).

https://doi.org/10.25088/ComplexSystems.34.3.325

https://doi.org/10.25088/ComplexSystems.34.3.325

342 M. H. Wong

Generation 1

o /\
SO

o /\
s

Step 4 C_] é]]/)

Generation 2

[—-—]

- Q‘D C“Q

Table 7. State graphs for the MSCA with a rule set containing rules
2 (H: 00 - 01), 3 (M: 00 -» 10), 6 (H: 01 - 01), 11 (F: 10 -» 10) and
16 (M: 11 - 11). The initial condition is 00110.

Table 8 shows a b =3 MSCA where 00 maps to the three
other cell pairs and not back to itself. The other cell pairs map
back to themselves. The rule set therefore contains rules 2 (M:
00 -» 01), 3 (M: 00 -» 10), 4 (M: 00 - 11), 6 (M: 01 - 01),
11 (F1: 10 » 10) and 16 (M: 11 —» 11). The expected three-way
branch is seen immediately in step 1. Again, as that is the only
occurrence of the cell pair 00, no further branching is seen,
only the addition of identity loops.

Complex Systems, 34 © 2025

Multiway Sequential Cellular Automata 343

Generation 1

o
Step 1] \
"m0 . -
)

Step 2 l \

Step 3 l \

R (}L_ﬂ

Generation 2

[m |

I\

O \
Sl

Step 1

Table 8. State graphs for the MSCA with the rule set containing rules
2 (m:00 - 01),3 (MW: 00 » 10), 4 (W: 00 - 11), 6 (M: 01 - 01), 11 (F:
10 - 10) and 16 (M: 11 - 11). The initial condition is 00110.

Table 9 shows a b =4 MSCA where 00 maps to all four cell
pairs and the other cell pairs map back to themselves. The rule
set therefore contains rules 1 (Hl: 00 —» 00), 2 (M: 00 - 01),
3 (M:00 - 10),4 (M: 00 > 11), 6 (M: 01 - 01), 11 (F1: 10 - 10)
and 16 (M: 11 - 11). The expected three-way branch is seen
immediately in step 1, along with an identity loop. Again, as
that is the only occurrence of the cell pair 00, no further branch-
ing is seen, only the addition of identity loops.

https://doi.org/10.25088/ComplexSystems.34.3.325

https://doi.org/10.25088/ComplexSystems.34.3.325

344

Generation 1

Step 1

Step 2

7@ i)

Step 3

G
2| Ci
e

O
8

%

Step 4

i
25
&
<

0

4

Com Cam?) s
CD(J

Generation 2

Step 1

Q
C=2

AN

_bcm:) o

M. H. Wong

Table 9. State graphs for the MSCA with the rule set containing rules
1 (M: 00 - 00), 2 (M: 00 - 01), 3 (H: 00 -» 10), 4 (W: 00 - 11), 6 (M:
01 - 01), 11 (F1: 10 - 10) and 16 (M: 11 - 11). The initial condition is

00110.

| 3.3 Two-Branch Multiway Sequential Cellular Automata

It is clear that when more than one input has multiple outputs,
the graph’s complexity increases significantly. To better under-
stand the structure of these graphs and the relationship between

Complex Systems, 34 © 2025

Multiway Sequential Cellular Automata 345

rule sets and graph structure, a more detailed analysis of the one-
dimensional, 2:2 input output, b = 2, no repeated MSCA is dis-
cussed in this section. The reason for these choices is that b =2
is the first-level multiway case. This allows the multiway effects
to be seen most clearly in graphs, as the number of nodes and
edges is smaller than in systems with higher b values. By enforc-
ing two separate rules at each rule application, the full effect of
the branching can be seen.

In Table 2, there are four possible outputs for each input. For
a two-branch MSCA, each rule set contains two of these four
possible outputs for each input. Since the two outputs are
required to be distinct, there are two branches at each node.
Thus, for the first output, there are four choices, and for the sec-
ond output, there are three choices, resulting in 12 possible pairs
of distinct outputs in the rule set. However, within these 12 pos-
sible pairs, for every pair of rule x and rule y, there is also a pair
of rule y and rule x. These duplicates are eliminated, leaving six
possible output cell pairs for each input cell pair. Since there are
four input cell pairs, this results in 6* or 1296 possible rule sets.
These 1296 rule combinations will be referred to as M-type rule
sets, with a number specifying their identity to distinguish them
from both the 16 possible cell-level rules shown in Table 2 and
the standard CA rules [2]. More generally, for a one-dimen-
sional MSCA with a b-branch multiway system, where z-size cell
blocks of the current state are evaluated at a time, the number of
possible M-type rule sets is given by

227
number of rule sets = (b] . ®)
The MSCA diagrammed in Table 10 is a two-branch MSCA
with a shorter initial condition 011 but with a more complex M-
type rule set M1044. M1044 contains the rules 2 (H: 00 - 01),
4 (M: 00 > 11), 6 (M: 01 - 01), 8 (M: 01 - 11), 11 (F: 10 -
10), 12 (: 10 - 11), 15 (M: 11 - 10) and 16 (M: 11 — 11). The
initial condition of 011 is represented by the rightmost node in
the first panel. After the first step of evolution, the multiway evo-
lution of the state 011 yields the states 011 and 111. The blue
arrow from 011 back to itself shows that rule 6 (H: 01 —» 01)
was applied to the initial condition. The cyan arrow from 011 to
111 shows that rule 8 (H: 01 — 11) was applied to the initial
condition. Thus, the children states from this step of evolution
are 011 and 111. In the second panel (Generation 1, Step 2),
each of the children states from panel 1 has undergone multiway

https://doi.org/10.25088/ComplexSystems.34.3.325

https://doi.org/10.25088/ComplexSystems.34.3.325

346 M. H. Wong

Generation 1 Generation 2

o

y

"

D =)

1|)
S

[

N
7N\ /

Step 2
D) =
O sm—"

—

Generation 3

o

\ /

Q T

@

Table 10. Example of the evolution of a two-dimensional MSCA. The
initial condition of this graph was 011 and the rule set was M1044,
which contains rules 2 (M: 00 - 01), 4 (H: 00 - 11), 6 (H: 01 - 01), 8
(Mm: 01 - 11), 11 (F: 10 -» 10), 12 (F: 10 -» 11), 15 (W: 11 - 10) and
16 (M: 11 - 11).

Complex Systems, 34 © 2025

Multiway Sequential Cellular Automata 347

evolution, so there are two new arrows emanating from both
states 011 and 111. These are the dark orange (M) and light
orange (M) edges. Note that there are two new states: 010 and
110. The evolution continues in generation 2, shown in the sec-
ond column. The MSCA stops when convergence is reached.

4. Classification of the Multiway Sequential Cellular
Automata Graphs

Considerable work has been done studying classification of
regular CAs [46-58]. The nature of the MSCA is significantly
different from the traditional CA. As shown in Section 3, the
evolution of an MSCA rule set cannot be shown in a single
spacetime visualization commonly used to examine and classify
traditional CA characteristics; rather, the branching is displayed
in a directed graph, or digraph, with nodes representing evolved
states of the cells. The standard spacetime visualization is equiva-
lent to a single directed walk on the graph that makes a choice
at each node visited on which subsequent direction to take.
There is no counterpart in traditional CA rules that could gener-
ate the resulting visualization unless for every input the same
output is chosen, which is a single special case in the entire set of
possible walks. Furthermore, each rule set in the MSCA yields a
multitude of different visualizations corresponding to each
directed walk. Especially for more complex MSCAs, for the
same rule set, there can be a set of nodes traversed that yields a
CA sensitive to initial conditions, orderly, and with high com-
pression, while the same rule set with a different traversal of
nodes may yield a CA with low sensitivity to initial conditions,
chaotic behavior and low compression. Therefore, the classifica-
tion that is examined in this paper is a classification of the multi-
way graph structure, not a classification of the typical cellular
automata visualizations. It should also be noted that although
each node represents a specific state of the array, the MSCA clas-
sification does not consider these states or cell values.

In order to characterize the MSCA and to study the impact of
various parameters on the evolution of MSCA graphs, six differ-
ent initial conditions with six cells each were tested, namely
000100, 001110, 010110, 101011, 110011 and 111001. These
initial conditions represented a good variety of configurations,
and were long enough to show the evolutionary impact of
sequential evaluation of the rules yet short enough for most
cases to converge reasonably quickly in the two-branch MSCA
case. As will be seen in Section 5, the rule set is the dominating

https://doi.org/10.25088/ComplexSystems.34.3.325

https://doi.org/10.25088/ComplexSystems.34.3.325

348 M. H. Wong

factor as opposed to initial condition, thus six diverse initial con-
ditions were sufficient for classification. The 1296 possible
M-type rule sets were individually applied to each of the six ini-
tial conditions, yielding a robust set of 7776 cases.

Graphs from two initial conditions, a total of 2592 cases,
were examined to determine unique graph classes. Ten different
classes were manually identified based on features and structure
such as node structure, node clustering and edge density: Class 1
Radials, Class 2 Central Clusters, Class 3 Skewed Clusters,
Class 4 Arcs, Class 5 Bimodals, Class 6 Periodic Clusters,
Class 7 Grids, Class 8 Even Grids, Class 9 Axials and Class 10
Lattices. The classes were distinct enough that manual training
data was consistent and reproducible. Then, 962 of the 2592
manually classified graphs, or 12% of the total 7776 graphs,
were used to form a training dataset. A machine learning classi-
fier was created using the Wolfram Classify function. This
function determines model specifics such as a method and hyper-
parameters through an automated procedure of experiments on
training data subsets. For example, four method types were
attempted: logistic regression, decision tree, nearest neighbors
and random forest. The logistic regression learning curve with a
limited memory Broyden-Fletcher—-Goldfarb-Shanno optimiza-
tion algorithm was best, thus was used for the final classifier.
The logistic regression method uses linear combinations of
numerical features to model the log probabilities of each class.
This classifier was used to classify the remaining 5184 graphs
into the 10 predetermined classes. 335 of the graphs that had
been hand classified that were not used for the training data or
parameter tuning were used to check the level of agreement
between hand classification and the trained classifier function.
Of these 335 graphs, 93.7% were classified the same compared
to the model’s predicted accuracy of (94.4 +2.2)%.

The 10 classes of graphs are presented in this section. As
these graphs are more complex than the ones studied in the pre-
vious section, they will be simplified by showing the nodes as
black circles instead of displaying the entire array at each node.
As an example, the step-by-step evolution of an exemplar of the
first class will be examined. Class 1 graphs are referred to as
Radials and have two characteristic nodes in the center and a
radial structure. Rings of evenly spaced nodes emanate outward
from the center. Figure 11 is an exemplar of this class.

Table 11 shows the step-by-step evolution of the exemplar
graph for class 1. The graph in generation 2, step 2 is notewor-
thy for its bimodal nature. The graph converges by the fifth step
of the third generation.

Complex Systems, 34 © 2025

Multiway Sequential Cellular Automata 349

Figure 11. Example of an MSCA class 1 Radial graph generated from an
initial condition of 010110 and the rule set M372 containing rules 1
(M: 00 - 00), 3 (H: 00 - 10), 6 (W: 01 - 01), 8 (H: 01 - 11), 9 (M: 10
5 00), 11 (F: 10 > 10), 15 (M: 11 - 10) and 16 (M: 11 - 11). Class 1
Radial graphs show a circular, radial structure.

Generation 1
Step 1 _—
Step 2 Qe O

Step 3 v,ﬁ(

M%‘”
;

Table 11. Steps 1-4, Generation 1.

https://doi.org/10.25088/ComplexSystems.34.3.325

https://doi.org/10.25088/ComplexSystems.34.3.325

350

M. H. Wong

Generation 1

N %&Wﬁo
&SN

Generation 2

Step 1

Step 2

Table 11. Step 5, Generation 1. Steps 1 and 2, Generation 2.

Complex Systems, 34 © 2025

Multiway Sequential Cellular Automata 351

Generation 2

'é vu&&
W= e

W 7
A B\‘\"*\%\st/

QNS //;—”‘.v'

Step 3

Step 4

Table 11. Steps 3 and 4, Generation 2.

https://doi.org/10.25088/ComplexSystems.34.3.325

https://doi.org/10.25088/ComplexSystems.34.3.325

352 M. H. Wong

Generation 2

Step 5

Step 1

Step 2

Table 11. Step 5, Generation 2. Steps 1 and 2, Generation 3.

Complex Systems, 34 © 2025

Multiway Sequential Cellular Automata

Generation 3

Step 3 NacH U0
N
=

‘.‘:\‘\;
A
&)

!
N X\

SO0/
J
WP

Saw
RS \\‘

\"

O

Step 4

WW‘
i)

A

L
-

%

353

Table 11. Steps 3 and 4, Generation 3.

https://doi.org/10.25088/ComplexSystems.34.3.325

https://doi.org/10.25088/ComplexSystems.34.3.325

354 M. H. Wong

Step 5

Table 11. Step-by-step evolution of the MSCA class 1 Radial exemplar
with initial condition 010110 and rule set M372, whose constituent cell-
level rules can be found in Table 13.

Table 12 shows exemplars of the 10 graph classes. Significant
differences can be seen in the distribution of nodes and edges as
well as overall structure. Table 13 provides the cell-level rules
that form each of the M-type rule sets used to generate each of
the exemplars in Table 12. As stated before, class 1 graphs,
labeled Radials, have a radial structure and rings of evenly
spaced nodes emanating outward from the center. Radials have
fewer nodes, are symmetric, and the overall density of edges is
lower. Class 2 Central graphs have a cluster of nodes in the cen-
ter, evenly spaced nodes around the outside of the graph, and
are symmetric in nature. The distribution of nodes in the exem-
plar is classic for this class of graphs. Class 3 Skewed graphs are
asymmetric and have a larger concentration of edges and nodes
on one side of the graph. Notable features include strong curva-
ture on one side, resulting from a series of unidirectional edges
connecting a series of nodes, as well as denser but smaller
groups of edges on the more sparse side of the graph. Class 4
graphs, Arcs, have an arc-like shape on one side and a cluster of
edges on the other that emanates from the center. Class 5
graphs, Bimodals, have two clusters of nodes and edges con-
nected by a relatively sparse region of nodes and edges. Typi-
cally, the color-coded edges show two distinct groups of rules
generating the edges that connect the two regions. Class 6 Peri-
odic graphs are sparse and have an elongated structure with

Complex Systems, 34 © 2025

Multiway Sequential Cellular Automata

A I‘ 5 \"1
N Py

-

\
)
s

S
£
]

=N

Class 7: Grid

Class 8: Even

Table 12. (continues).

355

https://doi.org/10.25088/ComplexSystems.34.3.325

https://doi.org/10.25088/ComplexSystems.34.3.325

356 M. H. Wong

Class 9: Axial Class 10: Lattice

Table 12. Exemplars for all 10 classes of MSCA generated from an ini-
tial condition of 010110 with the rule sets indicated in Table 13.

three or four repeating dense regions that contain all of the
nodes. Class 7 graphs, Grids, have a symmetric and orderly grid
of 64 nodes. Each node belongs to two groups of nodes and
edges, which are seen as columns and rows that are each two
nodes wide. Class 8 graphs, Evens, appear as distorted grids of
64 nodes. The edges are more uniformly spread throughout the
grid than in class 7 graphs, and the color is very uniform, with
all colors in all areas of the graph. Class 9 Axial graphs are less
uniform and orderly than class 6, 7 or 8 graphs. Axials feature
two groups of denser edges that manifest as vertical and horizon-
tal axes. The remaining nodes are sparsely scattered with fewer
edges between them. Class 10 graphs, Lattice graphs, are more
sparse and have a lattice-like structure surrounding a central clus-
ter of nodes.

Cell-Level Rule |Radial |Central |Skewed| Arc |Bimodal|Periodic| Grid | Even | Axial |Lattice
M372| M718 | M94 |M641| MS551 | M731 |M289|M1060|M1214| M266
1(Mm:00-00| x X X b'e b'e X
2 (Mm:00- 01 x x X x
3@:00-10)| x x X X x x
4 @:00-11) b X x x
5 (H:01- 00 X X X X x
6(M:01-50D x X x
7@:01-10) x x x x x X
8§@:01-11| x X X x x X
9@:10- 00| x X X X x x
10 (m: 10 - 01) X x x x
11 @:10-10)| x b'e x X by
12@:10-11) b'e b'e X X X
13 @: 11 - 00) X X x
14 @:11 - 01 X X X X X X X
15@:11-10| x X X X X X
le6@m:11-11 X X X X

Table 13. Cell-level rules comprising the M-type rule sets used to gener-
ate each MSCA class exemplar in Table 12.

Complex Systems, 34 © 2025

Multiway Sequential Cellular Automata 357

Recall that there are eight cell-level rules contained in each M-
type rule set for the 2:2 two-branch, no repetition case of
MSCAs being studied. Table 13 shows that there is a good distri-
bution of cell-level rules among the M-type rule sets used to gen-
erate the MSCA exemplars. Each of the 16 cell-level rules is
found in at least three exemplars, with a maximum of seven
occurrences. Similarly, the rule sets show considerable variation
in their underlying cell-level rules. There is a maximum corre-
spondence of five cell-level rules between any two of the 10 rule
sets in Table 13. The most common overlap is three cell-level
rules. Thus, the distinct character of the exemplars is reflected in
the rules that comprise the M-type rule sets from which the
exemplars are generated.

I 5. Graph Analysis

I 5.1 Analysis of Initial Conditions

In order to study the impact of initial conditions on the graph
structure, a total of 41472 state graphs were generated by apply-
ing the 1296 M-type rule sets to 32 initial conditions. This repre-
sents all possible length-six binary initial arrays, because each of
the 64 possibilities has a duplicate by zero/one symmetry, for
example, 000000 and 111111. For each case, the MSCA was
run until convergence. The 41472 MSCA graphs were examined
to determine if the initial condition impacted the final graph clas-
sification. The percentage of each class that originated from each
initial condition was determined and shown in the bar charts in
Figure 12. The distribution is fairly uniform for each class, indi-
cating that initial condition is not a good indicator of final graph
structure. The only outlier is the relatively fewer instances of the
initial condition 000000 in the Arc class, which is likely due to
classification errors.

Another study was performed examining the resulting behav-
iors of each of the 1296 rules. Within the 41472 graphs, there
were 32 different initial conditions for each M-type rule set. The
resulting graph structures were classified, then the number of ini-
tial conditions that yielded the same graph class was counted for
each M-type rule. Of the 1296 rules, over 85% of the rule sets
yielded at least 30 of 32 graphs in the same class. Over 93%
yielded 26 or more graphs in the same class. Combined with Fig-
ure 12, this clearly indicates that the rule set is the dominant fac-
tor in final graph structure.

https://doi.org/10.25088/ComplexSystems.34.3.325

https://doi.org/10.25088/ComplexSystems.34.3.325

358 M. H. Wong

Arc Class i Axial Class
3.5 -
3.0 3.0
- 2.5 - 2.5
S0 520
2 s S
L) L5
~ 1.0 Ay 1.0
0.5 0.5
0.0 0.0
Initial Condition Initial Condition
s Bimodal Class Central Class
30 3.0
25 2.5
=Y g20
|5 L
S Q15
e -
L i5]
A~y 10 /Ay 10
0.5 0.5
0.0 .-‘ 0.0 F
Initial Condition Initial Condition
i Even Class Grid Class
: 3.0
3.0
25
- 25 -
2.0
S 20 g
1] Q15
& 1S =
L5 L
A 1.0 o, 10
0.5 0.5
0.0 0.0
Initial Condition Initial Condition
Lattice Class s Periodic Class
30 3.0
2.5 25
20 =BT
|5 L
Qs Qs
L k5]
Ay Lo £y 10
0.5 0.5
0.0 .-‘ 0.0 .-‘
Initial Condition Initial Condition
s Radial Class Skewed Class
30 3.0
25 25
E 2.0 E 2.0
[} [5]
S s Q18
L5 L)
Ay 1.0 /Ay 10
0.5 0.5
0.0 0.0 F
Initial Condition Initial Condition

Figure 12. Bar charts for the 10 MSCA classes showing the percentage
of graphs in that class that originates from each initial condition. A rela-
tively even distribution is seen for every class.

Complex Systems, 34 © 2025

Multiway Sequential Cellular Automata 359

I 5.2 Graph Analytics

As initial conditions have been shown to be less impactful than
rule sets in determining the behavior of MSCAs, the more
focused subset of 7776 graphs generated using the initial condi-
tions 000100, 001110, 010110, 101011, 110011 and 111001
introduced in Section 4 was used for a deeper dive into the char-
acteristics of the MSCA classes. Analytical data was calculated
for each of the 7776 graphs, including vertex count, edge count,
mean vertex degree and mean betweenness centrality as mea-
sures of graph structure. Vertex degree, also called valence, is
the number of edges incident to the vertex. Betweenness central-
ity measures a node’s centrality based on the number of shortest
paths between other vertex pairs that include the node. The
mean and standard deviation were calculated for each class for
each graphical measure, as shown in Tables 14 and 15. Class 1
Radial graphs were a distinct outlier in all four measures. Radial
graphs have roughly half the number of vertices as other graphs
from other classes and fewer than half the edge count, which
points to a far sparser graph. Class 8 Evens had the highest num-
ber of vertices and edges as well as the highest average mean ver-
tex degree. This is apparent in the visual appearance of class 8
Even graphs, as there are no regions of sparse edges. There is
remarkable similarity in vertex count between all the classes of
graphs except the class 1 Radials. The higher standard deviation
in all measures for the class 10 Lattices points to the far greater
variation in Lattice graphs, suggesting possible subclasses within
the Lattice class.

Vertex | Vertex | Edge | Edge
Class #|Class |Count u|Count o|Count u|Count o

1 |Radial 32.0 | 0.152 | 260.0 | 19.1
2 |Central | 63.9 | 2.160 | 589.0 | 39.0
3 |Skewed | 62.6 | 4.910 | 549.0 | 64.1
4 |Arc 63.0 | 1.430 | 549.0 | 28.6
S |Bimodal| 64.0 | 0.541 | 578.0 | 30.0
6 |Periodic| 60.9 | 7.510 | 520.0 | 74.5
7 |Grid 63.3 | 4.470 | 587.0 | 54.3
8 |Even 64.0 | 0.000 | 613.0 | 21.3
9 |Axial 63.7 | 1.590 | 560.0 | 40.2
10 |Lattice | 52.4 | 10.60 | 315.0 | 87.5

Table 14. Vertex and edge counts for each MSCA class.

https://doi.org/10.25088/ComplexSystems.34.3.325

https://doi.org/10.25088/ComplexSystems.34.3.325

360 M. H. Wong

Mean Mean Mean Mean

Vertex | Vertex |Betweenness|Betweenness

Class #t|Class |Degree u|Degree o| Centrality u | Centrality o
1 Radial 16.2 1.19 49.9 7.64
2 |Central | 18.4 0.988 129.0 17.3
3 Skewed | 17.5 1.21 129.0 22.7
4 |Arc 17.4 0.769 126.0 14.2
5 |Bimodal| 18.1 0.901 106.0 14.8
6 |Periodic| 17.0 0.753 122.0 31.9
7 |Grid 18.5 0.916 104.0 13.5
8 |Even 19.2 0.664 104.0 8.76
9 |Axial 17.6 1.04 112.0 14.9
10 |Lattice 11.9 1.85 109.0 35.4

Table 15. Broader data analytics for each MSCA class.

I 5.3 Rule Analysis

The 7776 state graphs were used to examine the impact of spe-
cific cell-level rules within M-type rule sets, as described in
Table 2, on resulting graph behaviors. The goal is to determine
if particular cell-level rules or sets of cell-level rules lead to spe-
cific classes of graphs. Furthermore, similarities between classes
can be illuminated, as well as classes that are outliers in behav-
ior. For each class, the various M-type rules responsible for
generating the graphs were inventoried. The 16 cell-level rules
comprising each of these M-type rule sets were then collated.
The bar charts of the resulting rule frequencies are shown for
each class in Figure 13. It should be noted that the bar charts
show the number of occurrences of each cell-level rule within the
M-type rule sets, not the number of applications of these cell-
level rules in the evolution of the MSCA.

Arc Class Axial Class
500
150 400 |
8 8
9 9300 |
§100 g
3 =200 H
3 3
50
o O 100 I I I
0 oF
12345678 910111213141516 12345678 910111213141516
Rule Number Rule Number

Complex Systems, 34 © 2025

Multiway Sequential Cellular Automata 361

Bimodal Class Central Class
s00 b 600 F
250 F 500 F
1] 1]
8200 5400 |
g g
Z150 2300 £
= =
3100 3200 F
] o
50 100 H
0 0 K
12345678 910111213141516 12345678 910111213141516
Rule Number Rule Number
Even Class Grid Class
400 F
800
300 | @
g 8600 [
g g
=200 =
! £400 |
9 9
O j5]
Q100 I I Q200 [
0 0 H
12345 6 7 8 91011121314 1516 12345678 910111213141516
Rule Number Rule Number
Lattice Class Periodic Class
1000 |
200 H
800
8 8150
9 600 9
I 2
5 400 5100 H
jo3 9
j5] j5]
o U I I I I
0 0 F
12345678 910111213141516 12345678 910111213141516
Rule Number Rule Number
Radial Class Skewed Class
800 |
150
@ 600 [
8 8
2100 <
I L400 [
bl —
= =
o) I Q200 H
0 I I I o H
12345678 910111213141516 12345678 910111213141516

Rule Number Rule Number

Figure 13. Bar charts for the 10 MSCA classes showing the relative
impact of the 16 possible rules from Table 2. All 1296 M-type rule sets
were run until convergence. Comparison across the bar charts shows
the similarities between various classes.

By comparing the bar charts of Figure 13, relationships
between state graphs of various classes can be observed. The bar
chart for Radial and Periodic graph rule frequencies shows
remarkable relative similarity for all rules, which is surprising

https://doi.org/10.25088/ComplexSystems.34.3.325

https://doi.org/10.25088/ComplexSystems.34.3.325

362 M. H. Wong

given the nature of the graphs is quite different. This points to
underlying evolutionary similarities not evident in the final
graph structure. Similar to the Radial and Periodic bar charts,
the bar chart for Skewed graphs has relatively higher occur-
rences of rules 1 (H: 00 - 00), 6 (H: 01 - 01), 11 (=: 10 - 10)
and 16 (M: 11 — 11) and relatively lower occurrences of rules 4
(M: 00 - 11), 7 (m: 01 -» 10), 10 (M: 10 -» 01) and 13 (W: 11 -
00). However, the relative differences between rule frequency
are not as great as those of Radial and Periodic graphs. Again,
the Skewed graphs bear little resemblance to the Radial and Peri-
odic classes of graphs, making the similarity of bar charts
notable.

Another three classes that are worth comparing are the Arc,
Axial and Bimodal classes. Their bar charts all have greater rule
frequency for rules 1 (H: 00 -» 00), 4 (W: 00 -» 11), 6 (M: 01 -
01), 7 (W: 01 - 10), 10 (M™: 10 - 01), 11 (F1: 10 - 10), 13 (M:
11 - 00) and 16 (M: 11 - 11). The Axial and Bimodal are more
similar than the Arc bar chart, although in the Axial bar chart,
the rules that occur with higher frequency occur significantly
more than the others in comparison to the Bimodal bar chart.
Again, the graphs of these three classes do not appear to physi-
cally resemble each other.

The Grid bar chart has some similarity with the Bimodal bar
chart. Most notable is that these classes have high frequency of
rules 4 (W: 00 - 11), 7 (M: 01 - 10), 10 (M: 10 - 01) and 13
(M: 11 - 00). While the Bimodal has moderately high frequen-
cies of rules 1 (HM: 00 -» 00), 6 (M: 01 —» 01), 11 (F: 10 -» 10)
and 16 (M: 11 - 11) making it relate to the Arc and Axial bar
charts, the Grid bar chart shows those four rules occurring with
the lowest frequency. Once again, despite the similarity in bar
charts, the graphs do not appear similar in the Grid and Bimodal
classes.

Finally, the Central, Even and Lattice classes all have distinct
bar charts. In fact, the Central bar chart appears to be the
inverse of the Bimodal bar chart with high- and low-frequency
rules reversed and moderate rules remaining the same. The Even
Grid bar chart shows rules 1 (H: 00 - 00), 6 (H: 01 - 01), 11
(F: 10 - 10) and 16 (M: 11 - 11) to be distinctly lower in fre-
quency than the other rules, which is the opposite of the group
of Periodic, Radial and Skewed bar charts, in which those are
the rules of highest frequency. Finally, all rules occur with
roughly the same frequency in the Lattice bar chart, which sug-
gests that possibly there are subclasses to the Lattice class.

Complex Systems, 34 © 2025

Multiway Sequential Cellular Automata 363

| 5.4 TargetAnalysis
The preceding analysis examined the frequency of usage of each
of the 16 cell-level rules in Table 2 within the M-type rule sets
and the correlation to the graph classes. This analysis instead
examines the distribution of the output, or targeted cell pairs of
the cell-level rules in each rule set. Since the MSCAs studied are
two-block, there are four possible output targets cell pairs,
T = {00, 01, 10, 11}. Eight rules from Table 2 comprise each M-
type rule set in the two-branch MSCAs examined in this paper.
These cell-level rules map each of the four possible input cell
pairs I = {00, 01, 10, 11} to two targets from T. In other words,
there are eight targets for every rule set. Note these eight targets
must have duplicates, given T has a cardinality of four. Let the
counter V,, be the number of occurrences of the target T, in the
rule set b:
Vu»:ZlTweh forl=w <4. 6)

Define a target distribution (TD) for a rule set as follows,
where the TD is the concatenation, not the multiplication, of the
digits of V,:

TD = V0||V1 [l V2||V3- (7)

There are two examples that demonstrate the utility of the
TD. Consider the case {00 - 00, 00 - 01, 01 - 00, 01 - 01,
10 - 00, 10 - 01, 11 - 00, 11 -» 01}, where every input cell
pair is mapped to either 00 or 01. Then, out of the total eight tar-
get cell pairs, half are 00 and half are 01. In other words, four tar
get cell pairs are 00, four are 01, zero are 10 and zero are 11.
Thus, that case has a TD = 4400, where the TD’s digits display
the number of occurrences of each type of target in the rule set.
Consider a second case {00 - 00, 00 - 01, 01 - 00, 01 - 01,
10 - 10, 10 - 11, 11 -» 10, 11 - 11}, where two of the target
blocks are 00, two are 01, two are 10, and two are 11, hence
TD =2222. In the previous 4400 case, where there were only
two targets, the behavior of the MSCA was limited by the TD as
reflected by the state graph’s final structure. Contrastingly, in
the 2222 case, there is an even distribution of the targeted cell
pairs, thus fewer limitations on the behavior of the MSCA.
Examining the relationship between the TD and graph classes
gives different insight into the fundamental graph evolution.

Each M-type rule set contains eight cell-level rules, as
described in Table 2. Thus, each TD must be four digits that
sum to eight. Since the two targets for each input cell pair must
be distinct, there at most are four occurrences of one target,

https://doi.org/10.25088/ComplexSystems.34.3.325

https://doi.org/10.25088/ComplexSystems.34.3.325

364 M. H. Wong

meaning each digit must be between zero and four. Therefore,
the possible digit combinations are the permutations of TDs
2222, 3221, 3311, 3320, 4211, 4220, 4310 and 4400. This
yields 85 different TD possibilities, one of which corresponds to
each of the 1296 M-type rule sets. However, it is the frequency
of targets, rather than the frequency of specific targets, that is
fundamental to this analysis. Consider TD 4040 and TD 0404.
The distinction between them is simply which specific targets are
in the rule set four times. This is unnecessary when examining
the frequency of targets in a generalized sense. As such, the 85
TDs are grouped into the original eight base TD cases: 2222,
3221, 3311, 3320, 4211, 4220, 4310 and 4400.

Let the number of rule sets with a particular TD,, be the num-
ber of rule sets with a TD that is any permutation of TD,,. Then,
define the normalized base target distribution value (NBTD) as
follows in equation (8), where TD,, is the u™ TD:

1t of rule sets with TD

NBTD,, =

The NBTD describes the likelihood of any given M-type rule
set having a certain TD. The number of graphs corresponding to
each TD for every class was determined, then these counts were
normalized by the size of the class to find the normalized class
target distribution value (NCTD). Since this analysis focuses on
TD, the size of the class is not of interest:

“ forl=<u=<S8. (8

total & of rule sets

tt of graphs with TD, in class ¢

NCTD,, =
“TDe # of graphs in class ¢)
forl<u<8and1=c=<10.

Each NCTD was normalized by the NBTD to achieve the nor-
malized target distribution ratio NTDR):

NCTD,_,
NTDR,, = ——
" NBTD, (10)
forl<u=<85and 1 =<c¢=<10.

An NTDR value of one for a particular TD indicates that the
number of graphs in the specified class with that TD aligns with
the expected number given the NBTD. A larger NTDR demon-
strates a higher number of graphs than expected, while a lower
value means fewer graphs resulted from the TD than expected.
Ultimately, analyzing the NTDR as a function of graph class
enables analysis of the relationship between particular TDs and
classes, along with highlighting similarities and differences
between classes. The NTDR for each of the eight base TD cases
for each class is shown in Figure 14.

Complex Systems, 34 © 2025

Multiway Sequential Cellular Automata

Arc Target Analysis
2.0
LS
g 1.0
|
Zo.s
0.0
~ — — (=] - =3 (= (=3
o~ I - I - IS — (=1
N ol o o a o o <
o~ o o o < < <+ <+
Target Distribution Case
Bimodal Target Analysis
LS
o 1.0
g
Z,0.5
0.0
~ — — (= — [=3 =1 (=3
o~ ~ — I — N — S
o~ [\ o o il il o <
(o] o o o < < <+ <
Target Distribution Case
Even Target Analysis
LS
e~ 1.0
a
|
Z.0.5
0.0
~ — — (=] - < (= (=3
o~ o~ - I - N — (=1
N ol o o <
o~ o o o < < <+ <+
Target Distribution Case
Lattice Target Analysis
4L
3F
22t
|l
Zqt
0
AT =TT T ITaTl s T T
o~ ~ — I — N — S
o~ [\ o o o [\ o <
IR R A A S 5

Target Distribution Case

Figure 14. (continues).

365

Axial Target Analysis

Target Distribution Case

Central Target Analysis
15

1.0

NTDR

=

4211
4220
4310
4400

0.0

—
—
)

2222
3221
3320

o

Target Distribution Case

Grid Target Analysis
1.5

1.0

NTDR

0.0

2222
322

221
311
320
211
220
310

332
422

4400

pa 2
<+ <+
Target Distribution Case

—
o

Periodic Target Analysis

NTDR

-

4211
4220
4310
4400

Target Distribution Case

https://doi.org/10.25088/ComplexSystems.34.3.325

https://doi.org/10.25088/ComplexSystems.34.3.325

366 M. H. Wong

Radial Target Analysis Skewed Target Analysis

1.4
12
1.0

o~ 0.8
Ro.s
[;2 04
0.2
0.0

1.5
&~ 1.0
a
=
Z. 0.5

0.0

Target Distribution Case Target Distribution Case

Figure 14. Bar charts of the NTDR for each of the eight base target
distributions for each class of graphs. The case number shows the target
cell pair distribution among the four possible cell pairs (00, 01, 10, 11),
with each digit representing a cell pair. All permutations of a base tar-
get distribution case are included in the same data point. For each class,
the NTDR shows on a relative basis how many of the M-type rules had
the indicated target distribution.

Figure 14 shows that there are distinct differences between
classes of graphs in terms of the targeting of output cell pairs.
Recall that an NTDR of one is the expected value. The y axis of
the majority of bar charts has the same range; however, Arc and
Periodic classes have slightly larger range and the Lattice class
has a significantly larger range.

In looking at the targeting data, the Axial, Central, Grid,
Skewed and Even classes share strong influence of cases 2222,
3221, 3311 and 4211. The difference between these classes is in
the relative amounts of each TD case. Axial, Central and Grid
classes are weighted toward 2222 and 3221, whereas Skewed
and Even classes are weighted toward the 4211 case. The Peri-
odic bar chart also resembles that of the Axial, Central and Grid
classes but notably lacks influence from the 4211 case. Similarly,
the Bimodal class is similar to the Even and Skewed classes; how-
ever, it also lacks influence from the 4211 case. The Arc bar
chart also resembles that of the Even and Skewed classes; how-
ever, it lacks participation from the 2222 case.

Of note are the completely distinct natures of the Lattice and
Radial bar charts. The Lattice is the opposite, in terms of case
participation, of the five classes discussed above: Axial, Central,
Grid, Skewed and Even. The Radial bar chart is the only one
where all cases except for the 4400 case participate in strong
numbers. In fact, the 4400 case is only seen in the Lattice case
and would appear to be a strong predictor of that class. Recall
that this is the only case where there are only two targets. Ulti-
mately, the distinct similarities and differences between classes

Complex Systems, 34 © 2025

Multiway Sequential Cellular Automata 367

indicate that target analysis can reveal intrinsic characteristics of
each class.

I 6. Conclusions and Future Work

A systematic analysis of multiway sequential cellular automata
(MSCAs), an asynchronous updating, multi-branching extension
of traditional cellular automata (CAs) that allows for propaga-
tion of effects, has been presented. A complete set of 32 initial
conditions was run through the entire group of 1296 possible
M-type rule sets for a two-cell input, two-cell output, two-
branch base case of the MSCA, generating 41472 state graphs.
A machine learning classifier was trained and used to determine
10 classes with distinct characteristics such as node structure,
node clustering and edge density.

These classes were analyzed to gain insight into the parame-
ters that yielded each class and the characteristic of each class.
Analytical data on the graphs of each class were calculated, high-
lighting the variance in the tenth Lattice class, hinting at the
existence of subclasses. For the short arrays studied, initial condi-
tions were shown to be of little consequence through both analy-
sis of the percentage of each class that resulted from each of the
32 initial conditions and a study on how many initial conditions
resulted in the same graph class for a given rule set. By analyzing
the frequency of usage of cell-level rules, relationships between
various classes and supporting evidence for the existence of sub-
classes were found. Finally, the target distribution of the M-type
rules was studied to determine a target distribution profile for
each class of MSCA. This analysis relates graph structure to
structure of the rule set.

The MSCA holds promise for modeling systems with multiple
updating schemes. Future work will focus on the distribution of
color in graphs, which represents the specific cell-level rules
within each graph. It has been noted that some graphs show con-
centrations of color, while others show colors linked to specific
graph features. Additionally, a study is underway on the quad
flex MSCA with each input cell pair mapping to a varying num-
ber of output cells, ranging from one to four. This case yields
additional complexities as well as non-branching nodes. Also of
interest is examining the impact of the length of the array on
graph characteristics.

https://doi.org/10.25088/ComplexSystems.34.3.325

https://doi.org/10.25088/ComplexSystems.34.3.325

368 M. H. Wong

I Acknowledgments

I would like to express my deepest appreciation to Dr. Stephen
Wolfram for the inspiration to work on this topic and his contin-
ued encouragement. I would like to thank Hatem Elshatlawy,
Lyman Hurd, James Boyd, Xerxes Arsiwalla, James Wiles and
Adiba Shaikh for invaluable mentorship and Rory Foulger for
unbridled support.

I References

[1] S. Wolfram, “Statistical Mechanics of Cellular Automata,”
Reviews of Modern Physics, 55(3), 1983 pp. 601-644.
doi:10.1103/RevModPhys.55.601.

[2] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram
Media, 2002.

[3] N. Fates, “A Guided Tour of Asynchronous Cellular Automata,”
in Cellular Automata and Discrete Complex Systems
(AUTOMATA 2013) Giessen, Germany (J. Kari, M. Kutrib and
A. Malcher, eds.), Berlin, Heidelberg: Springer, 2013 pp. 15-30.
doi:10.1007/978-3-642-40867-0_2.

[4] J. L. Schiff, Cellular Automata: A Discrete View of the World,
Hoboken, NJ: Wiley-Interscience, 2008.

[5] E. F. Codd, Cellular Automata, New York: Academic Press, 1968.

[6] T. M. Li, ed., Cellular Automata, New York: Nova Science
Publishers, 2011.

[7]1 A. Adamatzky, ed., Cellular Automata: A Volume in the Ency-
clopedia of Complexity and Systems Science, New York:
Springer, 2018.

[8] J. Hawkins, The Mathematics of Cellular Automata, Providence,
RI: American Mathematical Society, 2024.

[9] K.-P. Hadeler and J. Muller, Cellular Automata: Analysis and
Applications, Cham: Springer International Publishing, 2017.

[10] H. V. McIntosh, One Dimensional Cellular Automata, London:
Luniver Press, 2009.

[11] M. Mitchell, Complexity: A Guided Tour, New York: Oxford Uni-
versity Press, 2009.

[12] J. Kari, “Theory of Cellular Automata: A Survey,” Theoretical
Computer Science, 334(1-3), 2005 pp. 3-33.
d0i:10.1016/j.tcs.2004.11.021.

[13] J. von Neumann, Theory of Self-Reproducing Automata
(A. W. Burks, ed.), Urbana, IL: University of Illinois Press, 1966.

Complex Systems, 34 © 2025

https://doi.org/10.1103/RevModPhys.55.601
https://doi.org/10.1007/978-3-642-40867-0_2
https://doi.org/10.1016/j.tcs.2004.11.021

Multiway Sequential Cellular Automata 369

[14] S. Wolfram, “Universality and Complexity in Cellular Automata,”
Physica D: Nonlinear Phenomena, 10(1), 1984 pp. 1-35.
do0i:10.1016/0167-2789(84)90245-8.

[15] S. Wolfram, “Random Sequence Generation by Cellular
Automata,” Advances in Applied Mathematics, 7(2), 1986
pp. 123-169. doi:10.1016/0196-8858(86)90028-X.

[16] E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways for
Your Mathematical Plays, New York: Academic Press, 1982.

[17] J.-P. Allouche, M. Courbage and G. Skordev, “Notes on Cellular
Automata,” Cubo, 2(3), 2001 pp. 213-244.

[18] M. Sablik and G. Theyssier, “Topological Dynamics of Cellular
Automata: Dimension Matters,” Theory of Computing Systems,
48(3), 2011 pp. 693-714. doi:10.1007/s00224-010-9255-x.

[19] C. Bays, “Cellular Automata in Triangular, Pentagonal and
Hexagonal Tessellations,” Encyclopedia of Complexity and Sys-
tems Science (R. A. Meyers, ed.), New York: Springer, 2018
pp- 892-900. doi:10.1007/978-0-387-30440-3_58.

[20] A. S. Fauci, G. Pantaleo, S. S. Stanley and D. Weissman,
“Immunopathogenic Mechanisms of HIV Infection,” Annals of
Internal Medicine, 124(7), 1996 pp. 654—663.
doi:10.7326/0003-4819-124-7-199604010-00006.

[21]]J. Hawkins and D. Molinek, “Markov Cellular Automata Models
for Chronic Disease Progression,” International Journal of
Biomathematics, 8(6), 2015 1550085.
doi:10.1142/51793524515500850.

[22] I. Santé, A. M. Garcia, D. Miranda and R. Crecente, “Cellular
Automata Models for the Simulation of Real-World Urban Pro-
cesses: A Review and Analysis,” Landscape and Urban Planning,
96(2), 2010 pp. 108-122. doi:10.1016/j.landurbplan.2010.03.001.

[23] W. Shi, M. F. Goodchild, M. Batty, M.-P. Kwan and A. Zhang,
Urban Informatics, New York: Springer, 2021.

[24] Brady, Raghavan and Slawny, “Probabilistic Cellular Automata in
Pattern Recognition,” in International 1989 Joint Conference on
Neural Networks, Washington, DC, Piscataway: Institute of Elec-
trical and Electronics Engineers, 1989 pp. 177-182.
doi:10.1109/JCNN.1989.118577.

[25] S. Das, S. Mukherjee, N. Naskar and B. K. Sikdar, “Characteriza-
tion of Single Cycle CA and Its Application in Pattern Classifica-
tion,” Electronic Notes in Theoretical Computer Science, 252,
2009 pp. 181-203. doi:10.1016/j.entcs.2009.09.021.

[26] P. Maji and P. P. Chaudhuri, “Fuzzy Cellular Automata for Mod-
eling Pattern Classifier,” IEICE Transactions on Information,
88(4), 2005 pp. 691-702. doi:10.1093/ietisy/e88-d.4.691.

https://doi.org/10.25088/ComplexSystems.34.3.325

https://doi.org/10.1016/0167-2789(84)90245-8
https://doi.org/10.1016/0196-8858(86)90028-X
https://doi.org/10.1007/s00224-010-9255-x
https://doi.org/10.1007/978-0-387-30440-3_58
https://doi.org/10.7326/0003-4819-124-7-199604010-00006
https://doi.org/10.1142/S1793524515500850
https://doi.org/10.1016/j.landurbplan.2010.03.001
https://doi.org/10.1109/IJCNN.1989.118577
https://doi.org/10.1016/j.entcs.2009.09.021
https://doi.org/10.1093/ietisy/e88-d.4.691
https://doi.org/10.25088/ComplexSystems.34.3.325

370 M. H. Wong

[27] P. Maji, C. Shaw, N. Ganguly, B. K. Sikdar and P. P. Chaudhuri,
“Theory and Application of Cellular Automata for Pattern Classi-
fication,” Fundamenta Informaticae, 58(3-4), 2003 pp. 321-354.
dl.acm.org/doi/abs/10.5555/1006455.1006463.

[28] C. D. Thompson and H. T. Kung, “Sorting on a Mesh-Connected
Parallel Computer,” Communications of the ACM, 20(4), 1977
pp. 263-271. doi:10.1145/359461.359481.

[29] A. R. Khan, P. P. Choudhury, K. Dihidar, S. Mitra and P. Sarkar,
“VLSI Architecture of a Cellular Automata Machine,” Computers
& Mathematics with Applications, 33(5), 1997 pp. 79-94.
d0i:10.1016/S0898-1221(97)00021-7.

[30] G. Ch. Sirakoulis, I. Karafyllidis, A. Thanailakis and V. Mardiris,
“A Methodology for VLSI Implementation of Cellular Automata
Algorithms Using VHDL,” Advances in Engineering Software,
32(3), 2001 pp. 189-202. doi:10.1016/S0965-9978(00)00085-5.

[31] Pries, Thanailakis and Card, “Group Properties of Cellular
Automata and VLSI Applications,” IEEE Transactions on Com-
puters, 35(12), 1986 pp. 1013-1024.
d0i:10.1109/TC.1986.1676709.

[32] L. Diosan, A. Andreica and A. Enescu, “The Use of Simple
Cellular Automata in Image Processing,” Informatica, 62(1), 2017
pp. 5-14. doi:10.24193/subbi.2017.1.01.

[33] P. L. Rosin, “Training Cellular Automata for Image Processing,”
in Image Analysis: 14th Scandinavian Conference (SCIA 2005),
Joensuu, Finland (H. Kalviainen, J. Parkkinen and A. Kaarna,
eds.), Berlin, Heidelberg: Springer, 2005 pp. 194-204.
do0i:10.1007/11499145_22.

[34] P. Guan, “Cellular Automaton Public-Key Cryptosystems,” Com-
plex Systems, 1(1), 1987 pp. 51-57.
complex-systems.com/pdf/01-1-4.pdf.

[35] H. Gutowitz, “Cryptography with Dynamical Systems,” Cellular
Automata and Cooperative Systems (N. Boccara, E. Goles, S. Mar-
tinez and P. Picco, eds.), Dordrecht: Springer, 1993 pp. 237-274.
doi:10.1007/978-94-011-1691-6_21.

[36] M. Tomassini and M. Perrenoud, “Nonuniform Cellular
Automata for Cryptography,” Complex Systems, 12(1), 2000
pp. 71-81. complex-systems.com/pdf/12-1-3.pdf.

[37] B. Harish and K. Sadiq, “Efficient Cryptography Using Cellular
Automata Rules,” International Journal of Emerging Engineering
Research and Technology, 3(12), 2015 pp. 18-25.
www.ijeert.ijrsset.org/pdf/v3-i12/3.pdf.

[38] S. Nandi, B. K. Kar and P. P. Chaudhuri, “Theory and Applica-
tions of Cellular Automata in Cryptography,” IEEE Transactions
on Computers, 43(12), 1994 pp. 1346-1357.
doi:10.1109/12.338094.

Complex Systems, 34 © 2025

https://dl.acm.org/doi/abs/10.5555/1006455.1006463
https://doi.org/10.1145/359461.359481
https://doi.org/10.1016/S0898-1221(97)00021-7
https://doi.org/10.1016/S0965-9978(00)00085-5
https://doi.org/10.1109/TC.1986.1676709
https://doi.org/10.24193/subbi.2017.1.01
https://doi.org/10.1007/11499145_22
http://complex-systems.com/pdf/01-1-4.pdf
https://doi.org/10.1007/978-94-011-1691-6_21
http://complex-systems.com/pdf/12-1-3.pdf
https://www.ijeert.ijrsset.org/pdf/v3-i12/3.pdf
https://doi.org/10.1109/12.338094

Multiway Sequential Cellular Automata 371

[39] S. Wolfram, “Cryptography with Cellular Automata,” in
Advances in Cryptology: Proceedings of CRYPTO 85
(H. C. Williams, ed.), Berlin, Heidelberg: Springer, 1985 pp. 429-
432. doi:10.1007/3-540-39799-X _32.

[40] K. S. Pokkuluri, R. B. Inampudi and S. S. S. N. Usha Devi
Nedunuri, “IN-MACA-MCC: Integrated Multiple Attractor Cellu-
lar Automata with Modified Clonal Classifier for Human Protein
Coding and Promoter Prediction,” Advances in Bioinformatics, 1,
2014 261362. d0i:10.1155/2014/261362.

[41] K. Steiglitz, I. Kamal and A. Watson, “Embedding Computation
in One-Dimensional Automata by Phase Coding Solitons,” IEEE
Transactions on Computers, 37(2), 1988 pp. 138-145.
do0i:10.1109/12.2143.

[42] F. V. Haesler, H. O. Peitgen and G. Skordev, “Cellular Automata,
Matrix Substitutions and Fractals,” Annals of Mathematics and
Artificial Intelligence, 8(3), 1993 pp. 345-362.
doi:10.1007/BF01530797.

[43] K. Culik II and S. Dube, “Fractal and Recurrent Behavior of
Cellular Automata,” Complex Systems, 3(3), 1989 pp. 253-267.
complex-systems.com/pdf/03-3-3.pdf.

[44] B. Martin, “Inherent Generation of Fractals by Cellular
Automata,” Complex Systems, 8(5), 1994 pp. 347-366.
complex-systems.com/pdf/08-5-4.pdf.

[45] S. J. Willson, “Cellular Automata Can Generate Fractals,”
Discrete Applied Mathematics, 8(1), 1984 pp. 91-99.
do0i:10.1016/0166-218X(84)90082-9.

[46] H. Zenil and E. Villarreal-Zapata, “Asymptotic Behavior and
Ratios of Complexity in Cellular Automata,” International Jour-
nal of Bifurcation and Chaos, 23(9), 2013 1350159.
doi:10.1142/50218127413501599.

[47] G.]J. Martinez, J. C. Seck-Tuoh-Mora and H. Zenil, “Compu-
tation and Universality: Class IV versus Class III Cellular
Automata,” Journal of Cellular Automata, 7(5-6), 2012
pp- 393-430.

[48] H. Zenil, “Compression-Based Investigation of the Dynamical
Properties of Cellular Automata and Other Systems,” Complex
Systems, 19(1), 2010 pp. 1-28.
doi:10.25088/ComplexSystems.19.1.1.

[49] H. Zenil, N. A. Kiani and J. Tegnér, “Low-Algorithmic-Complex-
ity Entropy-Deceiving Graphs,” Physical Review E, 96(1), 2017
012308. doi:10.1103/PhysRevE.96.012308.

[50] A. Adamatzky, Identification of Cellular Automata, Bristol, PA:
Taylor and Francis, 1994.

https://doi.org/10.25088/ComplexSystems.34.3.325

https://doi.org/10.1007/3-540-39799-X_32
https://doi.org/10.1155/2014/261362
https://doi.org/10.1109/12.2143
https://doi.org/10.1007/BF01530797
http://complex-systems.com/pdf/03-3-3.pdf
http://complex-systems.com/pdf/08-5-4.pdf
https://doi.org/10.1016/0166-218X(84)90082-9
https://doi.org/10.1142/S0218127413501599
https://doi.org/10.25088/ComplexSystems.19.1.1
https://doi.org/10.1103/PhysRevE.96.012308
https://doi.org/10.25088/ComplexSystems.34.3.325

372 M. H. Wong

[51] W. Li and N. Packard, “The Structure of the Elementary Cellular
Automata Rule Space,” Complex Systems, 4(3), 1990
pp. 281-297. complex-systems.com/pdf/04-3-3.pdf.

[52] Y. Aizawa and I. Nishikawa, “Toward the Classification of the
Patterns Generated by One-Dimensional Cellular Automata,”
Dynamical Systems and Nonlinear Oscillators (G. Tkegami, ed.),
World Scientific Press, 1986 pp. 210-222.

[53] K. Sutner, “Classification of Cellular Automata,” Encyclopedia
of Complexity and Systems Science, (R. A. Meyers, ed.), New
York: Springer, 2009 pp. 755-768.

[54] L. P. Hurd, J. Kari and K. Culik, “The Topological Entropy of
Cellular Automata Is Uncomputable,” Ergodic Theory and
Dynamical Systems, 12(2), 1992 pp. 255-265.
doi:10.1017/S0143385700006738.

[55] J. T. Baldwin and S. Shelah, “On the Classifiability of Cellular
Automata,” Theoretical Computer Science, 230(1-2), 2000
pp. 117-129. d0i:10.1016/50304-3975(99)00042-0.

[56] R. H. Gilman, “Classes of Linear Automata,” Ergodic Theory and
Dynamical Systems, 7(1), 1987 pp. 105-118.
doi:10.1017/50143385700003837.

[57] P. Kurka, “Languages, Equicontinuity and Attractors in Cellular
Automata,” Ergodic Theory and Dynamical Systems, 17(2), 1997
pp. 417-433. doi:10.1017/5S014338579706985X.

[58] P. Kurka, “Topological Dynamics of Cellular Automata,” Codes,
Systems, and Graphical Models (B. Marcus and J. Rosenthal,
eds.), New York: Springer, 2001 pp. 447-48S5.
doi:10.1007/978-1-4613-0165-3_25.

Complex Systems, 34 © 2025

http://complex-systems.com/pdf/04-3-3.pdf
https://doi.org/10.1017/S0143385700006738
https://doi.org/10.1016/S0304-3975(99)00042-0
https://doi.org/10.1017/S0143385700003837
https://doi.org/10.1017/S014338579706985X
https://doi.org/10.1007/978-1-4613-0165-3_25

