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Identifying key nodes in heterogeneous networks is both theoretically
important and practically valuable. Traditional methods require precise
parameters and constraints, limiting adaptability and autonomy. To
address this, we propose the deep reinforcement learning—based hetero-
geneous network key nodes identification (DRLKHN) method, a self-
learning method for identifying key nodes. DRLKHN autonomously
learns strategies for identifying key nodes, utilizing a graph convolution
network (GCN) for feature extraction and designing action and state
space vectors. Experimental results show that DRLKHN outperforms
traditional methods like high degree adaptive (HDA), high eigenvector
adaptive (HEA), high closeness adaptive (HCA) and high PageRank
adaptive (HPA) in simulated networks. In the real-world force, intelli-
gence, networking and C2 (FINC) network, DRLKHN improves perfor-
mance by 28.6%, 32.2%, 12.7% and 36.3% over HDA, HEA, HCA
and HPA, respectively. Despite its relatively high time complexity,
DRLKHN effectively integrates the GCN and reinforcement learning to
manage complex relationships in graph data, providing intelligent deci-
sion support for identifying key nodes in real networks.

Keywords: heterogeneous network; key nodes identification; graph
representation; deep reinforcement learning

| 1. Introduction

A network, or graph, is a general data structure for describing com-
plex interactive systems, such as the internet, social media, trans-
portation networks, power grids, food webs, bioanalytics networks
and others. In a complex network, each node plays a specific role, but
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the relative importance of nodes varies greatly. Some nodes are in a
hub position or contribute significantly to the overall network perfor-
mance, so these nodes are more important than others and are called
key nodes. Finding an optimal set of key nodes in complex networks
has been a longstanding problem in network science with many real-
world applications, including terrorist networks [1], transportation
[2], protein networks [3], epidemic spreading network [4] and rumor
diffusion network [5].

The method of identifying key nodes in networks has been widely
considered by the academic community, and new methods are being
constantly developed. Identifying key nodes can be mainly divided
into neighborhood-based centrality, path-based centrality and ran-
dom walk-based methods. However, there are some shortcomings in
these methods. Traditional modeling and solving methods require pre-
cise system parameters and constraints, and the quality of the solution
depends on the optimization model. As the constraints change, it is
necessary to constantly update and optimize the model, resulting in
poor adaptability and lack of decision-making autonomy.

Reinforcement learning (RL) is a rapidly developing artificial intelli-
gence (Al) technology that adapts to changes in dynamic environ-
ments. RL has been successfully applied in areas like manufacturing
systems [6], transportation route selection [7] and portfolio optimiza-
tion [8]. However, RL struggles with high-dimensional continuous
state spaces due to limited and discrete state spaces in these problems.
Deep reinforcement learning (DRL), including methods like deep
Q-network (DQN) [9, 10], DRL with double Q-learning [11] and
dueling DQN (DDQN) [12], addresses these issues, performing better
in dynamic and continuous state problems.

The focus of the previous review on key nodes identification meth-
ods is on utilizing network topology and certain attribute informa-
tion, which mainly applies to general scenarios but is not suitable for
complex heterogeneous networks. In heterogeneous networks, both
network topology and node heterogeneity must be considered. Thus,
this paper proposes the deep reinforcement learning—based heteroge-
neous network key nodes identification (DRLKHN) method. Unlike
traditional methods, DRLKHN does not rely on precise system param-
eters or complex constraints, making it more adaptable and versatile.
The main contributions of this paper follow.

= To address the representation of heterogeneous networks, we propose a
method based on the graph convolutional network (GCN) to map
graph data into low-dimensional vectors, enabling the capture of node
and edge characteristics and their relationships for further analysis.

= To identify key nodes in heterogeneous networks, we leverage the per-
ceptual and decision-making capabilities of DRL, introducing the
DRLKHN method for autonomous key nodes identification.
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= To solve the key nodes identification problem, we represent each poten-
tial action (node, a) and the remaining state (graph, s) as feature vec-
tors, which are used as inputs to the DQN, defining the state and
action spaces of the model.

This paper is organized as follows. Section 2 reviews related work
on key nodes identification. Section 3 defines the key nodes identifica-
tion problem in heterogeneous networks. Section 4 presents the frame-
work for key nodes identification using deep reinforcement learning.
Section 5 introduces the key nodes identification algorithm based on
deep reinforcement learning. Section 6 demonstrates the effectiveness
of the proposed method with examples and analyzes the time com-
plexity of DRLKHN. Finally, Section 7 concludes the study.

I 2. Related Work

Over the past few decades, the identification of key nodes in a net-
work has been a topic of extensive academic research, with continu-
ous innovations in identification methods. These methods can mainly
be divided into neighborhood-based centrality methods, path-based
centrality methods, random walk—based methods and machine learn-
ing-based methods. The latter category not only represents an innova-
tion based on the former but also a conceptual revolution.

I 2.1 Neighborhood-Based Centrality Methods

Intuitively, the importance of a node is related not only to its own
information but also to its neighbors. Neighborhood-based centrality
measures mainly evaluate a node by the number of its direct or indi-
rect neighbors. The more neighbors a node has, the more important it
is considered. Degree centrality [13] is the most straightforward and
simple method for measuring node centrality. The degree of a node is
represented as the number of first-order neighbors, and its normalized
value is the degree centrality. Since degree centrality only calculates
node centrality based on first-order neighbors, Chen et al. [14] pro-
posed an improvement: semi-local centrality, which evaluates the
importance of a node using both first- and second-order neighbors.
The clustering coefficient is a measure of the closeness of links
between a node’s neighbors. The degree and clustering coefficient-
based centrality (DCC) method [15] combines node degree and clus-
tering coefficient to calculate node centrality. Opsahl et al. [16]
combined degree centrality with weighted networks, proposing the
generalized degree centrality algorithm, which evaluates node central-
ity based on both node degree and edge weights. Zhao et al. [17] eval-
uate the node centrality in directed weighted networks using three
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indicators: node degree, edge weight and edge direction. Since degree
centrality does not consider the attribute vectors of nodes, eigenvector
centrality [18, 19] fully considers the neighborhood and the attribute
vectors of neighbors. The degree centrality of a node does not neces-
sarily mean it has a high eigenvector centrality; if the first-order neigh-
bors of a node have low eigenvector centralities, then its eigenvector
centrality will also be low. Neighborhood-based centrality measures
are simple and intuitive with low computational complexity, but their
main disadvantage is that they only assess the importance of nodes
from a local perspective, ignoring the impact of nodes on the entire
network.

1 2.2 Path-Based Centrality Methods

Path-based centrality measures overcome some of the limitations of
neighborhood-based centrality by considering the importance of a
node’s position in the network. Major methods include Katz central-
ity [20], closeness centrality [13] and betweenness centrality [21].
Betweenness centrality, first introduced by L. C. Freeman [21], is
defined as the normalized value of the number of shortest paths pass-
ing through a node. This measure is suitable for identifying key nodes
in networks with traffic flow, such as power networks and infrastruc-
ture attack-defense [22] or congestion node expansion in transporta-
tion networks [23]. Closeness centrality [13] is the inverse of the
average distance to other nodes, used to evaluate how close a node is
to others. Compared to betweenness centrality, closeness centrality is
closer to the geometric center of the network. Katz centrality [20]
assigns different weights to paths of different lengths, calculating
node centrality based on this weighted sum, with shorter paths being
considered more important. Hage and Harary [24] defined eccentric-
ity centrality as the maximum distance from a node to all other
nodes, using extreme values to calculate node centrality. This method
has a relatively limited application scenario. Subgraph centrality [25]
measures node centrality by the weighted sum of closed path lengths,
similar to closeness centrality, where shorter path lengths are consid-
ered more important. While path-based centrality measures can assess
node importance from a global perspective, they are limited to con-
nected graphs and are not suitable for calculating centrality in sparse
or disconnected graphs.

I 2.3 Random Walk-Based Methods

Random walk methods are a network analysis approach based on ran-
dom processes. The basic idea is to randomly select a node as the
starting point, then walk through the network following certain rules,
recording the visit count for each node. By analyzing the visit counts,
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key nodes in the network can be identified. Random walk methods
are an improvement upon path-based centrality methods, implement-
ing a random sampling process on graph information based on paths.
Page [26] first applied the random walk process to internet page rank-
ing in 1999, modeling the internet as a directed graph, where the
more hyperlinks a webpage has, the more important it is considered,
or if a webpage is linked by more influential networks, it is also
deemed more important. The hypertext-induced topic search (HITS)
algorithm [27] evaluates webpage importance using content authority
(Authority) and link authority (Hub). Content authority corresponds
to the number of inbound links, with more citations indicating higher
authority. Link authority corresponds to the number of outbound
links, with higher link authority associated with a greater number and
quality of outbound links. The HITS algorithm has been widely used
in search engines, online advertising, e-commerce and other fields.
The LeaderRank [28] algorithm is an improvement on the PageRank
algorithm, similar in that it is a network-based node ranking algo-
rithm. However, LeaderRank improves connectivity by adding a back-
ground node that is connected to all nodes in the network, better
reflecting the relationship between webpages. The random walk with
restart (RWR) algorithm [29, 30] is an enhanced random walk
method that introduces a restart probability during the random walk
process. It combines transition probability and restart probability,
considering both local and global information. Compared to ordinary
random walk algorithms, RWR can better capture the relationships
between nodes.

1 2.4 Machine Learning-Based Methods

Machine learning—based key nodes identification methods are repre-
sented by the graph neural network (GNN), which accurately repre-
sents nodes in a network to better handle downstream tasks, such as
node classification and graph classification. For key nodes identifica-
tion, the node deletion method is often combined with GNN to judge
node importance, using the change in network performance before
and after a node is deleted as the basis for training the GNN. Fan et
al. [31] proposed the FINDER method, which uses GNN and DQN
to identify key nodes in the network. Experiments have shown that
this method can disrupt the largest connected component in the net-
work at the fastest speed. Zeng et al. [32] proposed the SHATTER
model, using the node deletion method to identify key nodes in a het-
erogeneous combat network (HCN). The MINER framework [33]
converts multiplex network degradation strategies into an encoding-
decoding process using deep network representation learning, with
attention mechanisms and RL evaluating network actions. While
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research typically targets high-value node attack sequences, Chen [34]
highlighted the vulnerability of edges, proposing the use of DRL to
identify high-value edge attack sequences.

In recent years, GNN have received widespread attention. Some
representative models follow. Kipf et al. [35], inspired by the convolu-
tional neural network (CNN), proposed the graph convolutional net-
work (GCN), allowing graph data to undergo convolution operations
in the spatial domain, similar to the CNN. The GCN has achieved
good results in node classification tasks but faces challenges when
dealing with large-scale graphs. GraphSAGE [36] adopts a random
sampling method to embed nodes, which is more efficient than the
full-graph training approach of the GCN, making GraphSAGE more
suitable for handling large-scale graph data and improving scalability.
The graph attention network (GAT) [37] introduces attention mecha-
nisms into node representation models, where different weights are
assigned to the aggregation of node attributes, allowing the learning
of updated weights to more accurately capture important informa-
tion. Additionally, models such as GIN [38], graph u-net [39], graph-
transformer [40], GCNII [41] and ST-GCN [42] have been proposed.

The classical method of key nodes identification is summarized in
Table 1. The field of key nodes identification in complex networks is
relatively mature, but there are still some shortcomings: research on

Category Description Classical Method
Neighborhood-  |It is evaluated by the number of | Degree centrality
based centrality | direct or indirect neighbors, and
methods the more neighbors it has, the

more important the node is.
Path-based The importance of the node’s Katz centrality;
centrality position in the network is used as |closeness
methods the centrality index of the node. | centrality;

betweenness
centrality

Closeness A node is randomly selected as PageRank
centrality the starting point, and key nodes

are identified by analyzing the

visit data as it moves through the

network.
Betweenness The node deletion method is FINDER;
centrality often combined with GNN to SHATTER;

judge node importance, using the | MINER

change in network performance

before and after a node is deleted

as the basis for training GNN

Table 1. The classical method of key nodes identification.
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key nodes identification in heterogeneous networks is lacking. Hetero-
geneous networks are more complex than homogeneous networks.
Due to the different types of nodes and links in heterogeneous net-
works, it is difficult to accurately determine the importance of a node
by relying solely on topology and vague attribute inputs.

I 3. Problem Description

Before we begin our problem description, we need to clarify some
concepts.

Key nodes identification. Finding an optimal set of nodes whose
activation (or removal) would maximally enhance (or degrade) cer-
tain network functionality. (A key node can also be called the influen-
tial node, vital node, critical node, etc.)

Network disintegration. The process of disrupting the structure of
a network, weakening its performance and preventing activities on
the network by removing nodes or edges.

There are differences and connections between key nodes identifica-
tion and network disintegration. As shown in Figure 1, our paper
involves the intersection of the two. That is, finding an optimal set of
nodes whose removal would maximally degrade certain network func-
tionality.

activate
nodes

remove
nodes

remove

Network
edges

Disintegration

Key Nodes
Identification

Figure 1. Venn diagram between key nodes identification and network disin-
tegration.

Heterogeneous network. A heterogeneous network can be repre-
sented as G = (V, E), where V represents the set of nodes and E repre-
sents the set of edges between nodes. The node type mapping function
is defined as ¢:V > Vi, and the edge type mapping function is
defined as ¢ : E —» Eype, in which Viy,e and Eype are sets of labels iden-
tifying unique types or roles for nodes and edges, respectively. The
network is called a heterogeneous network if it contains multiple
node types | Viypel > 1 or edge types |Egypel > 1.

Given the heterogeneous network G = (V, E), where V is the set of
nodes and E is the set of edges, the objective of key nodes identifica-
tion is to minimize the network robustness based on a node removal
strategy. In current research, scholars extensively study how to mea-
sure network robustness, including metrics such as network diameter,
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network connectivity, network efficiency, network fragmentation and
network structural entropy. Among these, network connectivity is the
most widely used indicator. Network connectivity metrics typically
include the number of connected components, pairwise connectivity
and the largest connected component (LCC) size [43]. Specifically, the
LCC size is a commonly studied metric, representing the number of
nodes in the largest subgraph in the current network. A predefined
metric for the size of the LCC is denoted as «. The objective of key
nodes identification is to design a node removal strategy, that is, an
order of node removal that minimizes accumulated normalized con-
nectivity (ANC) based on LCC size:

1 N K(G\{Ula U2y oens Uk})

ANC(v1, v2y vy UN) = — 1
W1y V25 ... 5 UN) N; e (1)

where N is the number of nodes in G. x(G) represents the LCC size of
the initial graph G. «(G\{v1, v2, ..., v;}) represents the LCC size after
removing nodes {v1, v, ..., 3} from G in order. As shown in Fig-
ure 2, the ANC can be seen as an estimate of the area under the
normalized connectivity versus attack intensity curve. The horizontal
axis represents the attack intensity, denoted by i/ N, and the vertical
axis represents the normalized connectivity,

k(G\vy, va, ..., Ui}
«(G) '

—0——  Key nodes list /;

—O0——  Key nodes list /,

[T ] ancory,
[ ] ancofs

_ K(G\v10,v2, V3,96, V11) — K(G\V10, V2, V3, V6, V11, V1)

K(G\v19,v2,3,V6,V11) k(G)

Normalized Connectivity

=
B
= § = —K(G\v10, V2,3, V6, V11, V5)
o= x(6)
=
vy
S——
1/N v 121

Figure 2. Effect of lists of potential key nodes I; and I, on the ANC of G.
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Two lists of potential key nodes I and I, are shown in Figure 2:
Il = (Uloa V2, U3y Ugy Ul1, U1, U5y U4, U8,y V9, U7) (2)
I = V10, V2, U3, Vs, V11, Va, Us, U7, V9, Us, V1) 3)

It can be observed that removing the node list I results in a
smaller ANC value than removing the node list Iy. The decrease in
ANC, represented by the area shaded in dark gray in the graph, indi-
cates that I, is the more critical list of nodes. The difference between
the two node lists occurs after removing node v11. For node list Iy, the
network connectivity decreases as a result of removing node v, repre-
sented as:

Ak = k(G\Mw1o, v2, 13, Vs, V11)) —

«(G) “4)
k(G\v10, v2, U3, Us, V11, V1)).

For node list I, the network connectivity decreases as a result of
removing node v4, represented as:

<G k(G\v1o, v2, U3, Us, V11}) — )

k(G\Mv10, v2, U3, Us, V11, Va}).

AKZ =

Since Aky < Aky, removing node v4 has a greater impact on the net-
work connectivity. The ANC is sensitive to the sequence of node
removals. For example, removing nodes vy and v4 in different orders
(as in I; and I,) results in distinct impacts on network connectivity
(Ak1 # Aky), highlighting the necessity of modeling this problem as a
sequential decision-making process.

Based on our description, the problem of identifying key nodes in a
heterogeneous network can be regarded as a combinational optimiza-
tion problem. The model for identifying key nodes in a heterogeneous
network can be represented by:

min ANC(vy, va, ..., UN)

(6)

‘7 = (Uls U2y onny UN)
VI =fnlVI

where min ANC(vy, v, ..., Un) represents the optimization objective.
The constraint is the attack intensity fx, which is the proportion of

subject to : {

attacked nodes to the total number of nodes. V = (vy, va, ..., UN)
denotes a sequence of key nodes to be identified.
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4. Design of a Key Nodes Identification Framework Based on Deep
Reinforcement Learning

This paper reframes the problem of identifying key nodes in heteroge-
neous networks as a learning problem, where the node selection pro-
cess is treated as an agent’s decision-making task. DRL is an efficient
method to solve the sequential decision problem [9, 44]. Therefore,
we use DRL to realize the self-learning identification of key nodes in a
heterogeneous network.

The process of self-learning to identify key nodes in a heteroge-
neous network can be viewed as a Markov decision process: generat-
ing a series of states, actions and rewards through interaction with the
environment. Therefore, we design a DRIL-based heterogeneous
network key nodes identification (DRLKHN) framework. DRLKHN
utilizes the perception and decision-making abilities of DRL to self-
learn key nodes identification strategies for heterogeneous networks.
DRLKHN is based on a combined framework of the GCN and DQN
algorithms; see Figure 3.

X1 X5 Xg

Input
4y, Fs Hyg 1 a=x;
| GCN | A
Al’)k; F/) kHI) ‘ 4, H X\'
| /..GCN " & . GCN|
» Fi H, .
HCN . GCN | CONCAT
state(s) action(a) reward(r)
C emory Buffer ) |
f; @ f§ g ROvsvo o) 3 R(Vjv/‘{ﬂz v g ROV Vs3)
(s4a57s,55) =z - Z < Zio&
(ss,as, r(,,sé) < < <
A svav"|+1 sl*l) 0 fy fv » f,x;
. pdate 0
update 6

Figure 3. DRLKHN framework. Assuming the heterogeneous network con-
sists of three types of nodes.

The GCN [45] is a specialized type of neural network designed to
extract features from graph data, which consists of nodes and edges
representing unstructured data. Traditional neural networks, such as
the convolutional neural network (CNN) and the recurrent neural
network (RNN), are effective at capturing features from structured
data like images and videos. However, they are not well suited for
extracting features from unstructured graph data. The GCN, on the
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other hand, leverages both node features and the graph structure to
capture feature representations, reflecting the unique properties of
individual nodes as well as the interactions between nodes. The fea-
tures extracted by a GCN can improve performance in subsequent
graph analysis tasks. In this paper, we use graph data to record infor-
mation in a heterogeneous network, where the GCN effectively char-
acterizes both node attributes and internode interactions.

Thus, within the DRLKHN framework, a GCN serves as the fea-
ture extractor for heterogeneous networks, mapping the input graph
data into low-dimensional vectors. Each possible action (node, @) and
state (remaining graph, s) is represented as a set of feature vectors
that capture the characteristics related to these actions and states.
These feature vectors are then utilized in the DRL process to estimate
the future expected return Q(s, a) of actions with respect to states.

The DQN algorithm is employed to learn the DRL component of
the network parameters. DQN is a DRL algorithm that builds upon
Q-learning by incorporating the approximation of the action-value
function O(s, a; 0) into the Q-learning framework using deep neural
networks. This approach replaces the traditional method of storing
Q(s, a) in a Q-table, enabling DQN to handle more complex environ-
ments with larger state spaces and perform well in solving problems
with discrete action spaces. To improve training efficiency and stabil-
ity, DQN utilizes experience replay and fixed target networks, which
help the algorithm converge more reliably toward the optimal Q
value.

Based on the DRLKHN framework, this paper designs the state
space, action space, reward function and loss function involved in the
framework, making it suitable for self-learning to identify key nodes
in a heterogeneous network.

| 4.1 Action Space Setting

The action space contains all the actions that the agent may take in
self-learning tasks. In this paper, actions refer to the nodes selected by
the agent for attack. In the DRLKHN framework, a GCN is intro-
duced to extract features from the graph data of the heterogeneous
network. Therefore, the action space can be designed as:

A={ala=x} (7)

where x; represents the representation vector of node i. The calcula-
tion process of x; follows.

First, the heterogeneous network is divided into different categories
based on node type j, and adjacency matrices A; are computed for
each category. Then, a node feature matrix F; is constructed based on
node features. Next, a GCN is applied to extract features from the
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categories of nodes, resulting in H;:
A 125 A-1)2
H; = GON(F;, A) = o{D; "A;D; " Fwh) )

where o(-) represents the activation function A; = A;+1I;, I; is the
identity matrix with the same structure as A;, D; is the degree matrix

of 12\,-, and W is the weight parameter of the GCN network.

Finally, to extract information about the connections between
different types of nodes, the concatenated matrix H, obtained by con-
catenating H; (as shown in equation (9)), is combined with the adja-
cency matrix A of the entire graph and further processed through the
GCN for feature extraction, resulting in the node representation
matrix Xy. The i row of x; of Xy represents the representation vec-
tor of node 7, as shown in equation (10):

H=[HyuwHyu--uHj 9
Xy = GCN(H, A) = a(D‘”zAD‘”Zle) (10)
where [- 11 -] represents the concat operation A = A + I, I is the iden-

tity matrix with the same structure as A, D is the degree matrix of A,
and W is the weight parameter of the GCN network.

| 4.2 State Space Setting

The state space serves as the basis for action selection. We define a
state as the remaining network after the agent attacks a node. Build-
ing upon the extraction of node features using a GCN, the state space
can be designed as:

S={s|s=Xg} 11D

where X is the representation vector of the heterogeneous network
graph data. The computation process of X is as follows: the repre-
sentation vectors of all nodes are summed up one by one to obtain the
representation vector of the entire heterogeneous network:

N
X = a(\% : Wz-in) (12)

where the parameters W, and W3 are learnable matrices, following
the standard formulation of weight matrices in a GNN [35] and
DQN framework [10]. Algorithm 1 shows the action and state space
setting algorithm.
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Algorithm 1. Action and state space setting algorithm.
Input:
G=(,E);
adjacency matrix A;
feature matrix F;
training parameters Wy, W), W3

Output:

node representation vector x;
node representation matrix Xy
graph representation matrix X¢g

for each node type j € Viype do

add self-connections: A,- <A+

compute degree matrix: D/ « diag(zk A,v,ik)

bl

for each node type j, apply a GCN layer to its adjacency matrix A;

. A=1/2 A A-172
and feature matrix F;: H; « a'(Di A;D; F,-Wl)

o: LeakyReLU activation; W; € R%¢
5. end for
6. concatenate type-specific representations: H « [Hl nHy - ||H|pre‘]

7. global GCN convolution
A«A+1]

D« diag(zk Aik)
A-1/2 A
Xy « oD "ADT T HW)
8. graph representation aggregation
Xg « (W3- W, 3N, x))

x;: i row of Xn; Wa, W3 € R9d
9. return {x;}, Xy, X¢

-12

|l 4.3 Reward Function Setting

The goal of DRL is to maximize cumulative rewards. Therefore,
the design of the reward function is crucial. The reward function for
the task of identifying key nodes in a heterogeneous network is
designed as:

1 N k(G
- . 13
’ N Z xk(G) (13

i

where k(G\{v;}) represents the connectivity of the heterogeneous net-
work when action a = x; (removing v; from the network) is taken in
state G (s=Xg). 1/N is the reward normalization factor. k(G)
represents the connectivity of the heterogeneous network when none
of its nodes are under attack. It is important to note that the reward
designed in this paper is as small as possible because the cumulative
reward is the ANC. According to the problem description in

https://doi.org/10.25088/ComplexSystems.34.4.425


https://doi.org/10.25088/ComplexSystems.34.4.425

438 L. Wang, L. Chen, Z. Yang and K. Yang

Section 3, the objective of identifying key nodes is to identify a
node removal strategy, that is, an order of node removal

V = (v1, va, ..., vn) that minimizes the ANC.

| 4.4 Loss Function Setting

The use of a multilayer neural network such as the Q-network allows
for learning the mapping from state-action pairs (s, @) to real-valued
QCs, a). O(s, a) predicts the maximum cumulative reward that can be
obtained by executing action a in state s. In this paper, a two-layer
perceptron with ReLU activation functions is employed to parameter-
ize the Q-function:

Q(s, a) = Ws-ReLU(x; - X - W4) (14)

where x; and X are the representation vectors of the action space
and the action space, respectively, and W4 and W5 are the learnable
parameter matrix.

A neural network with the same structure and asynchronously
updated parameters is used as the evaluation network and target net-
work of the DQN, and the loss function is designed as follows:

2
L) = E|lr+ymin Q@' a’567) — O(s, a; 6) 15
7
where:
m 7 is the immediate reward as defined in equation (13).

» E is the expectation and represents the average over batches of experi-
ences sampled from the replay buffer. Each experience is a tuple
(S’ a’ T’ S,)'

» 7y is the discount factor, a hyperparameter (0 <y < 1) that determines
the weight of future rewards.

m § is the evaluation network parameters and includes all learnable
weights in the GCN and DQN, that is, § = (W, W,, W3, W4, W;s).

= 0" is the target network parameters, which are periodically copied from
6 (e.g., every 100 steps) to stabilize training.

m O(s, a5 0) and Q(s’, a’; 67) represent the Q values predicted by the eval-
uation network and the target network, respectively, the former based
on the current parameter § and the latter based on the parameter 6,
which is updated with delay.

5. Design of Key Nodes Identification Algorithm Based on Deep
Reinforcement Learning

Based on the given framework design, the algorithm for identifying
key nodes of a heterogeneous network based on the DQN is designed
as follows (as shown in Figure 4):
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Figure 4. The algorithm for identifying key nodes in a heterogeneous network
based on DQN.

Step 1. Build two neural networks with the same structure, namely
the evaluation network and the target network. Initialize the parame-
ters of the evaluation network as 6 and set - = 6. Initialize the param-
eters of the target network as 6-.

Step 2. Input the current observation state S, into the evaluation
network. Use the neural network to predict the value of each action
Q(S;, Ay; 0) under the state S;.

Step 3. According to the e-greedy strategy, select action A;. This
means that with a probability of 1 — &, we select the action with the
highest O value, and with a probability of &, we randomly select an
action.
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Step 4. The action A, acts on the environment, producing a new
state S;.1.
Step 5. Environment output reward R,.

Step 6. Store [S;, A;, Ry, Si11] in the memory buffer.

Step 7. Update the current state to Sy as input to the neural net-
work and go to step 2.

Steps 1 through 7 are the process of interaction between the agent
and the environment. After a certain number of interactions, the
agent trains the neural network based on the trajectory data stored in
the memory buffer, as shown in the following steps.

Step 8. Use the experience replay strategy to randomly sample a
certain amount of recorded data from the memory buffer.

Step 9. The sampled data is separately inputted into the evaluation
network and the target network.

Step 10. The evaluation Q value, denoted as Q(s, a; 0), is calcu-
lated using the evaluation network for the sampled action 4 in state s.

Step 11. The target Q value, denoted as min, Q(s’, @’; 07),
r+7y miny O(s’, a’; 67), is calculated using the target network with the
minimum Q value in state s’. Where 7 represents the immediate
reward obtained by taking action a, y € [0, 1] is the discount factor
that balances the importance of future rewards.

Step 12. To train the neural network 6, we use the mean squared
error (MSE) to evaluate the error between the evaluation Q value and
the target Q value. The MSE is calculated as:

2
L) = E[r +ymin Q(s’, a’; 67) — O(s, a; 0)] . (16)

The MSE is also the loss function of the deep neural network. The
gradient of the loss function with respect to the parameter 6 is:

Vo L(6) =

- s : a7)
E[r +ymin O(s', a'; 67) — O, a3 6)] Vo OCs, a; 0).

According to this gradient, perform one step of gradient descent on
the parameter 0:

0—0—a-VeL(O) (18)

where « is the learning rate of the deep neural network.

Step 13. When using gradient descent to update parameters, the
parameters 6 of the O network are updated once per step, while the
parameters 6 of the target O network are updated a fixed number of
times per iteration.

Step 14. Training terminates when the ANC reduction rate falls
below a threshold (0.1% per 1000 iterations).
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I 6. Experimental Results and Analysis

| 6.1 Experimental Settings

Table 2 presents the main parameter settings for this experiment. All
experiments were conducted on a system with 16GB of memory and
an RTX 3070 GPU, using the Python programming language. The
model was implemented using PyTorch 1.10.1 and trained with the
Adam optimizer.

Parameter Name | Value Description

Memory capacity | 500 DQN memory buffer size

Batch size 32 The number of experiences used in the
memory buffer each time

Training episode |16 000 Number of agent operation training
episodes

Learning rate « 0.00001 Adam optimizer learning rate

Exploration 0.9 The probability of agent selecting an

probability & action based on the model

Discount factor y |0.9 The weight of future rewards

Activation Leaky_relu |Neural network activation function

function o

Table 2. Model-related parameter settings.

| 6.2 Experimental Data

First, the algorithm model is trained on the simulated network in this
paper. The simulated network is a heterogeneous network with 30
nodes generated, including three types of nodes. There are 2000 train-
ing set networks. The test set includes 200 networks with a node scale
of 30. Simulated heterogeneous networks for validation are based on
random networks, Barabdsi—Albert networks and Watts—Strogatz net-
works, with node sizes of 30, 60 and 120, respectively. One hundred
graphs are randomly generated for each node size. Such a setting is to
verify the mobility of the DRLKHN framework under different
network sizes, and then the network is collapsed and the average
performance is calculated using the evaluation model. In testing on
the real FINC [46] network, comprised of 89 nodes and 155 edges,
there are three types of nodes: S, D and I, with 51, 25 and 13 nodes,
respectively.

| 6.3 Baseline

Baseline methods include centrality-based methods, where centrality
methods primarily use node structural centrality as selection criteria
in sequence, incorporating local or global structural metrics such as
degree, eigenvector, closeness and PageRank. An adaptive version is
employed, meaning after each node removal, all centrality metrics are
recalculated for all nodes, and the next node is selected based on
updated values. Accordingly, the methods are referred to as high
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degree adaptive (HDA), high eigenvector adaptive (HEA), high close-
ness adaptive (HCA) and high PageRank adaptive (HPA).

| 6.4 Time Complexity Analysis

To analyze the time complexity of the DRLKHN, we need to focus on
the key components and steps of the algorithm that influence the over-
all computational complexity.

Action Space Analysis

In the action space, each action corresponds to selecting a node for
attack. The node features are extracted using a GCN, which requires
matrix operations involving the adjacency matrix and feature matrix.
The time complexity for a single GCN layer with adjacency matrix A,
feature matrix F and weight matrix W is O(N2 + Nd), where N is the
number of nodes and d is the number of features per node. For k lay-
ers of a GCN, the complexity increases linearly with the number of
layers: O(k(N2 + Nd)), but it increases quadratically with the number
of nodes N.

The overall complexity for action space calculation is
O(k(N? + Nd)).

State Space Analysis

The state space is computed by summarizing the node feature vectors
to form a representation for the entire graph. To compute X, the rep-
resentation vectors of all nodes are summed up, and matrix multipli-
cations involving the parameters W, and Wj are performed. The
summation step involves adding up all node feature vectors, which
has complexity O(Nd). The matrix multiplication has a complexity of
O(dz), considering the learnable matrix W, and Wj.

The overall complexity for state space calculation is O(Nd + d?).

Reward Function Analysis

The reward calculation involves computing the connectivity of the
graph after node removal. The complexity of this step depends on the
underlying graph structure. If connectivity is checked by a graph
traversal, the time complexity will be O(N + E), where E is the num-
ber of edges in the graph.

The overall complexity for reward calculation is O(N + E).

Loss Function and Q-Function Analysis

The Q-function is estimated using a neural network that involves
matrix multiplications for the state-action pair (state S, and action A;)
and the representation matrix Xg. We assume a two-layer neural
network with ReLU activations. The time complexity for each
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forward pass is O(Nd +d?), where d is the dimension of the feature
space.

The overall complexity for the Q-function is O(Nd + d?) per for-
ward pass.

Experience Replay and Gradient Descent Analysis

During training, the experience replay buffer stores the transitions.
When training the model, a batch of size B is sampled from the mem-
ory buffer, and the Q-values are updated using the loss function. The
complexity of experience replay and backpropagation depends on the
batch size B and the size of the neural network. For a neural network
with L layers, each with d units, the complexity per update is
O(BLd?).
The overall complexity per training step is O(BLdZ).

Overall Complexity per Iteration

For each iteration, we calculate the state, action, reward and Q-
values, which involves multiple steps: feature extraction, reward
computation, forward pass through the neural network and loss/back-
propagation. Assuming there are N nodes, d features and B samples
in a batch, the time complexity per iteration is determined by:

O(k(N* + Nd) + N + E + Nd + d* + BLd?) (19)
where:
» N is the number of nodes;
» d is the feature dimension;
» E is the number of edges in the graph;
= B is the batch size for experience replay;
= L is the number of layers in the neural network;

» £ is the number of GCN layers.
In Table 3, the time complexity of DRLKHN is compared with
other baseline algorithms. N is the number of network nodes.

Algorithm | Time Complexity

HDA O(N?)

HEA O(N*)

HCA O(N?)

HPA O(N?)

DRLKHN | O(k(N? + Nd) + N + E + Nd + d* + BLd?)

Table 3. Time complexity analysis.
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If the graph size is large (i.e., N and E are large), the complexity of
DRLKHN can become very high, because the computations in the
GCN layers and the neural network depend on the number of nodes
and feature dimensions. The complexity of the training step also
increases with the batch size B and the number of layers L in the neu-
ral network. Therefore, for large-scale graphs or complex network
structures, higher computational resources may be required.

| 6.5 Experimental Results and Analysis
6.5.1 Offline Training Results and Analysis

The model parameters were periodically saved every 250 iterations
during the training process. As the training progressed and the loss
function began to stabilize, the parameters saved at these intervals
were subsequently loaded into DRLKHN for further evaluation. The
performance of the model was assessed using the test set, where the
ANC value was calculated for each network, as shown in Figure 5. As
training advanced, the ANC values of DRLKHN on the test set consis-
tently decreased, gradually approaching convergence. This trend sug-
gests that the DRLKHN model was effectively trained and continues
to exhibit reliable performance on the test set, confirming its stability
and robustness over time.

0.8

0.7

0 200 400 600 800 1000 1200 1400
Number of training iterations/250

Figure 5. Convergence curve of DRLKHN on the test set.

6.5.2 Online Application Results and Analysis

Figures 6 through 8 illustrate a comparative performance analysis of
DRLKHN against the HDA, HEA, HCA and HPA methods. This
comparison is conducted across different network types, including
simulated random heterogeneous, scale-free heterogeneous and small-
world heterogeneous networks, with varying node scales. The objec-
tive of this experiment is to evaluate how well DRLKHN adapts and
performs across different network structures and sizes. The ANC
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metric is employed to quantify the performance of each method, pro-
viding a clear measure of their effectiveness under varying conditions.
In the random heterogeneous network (Figure 6), the ANC means
for HDA, HEA, HCA, HPA and DRLKHN at a node scale of 30 are
0.095, 0.091, 0.089, 0.105 and 0.094, respectively. For a node scale
of 60, the ANC means are 0.162, 0.160, 0.151, 0.173 and 0.094. At
node scales of 120 and 240, the ANC means for these methods are
0.305, 0.306, 0.304, 0.308 and 0.094; and 0.407, 0.410, 0.409,
0.408 and 0.094, respectively. As the node scale increases, HDA,
HEA, HCA and HPA show a significant decline in performance, with
their ANC mean increasing notably from the 30-node scale. In con-
trast, DRLKHN maintains stable performance and outperforms the
other methods in large-scale networks. For example, the ANC means
for HDA at node scales of 60, 120 and 240 increase by 6.6%, 20.9%
and 31.1%, respectively, compared to the 30-node scale. This is
because HDA, HEA, HCA and HPA rely on centrality-based node
selection, which works well in small networks but proves too simplis-
tic for large-scale heterogeneous networks. In such networks, an
optimal attack strategy must consider factors like node types and
internode interactions, which centrality metrics alone cannot capture.
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Figure 6. Comparison of ANC obtained by different attack algorithms on
simulated random heterogeneous networks.

In the Barabdsi—Albert heterogeneous network (Figure 7), the ANC
means for HDA, HEA, HCA, HPA and DRLKHN at a node scale of
30 are 0.158, 0.156, 0.155, 0.161 and 0.094, respectively. At a node
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scale of 60, the means are 0.135, 0.131, 0.130, 0.141 and 0.094. For
node scales of 120 and 240, the ANC means are 0.118, 0.113, 0.113,
0.125 and 0.094; and 0.108, 0.104, 0.102, 0.116 and 0.094, respec-
tively. As the node scale increases, the performance of HDA, HEA,
HCA and HPA gradually improves. For instance, the ANC means for
HDA at node scales 60, 120 and 240 decrease by 2.3%, 4.1% and
5.0%, respectively, compared to the 30-node scale. However,
DRLKHN consistently outperforms all other methods. This is because
in Barabasi—Albert heterogeneous networks, centrality metrics like
degree, eigenvector, closeness and PageRank still capture node impor-
tance, although their precision decreases as the network grows.
Despite this, these centrality-based methods cannot outperform
DRLKHN, as they do not fully consider factors such as node types
and network heterogeneity.
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Figure 7. Comparison of ANC obtained by different attack algorithms on sim-
ulated Barabasi—Albert heterogeneous networks.

In the Watts—Strogatz heterogeneous network (Figure 8), the ANC
means for HDA, HEA, HCA, HPA and DRLKHN at a node scale of
30 are 0.357, 0.365, 0.327, 0.355 and 0.094, respectively. At a node
scale of 60, the means are 0.345, 0.355, 0.313, 0.346 and 0.094. For
node scales of 120 and 240, the ANC means are 0.337, 0.350, 0.300,
0.340 and 0.094; and 0.333, 0.345, 0.296, 0.334 and 0.094, respec-
tively. As the node scale increases, the performance of HDA, HEA,
HCA, HPA and DRLKHN remains relatively stable, showing no
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significant changes. DRLKHN consistently outperforms the other
methods. This stability is due to the balanced connections and high
clustering in Watts—Strogatz networks, where centrality metrics like
degree, eigenvector, closeness and PageRank effectively capture node
importance across different scales. However, these centrality-based
methods fall short of DRLKHN, as they do not account for node
types and the network’s inherent heterogeneity.
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. % ~ %
0.05 0.051

HDA HEA HCA HPA DRLKHN HDA HEA HCA HPA DRLKHN
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o
8
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°
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HDA HEA HCA HPA DRLKHN HDA HEA HCA HPA DRLKHN

Figure 8. Comparison of ANC obtained by different attack algorithms on sim-
ulated Watts—Strogatz heterogeneous networks.

In summary, DRLKHN demonstrates consistent and superior per-
formance compared to HDA, HEA, HCA and HPA, with little varia-
tion across different network types and node scales.

We conducted experiments to validate the performance of
DRLKHN on a real dataset FINC (as shown in Figure 9). The normal-
ized connectivity variation curves of HDA, HEA, HCA, HPA and
DRLKHN on FINC are shown in Figure 10. The ANC values of
HDA, HEA, HCA, HPA and DRLKHN on FINC are shown in
Table 4. It can be observed in Figure 10 that the key nodes identified
by DRLKHN can rapidly decrease the normalized connectivity of
FINC. Table 4 shows that DRLKHN achieves robust performance on
the real-world FINC network, outperforming baseline methods by
28.6%, 32.2%, 12.7% and 36.3% over HDA, HEA, HCA and HPA,
respectively.
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Figure 10. Comparison of normalized connectivity obtained by different
attack algorithms on FINC networks.

HDA | HEA | HCA | HPA |DRLKHN
ANC |0.1288 |0.1356 |0.1054 |0.1444 0.092

Table 4. Comparison of ANC obtained by different attack algorithms on
FINC networks.
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The outstanding performance of DRLKHN on both simulated and
real networks stems from its use of a combination of the GNN and
DRL. This approach enables DRLKHN to better learn and under-
stand the complex structures of heterogeneous networks. Compared
to traditional attack methods based on single centrality metrics,
DRLKHN leverages deep learning models to capture more network
features and intricate relationships between nodes. This end-to-end
learning capability allows DRLKHN to flexibly adjust strategies when
confronted with networks of varying scales and structures, thereby
maintaining stable performance across different scenarios.

I 7. Conclusion

This paper proposes a deep reinforcement learning—based heteroge-
neous network key nodes identification (DRLKHN) method based on
the graph convolution network (GCN) and the deep Q-network
(DQN). We first describe the key nodes identification problem, for-
mulate the objective function and constraints and then design a deep
reinforcement learning (DRL) framework and algorithm for key
nodes identification. The model is then trained offline and applied
online, validating the superiority of the proposed method through sim-
ulations and real network applications. The results show that,
compared to the existing methods high degree adaptive (HDA), high
eigenvector adaptive (HEA), high closeness adaptive (HCA) and high
PageRank adaptive (HPA), DRLKHN delivers stable and optimal per-
formance in simulated networks. In the real network, FINC,
DRLKHN outperforms the other four methods in terms of preventing
network breakdown. Specifically, DRLKHN improves performance
by 28.6%, 32.2%, 12.7% and 36.3% over HDA, HEA, HCA and
HPA, respectively.

DRLKHN is a fully data-driven method that requires no prior
knowledge, self-learning the global impact of the nodes on the net-
work, thereby enhancing the accuracy and reliability of identified key
nodes. However, DRLKHN has a relatively high time complexity, but
it combines GCN and reinforcement learning methods, enabling it to
handle the complex relationships between graph structures and node
features. This makes it well suited for applications that require attack
and defense tasks on graphs. Its flexibility and multilayered structure
give it an advantage in complex tasks, but it also requires more com-
putational resources to support both training and inference.

DRLKHN is primarily validated on static, medium-scale heteroge-
neous networks with N < 240. For super-large networks of N > 103,
the quadratic complexity of GCN operations and DQN training poses
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significant computational challenges, which could be mitigated via
techniques like graph sampling or federated learning. Furthermore,
dynamic networks (e.g., time-evolving topologies), multilayer net-
works (e.g., interdependent interactions) and weighted heterogeneous
networks (e.g., edges with varying interaction strengths) remain unex-
plored. Addressing these scenarios would require model extensions.
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