Analysis and Estimation of the Probability
of Failures in an Electric Lighting Network
Using Mamdani Inference and Scaled
Conjugate Gradient

Mohammed Amine Jouahri

Zakaria Boulghasoul

Abdelouahed Tajer

Systems Engineering and Application Laboratory
Cady Ayyad University

Bd Abdelkrim Al Khattabi

Marrakech, 40000, Morocco

This paper presents an intelligent fault detection system (FDS) for pub-
lic lighting networks, designed to improve diagnostic accuracy and sys-
tem reliability. The proposed system integrates the Mamdani fuzzy
inference method and scaled conjugate gradient (SCG) neural networks
to detect four key fault types: power, lighting, cloud cover sensor and
road flow sensor. Inputs such as traffic flow, cloud cover, power supply
and lighting intensity are used to ensure precise diagnostics. The Mam-
dani method offers strong interpretability and robustness in handling
uncertainties, while the SCG algorithm enhances performance through
efficient learning. Simulation results show fault detection probabilities
exceeding 85%, confirming the effectiveness of the system. This paper
demonstrates the potential of combining fuzzy logic and neural net-
works for reliable and intelligent monitoring of public lighting
infrastructure.
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| 1. Introduction

The optimization of energy consumption has become a global priority
within the framework of energy transition and sustainable develop-
ment [1]. Electrical lighting networks, due to their widespread use
and significant contribution to energy demand, constitute a critical
domain for improvement [2, 3]. However, these networks frequently
encounter faults such as power fluctuations [4], electrical interrup-
tions [5] and luminaire failures [6], leading to substantial energy
losses and reduced overall system efficiency.
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Accurate and rapid fault diagnosis is essential to minimize energy
waste, reduce maintenance costs and ensure the optimal operation of
lighting networks [7]. Conventional diagnostic methods involve visual
inspections to identify physical anomalies [8, 9], electrical parameter
measurements to detect imbalances [10, 11], lighting quality analysis
to ensure compliance with standards [12, 13] and infrared thermogra-
phy to identify thermal irregularities [14—16]. These practices are sup-
plemented by technical tests such as continuity and insulation checks
to prevent short circuits and major failures. While effective, these
approaches are costly, time intensive and prone to human error. To
address these limitations, integrating intelligent systems utilizing artifi-
cial intelligence (Al) techniques, such as fuzzy logic [17-19] and neu-
ral networks [20, 21], offers a promising alternative by automating
diagnostics, enhancing accuracy and reducing operational costs.

Al is revolutionizing the diagnosis of public lighting networks [22]
by enabling advanced capabilities for proactive fault detection [23],
predictive maintenance [24] and energy optimization [25]. By analyz-
ing real-time data from sensors monitoring parameters such as light
intensity, energy consumption and environmental conditions, Al facili-
tates rapid anomaly detection and anticipates potential failures
through trend analysis. Additionally, Al can adjust lighting levels
based on actual needs, thereby reducing energy consumption while
maintaining safety. By making these networks autonomous and adap-
tive, Al contributes to the development of sustainable, reliable and
economically viable public lighting infrastructures.

In this paper, Section 2 presents the state of the art in electrical
system diagnostics research. Section 3 describes in detail the methodol-
ogy adopted to design the fault detection system (FDS). Section 4 out-
lines the development aspects of the FDS, using Mamdani’s method
and the scaled conjugate gradient (SCG) method. Section S5 proposes
an experimental study, analyzing the results of MATLAB/Simulink
simulations based on real data relating to road flow and cloud cover.
Section 6 concludes by summarizing the results obtained and high-
lighting the advantages and limitations of each method.

I 2. Related Work

The diagnosis of electrical systems requires a series of visual examina-
tions and functional tests to assess their integrity and performance.
This process includes visual inspection to spot obvious damage, conti-
nuity tests to verify current flow, voltage tests to ensure voltage
stability, grounding checks to avoid the risk of electrocution, thermo-
graphic analysis to identify hot spots, load tests to assess system

Complex Systems, 34 © 2026



Analysis and Estimation of the Probability of Failures in a Lighting Network 481

capacity, functional checks of electrical devices and analysis of the
data collected to detect possible problems [26-28].

Integrating Al into electrical system diagnostics offers considerable
advantages in terms of efficiency, accuracy and speed. Al algorithms
can process large quantities of data from sensors installed on electri-
cal equipment, as well as historical performance data. They can detect
patterns, anomalies and trends that could indicate potential problems.
Machine learning techniques enable these systems to continually
improve their diagnostic capabilities by refining their ability to recog-
nize new patterns [29-31].

Several studies have been carried out on the diagnosis and detec-
tion of faults in electrical systems.

In [32] a fuzzy logic—based method is developed for diagnosing
direct current (DC) starter failures. This approach overcomes the
uncertainties associated with models, noise and the stochastic behav-
ior of variables and is capable of detecting six types of failure. This
method is useful for quality control units as well as for maintenance
and repair.

In [33] a method is proposed for detecting and classifying faults in
medium-voltage direct current (MVDC) electrical systems. This
method combines multiresolution wavelet transform analysis with
artificial neural networks (ANNs). Simulations have demonstrated the
effectiveness of this approach for detecting various types of faults.

In [34] a prototype is developed to collect data on various faults in
a single-phase distribution network. Three machine learning algo-
rithms—KNN, SVM and DT—were tested, with the DT model achiev-
ing 99.42% accuracy.

Research is conducted in [35] into the detection and localization of
high-impedance faults in a distribution network. The study examines
several algorithms, with SVM performing best for accurate detection
and localization of these faults.

In [36] a new method is proposed for detecting and locating aging
cable segments in underground distribution systems. The method is
based on broadband transfer function measurement and the use of
deep learning approaches, with experiments showing its effectiveness.

In [37] an integrated energy system (IES) is presented that uses
machine learning technologies to improve fault detection in district
heating systems in China. The IES-ML achieved 98.67% accuracy in
fault detection.

More recently, [38] introduces an innovative electric drive system
using a double-wound permanent magnet motor (DWPMM). This sys-
tem aims to improve reliability while reducing costs. A fuzzy logic—
based power switch open circuit fault diagnosis strategy has also been
proposed, enabling faults, including intermittent faults, to be detected
and located in real time.
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This paper proposes an FDS for electrical lighting networks, based
on Mamdani inference and the SCG algorithm. The system is
designed to identify four types of faults: power, lighting, cloud cover
sensor and traffic flow sensor.

A power fault is identified when the power supplied by the con-
troller, which adjusts lighting based on traffic flow and cloud cover, is
insufficient to meet lighting requirements. A lighting fault is detected
in cases of nonfunctional luminaires despite adequate electrical
power. A cloud cover sensor fault refers to an anomaly in the cloud
coverage sensor, while a traffic flow sensor fault is identified when a
malfunction disrupts traffic monitoring.

I 3. Problem Definition

The system presented in this paper is specifically designed to detect
and locate faults within an electric lighting network. This advanced
system is equipped to identify and distinguish between four distinct
types of faults that may arise:

1. Power. This type of fault arises when the power supplied by the smart
controller, which manages the electricity for the lighting network, is
insufficient to meet the network’s energy demands. The smart con-
troller adjusts the power output based on changes in road traffic and
cloud cover. A power fault is identified when the generated energy falls
short of the requirements dictated by these two factors.

2. Lighting. This fault is detected when, despite sufficient energy produc-
tion, lighting is absent. This indicates a failure separate from energy pro-
duction, suggesting a problem in lighting distribution or activation.

3. Cloud cover sensor. This fault is identified when there is a significant
difference between the actual value and the measured value of cloud
cover, compromising lighting management.

4. Road flow sensor. This fault occurs when an inconsistency is observed
between the actual road flow value and that measured by the sensor,
reducing the effectiveness of traffic-based lighting adjustment.

To implement this fault detection and localization system, two Al
approaches are adopted: fuzzy logic based on Mamdani’s inference
system (MIS), known for its ability to handle uncertain and imprecise
data, and neural networks trained with the SCG algorithm, offering
increased robustness and accuracy for modeling complex data.

System input parameters include road flow, cloud cover, electrical
power generated by the smart controller and lighting network bright-
ness, as well as the error between the actual value and the value
detected by the cloud cover sensor, and the error between the actual
value and the value detected by the road flow sensor. Based on these
six inputs, the system is able to determine four types of fault. This
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configuration enables a detailed and precise analysis of lighting net-
work conditions, facilitating rapid and targeted intervention to cor-
rect identified faults.

I 4. Development of the Fault Detection and Location System

In this section, we design an FDS for electric lighting networks, using
fuzzy logic (FL) based on Mamdani inference and neural networks
trained with the SCG algorithm.

4.1 Fault Detection and Localization Using Fuzzy Logic Based on
I Mamdani’s Inference System

The method developed in this section uses fuzzy logic with MIS to
model the interactions between six input parameters and four types of
output faults. Mamdani inference, one of the most popular fuzzy
logic methods, relies on linguistic rules of the type If...Then... to
model relationships between inputs and outputs. This process
includes four main steps: fuzzification of inputs, evaluation of fuzzy
rules, aggregation of outputs and defuzzification to produce a precise
final value. This method is widely used in control and decision-
making systems. Algorithm 1 is a summary of the essential steps in
this process, from fuzzification of the input data to defuzzification to
obtain a concrete output.

Algorithm 1. Mamdani fuzzy inference system (FIS).
Require: Input variables x1, x3, ..., x,,, fuzzy rules, membership func-
tions for inputs and outputs, aggregation method, defuzzification
method
Ensure: Defuzzified output y

Fuzzification:
for each input variable x; do
Compute membership degrees y; for all associated fuzzy sets
end for
Rule Evaluation:

for each fuzzy rule do

N A=

Compute condition degree using logical operators (e.g., min for AND,
max for OR)
8. Apply condition degree to the rule’s consequence (e.g., truncate output
fuzzy set)
9. end for
10. Aggregation:

11. Combine all fuzzy rule outputs into a single fuzzy set using an aggrega-
tion method (e.g., max)
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12. Defuzzification:

13. Convert the aggregated fuzzy set to a crisp output y using a defuzzifica-
tion method (e.g., centroid)
14. returny

Input parameters of the FDS include road flow, indicating traffic
intensity; cloud cover, influencing available daylight; electrical power
supplied by the controller to power the lighting network; and mea-
sured network brightness; as well as the error between the actual
value and that detected by the cloud cover sensor, and the error
between the actual value and that measured by the road flow sensor.

The system generates four outputs: the probability of power fail-
ure, indicating a risk of power supply failure; the probability of light-
ing failure, indicating a lack of light; the probability of cloud sensor
failure; and the probability of road flow sensor failure. These outputs
help to monitor and maintain optimal network operation by identify-
ing and anticipating failures (see Figure 1).

et XX\
M Power failure probability

Cloud cover

Lighting failure probability

Electric power FDS
(Mamdani)

XX\ VN

Network lighting

i : : Cloud sensor failure probability

Cloud sensor error 2 : :
M Road flow sensor failure probability

Road flow sensor error

Figure 1. FDS data fusion algorithm structure.

In this paper, we detail the membership functions for the input and
output parameters of the FDS, specifically choosing triangular mem-
bership functions. Figures 2 and 3 illustrate these membership func-
tions for the input and output parameters of the FDS, respectively.
Each parameter has been divided into three levels: low, medium and
high. We consider the following input parameters:

Complex Systems, 34 © 2026



Analysis and Estimation of the Probability of Failures in a Lighting Network 485

Traffic flow. The universe of discourse for this input ranges from 0 to

320 vehicles, reflecting traffic density,

and is divided into three levels:

low (0-100 vehicles), medium (50-250 vehicles) and high (200-320

vehicles).

Cloud cover. The range of values for this input extends from 0% (clear
sky) to 100% (complete cloud cover), with low (0-39%), medium

(17-83%) and high (61-100%) levels.

Electrical power generated by the controller. We have established that
the lighting network is supplied with electrical power ranging from 0 to
30 kW, with low (0-10 kW), medium (5-25 kW) and high (20-30 kW)

levels.

Network lighting. Represented by the optical power emitted by the
LEDs, this input covers a range from 0 W to 20 W, divided into low
(0-8 W), medium (4-16 W) and high (12-20 W) levels.

Cloud sensor error. The universe of discourse for this input ranges from
-100% to 100%, with three defined levels: N (=100% to —20%), Z

(~60% to 60%) and P (20% to 100%).

Road flow sensor error. The universe of discourse for this input ranges
from —320 to 320 and is divided into three levels: N (-320 to —64), Z

(=200 to 200) and P (64 to 320).
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Figure 2. Input membership functions.
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Figure 3. Output membership functions.

The system outputs are designed to identify four main types of
faults:

= power

» lighting

= cloud sensor

= road flow sensor

For these four output parameters, the universe of discourse is
defined between 0% and 100%, and each output is further divided
into three levels: low (0-40%), medium (20-80%) and high
(60-100%). This precise quantification of power and lighting fault
levels enables rigorous assessment and effective management of
anomalies detected in the electric lighting network. By structuring the
universes of discourse and the levels of each parameter in this way,
we facilitate a more detailed analysis and appropriate response to
identified faults, guaranteeing better lighting system performance and
reliability.

Tables 1 through 4 describe in detail the rules established for the
FDS. Table 1 focuses on power faults, with a set of 27 rules covering
all possible combinations of road flow, cloudiness and generated elec-
trical power levels, enabling precise detection of power anomalies in
the lighting network.
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Electric Power
Traffic Flow | Cloudiness |low medium | high
low low low medium | high
low medium medium | low medium
low high medium | medium | low
medium low low low high
medium medium | medium |low high
medium high high medium | low
high low medium |low medium
high medium | medium | high low
high high high high low

Table 1. Fuzzy rule base for power faults.

Table 2 contains six rules dedicated to lighting faults. They have
been designed to identify variations in the light emitted by LEDs, as a
function of the electrical power generated by the controller.

Brightness
Electric Power |low medium | high
low low
medium medium |low
high high medium |low

Table 2. Fuzzy rule base for lighting faults.

Tables 3 and 4 show the rules for cloudiness and road flow sensor
faults, respectively, each comprising three rules for detecting potential
sensor malfunctions.

Cloud Sensor Error | Cloud Sensor Fault
N high
Z low
P high

Table 3. Fuzzy rule base for cloud sensor faults.

Traffic Flow Sensor Error | Traffic Flow Sensor Fault
N high
Z low
P high

Table 4. Fuzzy rule base for traffic flow sensor faults.

https://doi.org/10.25088/ComplexSystems.34.4.479


https://doi.org/10.25088/ComplexSystems.34.4.479

488 M. A. Jouahri, Z. Boulghasoul and A. Tajer

By combining these sets of rules, the system is able to monitor and
analyze lighting network performance in depth, accurately detecting
power, lighting and sensor faults and providing clear indications for
their management and correction.

Having constructed the input and output functions, we tested the
FDS using the surface viewer. Figure 4(a) shows this visualizer for the
power supply fault. This graph reveals that, according to the rules
defined in Table 1, the probability of a supply fault is high when road
flow and cloud cover are high, but the electrical power generated is
insufficient to meet lighting requirements. A power failure is also
likely when road flow and cloud cover are low, but the electrical
power generated is excessive, resulting in wasted energy.

(a ) Power Fault Surface Viewer (b) Lighting Fault Surface Viewer
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Figure 4. Surface viewer for: (a) power fault; (b) lighting fault; (c) cloud sen-
sor fault; and (d) road flow sensor fault.

Figure 4(b) shows the surface viewer for lighting faults. According
to this graph and the rules in Table 2, the probability of a lighting
fault is high when lighting is insufficient, although the amount of
electricity available to supply the network is adequate. This can occur
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when, despite sufficient electrical power, the LEDs fail to reach the
required lighting level, indicating a potential problem in the lighting
system itself.

Figure 4(c) illustrates the surface viewer for cloud sensor faults.
According to this graph and the rules in Table 3, the probability of a
cloud sensor fault is high when there is a difference between the
actual values and those captured by the sensor. This means, for exam-
ple, that in cloudy weather, the sensor detects nothing, or vice versa.

Finally, Figure 4(d) shows the surface viewer for road flow sensor
faults. Following the rules in Table 4, the probability of a road flow
sensor fault is high when deviations are observed between the actual
values and those captured by the sensor. This is particularly the case
when there are vehicles on the road, but the sensor detects no road
flow, or vice versa.

4.2 Analysis and Estimation of Failures in an Electric Lighting
I Network via Scaled Conjugate Gradient

The approach adopted in this case is based on the use of ANNs, in
particular, the SCG algorithm. SCG is an extension of the classical
conjugate gradient method, adapted specifically for training neural
networks. Unlike standard gradient descent, which can suffer from
slow convergence, SCG utilizes an approximation of the Hessian
matrix (second-order derivatives) to dynamically adjust the search
direction and step size. This allows SCG to converge faster while
avoiding the computational cost of exact Newtonian methods. The
algorithm begins with the initialization of weights and gradients, itera-
tively updating the weights along an optimized search direction. The
inclusion of a scaling parameter o ensures numerical stability and pre-
vents oscillations during updates. Due to these properties, SCG is par-
ticularly effective for training deep neural networks with complex
cost functions. Algorithm 2 summarizes the essential steps of the SCG
method for neural network training.

Algorithm 2. SCG.
Require: Cost function E(w), gradient V E(w), initial weights wy, scal-
ing parameter o7, tolerance €, maximum iterations max_iter
Ensure: Optimized weights w, cost history
1. Initialize weights w - wy, gradient gy - VE(w), search direction
dy > —go, iteration k > 0
2. while ||gx|| > € and k < max_iter do

3. Compute perturbation: s, » o7, - dy,

. . VE -VE

4. Approximate the Hessian: v, — Towrs) VEw)
T

llg I

5. Update step size: a > —
diu
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6.  Update weights: w - w + ;- d,
7. Compute next gradient: g1 —» VE(w)
2
8.  Update search direction: dy,1 = —gps1 + ”ﬁ;;ﬁ! .
k
9.

Adjust scaling parameter o, if needed
10.  Increment k - k +1
11. end while

12. return Optimized weights w, cost history

This methodological choice is in line with the previously developed
fault detection system, which used Mamdani inference to identify
anomalies. However, this new approach offers finer-grained modeling
and enables complex relationships between different parameters to be
captured.

The input parameters used in this system are identical to those pre-
viously employed in the FDS based on Mamdani inference. These
include road flow, reflecting traffic intensity; cloud cover, which influ-
ences natural luminosity; electrical power generated by the controller;
lighting network luminosity, a direct indicator of system performance;
the error between the actual value and that detected by the cloud
cover sensor; and the error between the actual value and that mea-
sured by the road flow sensor. From this data, the model generates
four output parameters: the power fault probability, the lighting fault
probability, the fault probability of the cloud cover sensors and the
fault probability of the road flow sensors.

As part of this paper, we decided to develop two separate ANNs to
handle faults identified in the public lighting network. This approach
makes it possible to improve detection accuracy and robustness by
specializing each artificial neural network (ANN) in the management
of specific faults, depending on their characteristics and the nature of
the parameters involved. The first network is designed to detect faults
relating to power and lighting, since these faults have a direct impact
on the quality of the illumination provided and require in-depth
analysis of electrical values and luminosity. The second network is
dedicated to faults in cloud cover and road flow sensors. These param-
eters, although different from the electrical ones, play a crucial role in
adjusting lighting intensity according to weather and traffic condi-
tions, which is essential for optimizing energy efficiency and road
safety.

By dividing faults into two main categories and assigning each cate-
gory a dedicated ANN, this approach reduces the complexity of each
model while increasing the specificity of their predictions. This modu-
lar structure brings flexibility, facilitates network maintenance and
enables better generalization and performance of the models.
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4.2.1 Neural Network for Power and Lighting Fault Detection

The first neural network is primarily designed to detect faults in the
network’s power supply and lighting. It uses controller-generated
power, brightness, road flow and cloud cover as input parameters,
directly influencing power and lighting conditions. This network
model comprises two hidden layers of 15 neurons each, with the acti-
vation functions logsig for the hidden layers and purelin for the out-
put layer.

As previously mentioned, we opted for the SCG algorithm, using a
learning rate of 0.05 and strict convergence criteria, with the aim of
reducing overlearning and ensuring optimal generalization. Tests
carried out on real data reveal high accuracy in detecting power and
lighting faults. The performances obtained include an MSE of 2.1379
(Figure 5(a)); a correlation coefficient R of 0.99627 (Figure 5(b)),
very close to 1; a gradient decreasing until reaching its minimum
value of 2.7355 at iteration 1000 (Figure 5(c)); and an error varying
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Figure 5. (a) Performance; (b) regression plot; (c) learning state; and (d) error
histogram of the first ANN.
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between —2.198 and 3.553 (Figure 5(d)). These results confirm the
effectiveness of this architecture for defect detection.

4.2.2 Neural Network for Nebulosity and Road Flow Sensor
Fault Detection

The second neural network is dedicated to the detection of faults
affecting cloudiness and road flow sensors, key elements in ensuring
the proper operation of the adaptive lighting system. Input parame-
ters for this network include the reading errors associated with these
Sensors.

This network features a simple architecture, with a single hidden
layer of 10 neurons. The logsig activation function is used for the hid-
den layer, while the output layer employs the purelin function. The
SCG algorithm is also applied, with a learning rate of 0.05 to limit
overlearning. The tests carried out demonstrate high efficiency in
detecting sensor defects. The performances obtained include an MSE
of 0.099887 (Figure 6(a)); a correlation coefficient R of 0.99983
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Figure 6. (a) Performance; (b) regression plot; (c) learning state; and (d) error
histogram of the second ANN.
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(Figure 6(b)), very close to 1; a gradient reaching a minimum value of
4.2794 at iteration 64 (Figure 6(c)); and an error varying between
—0.4619 and 0.4463 (Figure 6(d)). These results confirm the reliabil-
ity of this architecture for sensor fault detection.

I 5. Simulation Results and Discussion

After developing the FDS using the Mamdani inference method and
SCG neural networks, we test it on the electric lighting network
described and modeled in the previous sections. The block diagram of
the fault detection system, applied to this lighting network, is shown
in Figure 7.

Power_Fault

Lighting_Fault

Road_Flow ﬂ.. : r.‘kr,sensor,vaul
FDS

I
)
Cloudiness | Smart controller
1
| Electric_power

il

Figure 7. Block diagram of the FDS implemented on the electric lighting
network.

The system operates as follows: To detect power failures, the sys-
tem receives the electrical power generated by the intelligent con-
troller. This controller dynamically adjusts the power according to
variations in road flow and cloud cover. The system then compares
the electrical power generated with the values for road flow and cloud
cover. If road flow or cloud cover is high, but the electrical power gen-
erated is insufficient, the system signals a high probability of power
failure. Conversely, if electrical power is high while road flow and
cloud cover values are low, an anomaly is also suspected.

For lighting failure detection, the system analyzes the correspon-
dence between the electrical energy supplied by the controller and the
actual state of the lighting. If the controller generates an adequate
amount of electrical energy, but the lighting is absent or defective, the
system concludes that there is a high probability of a lighting failure.
This detection process enables efficient monitoring and diagnosis of
anomalies in the lighting network.
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The system incorporates a methodological approach to detecting
faults in the road flow and cloud cover sensors. With regard to the
road flow sensor, the system compares the data captured by the sen-
sor in real time with actual traffic observations or expected estimates,
calculated from a historical database and current trends. For example,
if the sensor indicates low traffic density when normal conditions pre-
dict dense traffic (such as rush hour), the system registers an inconsis-
tency and detects a high probability of sensor failure. Furthermore,
sudden and irregular variations in the values transmitted by the sen-
sor that do not correspond to plausible traffic dynamics are also inter-
preted as malfunction signals.

For the cloud cover sensor, the system performs a similar analysis,
comparing the data collected with external weather records or local
predictive models. A prolonged absence of variation in cloud cover
values, despite obvious changes in weather conditions (from clear to
cloudy, for example), is a potential indicator of sensor failure. On the
other hand, if the sensor registers high cloudiness in clear-sky condi-
tions, or vice versa, the system identifies a discrepancy and concludes
that the sensor is probably malfunctioning.

These analyses are enhanced by the use of sensor errors as input
parameters to the intelligent model. The road flow sensor error is
defined as the difference between the actual traffic density and the
density measured by the sensor. Similarly, the cloud cover sensor
error represents the difference between the actual cloud cover
(obtained from reliable sources or standard references) and the mea-
sured cloud cover. When these errors exceed a predefined critical
threshold, the system triggers an alert to signal a sensor fault.

The system will be evaluated in two separate tests, using real road
flow and cloud cover data, to validate its effectiveness under practical
conditions.

I 5.1 Test1

The two signals shown in Figure 8 model the real-time variation in
road flow and cloud cover, respectively, over a 24-hour period for the
first test.

Figure 9 shows the various faults detected by the FDS in the light-
ing network over a continuous 24-hour period for the first test.

For this analysis, we have made the assumption that only faults
with a probability exceeding 50% require immediate intervention for
repair. This methodology aims to prioritize corrective actions and
ensure optimized network maintenance.

Figure 9(a) illustrates a power fault. For the Mamdani method, this
fault is detected between 08:33 and 09:39, with a probability exceed-
ing the critical threshold of 50% and reaching a significant peak of
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Figure 8. Real data for: (a) road flow; and (b) cloud cover (Test 1).
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Figure 9. Fault probabilities for: (a) power; (b) lighting; (c) road flow sensor;
and (d) cloud cover sensor (Test 1).

85.67% at 08:45. In parallel, for the SCG method, a power fault is
identified over a slightly different period, between 08:36 and 09:31,
with a probability peak of 87.37% observed at 08:46.

In Figure 9(b), a lighting fault was intentionally introduced
between 05:33 and 08:19 to test the effectiveness of the FDS. The aim
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of this experiment was to verify the system’s ability to accurately iden-
tify this type of fault. The figure provides a detailed analysis of the
probability of fault detection over the time interval concerned. The
results show a progressive increase in the probability of detection,
reaching a peak at 08:00 with a maximum value of 85.85% for the
Mamdani method and 86.43% for the SCG method. This peak
demonstrates that the system identified the fault with great accuracy
at this precise moment, confirming the reliability and robustness of
our detection methods under controlled conditions.

Similarly, Figure 9(c) illustrates the results obtained following the
deliberate introduction of a fault in the road flow sensor, which
occurred between 12:00 and 13:52. The aim of this experiment was
to assess the detection system’s ability to detect this specific type of
anomaly. Analysis of the data shown in the figure reveals a progres-
sive increase in the probability of fault detection throughout the time
interval under consideration. This probability reaches a first notable
peak of 86.99% at 12:00 for the Mamdani method, followed by a sec-
ond peak of 86.61% at 13:00 for the SCG method.

Finally, Figure 9(d) shows the results obtained after the intentional
introduction of a fault in the cloud cover sensor, simulated between
06:43 and 09:52. The aim of this experiment was to test the detection
system’s ability to identify this type of anomaly, which can disrupt
input parameters critical to the optimal operation of the lighting net-
work. Analysis of the data reveals a significant increase in the proba-
bility of fault detection throughout the simulated time interval. The
Mamdani method registers an initial probability peak of 86.49%
right at the start of the interval, at 06:43, while the SCG method
reaches an even higher peak of 88.09% at the same time. These
results highlight the accuracy and effectiveness of both approaches in
identifying faults associated with environmental sensors. This ability
to detect faults quickly and reliably ensures better proactive manage-
ment and targeted maintenance of the public lighting network.

Tables 5 through 8 provide further details on the origin of the vari-
ous faults detected by the FDS.

Peak of Fault | Time (h) |Road Flow |Cloud (%) |EP (kW)
Mamdani 85.67% 08:45 276.9 39.29 18.59
SCG 87.37% 08:46 276.2 39.01 18.21

Table 5. Detailed overview of power fault origin.

Table 5 gives details of the origin of the power fault identified by
the FDS. As previously indicated, the probability of fault detection
reaches 85.67% at 8:45 with the Mamdani method and 87.37% at
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8:46 with the SCG method. At this point, road flow is 276, which is
considered high, while cloud cover is 39%, a value close to the
median. At the same time, the electrical power supplied by the con-
troller feeding the lighting network is 18 kW. These observations sug-
gest that the fault detected is probably linked to insufficient electrical
power to meet the needs of the lighting network, particularly in view
of the heavy traffic. This highlights the need for an adequate power
supply to ensure optimal operation of the lighting network, particu-
larly during periods of heavy traffic.

Table 6 details the origin of the lighting fault. It reveals that at
08:00, the absence of lighting is associated with zero optical power
(0 W), despite the fact that the network provides a power supply of
26.71 kW. This situation led to a progressive increase in the probabil-
ity of failure, reaching a maximum of 85.85% with the Mamdani
method and 86.43% with the SCG method. These results point to a
malfunction in the conversion or transmission of electrical energy to
the lighting system, suggesting a potential failure of the latter, despite
an adequate power supply.

Peak of Fault | Time (h) |Electric Power (kW) | Optic Power (W)

Mamdani 85.85% 08:00 26.71 0

SCG 86.43% 08:00 26.71 0

Table 6. Detailed overview of lighting fault origin.

Table 7 shows the origin of the road flow sensor fault. As shown in
the table, the fault reaches its maximum value of 86.99% at 12:00 for
the Mamdani method, and 86.61% at 13:00 for the SCG method. At
12:00, the actual road flow value for the Mamdani method is 310.5,
while the value detected by the sensor is —4.65, a negative value that
seems inconsistent. For the SCG method, at 13:00, the actual road
flow value is 284.3, but the sensor detects a value of 2.5, showing
that it has not captured the correct road flow value. This indicates an
anomaly in the road flow sensor.

Peak of Fault | Time (h) |Road Flow |Detected Value
Mamdani 86.99% 12:00 310.5 -4.65
SCG 86.61% 13:00 284.3 2.5

Table 7. Detailed overview of traffic sensor fault origin.

Finally, Table 8 shows the origin of the cloud cover sensor fault.
As shown, the fault reaches its maximum value at 06:43, with
86.49% for the Mamdani method and 88.09% for the SCG method.
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At this time, the actual cloud cover value is 84.11%, while the value
detected by the sensor is 4.2%, indicating that the sensor has not
detected the correct value, suggesting an anomaly in the cloud cover
Sensor.

Peak of Fault | Time (h) |Cloud (%) |Detected Value
Mamdani 86.49% 06:43 84.11 4.2
SCG 88.09% 06:43 84.11 4.2

Table 8. Detailed overview of cloud cover sensor fault origin.

| 52 Test2

The two signals shown in Figure 10 model the real-time variation in
road flow and cloud cover, respectively, over a 24-hour period for the
second test.

(a) Traffic Flow (b) Cloud Coverage
350 110
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Time (s) 104 Time (s) 104

Figure 10. Real data for: (a) road flow; and (b) cloud cover (Test 2).

Figure 11 illustrates the various faults detected by the detection sys-
tem within the lighting network over a continuous 24-hour period as
part of the second test. In accordance with the defined criteria, only
faults with a probability greater than 50% are considered to require
intervention.

In this second test, Figure 11(a) highlights the detection of two
power faults by the system developed. The first fault was identified
between 11:48 and 14:30, with a peak probability of 85.62% at
14:09 according to the Mamdani method and a peak of 77.76% at
13:56 for the SCG method. The second fault was detected between
16:22 and 16:52, reaching a peak of 85.19% at 16:29 using the Mam-
dani method and a peak of 74.28% at 16:39 using the SCG method.

Figure 11(b) illustrates the results obtained following the inten-
tional introduction of a lighting fault between 13:52 and 16:22, as
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Figure 11. Fault probabilities for: (a) power; (b) lighting; (c) road flow sensor;
and (d) cloud cover sensor (Test 2).

part of the second test. As with the first test, the purpose of this
maneuver was to evaluate the efficiency and accuracy of the FDS
developed. The data shows a progressive increase in the probability of
detection throughout the defined time interval. The system reached a
probability peak at 15:09, with a maximum value of 85.83% for the
Mamdani method, and at 15:00, with a probability of 87.07% for the
SCG method.

Figure 11(c) shows the results obtained after the deliberate intro-
duction of a fault in the road flow sensor, simulated to occur between
14:39 and 16:43. The aim of this experiment was to assess the detec-
tion system’s ability to accurately identify this type of malfunction
under realistic conditions. Analysis of the data shown in the figure
reveals a progressive increase in the probability of fault detection over
the specified time interval. For the Mamdani method, the probability
reaches a significant peak of 87% at 15:06, indicating effective fault
identification at that precise moment. For the SCG method, the maxi-
mum peak recorded was 86.99% at 16:20, also confirming the high
performance of the system in this context.

Finally, Figure 11(d) illustrates the results obtained following the
deliberate introduction of a simulated fault in the cloud cover sensor,
which occurred between 19:26 and 21:39. The aim of the simulation
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was to assess the system’s ability to accurately detect this type of mal-
function under controlled conditions. Analysis of the data revealed a
significant increase in the probability of fault detection over the simu-
lated time interval. For the Mamdani method, a first notable peak is
recorded at 20:00 with a probability of 86.99%, confirming rapid
and effective detection. For its part, the SCG method shows a slightly
shifted maximum peak at 21:21, reaching a probability of 86.65%.

As with the first test, Tables 9 through 13 provide further details
on the origin of the various faults detected by the system during the
second test.

Tables 9 and 10 detail the origin of the two power supply faults
identified by the detection system. For the first fault, the probability
of detection reaches 84.62% at 14:09 with the Mamdani method and
77.76% at 13:56 with the SCG method. At these times, road flow is
high (305.4 for Mamdani and 300.5 for SCG), while cloud cover is
moderate (39% for Mamdani and 36.72% for SCG). At the same
time, the electrical power supplied by the controller to the lighting net-
work is 20 kW. For the second fault, the probability of detection is
85.19% at 16:29 for the Mamdani method and 74.28% at 16:36 for
the SCG method. Road flow remains high (286.1 for Mamdani and
256 for SCG) and cloud cover is average (43.75% for Mamdani and
36% for SCG), while the electrical power supplied is 19.32 kW for
the Mamdani method and 15.13 kW for the SCG method. These
observations suggest that the faults detected are probably due to insuf-
ficient electrical power to meet the needs of the lighting network,
particularly during periods of heavy traffic. This underscores the
importance of an adequate power supply to guarantee the network’s
smooth operation, particularly during heavy traffic hours.

Peak of Fault | Time (h) |Road Flow |Cloud (%) |EP (kW)
Mamdani 84.62% 14:09 305.4 39 20
SCG 77.76% 13:56 300.5 36.72 20

Table 9. Detailed overview of the first power fault origin.

Peak of Fault | Time (h) |Road Flow |Cloud (%) |EP (kW)
Mamdani 85.19% 16:29 268.1 43.75 19.32
SCG 74.28% 16:36 256 36 15.13

Table 10. Detailed overview of the second power fault origin.

Table 11 shows the origin of the lighting failure in the second test.
According to the data, the fault peaks at 85.83% at 15:09 using the
Mamdani method and at 87.07% at 15:00 using the SCG method. At
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these times, the controller delivers an electrical power of 26 kW,
while the optical power emitted by the lighting network is zero (0 W).
These observations reveal a malfunction in the conversion or transmis-
sion of electrical energy to the lighting system, suggesting a possible
failure of the latter, despite a sufficient power supply.

Peak of Fault | Time (h) |Electric Power (kW) | Optic Power (W)

Mamdani 85.83% 15:09 26.67 0
SCG 87.07% 15:00 26.47 0

Table 11. Detailed overview of lighting fault origin.

Table 12 details the origin of the road flow sensor failure in the sec-
ond test. The fault peaks at 87% at 15:06 with the Mamdani method
and 86.99% at 16:20 with the SCG method. At 15:06, for the Mam-
dani method, the actual road flow value is 315.9, while the sensor
detects an inconsistent value of —4.06, a negative measurement. Simi-
larly, for the SCG method, at 16:20, the actual road flow value is
278.4, but the sensor reads 6.07, showing an inability to correctly cap-
ture the actual flow, revealing an anomaly in the road flow sensor.

Peak of Fault | Time (h) |Road Flow |Detected Value
Mamdani 87% 15:06 315.9 -4.06
SCG 86.99% 16:20 278.4 6.07

Table 12. Detailed overview of traffic sensor fault origin.

Table 13 illustrates the failure of the cloud cover sensor. The fault
peaks at 20:00 with 86.99% for the Mamdani method and at 21:21
with 86.65% for the SCG method. At these times, actual cloud cover
is high (100% for Mamdani and 90.39% for SCG), but the sensor
reports very low values (0.7% for Mamdani and 1.22% for SCG),
indicating an inability to detect cloud cover correctly and confirming
a fault in the sensor.

Peak of Fault | Time (h) |Cloud (%) |Detected Value
Mamdani 86.99% 20:00 100 0.7
SCG 86.65% 21:21 90.39 1.22

Table 13. Detailed overview of cloud cover sensor fault origin.
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I 6. Conclusion

The aim of this paper was to design an intelligent system capable of
detecting and locating faults in an electric lighting network, based on
two distinct approaches: a fuzzy logic system based on Mamdani
inference and the scaled conjugate gradient (SCG) backpropagation
method. The system uses key input parameters, such as road flow and
cloud cover, to identify and diagnose various types of failure, includ-
ing power and lighting failures, as well as those related to road flow
and cloud cover sensors. A quantitative performance evaluation of the
two approaches highlighted their respective efficiencies in different
fault detection scenarios.

The Mamdani method stood out for its high accuracy, particularly
for power and lighting faults. In the first test, it achieved maximum
detection rates of 85.67% for power failures and 85.85% for lighting
failures, while maintaining stable performance in both tests. For the
road flow and cloud cover sensor faults, the maximum values
achieved were 86.99% and 86.49%, respectively, slightly below the
peak of 88.09% obtained by the SCG method for the cloud cover sen-
sor fault in the first test. Despite these discrepancies, the Mamdani
method demonstrated consistent accuracy and reliability, making it
ideal for applications requiring consistency and early fault detection.

The SCG method, on the other hand, showed superior perfor-
mance for peak detection of certain defects. It achieved a detection
probability of 88.09% for the cloud cover sensor fault in the first test,
outperforming the Mamdani method by 1.6%, and a detection of up
to 87.07% for the lighting fault in the second test, 1.24% ahead of
the Mamdani method. On the other hand, the SCG method was
slightly more effective at detecting power failures early, although its
detection peaks were lower (77.76% vs. 84.62% for the first power
failure in the second test and 74.28% vs. 85.19% for the second
power failure in the same test). In addition, the SCG method showed
a faster convergence rate, requiring fewer iterations to train the neural
network. This is particularly advantageous for real-time applications
where rapid response is crucial.

Both methods demonstrated that they could detect defects with rel-
atively high accuracy, but both had certain limitations. The Mamdani
method, although reliable, showed slightly lower detection peaks for
defects in road flow and cloud cover sensors, while the SCG method
showed greater sensitivity to noise and overfitting in dynamic environ-
ments, which could affect its performance in real-world conditions.

In conclusion, both methods are highly effective for fault detection
in LED street lighting systems. The Mamdani method offers high con-
sistency and reliable performance, particularly for power supply
faults, while the SCG method offers faster convergence and superior
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detection for lighting faults as well as faults in road flow and cloud
cover sensors. Future work could explore hybrid models that combine
the strengths of both methods, improving the robustness and adapt-
ability of fault detection systems in intelligent street lighting applica-
tions. This research lays the foundation for more advanced artificial
intelligence—driven infrastructure management solutions, with the
potential for greater fault detection accuracy, early fault diagnosis
and increased operational efficiency.
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