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Lighting  systems  in  commercial  and  residential  buildings  constitute  a
major  source  of  the  world  energy  consumption.  Optimizing  energy
efficiency  through  lighting  management  requires  an  optimal  control
strategy in order to balance daylighting requirements while maintaining
visual comfort in illuminated spaces. This paper introduces a reinforce-
ment  learning  (RL)–based  approach  using  the  Q-learning  algorithm  to
optimize  lighting  and  shading  control,  maintaining  constant  illumi-
nance  with  maximum  visual  comfort.  A  prototype  was  developed  in  a
laboratory  to  test  the  scenario,  using  internet  of  things  (IoT)  and arti-
ficial  intelligence  (AI)  technologies,  for  lighting  and  shading  control.
AI  techniques  are  integrated  to  enable  a  smart  conversation  between
lighting  and  shading  systems  in  order  to  maintain  the  required  light
level.  A  real-time  chatbot  based  on  natural  language  processing  (NLP)
is  integrated  with  IoT  techniques  in  order  to  provide  a  user-friendly
building  automation  system.  Experiments  have  been  conducted  for
validation  purposes  and  obtained  results  show  the  effectiveness  of  the
proposed  solution  by  maintaining  the  ideal  level  of  lighting  with
efficient  consumption.  In  fact,  the  proposed  control  is  capable  of  opti-
mizing  energy  consumption  by  more  than  45%  against  a  normal  light-
ing  operation  while  maintaining  occupants’  visual  comfort  within  a
suitable illuminance. 
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Introduction1.

Lighting  systems  account  for  more  than  20%  of  the  world’s  total
energy  consumption  [1].  They  also  become  one  of  the  important  fac-
tors  in  maintaining  visual  comfort  by  taking  into  consideration  the
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context-dependent  occupant’s  perception  and  activity.  Therefore,  an
energy-efficient lighting control is required for balancing the compro-
mise  between  energy  saving  and  occupant  satisfaction.  In  fact,  the
lighting  system  is  related  to  many  other  metrics  that  could  signifi-
cantly  decrease  the  energy  consumption,  such  as  the  shading  system.
The shading system allows a natural lighting, which is considered as a
renewable  energy  by  substituting  for  artificial  light  [2,  3].  Incoming
illuminance from daylight also enhances wellbeing and the occupants’
productivity.  Thus,  developing  intelligent  lighting  control  should  take
into  consideration  the  shading  system  control  in  order  to  provide
maximum visual comfort and minimum energy consumption.  

With  recent  information  and  communication  technologies  (ICT)
techniques, building automation is advancing nowadays and it can be
considered  as  a  complex  system,  which  is  composed  of  different  enti-
ties  (e.g.,  sensors,  actuators,  electrical  appliances,  computers).  These
might  interact  in  a  collective  manner  for  efficient  balance  between
energy efficiency and occupants’ comfort [4]. The IoT is considered as
an  enabler  for  developing  a  worldwide  network  of  interconnected
objects or things that cooperate with other services to reach common
goals.  Currently,  sensing,  actuation,  processing  and  control  become  a
daily  life  need  in  many  context-aware  applications  in  agriculture,
transportation,  healthcare,  building  automation  and  energy  efficiency
[5].  In  parallel  to  these  advances,  artificial  intelligence  (AI)  chatbots
are  widely  approved  nowadays  as  a  smart  conversation  between
devices and users in order to provide a user-friendly building automa-
tion  system  [6].  The  goal  of  using  a  chatbot  is  to  understand  the
context of a conversation and process information from their environ-
ment  in  order  to  learn  from  it  and  improve  the  context.  Based  on
natural language processing (NLP), the chatbot can provide many fea-
tures  to  users,  such  as  tokenization,  classification,  matching  actions
and a lot of other techniques in order to derive meaning from it. 

This  paper  focuses  on  optimizing  the  tradeoff  between  energy  effi-
ciency and visual comfort in the management of lighting and shading
systems.  An  optimal  control  strategy,  integrating  recent  AI  tech-
niques, is introduced in order to balance between shading and lighting
operations  while  regulating  the  light  intensity.  This  approach  was
operated and implemented using a platform that combines IoT and AI
technologies  for  real-time  monitoring,  processing  and  control  for
building services. The proposed control was evaluated using two met-
rics:  the  visual  comfort  (i.e.,  the  level  of  the  illuminance,  comfort
mode) and the energy metrics (i.e., the lighting level, shading level, the
power  consumption).  Experiment  results  have  been  reported  to
demonstrate that the proposed control is capable of optimizing energy
consumption  by  more  than  45%  against  a  normal  lighting  operation
while  maintaining  occupants’  visual  comfort  within  a  constant
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illuminance.  In  addition,  the  proposed  system  offers  an  AI  chatbot
that provides an intermediary between users and devices. The chatbot
allows  users  to  check  the  status  of  their  systems  and  even  control
them  accordingly.  In  summary,  the  main  contributions  of  this  paper
are  as  follows.  An  energy-efficient  lighting  control  strategy  is  devel-
oped  and  deployed  in  real  scenarios.  This  strategy  combines  shading
systems and lighting devices using IoT and AI algorithms, learns from
a  contextual  change  and  adjusts  between  the  shading  and  lighting
devices  to  meet  the  maximum  visual  comfort.  An  AI-based  chatbot
based on NLP techniques is then deployed in order to understand con-
text and remotely control the lighting and shading systems. 

The  organization  of  the  rest  of  this  paper  is  as  follows.  Section  2
presents an overview of the major aspects, which have been proposed
for  reducing  energy  consumption  in  buildings  together  with  existing
control  strategies  of  lighting  and  shading  systems.  In  Section  3,  the
proposed  control  strategy  is  introduced  and  implements  the  Q-learn-
ing algorithm in order to achieve maximum visual comfort. Section 4
presents the monitoring and processing platform prototype for gather-
ing and processing data sensors and actuators of the real-lab scenario.
Experimental  setup  and  results  of  a  lighting/shading  system  are  pre-
sented  in  Section  5,  together  with  the  obtained  AI-based  chatbot  per-
forming  automatic  control  of  both  lighting  and  shading.  Conclusions
and perspectives are given in Section 6. 

Background and Related Work   2.

Recent  studies  showed  that  buildings  require  energy-efficient  control
approaches  in  order  to  balance  between  energy  efficiency  and  occu-
pants’  comfort  [7,  8].  These  approaches  need  to  include  the  actual
context of the building’s envelope and the occupants’ behavior. Gener-
ally,  three  major  aspects  can  be  considered  for  reducing  energy  con-
sumption as depicted in Figure 1.  

Passive  strategies  have  been  developed  for  reducing  energy  con-
sumption by developing less-energy-consuming equipment and materi-
als in buildings. Natural lighting, room relocation, natural ventilation
and  increased  building  insulation  are  examples  of  emerging  tech-
niques,  which  use  natural  forces  to  minimize  electricity  consumption
[9].  In  fact,  the  architecture  design,  building  envelope  and  orienta-
tions  can  influence  energy  reduction.  Therefore,  the  passive  design  of
the building must be considered in the phase of construction in order
to reduce the final energy usage during its operation. 

Active strategies have been developed for reducing energy consump-
tion  in  all  building  applications  and  services  by  integrating  ICT  con-
cepts  [10,  11].  The  active  strategy  came  after  the  construction  of  the
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building  by  controlling  its  services  with  the  aim  to  improve  energy
saving.  Efficient  control  strategies  (e.g.,  heating,  ventilation  and  air
conditioning  (HVAC)  control,  lighting  control)  are  required  by  using
advanced  analytics  and  real-time  data  monitoring  and  processing
(e.g., IoT and Big Data technologies). 

The third aspect is related to renewable energy sources and storage
devices  (i.e.,  solar,  wind  and  fuel  cell)  integration  by  developing  new
demand/response  solutions  in  order  to  reduce  energy  dependency
from the utility grid [12]. 

Figure 1. The three major aspects for reducing energy consumption.  

This  paper  targets  the  second  aspect  by  controlling  lighting  and
shading systems. It aims to integrate advanced ICT techniques, which
are required to develop context-driven control approaches taking into
consideration  occupants’  needs  and  behaviors.  In  previous  work  [13,
14],  we  have  developed  context-driven  approaches  for  HVAC  and
ventilation systems and compared them against conventional controls,
such  as  ON/OFF  and  proportional-integral-derivation  (PID)  strate-
gies.  The  aim  was  to  show  their  effectiveness  for  maintaining  occu-
pants’  comfort  and  energy  savings.  Since  ventilation  systems  [13]  are
the  most  studied  building  system,  we  focused  on  them  to  further
reduce  energy  consumption  while  keeping  occupants’  comfort  within
acceptable  limits.  We  then  developed  an  intelligent  control  approach
for  heating  and  air  conditioning  systems  [14]  by  optimizing  tempera-
ture  set  points  and  operation  modes  while  providing  the  desired
indoor environment’s quality at minimum energy consumption. 

Most control approaches used in lighting control are based on pre-
defined  rules  or  time-triggered  approaches  [15,  16].  In  fact,  various
research  around  the  word  uses  centralized  methods  to  switch  ON  or
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OFF  buildings’  services  (i.e.,  HVAC,  ventilation,  lighting)  according
to  fixed  schedules  [17].  For  example,  lighting  services  are  generally
controlled  based  on  a  time-triggered  approach  or  automatic  lighting
based on occupancy. The lighting systems depend initially on the con-
trol  approach  used  to  adjust  the  intensity  illuminance  manually  or
automatically  through  context  awareness,  such  as  the  perception  and
the  activities  of  occupants.  Considering  the  large  number  of  studies
regarding  lighting  control,  only  a  few  research  projects  have  consid-
ered the comfort and environmental aspects. In fact, visual comfort is
related to the indoor lighting conditions of the building. Adjusting the
light based on the occupant’s activity is highly recommended in order
to allow a good view in illuminated spaces. Several models were devel-
oped to predict the visual comfort, for instance, the proposed daylight
glare  probability  (DGP)  method  [18].  This  computes  the  discomfort
glare  metric,  taking  into  consideration  the  daylight  conditions  in
order to enhance a good indoor illuminance. 

Q-learning  is  a  widely  used  reinforcement  learning  (RL)  algorithm
that  enables  an  intelligent  system  to  make  optimal  decisions  by
interacting  with  its  environment  [19].  Unlike  rule-based  approaches,
Q-learning can adapt over time by learning the best actions to take in
different  situations  without  requiring  a  predefined  model  [20].  This
approach  is  particularly  effective  for  dynamic  systems  like  lighting
and  shading  control,  where  conditions  change  frequently  due  to  day-
light variations, occupancy and energy demands. 

IoT  technologies  have  progressed  from  the  convergence  of  wireless
and  wired  infrastructures.  The  IoT  is  considered  as  an  enabler  for
developing  a  worldwide  network  of  interconnected  objects  or  things
that  cooperate  with  other  services  to  reach  common  goals  [21].
Currently,  sensing,  actuation,  processing  and  control  become  a  daily
life  need  in  building  automation  and  energy  efficiency  [22].  These
applications could react to the environment’s changes and users’ pref-
erences with the aim to make their life more comfortable according to
their  situation.  For  example,  data  generated  from  the  metric-based
sensors in buildings could be used to predict the activity of the user in
real  time  and  control  a  service  accordingly  by  turning  on/off  or  even
adjusting the equipment in order to save energy and to maintain occu-
pants’ comfort. 

In  fact,  many  research  projects  aim  to  integrate  an  intelligent  con-
versational software agent (i.e., chatbots) with IoT scenarios in appli-
cations,  which  collect,  process  and  act  in  real  time  according  to  the
context  changing  [23].  There  are  two  types  of  chatbots  that  perform
as  intelligent  conversational  agents:  the  rule-based  chatbots  operating
under predefined rules that give a matching response to users and the
AI-based  chatbots  that  use  NLP  in  order  to  analyze  users’  requests.
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AI-based  chatbots  offer  users  a  simple  way  to  interact  with  the
devices of a building and make requests by sending a simple message,
which is processed by NLP techniques. 

In  this  paper,  we  aim  to  combine  the  AI-based  approach  and  IoT
techniques  for  lighting  and  shading  control  in  order  to  maintain  the
required  light  level  and  occupants’  visual  comfort.  However,  gather-
ing  and  real-time  processing  of  generated  data  is  still  a  challenging
task. Several wireless technologies have been implemented in building
automation,  such  as  ZigBee,  Z-Wave,  Bluetooth  and  Wi-Fi  [24].
These technologies differ in range and data bandwidth, thereby affect-
ing  the  reliability  and  performance  of  the  signals  employed  in
controlling building devices. It is worth noting that Wi-Fi is the latest
technology  used  in  building  and  home  automation,  which  runs  with
higher  range  and  data  bandwidth  [25].  Many  IoT  devices  currently
make  use  of  Wi-Fi  in  order  to  transmit  and  receive  information
wirelessly. 

In summary, with recent ICT techniques, approaches to the control
of  building  systems  are  advancing  and  could  integrate  IoT,  Big  Data,
context-driven strategies and AI technologies. These control strategies
leverage collected data using different wearable sensors and devices in
order  to  perform  hybrid  control  for  building  services  through  a  high
context  awareness  [26,  27].  While  several  studies  in  the  literature
have  addressed  lighting  control,  to  the  best  of  our  knowledge,  few
have  intelligently  integrated  both  shading  and  lighting  systems  to
adjust illuminance levels for optimal visual comfort. 

Optimal Lighting Control Approach   3.

This  section  presents  the  proposed  control  approach  for  lighting  and
shading  systems  in  order  to  balance  energy  efficiency  and  the  user’s
wellbeing.  The  lighting  and  the  shading  controls  are  introduced  sepa-
rately, taking into consideration the comfort level of illuminance. The
proposed  controls  are  performed  by  an  AI  agent  with  the  Q-learning
algorithm  that  balances  between  the  lighting  and  shading  operations
in  order  to  reach  the  maximum  visual  comfort.  Regarding  the  energy
efficiency,  the  daylight  coming  from  shading  devices  as  natural  light
may  decrease  significantly  the  operation  and  the  intensity  of  artificial
light and thus can save energy.  

The  recommended  lighting  illuminance  depends  on  the  workspace
and the occupant’s activity according to the National Optical Astron-
omy Observatory (NOAO) [28]. For instance, the ideal lighting illumi-
nance  in  a  home  is  between  400  and  500  lux  with  a  normal  activity,
such as reading, watching TV or cooking [29]. 
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The illuminance is quantified in lux (i.e., the luminous flux per unit
area),  which  is  the  unit  of  light  level.  It  can  be  computed  by  the  fol-
lowing relation: 

I 
LICuLLF

AI

. (1)

The  parameters  are  as  follows:  I  is  the  illumination  (lux,  lumen/m2),
LI  is  the  lumen  per  lamp  (lumen),  Cu  is  the  coefficient  of  utilization,

LLF  is  the  light  loss  factor,  and  AI  is  the  area  per  lamp  (m2).
To obtain the illuminance in lux, our AI agent gathers the photoresis-
tor’s  value  in  ohms  and  converts  it  based  on  the  data  provided  in
Table 1 [29]. 

Symbol Quantity Conversion/Value 

Vin supply voltage 5v

R constant 10000 

Raw sensor output value sensor value 

Vout analog value of the sensor Vout  Raw 
Vin

1024
 

RLDR resistance RLDR  R
Vin-Vout

Vout
 

lux resistance lux 
500

RLDR

1000

 

Table 1. Illuminance properties.  

Artificial Intelligence–Based Agent  3.1

The  proposed  control,  which  is  illustrated  in  Algorithm  1,  ensures
that  occupants  receive  the  recommended  illuminance  level,  offering
the  flexibility  to  configure  their  preferred  comfort  mode.  Users  can
select from predefined modes, such as watching TV, reading or cook-
ing,  or  create  a  personalized  mode  by  setting  their  desired  lighting
level.  The  AI  agent,  based  on  Q-learning,  balances  the  operation  of
lighting and shading systems by setting an automatic default mode of
500 lux. However, occupants have the option to increase the lighting
intensity  through  the  existing  preset  modes.  In  addition,  they  can
define  a  new  personalized  mode  with  specific  lighting  preferences.
The  AI  agent  prioritizes  achieving  the  ideal  illuminance  level  by  first
adjusting the shading system. If natural daylight is insufficient, it then
regulates the artificial lighting to meet the required lux level, ensuring
both energy efficiency and visual comfort.  

The  environment  is  modeled  using  three  state  variables  that  repre-
sent  the  dynamic  conditions  under  which  the  lighting  control  system
operates. First, the current lux level, which ranges from 0 to 900 lux,
reflects  the  ambient  light  intensity  available  in  the  room.  Second,  the
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shading  position  corresponds  to  the  percentage  of  window  coverage
and  is  continuously  adjusted  to  regulate  the  amount  of  natural  light
entering  the  space.  Finally,  the  lighting  level  represents  the  artificial
light  intensity,  which  can  be  varied  from  0%  to  100%  in  increments
of  5%,  allowing  fine-tuned  control  based  on  the  desired  illumination
and comfort level.

Algorithm 1. AI agent for lighting and shading control.

Input: User Mode (Auto or Manual), Database of modes and lux values

Output: Adjusted shading and lighting levels

Initialize AI_Agent1.

if Mode = Auto then2.

Set IdealLux ← 5003.

else4.

if User chooses an existing mode then5.

Retrieve IdealLux from Database for selected mode6.

else7.

Add a new mode with user-defined lux value to Database8.

Retrieve IdealLux from newly added mode9.

Perform Shading_Adjustment_Algorithm based on IdealLux10.

Perform Lighting_Adjustment_Algorithm based on IdealLux11.

The system’s action space consists of two primary operations: shad-
ing  control,  which  adjusts  the  shading  position  by  modifying  the
angle  of  openness  based  on  calculated  percentages;  and  lighting
control,  which  increases,  decreases  or  maintains  the  current  lighting
level. Indeed, to optimize learning, the system employs a reward mech-
anism  that  encourages  efficient  energy  use  while  maintaining  user
comfort.  A  reward  of  +10  points  is  granted  when  the  illuminance
remains  within the  ideal range  of 480–520  lux, while  a -1 penalty  is
applied if the lighting level is close to but slightly outside this range. A
-5 penalty is imposed for significant deviations from the target illumi-
nance,  and  additional  penalties  are  assigned  for  unnecessary  shading
or lighting adjustments, to prevent energy wastage. These values were
empirically  determined  based  on  iterative  testing  in  the  real-lab  envi-
ronment  to  ensure  fast  convergence  of  the  learning  process.  The  +10
reward strongly reinforces the goal state, while -1 and -5 enable dif-
ferentiation between minor and major deviations. Penalties on unnec-
essary actions further reduce energy consumption and promote stable
decisions.  The  learning  process  consists  of  two  phases:  exploration,
where  the  agent  initially  takes  random  actions  to  assess  their  effects;
and  exploitation,  where  it  leverages  previously  learned  Q-values  to
make optimal decisions that enhance lighting efficiency. 
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The proposed control integrates a movable shading system to maxi-
mize  the  incoming  daylight  in  order  to  decrease  the  use  of  artificial
lighting.  As  presented  in  Algorithm  2,  the  shading  control  can  auto-
matically move the blind to a calculated angle in order to increase the
indoor  lighting  based  on  the  occupant’s  preference.  In  cases  where
the blind is opened completely and there is a need of lighting, then the
lighting control is activated.  

Algorithm 2. Shading adjustment algorithm.

Input: IndoorLux, OutdoorLux, BlindLevel, IdealLux

Output: Lighting or shading control action

if OutdoorLux < 30 and BlindLevel > 0 then1.

Close the blind;2.

else if IndoorLux < IdealLux and BlindLevel < 100 then 3.

Increase shading level;4.

else if IndoorLux < IdealLux then 5.

Perform lighting adjustment;6.

else7.

Maintain current state;8.

The  lighting  control  technique,  as  shown  in  Algorithm  3,  is  per-
formed by an AI agent, which controls the intensity of light by adjust-
ing the lighting devices. The aim is to achieve the desired mode or the
automatic  mode  of  lighting.  It  takes  into  consideration  the  recom-
mended  level  of  illuminance.  The  lighting  control  is  activated  after
checking the operation of the shading control in order to allow maxi-
mum  daylight  for  energy  saving  and  occupant  wellbeing.  It  also
allows  the  occupant  to  go  over  the  lighting  standards  (i.e.,  between
400  and  500  lux)  by  choosing  or  creating  personalized  modes.  The
lighting  control  is  performed  by  a  dimmer  (i.e.,  using  pulse-width
modulation) in a values range between 0 and 255 converted into a per-
centage in order to get the lighting level. 

Algorithm 3. Lighting adjustment algorithm.

Input: IndoorLux, IdealLux, Occupancy

Output: Lighting control action

if Occupancy is false then1.

Turn light off2.

else3.

if IndoorLux < IdealLux then 4.

Increase light level;5.
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else if IndoorLux > IdealLux + 5 then 6.

Decrease light level;7.

else8.

Maintain current lighting;9.

Artificial Intelligence–Based Chatbot3.2

The  proposed  AI-based  control   is  mainly  based  on  the  processing  of
users’  needs,  particularly  for  the  adjustment  of  lighting  and  blinds.
The proposed algorithm, based on NLP techniques (i.e., classification,
sentiment  analysis,  matching  actions),  leads  to  the  processing  of  the
textual  inputs  in  order  to  derive  meaning  from  them  and  efficiently
perform  the  systems’  control.  We  have  proposed  a  general  architec-
ture  for  implementing  the  proposed  chatbot,  as  shown  in  Figure  2.
The  proposed  chatbot  has  been  implemented  using  open  source  soft-
ware  and  frameworks  based  on  novel  AI  and  IoT  technologies  that
include  the  NTLK  toolkit  [30],  an  open  source  platform  for  natural
language  processing.  The  NodeJS  server  hosts  the  web  application
and  the  chatbot  algorithm.  Our  chatbot  is  capable  of  understanding
natural  language  through  the  occupant’s  request  in  order  to  identify
the actions and the keywords. 

Figure 2. The architecture of the proposed chatbot.

We  first  receive  the  occupant’s  instructions  from  his/her  device,
which  is  connected  to  a  local  network  through  a  web  application
designed  as  a  conversational  agent.  Then  the  occupant’s  request  is
transmitted  to  the  NodeJS  server  (non-blocking  server)  in  order  to
process the sentence by our algorithm based on NLP. In our solution,
we  have  used  our  knowledge  database  in  order  to  adjust  and  adapt
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the  results  to  the  occupant’s  environment.  The  AI-based  chatbot  is
capable of expanding the response to the same action through a well-
provided  knowledge  database  (i.e.,  JSON  file).  This  latter  integrates
an  algorithm  that  uses  a  sentiment  analysis  technique  that  classifies
the users’ requests into overall negative and positive sentiments.

After  the  processing,  the  result  is  transferred  over  the  gateway
(Raspberry  Pi)  to  the  actuators  with  the  intention  of  performing  the
control  tasks  (i.e.,  adjusting  the  illuminance  of  lighting  or  regulating
the shading percentage). In fact, the process retrieves the confirmation
from the actuators in order to generate a suitable response (processed
or not) to the occupant.

Our  NLP  chatbot  algorithm  is  distributed  in  two  phases  to  opti-
mize and sharpen the results in order to meet the users’ need with pre-
cision as shown in Figure 3.

Figure 3. The proposed algorithm.

The first step is to classify the sentence to get the matching actions
and at the same time use tokenization. In this step, we parse the input
string to find the matching keywords. The second step uses the knowl-
edge  database  that  contains  both  the  keywords  and  the  actions.  The
keywords list contains all the tokens that refer to our system, such as
light, shading, kitchen, temperature, status and so on. The actions list
covers  all  the  functions  that  should  be  performed  by  the  IoT  system,
such as ON, OFF, increase, decrease, turn, put and so on. The tokens
generated  from  the  tokenization  process  are  passed  to  the  phonetic
matching,  in  which  each  word  is  analyzed  based  on  the  knowledge
database.

The  output  of  the  tokenization  process  is  passed  to  the  phonetic
matching  stage,  where  each  input  word  is  compared  with  the  knowl-
edge-base keywords. The top-rated words resulting from the tokeniza-
tion  and  phonetic  matching  are  then  processed  using  the  Hamming
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distance method to select the most accurate matching keywords. How-
ever,  for  the  classification  technique,  we  used  the  sentiment  analysis
method as the most common use case for automatic text classification.

This  technique  determines  the  nature  of  the  action  and  then  pre-
pares  the  corresponding  response  after  what  the  stemming  derives  to
contextualize  the  actions.  The  goal  of  this  process  summarizes  the
algorithm  that  will  produce  keywords  and  actions  of  an  actual  con-
text to operate.

Platform Architecture   4.

This  section  presents  the  platform  architecture  and  its  hardware  and
software  components.  This  platform  implements  the  real-time  moni-
toring,  processing  and  the  above-mentioned  control  techniques.  The
developed platform is composed of three main layers, which are illus-
trated in Figure 4 as follows: data collection, data processing and data
storage/visualization.  

Figure 4. The platform architecture layers.  

For  handling  data  coming  from  the  lighting  and  shading  systems,
the platform is composed of hardware and software components that
are  presented  in  the  following  subsections:  hardware  components  are
mainly composed of sensors and actuators (i.e., LDR and PIR sensors
and  servomotors),  and  software  components  are  provided  by  the  two
main layers of the platform as illustrated in Figure 5. 
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Figure 5. The representation of the developed prototype.  

Sensing and Control Modules  4.1

The  sensing/actuating  modules  are  embedded  in  an  ESP8266
NodeMCU  microcontroller  as  an  IoT  unit  for  gathering  illuminance
values  and  the  operation’s  state  of  the  system.  This  incoming  data  is
intercepted by the message queuing telemetry transport (MQTT) bro-
ker  server  that  performs  some  preprocessing  functions,  such  as  pars-
ing  and  aggregation,  before  transmitting  them  to  the  NodeJS  server,
which  constantly  waits  for  incoming  data.  The  main  hardware  mod-
ules that have been deployed are as follows:  

◼ Light-depending  resistance  (LDR)  sensor/photoresistor:  made  of  high-
resistance  semiconductor,  it  is  used  in  circuits  for  lighting  intensity
detection. The value returned by the sensor is in ohms and can be con-
verted to lux. 

◼ Passive infrared sensor (PIR): a motion sensor that detects infrared light
radiation  from  moving  things  or  people  in  order  to  activate  or  not  the
lighting system. 

◼ SG90 servomotor: a 5v motor controller that rotates with 180 degrees.
It  is  used  in  our  case  for  controlling  the  shading  system  in  order  to
allow incoming daylight into the test-lab prototype. 

◼ 5mm  LED:  a  light-emitting  diode  used  as  artificial  lighting.  It  is  con-
trolled  via  a  pulse-width  modulated  (PWM)  signal  in  order  to  adjust
the intensity of illuminance. 

◼ ESP8266  NodeMCU:  an  open  source  IoT  component  that  includes  the
ESP8266 Wi-Fi module, which could be integrated with various sensors
and  actuators  through  its  GPIOS  [31].  In  our  case,  we  used  two
NodeMCU boards for lighting and shading systems. 

◼ Raspberry  Pi  3  B+:  used  as  a  broker  server  and  the  preprocessing  unit
that transmits and receives data from the processing server (i.e., NodeJS
server [32]). 
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Data Collection, Processing and Visualization  4.2

In the proposed platform, we have chosen NodeJS, which works with
an NLP module [33] in order to perform AI actions. The platform lay-
ers are composed of three main services:  

◼ Data collection is represented by a MQTT broker to gather the incom-
ing data from sensors and actuators in order to transmit these values to
the processing layer for more analysis and control. 

◼ Data  processing  is  performed  by  the  NodeJS  server,  which  integrates
the  AI  agents  presented  in  the  third  section.  It  allows  the  communica-
tion of the shading and lighting systems in order to achieve the desired
illuminance  based  on  the  occupant’s  perception.  Occupant  perception
in  this  context  refers  to  the  individual’s  subjective  comfort  regarding
light  intensity.  It  is  modeled  indirectly  through  selected  activity  modes
(e.g.,  reading,  watching  TV,  eating),  which  correspond  to  predefined
illuminance  thresholds.  The  proposed  control  allows  the  occupant  to
interact  with  the  systems  and  choose  the  mode  of  operation  based  on
ongoing activities. It also includes a user interface that enables the occu-
pant to select preferred modes of operation, which serve as input to the
AI decision process.

◼ Data  visualization  is  a  web  application  based  on  JavaScript  and  the
ChartJs  plugin  to  generate  charts  of  different  metrics  of  the  system.  It
also  integrates  an  AI  interface  that  allows  the  occupant  to  control  the
lighting  intensity  by  choosing  a  lighting  mode.  The  occupant  can  also
add his/her preferences into the system. The data storage is managed by
MongoDB, which collects the values every two seconds during the data
capture of the experiment. 

Experimental Setup and Results5.

The  main  purpose  of  these  experiments  is  to  control  the  lighting  sys-
tem combined with the shading system in order to improve maximum
visual  comfort  and  minimum  energy  consumption.  During  these
experiments,  we  realized  several  series  of  tests  with  varied  weather
conditions  in  order  to  highlight  the  performance  of  the  system.  We
then  considered  only  one  day  in  this  paper  for  easy  visualization  of
the results. In this case study, we have set up a laboratory test to mea-
sure and control the lighting and the shading systems.  

As  shown  in  Figure  6,  the  prototype  includes  four  rooms:  a
kitchen, a main room, a guest room and a living room. In each room,
two LDR sensors were deployed at different angles to capture varying
light  conditions  and  compute  the  average  illuminance  level.  We  have
designed the prototype with a window in each room to perform shad-
ing control. For comparison purposes, we have used the proposed con-
trol  in  three  rooms  (i.e.,  kitchen,  main  room  and  living  room)  and  a
natural control with no shading in the guest room.
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Figure 6. The laboratory test prototype.  

We  have  evaluated  four  main  metrics  for  the  proposed  control
against the natural control: 

the outdoor illuminance for the two sides of the prototype (i.e., the sun-
rise and sunset sides) in order to get the amount of daylight 

1.

the indoor illuminance, which directly affects the occupants’ wellbeing 2.

the artificial lighting rate and the blind position 3.

the total energy consumption during the PWM operation periods4.

As illustrated in Figure 7, the outdoor illuminance depends primar-
ily  on  the  position  of  the  sunlight.  We  have  captured  the  daylight  on
two  sides  of  the  test  lab  (i.e.,  the  sunrise  illuminance  was  the  right
side and the sunset was the left side of the test lab). The chart shows
for  each  side  an  exponential  curve  at  some  period  of  the  day  and  a
decreasing  on  the  other  side.  For  instance,  the  sunrise  sensor  collects
values from 8am to 4pm and the sunset sensor from 12am to 9pm. By
considering these values, the AI agent can balance between the differ-
ent  blinds  in  each  corresponding  side  and  choose  which  angle  oper-
ates to satisfy the desired level of lighting. 

The  indoor  illuminance  was  captured  for  each  room  as  shown  in
Figure 8. An automatic mode (i.e., maintaining 500 lux) is performed
by  the  three  rooms  described  previously,  and  artificial  lighting  is
performed in the guest room with a blind completely open. Regarding
the  shading  operation,  we  observe  in  Figure  9  that  the  blinds  are
adjusted  according  to  the  available  daylight  by  the  corresponding
side.  The  opening  level  of  these  blinds  depends  on  the  sun  position.
For  example,  the  kitchen  blind  changes  from  100%  during  the
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Figure 7. The outdoor illuminance (sunrise/sunset).  

Figure 8. The indoor illuminance per room.  

Figure 9. The shading operation (%) per room.  

journey  because  it  is  oriented  to  the  sunrise  direction  and  starts  clos-
ing in the afternoon since there is a decreasing of the sunlight on this
side.  Through  the  shading  control,  the  proposed  control  maximizes
the entrance of sunlight in order to minimize the use of artificial light-
ing.  In  correspondence  with  these  results,  the  lighting  control  is  acti-
vated  when  the  desired  level  of  lighting  is  not  satisfied  by  only  the
incoming sunlight. As shown in Figure 10, the guest room simulated a
normal  control  with  100%  of  lighting  in  contrast  to  the  proposed
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control  in  other  rooms,  in  which  the  lighting  operation  is  reduced
through  the  use  of  an  AI  agent  that  balances  between  sunlight  and
artificial lighting. 

Figure 10. The lighting operation (%) per room.

Finally,  we  have  measured  the  daily  total  energy  consumption  of
each  room  as  shown  in  Figure  11.  The  total  energy  spent  within  one
day  is  3.5  WH  by  a  normal  control  and  varies  between  0.8  WH  and
1.2 WH by the proposed control for the other rooms. So compared to
the natural control, the proposed control is able to maintain the ideal
level  of  lighting  with  efficient  power  consumption.  By  applying  Q-
learning,  the  system  continuously  refines  its  decision-making  process,
ensuring a self-adaptive control strategy that effectively balances natu-
ral  and  artificial  lighting.  Experiment  results  confirm  that  this
approach  reduces  energy  consumption  by  over  45%  while  consis-
tently  maintaining  visual  comfort  within  the  required  illuminance
range.

Figure 11. The total energy consumption during a day per room.  

Artificial Intelligence–Based Chatbot Results5.1

The main aim of these experiments is to control the lighting and shad-
ing  devices  with  an  AI-based  chatbot  application  hosted  on  a  web
server in our local network. Using this chatbot, we can control all the
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implemented  prototypes  for  lighting,  shading  and  smart  plugs.  The
proposed  chatbot  processes  the  textual  input  of  the  user  to  derive
meaning  from  it  and  controls  the  system.  The  goal  of  this  chatbot  is
to  overcome  interfaces  with  menus  and  buttons  to  perform  some
actions.  The  chatbot  offers  a  chat  interface  as  a  simple  conversation,
which makes the interaction easier.  

From our experiments, we can identify three scenarios: 

The  context  extraction,  where  the  user  requests  the  status  of  the  IoT
devices and the lighting metrics. 

1.

The  lighting  control,  where  the  user  requests  to  turn  on/off  LEDs  or
adjust illuminance. 

2.

The  training  mode,  which  the  system  performs  over  what  is  defined  in
the knowledge database. 

3.

The  main  aim  of  these  experiments  is  to  control  the  lighting  and
shading  devices  with  an  AI-based  chatbot  application  hosted  on  a
web  server  in  our  local  network.  The  proposed  algorithm  is  capable
of  understanding  the  context  of  a  given  request  in  order  to  identify
the  keywords  and  actions.  As  illustrated  in  Figure  12,  the  proposed
chatbot  retrieves  information  in  real  time  from  the  deployed  systems,
which can extract the level and the status of both lighting and shading
systems. 

(a) (b)

Figure 12. The proposed chatbot.  
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Based  on  the  keywords  and  the  actions  identified  in  the  user’s
request,  the  system  performs  the  suitable  action,  as  shown  in  Fig-
ure 13,  such  as  adjusting  the  illuminance,  selecting  some  of  the  pre-
sented  modes  of  lighting  or  adjusting  shading  over  the  different
rooms.  For  example,  if  the  keyword  is  blind,  and  the  action  word  is
open  with  parameter  of  60%,  then  the  system  will  open  the  blind  of
the  desired  room  to  60%.  In  fact,  the  intelligent  chatbot  understands
the intent of the user request in order to learn from it and improve the
context. As depicted in Figure 13, we have proposed to the user to cre-
ate a new mode of lighting so that the system can save it and perform
it. The user gives the desired illuminance and the suitable name of the
new mode. 

(a) (b)

Figure 13. (continues).

RL-Based Approach for Smart Lighting and Shading in Buildings 473

https://doi.org/10.25088/ComplexSystems.34.4.455

https://doi.org/10.25088/ComplexSystems.34.4.455


(c) (d)

Figure 13. The lighting control: adjusting (a) the level; (b) the brightness; and
(c, d) changing the mode of illuminance.  

Conclusions and Perspectives   6.

In  this  paper,  we  presented  an  intelligent  approach  for  lighting  con-
trol  through  artificial  intelligence  (AI)  and  internet  of  things  (IoT)
techniques. The proposed control proved its ability to maintain visual
comfort while minimizing energy consumption. The lighting system is
performed by an AI agent that balances between lighting and shading
operations  in  order  to  reach  maximum  visual  comfort  (i.e.,  between
400  and  500  lux).  To  enable  real-time  monitoring  and  control,  an
IoT-  and  AI-based  platform  was  developed.  Q-learning,  a  reinforce-
ment learning  (RL) algorithm, was integrated into the system to opti-
mize  decision-making  by  continuously  learning  from  previous  states
and adjusting shading angles and lighting intensity accordingly. Exper-
iments  have  been  conducted  in  our  laboratory  test  to  measure  and
control  the  lighting  and  shading  systems.  The  results  are  reported  to
highlight the efficiency of the proposed control; it maintains the ideal
level  of  lighting  compared  to  the  conventional  control.  An  AI-based
chatbot was developed and integrated into our system in order to pro-
vide  a  user-friendly  application.  The  chatbot  processes  the  textual
input  of  the  user  to  derive  meaning  from  it  and  operate  the  control
system.  As  part  of  our  ongoing  work,  the  system  will  be  coupled  to
the  HVAC  system  in  order  to  maintain  thermal  comfort  while  using
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sunlight  to  avoid  glare.  We  will  then  upgrade  our  chatbot  with  voice
recognition  capabilities  in  order  to  facilitate  intuitive  control  over
building services and provide better assistance to users.  
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