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This paper presents an intelligent fault detection system (FDS) for pub-
lic lighting networks, designed to improve diagnostic accuracy and sys-
tem  reliability.  The  proposed  system  integrates  the  Mamdani  fuzzy
inference method and scaled conjugate gradient (SCG) neural networks
to  detect  four  key  fault  types:  power,  lighting,  cloud  cover  sensor  and
road flow sensor. Inputs such as traffic flow, cloud cover, power supply
and lighting intensity are used to ensure precise diagnostics. The Mam-
dani  method  offers  strong  interpretability  and  robustness  in  handling
uncertainties,  while  the  SCG  algorithm  enhances  performance  through
efficient  learning.  Simulation  results  show  fault  detection  probabilities
exceeding  85%,  confirming  the  effectiveness  of  the  system.  This  paper
demonstrates  the  potential  of  combining  fuzzy  logic  and  neural  net-
works  for  reliable  and  intelligent  monitoring  of  public  lighting
infrastructure. 
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Introduction1.

The optimization of energy consumption has become a global priority
within  the  framework  of  energy  transition  and  sustainable  develop-
ment  [1].  Electrical  lighting  networks,  due  to  their  widespread  use
and  significant  contribution  to  energy  demand,  constitute  a  critical
domain  for  improvement  [2,  3].  However,  these  networks  frequently
encounter  faults  such  as  power  fluctuations  [4],  electrical  interrup-
tions  [5]  and  luminaire  failures  [6],  leading  to  substantial  energy
losses and reduced overall system efficiency.  
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Accurate  and  rapid  fault  diagnosis  is  essential  to  minimize  energy
waste,  reduce  maintenance  costs  and  ensure  the  optimal  operation  of
lighting networks [7]. Conventional diagnostic methods involve visual
inspections  to  identify  physical  anomalies  [8,  9],  electrical  parameter
measurements  to  detect  imbalances  [10,  11],  lighting  quality  analysis
to ensure compliance with standards [12, 13] and infrared thermogra-
phy to identify thermal irregularities [14–16]. These practices are sup-
plemented  by  technical  tests  such  as  continuity  and  insulation  checks
to  prevent  short  circuits  and  major  failures.  While  effective,  these
approaches  are  costly,  time  intensive  and  prone  to  human  error.  To
address these limitations, integrating intelligent systems utilizing artifi-
cial  intelligence  (AI)  techniques,  such  as  fuzzy  logic  [17–19]  and  neu-
ral  networks  [20,  21],  offers  a  promising  alternative  by  automating
diagnostics, enhancing accuracy and reducing operational costs. 

AI is revolutionizing the diagnosis of public lighting networks [22]
by  enabling  advanced  capabilities  for  proactive  fault  detection  [23],
predictive  maintenance  [24]  and  energy  optimization  [25].  By  analyz-
ing  real-time  data  from  sensors  monitoring  parameters  such  as  light
intensity, energy consumption and environmental conditions, AI facili-
tates  rapid  anomaly  detection  and  anticipates  potential  failures
through  trend  analysis.  Additionally,  AI  can  adjust  lighting  levels
based  on  actual  needs,  thereby  reducing  energy  consumption  while
maintaining safety. By making these networks autonomous and adap-
tive,  AI  contributes  to  the  development  of  sustainable,  reliable  and
economically viable public lighting infrastructures. 

In  this  paper,  Section  2  presents  the  state  of  the  art  in  electrical
system diagnostics research. Section 3 describes in detail the methodol-
ogy adopted to design the fault detection system (FDS). Section 4 out-
lines  the  development  aspects  of  the  FDS,  using  Mamdani’s  method
and  the  scaled  conjugate  gradient  (SCG)  method.  Section  5  proposes
an  experimental  study,  analyzing  the  results  of  MATLAB/Simulink
simulations based on real data relating to road flow and cloud cover.
Section  6  concludes  by  summarizing  the  results  obtained  and  high-
lighting the advantages and limitations of each method. 

Related Work   2.

The diagnosis of electrical systems requires a series of visual examina-
tions  and  functional  tests  to  assess  their  integrity  and  performance.
This process includes visual inspection to spot obvious damage, conti-
nuity  tests  to  verify  current  flow,  voltage  tests  to  ensure  voltage
stability, grounding checks to avoid the risk of electrocution, thermo-
graphic  analysis  to  identify  hot  spots,  load  tests  to  assess  system
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capacity,  functional  checks  of  electrical  devices  and  analysis  of  the
data collected to detect possible problems [26–28]. 

Integrating  AI  into  electrical  system  diagnostics  offers  considerable
advantages  in  terms  of  efficiency,  accuracy  and  speed.  AI  algorithms
can  process  large  quantities  of  data  from  sensors  installed  on  electri-
cal equipment, as well as historical performance data. They can detect
patterns, anomalies and trends that could indicate potential problems.
Machine  learning  techniques  enable  these  systems  to  continually
improve their diagnostic capabilities by refining their ability to recog-
nize new patterns [29–31]. 

Several  studies  have  been  carried  out  on  the  diagnosis  and  detec-
tion of faults in electrical systems. 

In  [32]  a  fuzzy  logic–based  method  is  developed  for  diagnosing
direct  current  (DC)  starter  failures.  This  approach  overcomes  the
uncertainties  associated  with  models,  noise  and  the  stochastic  behav-
ior  of  variables  and  is  capable  of  detecting  six  types  of  failure.  This
method  is  useful  for  quality  control  units  as  well  as  for  maintenance
and repair. 

In [33] a method is proposed for detecting and classifying faults in
medium-voltage  direct  current  (MVDC)  electrical  systems.  This
method  combines  multiresolution  wavelet  transform  analysis  with
artificial neural networks (ANNs). Simulations have demonstrated the
effectiveness of this approach for detecting various types of faults. 

In [34] a prototype is developed to collect data on various faults in
a  single-phase  distribution  network.  Three  machine  learning  algo-
rithms—KNN, SVM and DT—were tested, with the DT model achiev-
ing 99.42% accuracy. 

Research is conducted in [35] into the detection and localization of
high-impedance  faults  in  a  distribution  network.  The  study  examines
several  algorithms,  with  SVM  performing  best  for  accurate  detection
and localization of these faults. 

In [36] a new method is proposed for detecting and locating aging
cable  segments  in  underground  distribution  systems.  The  method  is
based  on  broadband  transfer  function  measurement  and  the  use  of
deep learning approaches, with experiments showing its effectiveness. 

In  [37]  an  integrated  energy  system  (IES)  is  presented  that  uses
machine  learning  technologies  to  improve  fault  detection  in  district
heating  systems  in  China.  The  IES-ML  achieved  98.67%  accuracy  in
fault detection.

More  recently,  [38]  introduces  an  innovative  electric  drive  system
using a double-wound permanent magnet motor (DWPMM). This sys-
tem  aims  to  improve  reliability  while  reducing  costs.  A  fuzzy  logic–
based power switch open circuit fault diagnosis strategy has also been
proposed, enabling faults, including intermittent faults, to be detected
and located in real time.
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This paper proposes an FDS for electrical lighting networks, based
on  Mamdani  inference  and  the  SCG  algorithm.  The  system  is
designed  to  identify  four  types  of  faults:  power,  lighting,  cloud  cover
sensor and traffic flow sensor. 

A  power  fault  is  identified  when  the  power  supplied  by  the  con-
troller, which adjusts lighting based on traffic flow and cloud cover, is
insufficient  to  meet  lighting  requirements.  A  lighting  fault  is  detected
in  cases  of  nonfunctional  luminaires  despite  adequate  electrical
power.  A  cloud  cover  sensor  fault  refers  to  an  anomaly  in  the  cloud
coverage  sensor,  while  a  traffic  flow  sensor  fault  is  identified  when  a
malfunction disrupts traffic monitoring. 

Problem Definition   3.

The  system  presented  in  this  paper  is  specifically  designed  to  detect
and  locate  faults  within  an  electric  lighting  network.  This  advanced
system  is  equipped  to  identify  and  distinguish  between  four  distinct
types of faults that may arise: 

Power.  This  type  of  fault  arises  when  the  power  supplied  by  the  smart
controller,  which  manages  the  electricity  for  the  lighting  network,  is
insufficient  to  meet  the  network’s  energy  demands.  The  smart  con-
troller  adjusts  the  power  output  based  on  changes  in  road  traffic  and
cloud cover. A power fault is identified when the generated energy falls
short of the requirements dictated by these two factors. 

1.

Lighting.  This  fault  is  detected  when,  despite  sufficient  energy  produc-
tion, lighting is absent. This indicates a failure separate from energy pro-
duction, suggesting a problem in lighting distribution or activation. 

2.

Cloud  cover  sensor.  This  fault  is  identified  when  there  is  a  significant
difference  between  the  actual  value  and  the  measured  value  of  cloud
cover, compromising lighting management. 

3.

Road  flow  sensor.  This  fault  occurs  when  an  inconsistency  is  observed
between  the  actual  road  flow  value  and  that  measured  by  the  sensor,
reducing the effectiveness of traffic-based lighting adjustment.  

4.

To  implement  this  fault  detection  and  localization  system,  two  AI
approaches  are  adopted:  fuzzy  logic  based  on  Mamdani’s  inference
system (MIS), known for its ability to handle uncertain and imprecise
data,  and  neural  networks  trained  with  the  SCG  algorithm,  offering
increased robustness and accuracy for modeling complex data. 

System  input  parameters  include  road  flow,  cloud  cover,  electrical
power generated by the smart controller and lighting network bright-
ness,  as  well  as  the  error  between  the  actual  value  and  the  value
detected  by  the  cloud  cover  sensor,  and  the  error  between  the  actual
value  and  the  value  detected  by  the  road  flow  sensor.  Based  on  these
six  inputs,  the  system  is  able  to  determine  four  types  of  fault.  This
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configuration  enables  a  detailed  and  precise  analysis  of  lighting  net-
work  conditions,  facilitating  rapid  and  targeted  intervention  to  cor-
rect identified faults. 

Development of the Fault Detection and Location System   4.

In this section, we design an FDS for electric lighting networks, using
fuzzy  logic  (FL)  based  on  Mamdani  inference  and  neural  networks
trained with the SCG algorithm.  

Fault Detection and Localization Using Fuzzy Logic Based on 

Mamdani’s Inference System  

4.1

The  method  developed  in  this  section  uses  fuzzy  logic  with  MIS  to
model the interactions between six input parameters and four types of
output  faults.  Mamdani  inference,  one  of  the  most  popular  fuzzy
logic  methods,  relies  on  linguistic  rules  of  the  type  If…Then…  to
model  relationships  between  inputs  and  outputs.  This  process
includes  four  main  steps:  fuzzification  of  inputs,  evaluation  of  fuzzy
rules,  aggregation  of  outputs  and  defuzzification  to  produce  a  precise
final  value.  This  method  is  widely  used  in  control  and  decision-
making  systems.  Algorithm  1  is  a  summary  of  the  essential  steps  in
this  process,  from  fuzzification  of  the  input  data  to  defuzzification  to
obtain a concrete output. 

Algorithm 1. Mamdani fuzzy inference system (FIS). 

Require:  Input  variables  x1, x2, …, xn,  fuzzy  rules,  membership  func-
tions  for  inputs  and  outputs,  aggregation  method,  defuzzification
method
Ensure: Defuzzified output y

Fuzzification: 1.

for each input variable xi do 2.

Compute membership degrees μi for all associated fuzzy sets 3.

end for 4.

Rule Evaluation: 5.

for each fuzzy rule do 6.

Compute  condition  degree  using  logical  operators  (e.g.,  min  for  AND,
max for OR) 

7.

Apply  condition  degree  to  the  rule’s  consequence  (e.g.,  truncate  output
fuzzy set) 

8.

end for 9.

Aggregation: 10.

Combine all fuzzy rule outputs into a single fuzzy set using an aggrega-
tion method (e.g., max) 

11.
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Defuzzification: 12.

Convert the aggregated fuzzy set to a crisp output y using a defuzzifica-
tion method (e.g., centroid) 

13.

return y 14.

Input  parameters  of  the  FDS  include  road  flow,  indicating  traffic
intensity;  cloud  cover,  influencing  available  daylight;  electrical  power
supplied  by  the  controller  to  power  the  lighting  network;  and  mea-
sured  network  brightness;  as  well  as  the  error  between  the  actual
value  and  that  detected  by  the  cloud  cover  sensor,  and  the  error
between the actual value and that measured by the road flow sensor. 

The  system  generates  four  outputs:  the  probability  of  power  fail-
ure, indicating a risk of power supply failure; the probability of light-
ing  failure,  indicating  a  lack  of  light;  the  probability  of  cloud  sensor
failure; and the probability of road flow sensor failure. These outputs
help to monitor and maintain optimal network operation by identify-
ing and anticipating failures (see Figure 1). 

Figure 1. FDS data fusion algorithm structure.  

In this paper, we detail the membership functions for the input and
output  parameters  of  the  FDS,  specifically  choosing  triangular  mem-
bership  functions.  Figures  2  and  3  illustrate  these  membership  func-
tions  for  the  input  and  output  parameters  of  the  FDS,  respectively.
Each  parameter  has  been  divided  into  three  levels:  low,  medium  and
high. We consider the following input parameters: 
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◼ Traffic  flow.  The  universe  of  discourse  for  this  input  ranges  from  0  to
320  vehicles,  reflecting  traffic  density,  and  is  divided  into  three  levels:
low  (0–100  vehicles),  medium  (50–250  vehicles)  and  high  (200–320
vehicles). 

◼ Cloud cover. The range of values for this input extends from 0% (clear
sky)  to  100%  (complete  cloud  cover),  with  low  (0–39%),  medium
(17–83%) and high (61–100%) levels. 

◼ Electrical  power  generated  by  the  controller.  We  have  established  that
the lighting network is supplied with electrical power ranging from 0 to
30 kW, with low (0–10 kW), medium (5–25 kW) and high (20–30 kW)
levels. 

◼ Network  lighting.  Represented  by  the  optical  power  emitted  by  the
LEDs,  this  input  covers  a  range  from  0  W  to  20  W,  divided  into  low
(0–8 W), medium (4–16 W) and high (12–20 W) levels. 

◼ Cloud sensor error. The universe of discourse for this input ranges from
-100%  to  100%,  with  three  defined  levels:  N  (-100%  to  -20%),  Z
(-60% to 60%) and P (20% to 100%). 

◼ Road flow sensor error. The universe of discourse for this input ranges
from -320 to 320 and is divided into three levels: N (-320 to -64), Z
(-200 to 200) and P (64 to 320).  

Figure 2. Input membership functions.  
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Figure 3. Output membership functions.  

The  system  outputs  are  designed  to  identify  four  main  types  of
faults: 

◼ power 

◼ lighting 

◼ cloud sensor 

◼ road flow sensor

For  these  four  output  parameters,  the  universe  of  discourse  is
defined  between  0%  and  100%,  and  each  output  is  further  divided
into  three  levels:  low  (0–40%),  medium  (20–80%)  and  high
(60–100%).  This  precise  quantification  of  power  and  lighting  fault
levels  enables  rigorous  assessment  and  effective  management  of
anomalies detected in the electric lighting network. By structuring the
universes  of  discourse  and  the  levels  of  each  parameter  in  this  way,
we  facilitate  a  more  detailed  analysis  and  appropriate  response  to
identified  faults,  guaranteeing  better  lighting  system  performance  and
reliability. 

Tables  1  through  4  describe  in  detail  the  rules  established  for  the
FDS. Table 1 focuses on power faults, with a set of 27 rules covering
all possible combinations of road flow, cloudiness and generated elec-
trical  power  levels,  enabling  precise  detection  of  power  anomalies  in
the lighting network. 
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 Electric Power

Traffic Flow Cloudiness low medium high 

low low low medium high 

low medium medium low medium 

low high medium medium low 

medium low low low high 

medium medium medium low high 

medium high high medium low 

high low medium low medium 

high medium medium high low 

high high high high low 

Table 1. Fuzzy rule base for power faults.  

Table  2  contains  six  rules  dedicated  to  lighting  faults.  They  have
been designed to identify variations in the light emitted by LEDs, as a
function of the electrical power generated by the controller. 

Brightness  

Electric Power low medium high 

low low 

medium medium low 

high high medium low 

Table 2. Fuzzy rule base for lighting faults.  

Tables 3 and 4 show the rules for cloudiness and road flow sensor
faults, respectively, each comprising three rules for detecting potential
sensor malfunctions. 

Cloud Sensor Error Cloud Sensor Fault 

N high 

Z low 

P high 

Table 3. Fuzzy rule base for cloud sensor faults.  

Traffic Flow Sensor Error Traffic Flow Sensor Fault 

N high 

Z low 

P high 

Table 4. Fuzzy rule base for traffic flow sensor faults. 
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By combining these sets of rules, the system is able to monitor and
analyze  lighting  network  performance  in  depth,  accurately  detecting
power,  lighting  and  sensor  faults  and  providing  clear  indications  for
their management and correction. 

Having  constructed  the  input  and  output  functions,  we  tested  the
FDS using the surface viewer. Figure 4(a) shows this visualizer for the
power  supply  fault.  This  graph  reveals  that,  according  to  the  rules
defined in Table 1, the probability of a supply fault is high when road
flow  and  cloud  cover  are  high,  but  the  electrical  power  generated  is
insufficient  to  meet  lighting  requirements.  A  power  failure  is  also
likely  when  road  flow  and  cloud  cover  are  low,  but  the  electrical
power generated is excessive, resulting in wasted energy. 

Figure 4. Surface viewer for: (a) power fault; (b) lighting fault; (c) cloud sen-
sor fault; and (d) road flow sensor fault.  

Figure  4(b)  shows  the  surface  viewer  for  lighting  faults.  According
to  this  graph  and  the  rules  in  Table  2,  the  probability  of  a  lighting
fault  is  high  when  lighting  is  insufficient,  although  the  amount  of
electricity available to supply the network is adequate. This can occur
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when,  despite  sufficient  electrical  power,  the  LEDs  fail  to  reach  the
required  lighting  level,  indicating  a  potential  problem  in  the  lighting
system itself. 

Figure  4(c)  illustrates  the  surface  viewer  for  cloud  sensor  faults.
According to this graph and the rules in Table 3, the probability of a
cloud  sensor  fault  is  high  when  there  is  a  difference  between  the
actual values and those captured by the sensor. This means, for exam-
ple, that in cloudy weather, the sensor detects nothing, or vice versa. 

Finally,  Figure  4(d)  shows  the  surface  viewer  for  road  flow  sensor
faults.  Following  the  rules  in  Table  4,  the  probability  of  a  road  flow
sensor  fault  is  high  when  deviations  are  observed  between  the  actual
values  and  those  captured  by  the  sensor.  This  is  particularly  the  case
when  there  are  vehicles  on  the  road,  but  the  sensor  detects  no  road
flow, or vice versa. 

Analysis and Estimation of Failures in an Electric Lighting 

Network via Scaled Conjugate Gradient  
4.2

The  approach  adopted  in  this  case  is  based  on  the  use  of  ANNs,  in
particular,  the  SCG  algorithm.  SCG  is  an  extension  of  the  classical
conjugate  gradient  method,  adapted  specifically  for  training  neural
networks.  Unlike  standard  gradient  descent,  which  can  suffer  from
slow  convergence,  SCG  utilizes  an  approximation  of  the  Hessian
matrix  (second-order  derivatives)  to  dynamically  adjust  the  search
direction  and  step  size.  This  allows  SCG  to  converge  faster  while
avoiding  the  computational  cost  of  exact  Newtonian  methods.  The
algorithm begins with the initialization of weights and gradients, itera-
tively  updating  the  weights  along  an  optimized  search  direction.  The
inclusion of a scaling parameter σ ensures numerical stability and pre-
vents oscillations during updates. Due to these properties, SCG is par-
ticularly  effective  for  training  deep  neural  networks  with  complex
cost functions. Algorithm 2 summarizes the essential steps of the SCG
method for neural network training.  

Algorithm 2. SCG.

Require:  Cost  function  E(w),  gradient  ∇E(w),  initial  weights  w0,  scal-
ing parameter σ0, tolerance ϵ, maximum iterations max_iter
Ensure: Optimized weights w, cost history 

Initialize  weights  w  w0,  gradient  g0  ∇E(w),  search  direction
d0  -g0, iteration k  0 

1.

while gk > ϵ and k < max_iter do 2.

Compute perturbation: sk  σk · dk 3.

Approximate the Hessian: vk 
∇E(w+sk)-∇E(w)

σk
 4.

Update step size: αk 
gk

2

dk
⊤vk

 5.
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Update weights: w  w + αk · dk6.

Compute next gradient: gk+1  ∇E(w) 7.

Update search direction: dk+1  -gk+1 +
gk+1

2

gk
2

· dk 8.

Adjust scaling parameter σk if needed 9.

Increment k  k + 1 10.

end while 11.

return Optimized weights w, cost history 12.

This methodological choice is in line with the previously developed
fault  detection  system,  which  used  Mamdani  inference  to  identify
anomalies. However, this new approach offers finer-grained modeling
and enables complex relationships between different parameters to be
captured. 

The input parameters used in this system are identical to those pre-
viously  employed  in  the  FDS  based  on  Mamdani  inference.  These
include road flow, reflecting traffic intensity; cloud cover, which influ-
ences natural luminosity; electrical power generated by the controller;
lighting network luminosity, a direct indicator of system performance;
the  error  between  the  actual  value  and  that  detected  by  the  cloud
cover  sensor;  and  the  error  between  the  actual  value  and  that  mea-
sured  by  the  road  flow  sensor.  From  this  data,  the  model  generates
four output parameters: the power fault probability, the lighting fault
probability,  the  fault  probability  of  the  cloud  cover  sensors  and  the
fault probability of the road flow sensors. 

As part of this paper, we decided to develop two separate ANNs to
handle  faults  identified  in  the  public  lighting  network.  This  approach
makes  it  possible  to  improve  detection  accuracy  and  robustness  by
specializing  each  artificial  neural  network  (ANN)  in  the  management
of specific faults, depending on their characteristics and the nature of
the parameters involved. The first network is designed to detect faults
relating  to  power  and  lighting,  since  these  faults  have  a  direct  impact
on  the  quality  of  the  illumination  provided  and  require  in-depth
analysis  of  electrical  values  and  luminosity.  The  second  network  is
dedicated to faults in cloud cover and road flow sensors. These param-
eters, although different from the electrical ones, play a crucial role in
adjusting  lighting  intensity  according  to  weather  and  traffic  condi-
tions,  which  is  essential  for  optimizing  energy  efficiency  and  road
safety. 

By dividing faults into two main categories and assigning each cate-
gory a dedicated ANN, this approach reduces the complexity of each
model while increasing the specificity of their predictions. This modu-
lar  structure  brings  flexibility,  facilitates  network  maintenance  and
enables better generalization and performance of the models. 
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Neural Network for Power and Lighting Fault Detection  4.2.1

The  first  neural  network  is  primarily  designed  to  detect  faults  in  the
network’s  power  supply  and  lighting.  It  uses  controller-generated
power,  brightness,  road  flow  and  cloud  cover  as  input  parameters,
directly  influencing  power  and  lighting  conditions.  This  network
model comprises two hidden layers of 15 neurons each, with the acti-
vation  functions  logsig  for  the  hidden  layers  and  purelin  for  the  out-
put layer.  

As previously mentioned, we opted for the SCG algorithm, using a
learning  rate  of  0.05  and  strict  convergence  criteria,  with  the  aim  of
reducing  overlearning  and  ensuring  optimal  generalization.  Tests
carried  out  on  real  data  reveal  high  accuracy  in  detecting  power  and
lighting faults. The performances obtained include an MSE of 2.1379
(Figure  5(a));  a  correlation  coefficient  R  of  0.99627  (Figure  5(b)),
very  close  to  1;  a  gradient  decreasing  until  reaching  its  minimum
value  of  2.7355  at  iteration  1000  (Figure  5(c));  and  an  error  varying

Figure 5. (a) Performance; (b) regression plot; (c) learning state; and (d) error
histogram of the first ANN.  
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between  -2.198  and  3.553  (Figure  5(d)).  These  results  confirm  the
effectiveness of this architecture for defect detection. 

Neural Network for Nebulosity and Road Flow Sensor
Fault Detection  

4.2.2

The  second  neural  network  is  dedicated  to  the  detection  of  faults
affecting  cloudiness  and  road  flow  sensors,  key  elements  in  ensuring
the  proper  operation  of  the  adaptive  lighting  system.  Input  parame-
ters  for  this  network  include  the  reading  errors  associated  with  these
sensors.  

This  network  features  a  simple  architecture,  with  a  single  hidden
layer of 10 neurons. The logsig activation function is used for the hid-
den  layer,  while  the  output  layer  employs  the  purelin  function.  The
SCG  algorithm  is  also  applied,  with  a  learning  rate  of  0.05  to  limit
overlearning.  The  tests  carried  out  demonstrate  high  efficiency  in
detecting  sensor  defects.  The  performances  obtained  include  an  MSE
of  0.099887  (Figure  6(a));  a  correlation  coefficient  R  of  0.99983

Figure 6. (a) Performance; (b) regression plot; (c) learning state; and (d) error
histogram of the second ANN. 
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(Figure 6(b)), very close to 1; a gradient reaching a minimum value of
4.2794  at  iteration  64  (Figure  6(c));  and  an  error  varying  between
-0.4619  and  0.4463  (Figure  6(d)).  These  results  confirm  the  reliabil-
ity of this architecture for sensor fault detection. 

Simulation Results and Discussion   5.

After  developing  the  FDS  using  the  Mamdani  inference  method  and
SCG  neural  networks,  we  test  it  on  the  electric  lighting  network
described and modeled in the previous sections. The block diagram of
the  fault  detection  system,  applied  to  this  lighting  network,  is  shown
in Figure 7.  

Figure 7. Block  diagram  of  the  FDS  implemented  on  the  electric  lighting
network.  

The  system  operates  as  follows:  To  detect  power  failures,  the  sys-
tem  receives  the  electrical  power  generated  by  the  intelligent  con-
troller.  This  controller  dynamically  adjusts  the  power  according  to
variations  in  road  flow  and  cloud  cover.  The  system  then  compares
the electrical power generated with the values for road flow and cloud
cover. If road flow or cloud cover is high, but the electrical power gen-
erated  is  insufficient,  the  system  signals  a  high  probability  of  power
failure.  Conversely,  if  electrical  power  is  high  while  road  flow  and
cloud cover values are low, an anomaly is also suspected. 

For  lighting  failure  detection,  the  system  analyzes  the  correspon-
dence between the electrical energy supplied by the controller and the
actual  state  of  the  lighting.  If  the  controller  generates  an  adequate
amount of electrical energy, but the lighting is absent or defective, the
system  concludes  that  there  is  a  high  probability  of  a  lighting  failure.
This  detection  process  enables  efficient  monitoring  and  diagnosis  of
anomalies in the lighting network.
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The  system  incorporates  a  methodological  approach  to  detecting
faults  in  the  road  flow  and  cloud  cover  sensors.  With  regard  to  the
road  flow  sensor,  the  system  compares  the  data  captured  by  the  sen-
sor in real time with actual traffic observations or expected estimates,
calculated from a historical database and current trends. For example,
if the sensor indicates low traffic density when normal conditions pre-
dict dense traffic (such as rush hour), the system registers an inconsis-
tency  and  detects  a  high  probability  of  sensor  failure.  Furthermore,
sudden  and  irregular  variations  in  the  values  transmitted  by  the  sen-
sor that do not correspond to plausible traffic dynamics are also inter-
preted as malfunction signals. 

For  the  cloud  cover  sensor,  the  system  performs  a  similar  analysis,
comparing  the  data  collected  with  external  weather  records  or  local
predictive  models.  A  prolonged  absence  of  variation  in  cloud  cover
values,  despite  obvious  changes  in  weather  conditions  (from  clear  to
cloudy, for example), is a potential indicator of sensor failure. On the
other  hand,  if  the  sensor  registers  high  cloudiness  in  clear-sky  condi-
tions, or vice versa, the system identifies a discrepancy and concludes
that the sensor is probably malfunctioning. 

These  analyses  are  enhanced  by  the  use  of  sensor  errors  as  input
parameters  to  the  intelligent  model.  The  road  flow  sensor  error  is
defined  as  the  difference  between  the  actual  traffic  density  and  the
density  measured  by  the  sensor.  Similarly,  the  cloud  cover  sensor
error  represents  the  difference  between  the  actual  cloud  cover
(obtained  from  reliable  sources  or  standard  references)  and  the  mea-
sured  cloud  cover.  When  these  errors  exceed  a  predefined  critical
threshold, the system triggers an alert to signal a sensor fault. 

The  system  will  be  evaluated  in  two  separate  tests,  using  real  road
flow and cloud cover data, to validate its effectiveness under practical
conditions. 

Test 1  5.1

The  two  signals  shown  in  Figure  8  model  the  real-time  variation  in
road flow and cloud cover, respectively, over a 24-hour period for the
first test.  

Figure 9 shows the various faults detected by the FDS in the light-
ing network over a continuous 24-hour period for the first test. 

For  this  analysis,  we  have  made  the  assumption  that  only  faults
with  a  probability  exceeding  50%  require  immediate  intervention  for
repair.  This  methodology  aims  to  prioritize  corrective  actions  and
ensure optimized network maintenance. 

Figure 9(a) illustrates a power fault. For the Mamdani method, this
fault is detected between 08:33 and 09:39, with a probability exceed-
ing  the  critical  threshold  of  50%  and  reaching  a  significant  peak  of
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Figure 8. Real data for: (a) road flow; and (b) cloud cover (Test 1).  

Figure 9. Fault probabilities for: (a) power; (b) lighting; (c) road flow sensor;
and (d) cloud cover sensor (Test 1).  

85.67%  at  08:45.  In  parallel,  for  the  SCG  method,  a  power  fault  is
identified  over  a  slightly  different  period,  between  08:36  and  09:31,
with a probability peak of 87.37% observed at 08:46. 

In  Figure  9(b),  a  lighting  fault  was  intentionally  introduced
between 05:33 and 08:19 to test the effectiveness of the FDS. The aim
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of this experiment was to verify the system’s ability to accurately iden-
tify  this  type  of  fault.  The  figure  provides  a  detailed  analysis  of  the
probability  of  fault  detection  over  the  time  interval  concerned.  The
results  show  a  progressive  increase  in  the  probability  of  detection,
reaching  a  peak  at  08:00  with  a  maximum  value  of  85.85%  for  the
Mamdani  method  and  86.43%  for  the  SCG  method.  This  peak
demonstrates  that  the  system  identified  the  fault  with  great  accuracy
at  this  precise  moment,  confirming  the  reliability  and  robustness  of
our detection methods under controlled conditions. 

Similarly,  Figure  9(c)  illustrates  the  results  obtained  following  the
deliberate  introduction  of  a  fault  in  the  road  flow  sensor,  which
occurred  between  12:00  and  13:52.  The  aim  of  this  experiment  was
to  assess  the  detection  system’s  ability  to  detect  this  specific  type  of
anomaly.  Analysis  of  the  data  shown  in  the  figure  reveals  a  progres-
sive  increase  in  the  probability  of  fault  detection  throughout  the  time
interval  under  consideration.  This  probability  reaches  a  first  notable
peak of 86.99% at 12:00 for the Mamdani method, followed by a sec-
ond peak of 86.61% at 13:00 for the SCG method. 

Finally, Figure 9(d) shows the results obtained after the intentional
introduction  of  a  fault  in  the  cloud  cover  sensor,  simulated  between
06:43 and 09:52. The aim of this experiment was to test the detection
system’s  ability  to  identify  this  type  of  anomaly,  which  can  disrupt
input  parameters  critical  to  the  optimal  operation  of  the  lighting  net-
work. Analysis of the data reveals a significant increase in the proba-
bility  of  fault  detection  throughout  the  simulated  time  interval.  The
Mamdani  method  registers  an  initial  probability  peak  of  86.49%
right  at  the  start  of  the  interval,  at  06:43,  while  the  SCG  method
reaches  an  even  higher  peak  of  88.09%  at  the  same  time.  These
results  highlight  the  accuracy  and  effectiveness  of  both  approaches  in
identifying  faults  associated  with  environmental  sensors.  This  ability
to  detect  faults  quickly  and  reliably  ensures  better  proactive  manage-
ment and targeted maintenance of the public lighting network. 

Tables 5 through 8 provide further details on the origin of the vari-
ous faults detected by the FDS. 

 Peak of Fault Time (h) Road Flow Cloud (%) EP (kW)

Mamdani 85.67% 08:45 276.9 39.29 18.59 

SCG 87.37% 08:46 276.2 39.01 18.21 

Table 5. Detailed overview of power fault origin.  

Table  5  gives  details  of  the  origin  of  the  power  fault  identified  by
the  FDS.  As  previously  indicated,  the  probability  of  fault  detection
reaches  85.67%  at  8:45  with  the  Mamdani  method  and  87.37%  at
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8:46  with  the  SCG  method.  At  this  point,  road  flow  is  276,  which  is
considered  high,  while  cloud  cover  is  39%,  a  value  close  to  the
median.  At  the  same  time,  the  electrical  power  supplied  by  the  con-
troller feeding the lighting network is 18 kW. These observations sug-
gest that the fault detected is probably linked to insufficient electrical
power  to  meet  the  needs  of  the  lighting  network,  particularly  in  view
of  the  heavy  traffic.  This  highlights  the  need  for  an  adequate  power
supply  to  ensure  optimal  operation  of  the  lighting  network,  particu-
larly during periods of heavy traffic. 

Table  6  details  the  origin  of  the  lighting  fault.  It  reveals  that  at
08:00,  the  absence  of  lighting  is  associated  with  zero  optical  power
(0  W),  despite  the  fact  that  the  network  provides  a  power  supply  of
26.71 kW. This situation led to a progressive increase in the probabil-
ity  of  failure,  reaching  a  maximum  of  85.85%  with  the  Mamdani
method  and  86.43%  with  the  SCG  method.  These  results  point  to  a
malfunction  in  the  conversion  or  transmission  of  electrical  energy  to
the lighting system, suggesting a potential failure of the latter, despite
an adequate power supply. 

Peak of Fault Time (h) Electric Power (kW) Optic Power (W)

Mamdani 85.85% 08:00 26.71 0 

SCG 86.43% 08:00 26.71 0 

Table 6. Detailed overview of lighting fault origin.  

Table 7 shows the origin of the road flow sensor fault. As shown in
the table, the fault reaches its maximum value of 86.99% at 12:00 for
the Mamdani method, and 86.61% at 13:00 for the SCG method. At
12:00,  the  actual  road  flow  value  for  the  Mamdani  method  is  310.5,
while  the  value  detected  by  the  sensor  is  -4.65,  a  negative  value  that
seems  inconsistent.  For  the  SCG  method,  at  13:00,  the  actual  road
flow  value  is  284.3,  but  the  sensor  detects  a  value  of  2.5,  showing
that it has not captured the correct road flow value. This indicates an
anomaly in the road flow sensor. 

Peak of Fault Time (h) Road Flow Detected Value

Mamdani 86.99% 12:00 310.5 -4.65 

SCG 86.61% 13:00 284.3 2.5 

Table 7. Detailed overview of traffic sensor fault origin.  

Finally,  Table  8  shows  the  origin  of  the  cloud  cover  sensor  fault.
As  shown,  the  fault  reaches  its  maximum  value  at  06:43,  with
86.49%  for  the  Mamdani  method  and  88.09%  for  the  SCG  method.
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At  this  time,  the  actual  cloud  cover  value  is  84.11%,  while  the  value
detected  by  the  sensor  is  4.2%,  indicating  that  the  sensor  has  not
detected  the  correct  value,  suggesting  an  anomaly  in  the  cloud  cover
sensor. 

 Peak of Fault Time (h) Cloud (%) Detected Value

Mamdani 86.49% 06:43 84.11 4.2 

SCG 88.09% 06:43 84.11 4.2 

Table 8. Detailed overview of cloud cover sensor fault origin.  

Test 2  5.2

The  two  signals  shown  in  Figure  10  model  the  real-time  variation  in
road flow and cloud cover, respectively, over a 24-hour period for the
second test.  

Figure 10. Real data for: (a) road flow; and (b) cloud cover (Test 2).  

Figure 11 illustrates the various faults detected by the detection sys-
tem  within  the  lighting  network  over  a  continuous  24-hour  period  as
part  of  the  second  test.  In  accordance  with  the  defined  criteria,  only
faults  with  a  probability  greater  than  50%  are  considered  to  require
intervention. 

In  this  second  test,  Figure  11(a)  highlights  the  detection  of  two
power  faults  by  the  system  developed.  The  first  fault  was  identified
between  11:48  and  14:30,  with  a  peak  probability  of  85.62%  at
14:09  according  to  the  Mamdani  method  and  a  peak  of  77.76%  at
13:56  for  the  SCG  method.  The  second  fault  was  detected  between
16:22 and 16:52, reaching a peak of 85.19% at 16:29 using the Mam-
dani method and a peak of 74.28% at 16:39 using the SCG method. 

Figure  11(b)  illustrates  the  results  obtained  following  the  inten-
tional  introduction  of  a  lighting  fault  between  13:52  and  16:22,  as
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Figure 11. Fault probabilities for: (a) power; (b) lighting; (c) road flow sensor;
and (d) cloud cover sensor (Test 2).  

part  of  the  second  test.  As  with  the  first  test,  the  purpose  of  this
maneuver  was  to  evaluate  the  efficiency  and  accuracy  of  the  FDS
developed. The data shows a progressive increase in the probability of
detection  throughout  the  defined  time  interval.  The  system  reached  a
probability  peak  at  15:09,  with  a  maximum  value  of  85.83%  for  the
Mamdani method, and at 15:00, with a probability of 87.07% for the
SCG method. 

Figure  11(c)  shows  the  results  obtained  after  the  deliberate  intro-
duction of a fault in the road flow sensor, simulated to occur between
14:39 and 16:43. The aim of this experiment was to assess the detec-
tion  system’s  ability  to  accurately  identify  this  type  of  malfunction
under  realistic  conditions.  Analysis  of  the  data  shown  in  the  figure
reveals a progressive increase in the probability of fault detection over
the  specified  time  interval.  For  the  Mamdani  method,  the  probability
reaches  a  significant  peak  of  87%  at  15:06,  indicating  effective  fault
identification at that precise moment. For the SCG method, the maxi-
mum  peak  recorded  was  86.99%  at  16:20,  also  confirming  the  high
performance of the system in this context. 

Finally,  Figure  11(d)  illustrates  the  results  obtained  following  the
deliberate introduction of a simulated fault in the cloud cover sensor,
which  occurred  between  19:26  and  21:39.  The  aim  of  the  simulation
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was to assess the system’s ability to accurately detect this type of mal-
function  under  controlled  conditions.  Analysis  of  the  data  revealed  a
significant increase in the probability of fault detection over the simu-
lated  time  interval.  For  the  Mamdani  method,  a  first  notable  peak  is
recorded  at  20:00  with  a  probability  of  86.99%,  confirming  rapid
and effective detection. For its part, the SCG method shows a slightly
shifted maximum peak at 21:21, reaching a probability of 86.65%. 

As  with  the  first  test,  Tables  9  through  13  provide  further  details
on  the  origin  of  the  various  faults  detected  by  the  system  during  the
second test.

Tables  9  and  10  detail  the  origin  of  the  two  power  supply  faults
identified  by  the  detection  system.  For  the  first  fault,  the  probability
of detection reaches 84.62% at 14:09 with the Mamdani method and
77.76%  at  13:56  with  the  SCG  method.  At  these  times,  road  flow  is
high  (305.4  for  Mamdani  and  300.5  for  SCG),  while  cloud  cover  is
moderate  (39%  for  Mamdani  and  36.72%  for  SCG).  At  the  same
time, the electrical power supplied by the controller to the lighting net-
work  is  20  kW.  For  the  second  fault,  the  probability  of  detection  is
85.19% at 16:29 for the Mamdani method and 74.28% at 16:36 for
the  SCG  method.  Road  flow  remains  high  (286.1  for  Mamdani  and
256  for  SCG)  and  cloud  cover  is  average  (43.75%  for  Mamdani  and
36%  for  SCG),  while  the  electrical  power  supplied  is  19.32  kW  for
the  Mamdani  method  and  15.13  kW  for  the  SCG  method.  These
observations suggest that the faults detected are probably due to insuf-
ficient  electrical  power  to  meet  the  needs  of  the  lighting  network,
particularly  during  periods  of  heavy  traffic.  This  underscores  the
importance  of  an  adequate  power  supply  to  guarantee  the  network’s
smooth operation, particularly during heavy traffic hours. 

 Peak of Fault Time (h) Road Flow Cloud (%) EP (kW)

Mamdani 84.62% 14:09 305.4 39 20 

SCG 77.76% 13:56 300.5 36.72 20 

Table 9. Detailed overview of the first power fault origin.  

 Peak of Fault Time (h) Road Flow Cloud (%) EP (kW)

Mamdani 85.19% 16:29 268.1 43.75 19.32 

SCG 74.28% 16:36 256 36 15.13 

Table 10. Detailed overview of the second power fault origin.  

Table 11 shows the origin of the lighting failure in the second test.
According  to  the  data,  the  fault  peaks  at  85.83%  at  15:09  using  the
Mamdani method and at 87.07% at 15:00 using the SCG method. At
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these  times,  the  controller  delivers  an  electrical  power  of  26  kW,
while the optical power emitted by the lighting network is zero (0 W).
These observations reveal a malfunction in the conversion or transmis-
sion  of  electrical  energy  to  the  lighting  system,  suggesting  a  possible
failure of the latter, despite a sufficient power supply. 

 Peak of Fault Time (h) Electric Power (kW) Optic Power (W)

Mamdani 85.83% 15:09 26.67 0 

SCG 87.07% 15:00 26.47 0 

Table 11. Detailed overview of lighting fault origin.  

Table 12 details the origin of the road flow sensor failure in the sec-
ond test. The fault peaks at 87% at 15:06 with the Mamdani method
and 86.99% at 16:20 with the SCG method. At 15:06, for the Mam-
dani  method,  the  actual  road  flow  value  is  315.9,  while  the  sensor
detects an inconsistent value of -4.06, a negative measurement. Simi-
larly,  for  the  SCG  method,  at  16:20,  the  actual  road  flow  value  is
278.4, but the sensor reads 6.07, showing an inability to correctly cap-
ture the actual flow, revealing an anomaly in the road flow sensor. 

 Peak of Fault Time (h) Road Flow Detected Value

Mamdani 87% 15:06 315.9 -4.06 

SCG 86.99% 16:20 278.4 6.07 

Table 12. Detailed overview of traffic sensor fault origin.  

Table 13 illustrates the failure of the cloud cover sensor. The fault
peaks  at  20:00  with  86.99%  for  the  Mamdani  method  and  at  21:21
with 86.65% for the SCG method. At these times, actual cloud cover
is  high  (100%  for  Mamdani  and  90.39%  for  SCG),  but  the  sensor
reports  very  low  values  (0.7%  for  Mamdani  and  1.22%  for  SCG),
indicating  an  inability  to  detect  cloud  cover  correctly  and  confirming
a fault in the sensor. 

 Peak of Fault Time (h) Cloud (%) Detected Value

Mamdani 86.99% 20:00 100 0.7 

SCG 86.65% 21:21 90.39 1.22 

Table 13. Detailed overview of cloud cover sensor fault origin.  
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Conclusion   6.

The  aim  of  this  paper  was  to  design  an  intelligent  system  capable  of
detecting and locating faults in an electric lighting network, based on
two  distinct  approaches:  a  fuzzy  logic  system  based  on  Mamdani
inference  and  the  scaled  conjugate  gradient  (SCG)  backpropagation
method. The system uses key input parameters, such as road flow and
cloud  cover,  to  identify  and  diagnose  various  types  of  failure,  includ-
ing  power  and  lighting  failures,  as  well  as  those  related  to  road  flow
and cloud cover sensors. A quantitative performance evaluation of the
two  approaches  highlighted  their  respective  efficiencies  in  different
fault detection scenarios.  

The Mamdani method stood out for its high accuracy, particularly
for  power  and  lighting  faults.  In  the  first  test,  it  achieved  maximum
detection rates of 85.67% for power failures and 85.85% for lighting
failures,  while  maintaining  stable  performance  in  both  tests.  For  the
road  flow  and  cloud  cover  sensor  faults,  the  maximum  values
achieved  were  86.99%  and  86.49%,  respectively,  slightly  below  the
peak of 88.09% obtained by the SCG method for the cloud cover sen-
sor  fault  in  the  first  test.  Despite  these  discrepancies,  the  Mamdani
method  demonstrated  consistent  accuracy  and  reliability,  making  it
ideal for applications requiring consistency and early fault detection. 

The  SCG  method,  on  the  other  hand,  showed  superior  perfor-
mance  for  peak  detection  of  certain  defects.  It  achieved  a  detection
probability of 88.09% for the cloud cover sensor fault in the first test,
outperforming  the  Mamdani  method  by  1.6%,  and  a  detection  of  up
to  87.07%  for  the  lighting  fault  in  the  second  test,  1.24%  ahead  of
the  Mamdani  method.  On  the  other  hand,  the  SCG  method  was
slightly  more  effective  at  detecting  power  failures  early,  although  its
detection  peaks  were  lower  (77.76%  vs.  84.62%  for  the  first  power
failure  in  the  second  test  and  74.28%  vs.  85.19%  for  the  second
power  failure  in  the  same  test).  In  addition,  the  SCG  method  showed
a faster convergence rate, requiring fewer iterations to train the neural
network.  This  is  particularly  advantageous  for  real-time  applications
where rapid response is crucial. 

Both methods demonstrated that they could detect defects with rel-
atively high accuracy, but both had certain limitations. The Mamdani
method,  although  reliable,  showed  slightly  lower  detection  peaks  for
defects  in  road  flow  and  cloud  cover  sensors,  while  the  SCG  method
showed greater sensitivity to noise and overfitting in dynamic environ-
ments, which could affect its performance in real-world conditions. 

In conclusion, both methods are highly effective for fault detection
in LED street lighting systems. The Mamdani method offers high con-
sistency  and  reliable  performance,  particularly  for  power  supply
faults,  while  the  SCG  method  offers  faster  convergence  and  superior
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detection  for  lighting  faults  as  well  as  faults  in  road  flow  and  cloud
cover sensors. Future work could explore hybrid models that combine
the  strengths  of  both  methods,  improving  the  robustness  and  adapt-
ability  of  fault  detection  systems  in  intelligent  street  lighting  applica-
tions.  This  research  lays  the  foundation  for  more  advanced  artificial
intelligence–driven  infrastructure  management  solutions,  with  the
potential  for  greater  fault  detection  accuracy,  early  fault  diagnosis
and increased operational efficiency. 
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