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Identifying  key  nodes  in  heterogeneous  networks  is  both  theoretically
important and practically valuable. Traditional methods require precise
parameters  and  constraints,  limiting  adaptability  and  autonomy.  To
address this, we propose the deep reinforcement learning–based hetero-
geneous  network  key  nodes  identification  (DRLKHN)  method,  a  self-
learning  method  for  identifying  key  nodes.  DRLKHN  autonomously
learns strategies for identifying key nodes, utilizing a graph convolution
network  (GCN)  for  feature  extraction  and  designing  action  and  state
space  vectors.  Experimental  results  show  that  DRLKHN  outperforms
traditional  methods  like  high  degree  adaptive  (HDA),  high  eigenvector
adaptive  (HEA),  high  closeness  adaptive  (HCA)  and  high  PageRank
adaptive  (HPA)  in  simulated  networks.  In  the  real-world  force,  intelli-
gence, networking and C2 (FINC) network, DRLKHN improves perfor-
mance  by  28.6%,  32.2%,  12.7%  and  36.3%  over  HDA,  HEA,  HCA
and  HPA,  respectively.  Despite  its  relatively  high  time  complexity,
DRLKHN effectively integrates the GCN and reinforcement learning to
manage complex relationships in graph data, providing intelligent deci-
sion support for identifying key nodes in real networks. 
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Introduction1.

A  network,  or  graph,  is  a  general  data  structure  for  describing  com-
plex  interactive  systems,  such  as  the  internet,  social  media,  trans-
portation  networks,  power  grids,  food  webs,  bioanalytics  networks
and others. In a complex network, each node plays a specific role, but
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the  relative  importance  of  nodes  varies  greatly.  Some  nodes  are  in  a
hub position or contribute significantly to the overall network perfor-
mance,  so  these  nodes  are  more  important  than  others  and  are  called
key  nodes.  Finding  an  optimal  set  of  key  nodes  in  complex  networks
has  been  a  longstanding  problem  in  network  science  with  many  real-
world  applications,  including  terrorist  networks  [1],  transportation
[2],  protein  networks  [3],  epidemic  spreading  network  [4]  and  rumor
diffusion network [5].  

The  method  of  identifying  key  nodes  in  networks  has  been  widely
considered  by  the  academic  community,  and  new  methods  are  being
constantly  developed.  Identifying  key  nodes  can  be  mainly  divided
into  neighborhood-based  centrality,  path-based  centrality  and  ran-
dom  walk–based  methods.  However,  there  are  some  shortcomings  in
these methods. Traditional modeling and solving methods require pre-
cise system parameters and constraints, and the quality of the solution
depends  on  the  optimization  model.  As  the  constraints  change,  it  is
necessary  to  constantly  update  and  optimize  the  model,  resulting  in
poor adaptability and lack of decision-making autonomy. 

Reinforcement learning (RL) is a rapidly developing artificial intelli-
gence  (AI)  technology  that  adapts  to  changes  in  dynamic  environ-
ments.  RL  has  been  successfully  applied  in  areas  like  manufacturing
systems [6], transportation route selection [7] and portfolio optimiza-
tion  [8].  However,  RL  struggles  with  high-dimensional  continuous
state spaces due to limited and discrete state spaces in these problems.
Deep  reinforcement  learning  (DRL),  including  methods  like  deep
Q-network  (DQN)  [9,  10],  DRL  with  double  Q-learning  [11]  and
dueling DQN (DDQN) [12], addresses these issues, performing better
in dynamic and continuous state problems. 

The focus of the previous review on key nodes identification meth-
ods  is  on  utilizing  network  topology  and  certain  attribute  informa-
tion, which mainly applies to general scenarios but is not suitable for
complex  heterogeneous  networks.  In  heterogeneous  networks,  both
network  topology  and  node  heterogeneity  must  be  considered.  Thus,
this  paper  proposes  the  deep  reinforcement  learning–based  heteroge-
neous  network  key  nodes  identification  (DRLKHN)  method.  Unlike
traditional methods, DRLKHN does not rely on precise system param-
eters  or  complex  constraints,  making  it  more  adaptable  and  versatile.
The main contributions of this paper follow. 

◼ To address the representation of heterogeneous networks, we propose a
method  based  on  the  graph  convolutional  network  (GCN)  to  map
graph  data  into  low-dimensional  vectors,  enabling  the  capture  of  node
and edge characteristics and their relationships for further analysis. 

◼ To  identify  key  nodes  in  heterogeneous  networks,  we  leverage  the  per-
ceptual  and  decision-making  capabilities  of  DRL,  introducing  the
DRLKHN method for autonomous key nodes identification. 
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◼ To solve the key nodes identification problem, we represent each poten-
tial  action  (node,  a)  and  the  remaining  state  (graph,  s)  as  feature  vec-
tors,  which  are  used  as  inputs  to  the  DQN,  defining  the  state  and
action spaces of the model. 

This  paper  is  organized  as  follows.  Section  2  reviews  related  work
on key nodes identification. Section 3 defines the key nodes identifica-
tion problem in heterogeneous networks. Section 4 presents the frame-
work  for  key  nodes  identification  using  deep  reinforcement  learning.
Section  5  introduces  the  key  nodes  identification  algorithm  based  on
deep  reinforcement  learning.  Section  6  demonstrates  the  effectiveness
of  the  proposed  method  with  examples  and  analyzes  the  time  com-
plexity of DRLKHN. Finally, Section 7 concludes the study. 

Related Work   2.

Over  the  past  few  decades,  the  identification  of  key  nodes  in  a  net-
work  has  been  a  topic  of  extensive  academic  research,  with  continu-
ous  innovations  in  identification  methods.  These  methods  can  mainly
be  divided  into  neighborhood-based  centrality  methods,  path-based
centrality  methods,  random  walk–based  methods  and  machine  learn-
ing–based methods. The latter category not only represents an innova-
tion based on the former but also a conceptual revolution.  

Neighborhood-Based Centrality Methods  2.1

Intuitively,  the  importance  of  a  node  is  related  not  only  to  its  own
information  but  also  to  its  neighbors.  Neighborhood-based  centrality
measures  mainly  evaluate  a  node  by  the  number  of  its  direct  or  indi-
rect neighbors. The more neighbors a node has, the more important it
is  considered.  Degree  centrality  [13]  is  the  most  straightforward  and
simple method for measuring node centrality. The degree of a node is
represented as the number of first-order neighbors, and its normalized
value  is  the  degree  centrality.  Since  degree  centrality  only  calculates
node  centrality  based  on  first-order  neighbors,  Chen  et  al.  [14]  pro-
posed  an  improvement:  semi-local  centrality,  which  evaluates  the
importance  of  a  node  using  both  first-  and  second-order  neighbors.
The  clustering  coefficient  is  a  measure  of  the  closeness  of  links
between  a  node’s  neighbors.  The  degree  and  clustering  coefficient-
based  centrality  (DCC)  method  [15]  combines  node  degree  and  clus-
tering  coefficient  to  calculate  node  centrality.  Opsahl  et  al.  [16]
combined  degree  centrality  with  weighted  networks,  proposing  the
generalized degree centrality algorithm, which evaluates node central-
ity based on both node degree and edge weights. Zhao et al. [17] eval-
uate  the  node  centrality  in  directed  weighted  networks  using  three
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indicators:  node  degree,  edge  weight  and  edge  direction.  Since  degree
centrality does not consider the attribute vectors of nodes, eigenvector
centrality  [18,  19]  fully  considers  the  neighborhood  and  the  attribute
vectors  of  neighbors.  The  degree  centrality  of  a  node  does  not  neces-
sarily mean it has a high eigenvector centrality; if the first-order neigh-
bors  of  a  node  have  low  eigenvector  centralities,  then  its  eigenvector
centrality  will  also  be  low.  Neighborhood-based  centrality  measures
are simple and intuitive with low computational complexity, but their
main  disadvantage  is  that  they  only  assess  the  importance  of  nodes
from  a  local  perspective,  ignoring  the  impact  of  nodes  on  the  entire
network.  

Path-Based Centrality Methods  2.2

Path-based  centrality  measures  overcome  some  of  the  limitations  of
neighborhood-based  centrality  by  considering  the  importance  of  a
node’s  position  in  the  network.  Major  methods  include  Katz  central-
ity  [20],  closeness  centrality  [13]  and  betweenness  centrality  [21].
Betweenness  centrality,  first  introduced  by  L.  C.  Freeman  [21],  is
defined as the normalized value of the number of shortest paths pass-
ing through a node. This measure is suitable for identifying key nodes
in networks with traffic flow, such as power networks and infrastruc-
ture  attack-defense  [22]  or  congestion  node  expansion  in  transporta-
tion  networks  [23].  Closeness  centrality  [13]  is  the  inverse  of  the
average distance to other nodes, used to evaluate how close a node is
to  others.  Compared  to  betweenness  centrality,  closeness  centrality  is
closer  to  the  geometric  center  of  the  network.  Katz  centrality  [20]
assigns  different  weights  to  paths  of  different  lengths,  calculating
node  centrality  based  on  this  weighted  sum,  with  shorter  paths  being
considered  more  important.  Hage  and  Harary  [24]  defined  eccentric-
ity  centrality  as  the  maximum  distance  from  a  node  to  all  other
nodes, using extreme values to calculate node centrality. This method
has  a  relatively  limited  application  scenario.  Subgraph  centrality  [25]
measures node centrality by the weighted sum of closed path lengths,
similar  to  closeness  centrality,  where  shorter  path  lengths  are  consid-
ered more important. While path-based centrality measures can assess
node  importance  from  a  global  perspective,  they  are  limited  to  con-
nected  graphs  and  are  not  suitable  for  calculating  centrality  in  sparse
or disconnected graphs.  

Random Walk–Based Methods2.3

Random walk methods are a network analysis approach based on ran-
dom  processes.  The  basic  idea  is  to  randomly  select  a  node  as  the
starting point, then walk through the network following certain rules,
recording the visit count for each node. By analyzing the visit counts,
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key  nodes  in  the  network  can  be  identified.  Random  walk  methods
are  an  improvement  upon  path-based  centrality  methods,  implement-
ing a random sampling process on graph information based on paths.
Page [26] first applied the random walk process to internet page rank-
ing  in  1999,  modeling  the  internet  as  a  directed  graph,  where  the
more  hyperlinks  a  webpage  has,  the  more  important  it  is  considered,
or  if  a  webpage  is  linked  by  more  influential  networks,  it  is  also
deemed  more  important.  The  hypertext-induced  topic  search  (HITS)
algorithm [27] evaluates webpage importance using content authority
(Authority)  and  link  authority  (Hub).  Content  authority  corresponds
to the number of inbound links, with more citations indicating higher
authority.  Link  authority  corresponds  to  the  number  of  outbound
links, with higher link authority associated with a greater number and
quality  of  outbound  links.  The  HITS  algorithm  has  been  widely  used
in  search  engines,  online  advertising,  e-commerce  and  other  fields.
The  LeaderRank  [28]  algorithm  is  an  improvement  on  the  PageRank
algorithm,  similar  in  that  it  is  a  network-based  node  ranking  algo-
rithm. However, LeaderRank improves connectivity by adding a back-
ground  node  that  is  connected  to  all  nodes  in  the  network,  better
reflecting  the  relationship  between  webpages.  The  random  walk  with
restart  (RWR)  algorithm  [29,  30]  is  an  enhanced  random  walk
method  that  introduces  a  restart  probability  during  the  random  walk
process.  It  combines  transition  probability  and  restart  probability,
considering both local and global information. Compared to ordinary
random  walk  algorithms,  RWR  can  better  capture  the  relationships
between nodes.  

Machine Learning–Based Methods  2.4

Machine  learning–based  key  nodes  identification  methods  are  repre-
sented  by  the  graph  neural  network  (GNN),  which  accurately  repre-
sents  nodes  in  a  network  to  better  handle  downstream  tasks,  such  as
node  classification  and  graph  classification.  For  key  nodes  identifica-
tion, the node deletion method is often combined with GNN to judge
node  importance,  using  the  change  in  network  performance  before
and  after  a  node  is  deleted  as  the  basis  for  training  the  GNN.  Fan  et
al.  [31]  proposed  the  FINDER  method,  which  uses  GNN  and  DQN
to  identify  key  nodes  in  the  network.  Experiments  have  shown  that
this  method  can  disrupt  the  largest  connected  component  in  the  net-
work  at  the  fastest  speed.  Zeng  et  al.  [32]  proposed  the  SHATTER
model, using the node deletion method to identify key nodes in a het-
erogeneous  combat  network  (HCN).  The  MINER  framework  [33]
converts  multiplex  network  degradation  strategies  into  an  encoding-
decoding  process  using  deep  network  representation  learning,  with
attention  mechanisms  and  RL  evaluating  network  actions.  While
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research typically targets high-value node attack sequences, Chen [34]
highlighted  the  vulnerability  of  edges,  proposing  the  use  of  DRL  to
identify high-value edge attack sequences.  

In  recent  years,  GNN  have  received  widespread  attention.  Some
representative models follow. Kipf et al. [35], inspired by the convolu-
tional  neural  network  (CNN),  proposed  the  graph  convolutional  net-
work (GCN), allowing graph data to undergo convolution operations
in  the  spatial  domain,  similar  to  the  CNN.  The  GCN  has  achieved
good  results  in  node  classification  tasks  but  faces  challenges  when
dealing  with  large-scale  graphs.  GraphSAGE  [36]  adopts  a  random
sampling  method  to  embed  nodes,  which  is  more  efficient  than  the
full-graph  training  approach  of  the  GCN,  making  GraphSAGE  more
suitable for handling large-scale graph data and improving scalability.
The graph attention network (GAT) [37] introduces attention mecha-
nisms  into  node  representation  models,  where  different  weights  are
assigned  to  the  aggregation  of  node  attributes,  allowing  the  learning
of  updated  weights  to  more  accurately  capture  important  informa-
tion. Additionally, models such as GIN [38], graph u-net [39], graph-
transformer [40], GCNII [41] and ST-GCN [42] have been proposed. 

The  classical  method  of  key  nodes  identification  is  summarized  in
Table  1.  The  field  of  key  nodes  identification  in  complex  networks  is
relatively  mature,  but  there  are  still  some  shortcomings:  research  on

Category Description Classical Method 

Neighborhood-
based centrality 

methods 

It is evaluated by the number of 
direct or indirect neighbors, and 

the more neighbors it has, the 
more important the node is. 

Degree centrality 

Path-based 

centrality 

methods 

The importance of the node’s 
position in the network is used as 
the centrality index of the node. 

Katz centrality; 
closeness 
centrality; 
betweenness 
centrality 

Closeness 
centrality 

A node is randomly selected as 
the starting point, and key nodes 
are identified by analyzing the 
visit data as it moves through the 
network. 

PageRank 

Betweenness 
centrality 

The node deletion method is 
often combined with GNN to 

judge node importance, using the 
change in network performance 
before and after a node is deleted 

as the basis for training GNN 

FINDER; 
SHATTER; 
MINER 

Table 1. The classical method of key nodes identification.  
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key nodes identification in heterogeneous networks is lacking. Hetero-
geneous  networks  are  more  complex  than  homogeneous  networks.
Due  to  the  different  types  of  nodes  and  links  in  heterogeneous  net-
works, it is difficult to accurately determine the importance of a node
by relying solely on topology and vague attribute inputs. 

Problem Description   3.

Before  we  begin  our  problem  description,  we  need  to  clarify  some
concepts.  

Key  nodes  identification.  Finding  an  optimal  set  of  nodes  whose
activation  (or  removal)  would  maximally  enhance  (or  degrade)  cer-
tain network functionality. (A key node can also be called the influen-
tial node, vital node, critical node, etc.) 

Network  disintegration.  The  process  of  disrupting  the  structure  of
a  network,  weakening  its  performance  and  preventing  activities  on
the network by removing nodes or edges. 

There are differences and connections between key nodes identifica-
tion  and  network  disintegration.  As  shown  in  Figure  1,  our  paper
involves the intersection of the two. That is, finding an optimal set of
nodes whose removal would maximally degrade certain network func-
tionality. 

Figure 1. Venn  diagram  between  key  nodes  identification  and  network  disin-
tegration.  

Heterogeneous  network.  A  heterogeneous  network  can  be  repre-
sented as G  (V, E), where V represents the set of nodes and E repre-
sents the set of edges between nodes. The node type mapping function
is  defined  as  φ : V  Vtype,  and  the  edge  type  mapping  function  is

defined as φ : E  Etype, in which Vtype and Etype are sets of labels iden-

tifying  unique  types  or  roles  for  nodes  and  edges,  respectively.  The
network  is  called  a  heterogeneous  network  if  it  contains  multiple
node types Vtype > 1 or edge types Etype > 1. 

Given the heterogeneous network G  (V, E), where V  is the set of
nodes  and  E  is  the  set  of  edges,  the  objective  of  key  nodes  identifica-
tion  is  to  minimize  the  network  robustness  based  on  a  node  removal
strategy.  In  current  research,  scholars  extensively  study  how  to  mea-
sure network robustness, including metrics such as network diameter,

Self-Learning Method for Key Nodes Identification 431

https://doi.org/10.25088/ComplexSystems.34.4.425

https://doi.org/10.25088/ComplexSystems.34.4.425


network  connectivity,  network  efficiency,  network  fragmentation  and
network structural entropy. Among these, network connectivity is the
most  widely  used  indicator.  Network  connectivity  metrics  typically
include  the  number  of  connected  components,  pairwise  connectivity
and the largest connected component (LCC) size [43]. Specifically, the
LCC  size  is  a  commonly  studied  metric,  representing  the  number  of
nodes  in  the  largest  subgraph  in  the  current  network.  A  predefined
metric  for  the  size  of  the  LCC  is  denoted  as  κ.  The  objective  of  key
nodes  identification  is  to  design  a  node  removal  strategy,  that  is,  an
order  of  node  removal  that  minimizes  accumulated  normalized  con-
nectivity (ANC) based on LCC size: 

ANC(v1, v2, … , vN) 
1

N


k1

N κ(G\{v1, v2, … , vk})

κ(G)
(1)

where N is the number of nodes in G. κ(G) represents the LCC size of
the  initial  graph  G.  κ(G\{v1, v2, …, vk})  represents  the  LCC  size  after
removing  nodes  {v1, v2, …, vk}  from  G  in  order.  As  shown  in  Fig-
ure 2,  the  ANC  can  be  seen  as  an  estimate  of  the  area  under  the
normalized  connectivity  versus  attack  intensity  curve.  The  horizontal
axis  represents  the  attack  intensity,  denoted  by  i /N,  and  the  vertical
axis represents the normalized connectivity,  

κ(G\{v1, v2, … , vi})

κ(G)
.

Figure 2. Effect of lists of potential key nodes I1 and I2 on the ANC of G.  
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Two lists of potential key nodes I1 and I2 are shown in Figure 2: 

I1  (v10, v2, v3, v6, v11, v1, v5, v4, v8, v9, v7) (2)

I2  (v10, v2, v3, v6, v11, v4, v5, v7, v9, v8, v1) (3)

It  can  be  observed  that  removing  the  node  list  I2  results  in  a
smaller  ANC  value  than  removing  the  node  list  I1.  The  decrease  in
ANC, represented by the area shaded in dark gray in the graph, indi-
cates  that  I2  is  the  more  critical  list  of  nodes.  The  difference  between
the two node lists occurs after removing node v11. For node list I1, the
network connectivity decreases as a result of removing node v1, repre-
sented as: 

Δκ1 
1

κ(G)
κ(G\{v10, v2, v3, v6, v11}) -

κ(G\{v10, v2, v3, v6, v11, v1}).

(4)

For  node  list  I2,  the  network  connectivity  decreases  as  a  result  of
removing node v4, represented as: 

Δκ2 
1

κ(G)
κ(G\{v10, v2, v3, v6, v11}) -

κ(G\{v10, v2, v3, v6, v11, v4}).

(5)

Since Δκ1 < Δκ2, removing node v4  has a greater impact on the net-
work  connectivity.  The  ANC  is  sensitive  to  the  sequence  of  node
removals.  For  example,  removing  nodes  v1  and  v4  in  different  orders
(as  in  I1  and  I2)  results  in  distinct  impacts  on  network  connectivity
(Δκ1 ≠ Δκ2),  highlighting  the  necessity  of  modeling  this  problem  as  a
sequential decision-making process. 

Based on our description, the problem of identifying key nodes in a
heterogeneous network can be regarded as a combinational optimiza-
tion problem. The model for identifying key nodes in a heterogeneous
network can be represented by: 

min ANC(v1, v2, … , vN)

subject to :
V


 (v1, v2, …, vN)

V

  fNV

(6)

where  min ANC(v1, v2, …, vN)  represents  the  optimization  objective.
The  constraint  is  the  attack  intensity  fN,  which  is  the  proportion  of

attacked  nodes  to  the  total  number  of  nodes.  V


 (v1, v2, …, vN)
denotes a sequence of key nodes to be identified. 
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Design of a Key Nodes Identification Framework Based on Deep 

Reinforcement Learning
4.

This paper reframes the problem of identifying key nodes in heteroge-
neous  networks  as  a  learning  problem,  where  the  node  selection  pro-
cess is treated as an agent’s decision-making task. DRL is an efficient
method  to  solve  the  sequential  decision  problem  [9,  44].  Therefore,
we use DRL to realize the self-learning identification of key nodes in a
heterogeneous network.  

The  process  of  self-learning  to  identify  key  nodes  in  a  heteroge-
neous  network  can  be  viewed  as  a  Markov  decision  process:  generat-
ing a series of states, actions and rewards through interaction with the
environment.  Therefore,  we  design  a  DRL-based  heterogeneous
network  key  nodes  identification  (DRLKHN)  framework.  DRLKHN
utilizes  the  perception  and  decision-making  abilities  of  DRL  to  self-
learn  key  nodes  identification  strategies  for  heterogeneous  networks.
DRLKHN is based on a combined framework of the GCN and DQN
algorithms; see Figure 3.

Figure 3. DRLKHN  framework.  Assuming  the  heterogeneous  network  con-
sists of three types of nodes.  

The  GCN  [45]  is  a  specialized  type  of  neural  network  designed  to
extract  features  from  graph  data,  which  consists  of  nodes  and  edges
representing  unstructured  data.  Traditional  neural  networks,  such  as
the  convolutional  neural  network  (CNN)  and  the  recurrent  neural
network  (RNN),  are  effective  at  capturing  features  from  structured
data  like  images  and  videos.  However,  they  are  not  well  suited  for
extracting  features  from  unstructured  graph  data.  The  GCN,  on  the
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other  hand,  leverages  both  node  features  and  the  graph  structure  to
capture  feature  representations,  reflecting  the  unique  properties  of
individual  nodes  as  well  as  the  interactions  between  nodes.  The  fea-
tures  extracted  by  a  GCN  can  improve  performance  in  subsequent
graph analysis tasks. In this paper, we use graph data to record infor-
mation  in  a  heterogeneous  network,  where  the  GCN  effectively char-
acterizes both node attributes and internode interactions. 

Thus,  within  the  DRLKHN  framework,  a  GCN  serves  as  the  fea-
ture  extractor  for  heterogeneous  networks,  mapping  the  input  graph
data into low-dimensional vectors. Each possible action (node, a) and
state  (remaining  graph,  s)  is  represented  as  a  set  of  feature  vectors
that  capture  the  characteristics  related  to  these  actions  and  states.
These feature vectors are then utilized in the DRL process to estimate
the future expected return Q(s, a) of actions with respect to states. 

The  DQN  algorithm  is  employed  to  learn  the  DRL  component  of
the  network  parameters.  DQN  is  a  DRL  algorithm  that  builds  upon
Q-learning  by  incorporating  the  approximation  of  the  action-value
function  Q(s, a; θ)  into  the  Q-learning  framework  using  deep  neural
networks.  This  approach  replaces  the  traditional  method  of  storing
Q(s, a) in a Q-table, enabling DQN to handle more complex environ-
ments  with  larger  state  spaces  and  perform  well  in  solving  problems
with discrete action spaces. To improve training efficiency and stabil-
ity,  DQN  utilizes  experience  replay  and  fixed  target  networks,  which
help  the  algorithm  converge  more  reliably  toward  the  optimal  Q
value. 

Based  on  the  DRLKHN  framework,  this  paper  designs  the  state
space, action space, reward function and loss function involved in the
framework,  making  it  suitable  for  self-learning  to  identify  key  nodes
in a heterogeneous network. 

Action Space Setting  4.1

The  action  space  contains  all  the  actions  that  the  agent  may  take  in
self-learning tasks. In this paper, actions refer to the nodes selected by
the  agent  for  attack.  In  the  DRLKHN  framework,  a  GCN  is  intro-
duced  to  extract  features  from  the  graph  data  of  the  heterogeneous
network. Therefore, the action space can be designed as:  

  {a a  xi} (7)

where  xi  represents  the  representation  vector  of  node  i.  The  calcula-
tion process of xi follows.  

First, the heterogeneous network is divided into different categories
based  on  node  type  j,  and  adjacency  matrices  Aj  are  computed  for

each category. Then, a node feature matrix Fj  is constructed based on

node  features.  Next,  a  GCN  is  applied  to  extract  features  from  the
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categories of nodes, resulting in Hj: 

Hj  GCN(Fj, Aj)  σD

j

-1/2
A

jD

j

-1/2
FjW1 (8)

where  σ( · )  represents  the  activation  function A

j  Aj + Ij,  Ij  is  the

identity matrix with the same structure as Aj, D

j  is the degree matrix

of A

j, and W1 is the weight parameter of the GCN network. 

Finally,  to  extract  information  about  the  connections  between
different types of nodes, the concatenated matrix H, obtained by con-
catenating  Hj  (as  shown  in  equation  (9)),  is  combined  with  the  adja-

cency matrix A of the entire graph and further processed through the
GCN  for  feature  extraction,  resulting  in  the  node  representation

matrix XN. The ith  row of xi  of XN  represents the representation vec-
tor of node i, as shown in equation (10): 

H  [H1 ∥ H2 ∥ ⋯ ∥ Hj] (9)

XN  GCN(H, A)  σD
 -1/2

A

D
 -1/2

HW1 (10)

where [ · ∥ ·] represents the concat operation A


 A + I, I  is the iden-

tity matrix with the same structure as A, D


 is the degree matrix of A

,

and W1 is the weight parameter of the GCN network.  

State Space Setting  4.2

The  state  space  serves  as  the  basis  for  action  selection.  We  define  a
state  as  the  remaining  network  after  the  agent  attacks  a  node.  Build-
ing upon the extraction of node features using a GCN, the state space
can be designed as:  

  {s s  XG} (11)

where  XG  is  the  representation  vector  of  the  heterogeneous  network
graph  data.  The  computation  process  of  XG  is  as  follows:  the  repre-
sentation vectors of all nodes are summed up one by one to obtain the
representation vector of the entire heterogeneous network:  

XG  σ W3 ·W2 ·

i

N

xi (12)

where  the  parameters  W2  and  W3  are  learnable  matrices,  following
the  standard  formulation  of  weight  matrices  in  a  GNN  [35]  and
DQN  framework  [10].  Algorithm  1  shows  the  action  and  state  space
setting algorithm.
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Algorithm 1. Action and state space setting algorithm.  

Input: 
G  (V, E); 
adjacency matrix Aj

feature matrix Fj
training parameters W1, W2, W3

Output: 
node representation vector xi
node representation matrix XN

graph representation matrix XG

for each node type j ∈ Vtype do 1.

add self-connections: A

j ← Aj + Ij 2.

compute degree matrix: D

j ← diag∑k A


j,ik 3.

for  each  node  type  j,  apply  a  GCN  layer  to  its  adjacency  matrix  Aj

and feature matrix Fj: Hj ← σD

j

-1/2
A

jD

j

-1/2
FjW1 

σ: LeakyReLU activation; W1 ∈ Rdd
 

4.

end for 5.

concatenate type-specific representations: H ← H1 ∥ H2 ∥ ⋯ ∥HVtype
 6.

global GCN convolution

A


← A + I

D


← diag∑k A

ik

XN ← σD
 -1/2

A

D
 -1/2

HW1 

7.

graph representation aggregation 

XG ← σW3 ·W2 ·∑i1
N xi 

xi: i
th

 row of XN; W2, W3 ∈ Rdd
 

8.

return {xi}, XN, XG 9.

Reward Function Setting  4.3

The  goal  of  DRL  is  to  maximize  cumulative  rewards.  Therefore,
the  design  of  the  reward  function  is  crucial.  The  reward  function  for
the  task  of  identifying  key  nodes  in  a  heterogeneous  network  is
designed as: 

r 
1

N
·

i

N κ(G\vi)

κ(G)
(13)

where  κ(G\{vi})  represents  the  connectivity  of  the  heterogeneous  net-
work  when  action  a  xi  (removing  vi  from  the  network)  is  taken  in
state  G  (s  XG).  1 /N  is  the  reward  normalization  factor.  κ(G)

represents  the  connectivity  of  the  heterogeneous  network  when  none
of  its  nodes  are  under  attack.  It  is  important  to  note  that  the  reward
designed  in  this  paper  is  as  small  as  possible  because  the  cumulative
reward  is  the  ANC.  According  to  the  problem  description  in
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Section 3,  the  objective  of  identifying  key  nodes  is  to  identify  a
node  removal  strategy,  that  is,  an  order  of  node  removal

V


 (v1, v2, … , vN) that minimizes the ANC.  

Loss Function Setting  4.4

The use of a multilayer neural network such as the Q-network allows
for  learning  the  mapping  from  state-action  pairs  (s, a)  to  real-valued
Q(s, a). Q(s, a) predicts the maximum cumulative reward that can be
obtained  by  executing  action  a  in  state  s.  In  this  paper,  a  two-layer
perceptron with ReLU activation functions is employed to parameter-
ize the Q-function:  

Q(s, a)  W5 ·ReLU(xi ·XG ·W4) (14)

where  xi  and  XG  are  the  representation  vectors  of  the  action  space
and  the  action  space,  respectively,  and  W4  and  W5  are  the  learnable
parameter matrix.  

A  neural  network  with  the  same  structure  and  asynchronously
updated parameters is used as the evaluation network and target net-
work of the DQN, and the loss function is designed as follows: 

ℒ(θ)  Er + γ min
a′

Q(s′, a′; θ-) -Q(s, a; θ)
2

(15)

where:   

◼ r is the immediate reward as defined in equation (13). 

◼ E  is  the  expectation  and  represents  the  average  over  batches  of  experi-
ences  sampled  from  the  replay  buffer.  Each  experience  is  a  tuple
(s, a, r, s′). 

◼ γ  is  the  discount  factor,  a  hyperparameter  (0 ≤ γ ≤ 1)  that  determines
the weight of future rewards. 

◼ θ  is  the  evaluation  network  parameters  and  includes  all  learnable
weights in the GCN and DQN, that is, θ  (W1, W2, W3, W4, W5). 

◼ θ-  is the target network parameters, which are periodically copied from
θ (e.g., every 100 steps) to stabilize training. 

◼ Q(s, a; θ) and Q(s′, a′; θ-) represent the Q values predicted by the eval-
uation  network  and  the  target  network,  respectively,  the  former  based
on  the  current  parameter  θ  and  the  latter  based  on  the  parameter  θ-,
which is updated with delay. 

Design of Key Nodes Identification Algorithm Based on Deep 

Reinforcement Learning
5.

Based  on  the  given  framework  design,  the  algorithm  for  identifying
key nodes of a heterogeneous network based on the DQN is designed
as follows (as shown in Figure 4): 
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Figure 4. The algorithm for identifying key nodes in a heterogeneous network
based on DQN.

Step 1. Build two neural networks with the same structure, namely
the evaluation network and the target network. Initialize the parame-
ters of the evaluation network as θ and set θ-  θ. Initialize the param-
eters of the target network as θ-. 

Step  2.  Input  the  current  observation  state  St  into  the  evaluation
network.  Use  the  neural  network  to  predict  the  value  of  each  action
Q(St, At; θ) under the state St. 

Step  3.  According  to  the  ε-greedy  strategy,  select  action  At.  This
means  that  with  a  probability  of  1 - ε,  we  select  the  action  with  the
highest  Q  value,  and  with  a  probability  of  ε,  we  randomly  select  an
action. 
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Step  4.  The  action  At  acts  on  the  environment,  producing  a  new
state St+1. 

Step 5. Environment output reward Rt. 

Step 6. Store [St, At, Rt, St+1] in the memory buffer. 

Step  7.  Update  the  current  state  to  St+1  as  input  to  the  neural  net-
work and go to step 2. 

Steps  1  through  7  are  the  process  of  interaction  between  the  agent
and  the  environment.  After  a  certain  number  of  interactions,  the
agent trains the neural network based on the trajectory data stored in
the memory buffer, as shown in the following steps. 

Step  8.  Use  the  experience  replay  strategy  to  randomly  sample  a
certain amount of recorded data from the memory buffer. 

Step 9. The sampled data is separately inputted into the evaluation
network and the target network. 

Step  10.  The  evaluation  Q  value,  denoted  as  Q(s, a; θ),  is  calcu-
lated using the evaluation network for the sampled action a in state s. 

Step  11.  The  target  Q  value,  denoted  as  mina′Q(s′, a′; θ-),
r + γ mina′Q(s′, a′; θ-), is calculated using the target network with the
minimum  Q  value  in  state  s′.  Where  r  represents  the  immediate
reward  obtained  by  taking  action  a,  γ ∈ [0, 1]  is  the  discount  factor
that balances the importance of future rewards. 

Step  12.  To  train  the  neural  network  θ,  we  use  the  mean  squared
error (MSE) to evaluate the error between the evaluation Q value and
the target Q value. The MSE is calculated as: 

ℒ(θ)  Er + γ min
a′

Q(s′, a′; θ-) -Q(s, a; θ)
2

. (16)

The MSE is also the loss function of the deep neural network. The
gradient of the loss function with respect to the parameter θ is: 

∇θ ℒ(θ) 

Er + γ min
a′

Q(s′, a′; θ-) -Q(s, a; θ)
2

∇θQ(s, a; θ).
(17)

According to this gradient, perform one step of gradient descent on
the parameter θ: 

θ ← θ - α ·∇θ ℒ(θ) (18)

where α is the learning rate of the deep neural network.  

Step  13.  When  using  gradient  descent  to  update  parameters,  the
parameters  θ  of  the  Q  network  are  updated  once  per  step,  while  the
parameters θ-  of the target Q network are updated a fixed number of
times per iteration. 

Step  14.  Training  terminates  when  the  ANC  reduction  rate  falls
below a threshold (0.1% per 1000 iterations). 
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Experimental Results and Analysis   6.

Experimental Settings  6.1

Table  2  presents  the  main  parameter  settings  for  this  experiment.  All
experiments  were  conducted  on  a  system  with  16GB  of  memory  and
an  RTX  3070  GPU,  using  the  Python  programming  language.  The
model  was  implemented  using  PyTorch  1.10.1  and  trained  with  the
Adam optimizer.  

Parameter Name Value Description
Memory capacity 500 DQN memory buffer size 
Batch size 32 The number of experiences used in the 

memory buffer each time 
Training episode 16000 Number of agent operation training 

episodes 
Learning rate α 0.00001 Adam optimizer learning rate 
Exploration 

probability ε 

0.9 The probability of agent selecting an 

action based on the model 
Discount factor γ 0.9 The weight of future rewards 
Activation 

function σ 

Leaky_relu Neural network activation function 

Table 2. Model-related parameter settings.  

Experimental Data  6.2

First, the algorithm model is trained on the simulated network in this
paper.  The  simulated  network  is  a  heterogeneous  network  with  30
nodes generated, including three types of nodes. There are 2000 train-
ing set networks. The test set includes 200 networks with a node scale
of  30.  Simulated  heterogeneous  networks  for  validation  are  based  on
random networks, Barabási–Albert networks and Watts–Strogatz net-
works,  with  node  sizes  of  30, 60  and  120,  respectively.  One  hundred
graphs are randomly generated for each node size. Such a setting is to
verify  the  mobility  of  the  DRLKHN  framework  under  different
network  sizes,  and  then  the  network  is  collapsed  and  the  average
performance  is  calculated  using  the  evaluation  model.  In  testing  on
the  real  FINC  [46]  network,  comprised  of  89  nodes  and  155  edges,
there are three types of nodes: S, D and I, with 51, 25 and 13 nodes,
respectively.  

Baseline  6.3

Baseline  methods  include  centrality-based  methods,  where  centrality
methods  primarily  use  node  structural  centrality  as  selection  criteria
in  sequence,  incorporating  local  or  global  structural  metrics  such  as
degree,  eigenvector,  closeness  and  PageRank.  An  adaptive  version  is
employed, meaning after each node removal, all centrality metrics are
recalculated  for  all  nodes,  and  the  next  node  is  selected  based  on
updated  values.  Accordingly,  the  methods  are  referred  to  as  high
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degree  adaptive  (HDA),  high  eigenvector  adaptive  (HEA),  high  close-
ness adaptive (HCA) and high PageRank adaptive (HPA).  

Time Complexity Analysis  6.4

To analyze the time complexity of the DRLKHN, we need to focus on
the key components and steps of the algorithm that influence the over-
all computational complexity.  

Action Space Analysis  

In  the  action  space,  each  action  corresponds  to  selecting  a  node  for
attack.  The  node  features  are  extracted  using  a  GCN,  which  requires
matrix  operations  involving  the  adjacency  matrix  and  feature  matrix.
The time complexity for a single GCN layer with adjacency matrix A,

feature matrix F and weight matrix W  is ON2 +Nd, where N is the

number of nodes and d is the number of features per node. For k lay-
ers  of  a  GCN,  the  complexity  increases  linearly  with  the  number  of

layers: OkN2 +Nd, but it increases quadratically with the number

of nodes N.  
The  overall  complexity  for  action  space  calculation  is

OkN2 +Nd. 

State Space Analysis  

The state space is computed by summarizing the node feature vectors
to form a representation for the entire graph. To compute XG, the rep-
resentation  vectors  of  all  nodes  are  summed  up,  and  matrix multipli-
cations  involving  the  parameters  W2  and  W3  are  performed.  The
summation  step  involves  adding  up  all  node  feature  vectors,  which
has complexity O(Nd). The matrix multiplication has a complexity of

Od2, considering the learnable matrix W2 and W3.  

The overall complexity for state space calculation is ONd + d2. 

Reward Function Analysis  

The  reward  calculation  involves  computing  the  connectivity  of  the
graph after node removal. The complexity of this step depends on the
underlying  graph  structure.  If  connectivity  is  checked  by  a  graph
traversal,  the  time  complexity  will  be  O(N + E),  where  E  is  the  num-
ber of edges in the graph.  

The overall complexity for reward calculation is O(N + E). 

Loss Function and Q-Function Analysis  

The  Q-function  is  estimated  using  a  neural  network  that  involves
matrix multiplications for the state-action pair (state St  and action At)
and  the  representation  matrix  XG.  We  assume  a  two-layer  neural
network  with  ReLU  activations.  The  time  complexity  for  each
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forward  pass  is  ONd + d2,  where  d  is  the  dimension  of  the  feature

space.  

The  overall  complexity  for  the  Q-function  is  ONd + d2  per  for-

ward pass. 

Experience Replay and Gradient Descent Analysis  

During  training,  the  experience  replay  buffer  stores  the  transitions.
When training the model, a batch of size B is sampled from the mem-
ory buffer, and the Q-values are updated using the loss function. The
complexity of experience replay and backpropagation depends on the
batch size B and the size of the neural network. For a neural network

with  L  layers,  each  with  d  units,  the  complexity  per  update  is

OBLd2.  

The overall complexity per training step is OBLd2. 

Overall Complexity per Iteration  

For  each  iteration,  we  calculate  the  state,  action,  reward  and  Q-
values,  which  involves  multiple  steps:  feature  extraction,  reward
computation, forward pass through the neural network and loss/back-
propagation.  Assuming  there  are  N  nodes,  d  features  and  B  samples
in a batch, the time complexity per iteration is determined by: 

OkN2 +Nd +N + E +Nd + d2 + BLd2 (19)

where:   

◼ N is the number of nodes; 

◼ d is the feature dimension; 

◼ E is the number of edges in the graph; 

◼ B is the batch size for experience replay; 

◼ L is the number of layers in the neural network; 

◼ k is the number of GCN layers. 

In  Table  3,  the  time  complexity  of  DRLKHN  is  compared  with
other baseline algorithms. N is the number of network nodes. 

Algorithm Time Complexity 

HDA ON2 

HEA ON4 

HCA ON3 

HPA ON3 

DRLKHN OkN2 +Nd +N + E +Nd + d2 + BLd2 

Table 3. Time complexity analysis.  
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If the graph size is large (i.e., N and E are large), the complexity of
DRLKHN  can  become  very  high,  because  the  computations  in  the
GCN  layers  and  the  neural  network  depend  on  the  number  of  nodes
and  feature  dimensions.  The  complexity  of  the  training  step  also
increases with the batch size B and the number of layers L in the neu-
ral  network.  Therefore,  for  large-scale  graphs  or  complex  network
structures, higher computational resources may be required. 

Experimental Results and Analysis  6.5

Offline Training Results and Analysis  6.5.1

The  model  parameters  were  periodically  saved  every  250  iterations
during  the  training  process.  As  the  training  progressed  and  the  loss
function  began  to  stabilize,  the  parameters  saved  at  these  intervals
were  subsequently  loaded  into  DRLKHN  for  further  evaluation.  The
performance  of  the  model  was  assessed  using  the  test  set,  where  the
ANC value was calculated for each network, as shown in Figure 5. As
training advanced, the ANC values of DRLKHN on the test set consis-
tently  decreased,  gradually  approaching  convergence.  This  trend  sug-
gests  that  the  DRLKHN  model  was  effectively  trained  and  continues
to exhibit reliable performance on the test set, confirming its stability
and robustness over time.  

Figure 5. Convergence curve of DRLKHN on the test set.  

Online Application Results and Analysis  6.5.2

Figures  6  through  8  illustrate  a  comparative  performance  analysis  of
DRLKHN  against  the  HDA,  HEA,  HCA  and  HPA  methods.  This
comparison  is  conducted  across  different  network  types,  including
simulated  random  heterogeneous,  scale-free  heterogeneous  and  small-
world  heterogeneous  networks,  with  varying  node  scales.  The  objec-
tive  of  this  experiment  is  to  evaluate  how  well  DRLKHN  adapts  and
performs  across  different  network  structures  and  sizes.  The  ANC
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metric is employed to quantify the performance of each method, pro-
viding a clear measure of their effectiveness under varying conditions.  

In  the  random  heterogeneous  network  (Figure  6),  the  ANC  means
for HDA, HEA, HCA, HPA and DRLKHN at a node scale of 30 are
0.095,  0.091,  0.089,  0.105  and  0.094,  respectively.  For  a  node  scale
of  60,  the  ANC  means  are  0.162,  0.160,  0.151,  0.173  and  0.094.  At
node  scales  of  120  and  240,  the  ANC  means  for  these  methods  are
0.305,  0.306,  0.304,  0.308  and  0.094;  and  0.407,  0.410,  0.409,
0.408  and  0.094,  respectively.  As  the  node  scale  increases,  HDA,
HEA, HCA and HPA show a significant decline in performance, with
their  ANC  mean  increasing  notably  from  the  30-node  scale.  In  con-
trast,  DRLKHN  maintains  stable  performance  and  outperforms  the
other  methods  in  large-scale  networks.  For  example,  the  ANC  means
for HDA at node scales of 60, 120 and 240 increase by 6.6%, 20.9%
and  31.1%,  respectively,  compared  to  the  30-node  scale.  This  is
because  HDA,  HEA,  HCA  and  HPA  rely  on  centrality-based  node
selection, which works well in small networks but proves too simplis-
tic  for  large-scale  heterogeneous  networks.  In  such  networks,  an
optimal  attack  strategy  must  consider  factors  like  node  types  and
internode interactions, which centrality metrics alone cannot capture. 

Figure 6. Comparison  of  ANC  obtained  by  different  attack  algorithms  on
simulated random heterogeneous networks.  

In the Barabási–Albert heterogeneous network (Figure 7), the ANC
means  for  HDA,  HEA,  HCA,  HPA  and  DRLKHN  at  a  node  scale  of
30  are 0.158,  0.156,  0.155, 0.161  and 0.094,  respectively.  At  a node

Self-Learning Method for Key Nodes Identification 445

https://doi.org/10.25088/ComplexSystems.34.4.425

https://doi.org/10.25088/ComplexSystems.34.4.425


scale of 60, the means are 0.135, 0.131, 0.130, 0.141 and 0.094. For
node scales of 120 and 240, the ANC means are 0.118, 0.113, 0.113,
0.125  and  0.094;  and  0.108,  0.104,  0.102,  0.116  and  0.094,  respec-
tively.  As  the  node  scale  increases,  the  performance  of  HDA,  HEA,
HCA and HPA gradually improves. For instance, the ANC means for
HDA  at  node  scales  60,  120  and  240  decrease  by  2.3%,  4.1%  and
5.0%,  respectively,  compared  to  the  30-node  scale.  However,
DRLKHN consistently outperforms all other methods. This is because
in  Barabási–Albert  heterogeneous  networks,  centrality  metrics  like
degree, eigenvector, closeness and PageRank still capture node impor-
tance,  although  their  precision  decreases  as  the  network  grows.
Despite  this,  these  centrality-based  methods  cannot  outperform
DRLKHN,  as  they  do  not  fully  consider  factors  such  as  node  types
and network heterogeneity. 

Figure 7. Comparison of ANC obtained by different attack algorithms on sim-
ulated Barabási–Albert heterogeneous networks.  

In  the  Watts–Strogatz  heterogeneous  network  (Figure  8),  the  ANC
means  for  HDA,  HEA,  HCA,  HPA  and  DRLKHN  at  a  node  scale  of
30  are 0.357,  0.365,  0.327, 0.355  and 0.094,  respectively.  At a  node
scale of 60, the means are 0.345, 0.355, 0.313, 0.346 and 0.094. For
node scales of 120 and 240, the ANC means are 0.337, 0.350, 0.300,
0.340  and  0.094;  and  0.333,  0.345,  0.296,  0.334  and  0.094,  respec-
tively.  As  the  node  scale  increases,  the  performance  of  HDA,  HEA,
HCA,  HPA  and  DRLKHN  remains  relatively  stable,  showing  no
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significant  changes.  DRLKHN  consistently  outperforms  the  other
methods.  This  stability  is  due  to  the  balanced  connections  and  high
clustering  in  Watts–Strogatz  networks,  where  centrality  metrics  like
degree,  eigenvector,  closeness  and  PageRank  effectively  capture  node
importance  across  different  scales.  However,  these  centrality-based
methods  fall  short  of  DRLKHN,  as  they  do  not  account  for  node
types and the network’s inherent heterogeneity. 

Figure 8. Comparison of ANC obtained by different attack algorithms on sim-
ulated Watts–Strogatz heterogeneous networks.  

In  summary,  DRLKHN  demonstrates  consistent  and  superior  per-
formance  compared  to  HDA,  HEA,  HCA  and  HPA,  with  little  varia-
tion across different network types and node scales. 

We  conducted  experiments  to  validate  the  performance  of
DRLKHN on a real dataset FINC (as shown in Figure 9). The normal-
ized  connectivity  variation  curves  of  HDA,  HEA,  HCA,  HPA  and
DRLKHN  on  FINC  are  shown  in  Figure  10.  The  ANC  values  of
HDA,  HEA,  HCA,  HPA  and  DRLKHN  on  FINC  are  shown  in
Table 4. It can be observed in Figure 10 that the key nodes identified
by  DRLKHN  can  rapidly  decrease  the  normalized  connectivity  of
FINC. Table 4 shows that DRLKHN achieves robust performance on
the  real-world  FINC  network,  outperforming  baseline  methods  by
28.6%, 32.2%, 12.7% and 36.3% over HDA, HEA, HCA and HPA,
respectively. 
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Figure 9. Schematic diagram of FINC networks.  

Figure 10. Comparison  of  normalized  connectivity  obtained  by  different
attack algorithms on FINC networks.  

HDA HEA HCA HPA DRLKHN 

ANC 0.1288 0.1356 0.1054 0.1444 0.092 

Table 4. Comparison  of  ANC  obtained  by  different  attack  algorithms  on
FINC networks.  
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The  outstanding  performance  of  DRLKHN  on  both  simulated  and
real  networks  stems  from  its  use  of  a  combination  of  the  GNN  and
DRL.  This  approach  enables  DRLKHN  to  better  learn  and  under-
stand  the  complex  structures  of  heterogeneous  networks.  Compared
to  traditional  attack  methods  based  on  single  centrality  metrics,
DRLKHN  leverages  deep  learning  models  to  capture  more  network
features  and  intricate  relationships  between  nodes.  This  end-to-end
learning capability allows DRLKHN to flexibly adjust strategies when
confronted  with  networks  of  varying  scales  and  structures,  thereby
maintaining stable performance across different scenarios. 

Conclusion   7.

This  paper  proposes  a  deep  reinforcement  learning–based  heteroge-
neous network key nodes identification (DRLKHN) method based on
the  graph  convolution  network  (GCN)  and  the  deep  Q-network
(DQN).  We  first  describe  the  key  nodes  identification  problem,  for-
mulate  the  objective  function  and  constraints  and  then  design  a  deep
reinforcement  learning  (DRL)  framework  and  algorithm  for  key
nodes  identification.  The  model  is  then  trained  offline  and  applied
online, validating the superiority of the proposed method through sim-
ulations  and  real  network  applications.  The  results  show  that,
compared  to  the  existing  methods  high  degree  adaptive  (HDA),  high
eigenvector  adaptive  (HEA),  high  closeness  adaptive  (HCA)  and  high
PageRank adaptive (HPA), DRLKHN delivers stable and optimal per-
formance  in  simulated  networks.  In  the  real  network,  FINC,
DRLKHN outperforms the other four methods in terms of preventing
network  breakdown.  Specifically,  DRLKHN  improves  performance
by  28.6%,  32.2%,  12.7%  and  36.3%  over  HDA,  HEA,  HCA  and
HPA, respectively.  

DRLKHN  is  a  fully  data-driven  method  that  requires  no  prior
knowledge,  self-learning  the  global  impact  of  the  nodes  on  the  net-
work, thereby enhancing the accuracy and reliability of identified key
nodes. However, DRLKHN has a relatively high time complexity, but
it  combines  GCN  and  reinforcement  learning  methods,  enabling  it  to
handle  the  complex  relationships  between  graph  structures  and  node
features. This makes it well suited for applications that require attack
and  defense  tasks  on  graphs.  Its  flexibility  and  multilayered  structure
give it an advantage in complex tasks, but it also requires more com-
putational resources to support both training and inference. 

DRLKHN  is  primarily  validated  on  static,  medium-scale  heteroge-

neous  networks  with  N ≤ 240.  For  super-large  networks  of  N > 103,
the quadratic complexity of GCN operations and DQN training poses
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significant  computational  challenges,  which  could  be  mitigated  via
techniques  like  graph  sampling  or  federated  learning.  Furthermore,
dynamic  networks  (e.g.,  time-evolving  topologies),  multilayer  net-
works  (e.g.,  interdependent  interactions)  and  weighted  heterogeneous
networks (e.g., edges with varying interaction strengths) remain unex-
plored. Addressing these scenarios would require model extensions. 
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