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The  Internet  of  Things  (IoT)  connects  billions  of  devices  that  operate
autonomously,  increasing  the  risk  of  cyber  threats,  such  as  theft  and
manipulation  of  personal  data.  This  has  increased  interest  in  utilizing
deep  learning  (DL)  methods  to  develop  intrusion  detection  systems
(IDS).  In  general,  DL-based  IDS  rely  on  centralized  approaches,  which
require IoT devices to transmit data to central servers for analysis. How-
ever,  these  centralized  methods  raise  privacy  concerns,  prompting  the
adoption  of  federated  learning  (FL)  as  a  promising  alternative.  This
paper  evaluates  and  compares  various  FL  configurations  using  dense
neural  networks  (DNNs)  and  convolutional  neural  networks  (CNNs)
as  base  models.  The  research  explores  three  aggregation  methods
(FedAVG, FedPROX and FedSGD), three device counts (5, 15 and 30),
two  data  setups  (raw  and  balanced)  and  two  feature  selection  methods
(analysis  of  variance  and  chi-squared)  with  two  feature  thresholds
(50%  and  100%).  The  evaluation  was  conducted  on  the  NF-ToN-IoT-
v2  and  NF-BoT-IoT-v2  datasets,  using  the  Scott–Knott  test  and  the
Borda count method to analyze 144 FL configurations. The results indi-
cate  that  FedAVG  and  FedPROX  outperform  other  aggregation  meth-
ods,  with  DNNs  identified  as  the  most  effective  base  model  for  attack
detection  in  FL  environments.  The  top-performing  models,  using  only
17  features,  were  DNN_R50_PROX_30  (accuracy  of  97.80%)  and
CNN_R50_PROX_5  (accuracy  of  99.87%)  for  NF-BoT-IoT-v2  and
NF-ToN-IoT-v2, respectively. 
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Introduction1.

In  today’s  digital  era,  the  production  and  storage  of  data  have  sky-
rocketed,  fueled  by  cheaper  storage  and  the  trend  of  recording  every
digital  interaction.  This  growth  is  further  amplified  by  the  rise  in
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Internet  of  Things  (IoT)  devices,  such  as  smart  home  gadgets,  the
development  of  smart  cities  and  Industry  4.0  advancements.  Big  data
companies  highly  value  the  information  from  these  devices  for
insights  and  business  intelligence,  making  data  a  crucial  asset  that
must be protected [1].

As  data  has  become  increasingly  central  to  daily  operations  and
critical  infrastructures,  ensuring  cybersecurity  has  become  more  vital
than  ever  for  preventing  disruptions,  unauthorized  access  and
breaches.  The  field  of  information  security  continuously  evolves  to
address  emerging  threats.  Historically,  cybersecurity  efforts  were  pri-
marily  focused  on  a  limited  number  of  expert-operated  systems.  The
proliferation  of  smartphones  equipped  with  sensors  and  the  genera-
tion  of  massive  volumes  of  sensitive  data  were  once  unimaginable.
Today,  intrusion  detection  systems  (IDS)  play  a  crucial  role  in  moni-
toring  and  detecting  cyber  threats  at  early  stages.  The  adoption  of
machine  learning  (ML)  has  significantly  enhanced  the  capabilities  of
IDS,  transitioning  from  static  systems  reliant  on  databases  of  known
threats  to  dynamic,  self-adaptive  methods.  However,  early  ML-based
systems  struggled  with  adaptability  and  suffered  from  delayed
updates, leaving them vulnerable for extended periods [2]. 

To  address  these  challenges,  modern  IDS  increasingly  leverage  ML
models  capable  of  autonomously  learning  and  identifying  novel
threats.  However,  despite  improved  detection  accuracy,  most  ML-
based IDS solutions are built on centralized architectures, where a sin-
gle  entity  aggregates  and  processes  data  from  multiple  devices.  This
centralization  raises  significant  privacy  concerns,  particularly  in  IoT
environments  such  as  smart  wearables  and  healthcare  devices,  where
the  data  is  highly  sensitive  and  voluminous.  Consequently,  there  is  a
growing  need  for  decentralized  approaches  to  data  management  and
learning.  Federated  learning  (FL)  has  emerged  as  a  promising  solu-
tion,  enabling  collaborative  model  training  across  distributed  devices
without  exposing  raw  data,  thus  improving  privacy  preservation  in
sensitive IoT ecosystems [3]. 

FL was introduced in 2016 as a method where devices (also known
as  clients  or  parties)  collaborate  on  learning  without  sharing  their
data. Instead, they send updates to a global model on a central entity
(known  as  an  aggregator  or  coordinator)  for  aggregation.  FL  aims  to
enhance  user  privacy  by  ensuring  device  data  remains  unshared  with
others [3]. 

Recently, there has been growing interest in creating FL-based IDS
for  IoT  environments  [4–6].  However,  several  proposed  methods
depended  on  unrealistic  data  distribution  across  parties  and  failed  to
evaluate various FL aggregation methods or the impact of using differ-
ent  numbers  of  devices  [7].  Additionally,  the  review  [8]  pointed  out
the  difficulties  of  implementing  FL  in  the  IoT  but  did  not  provide
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guidance  on  enhancing  IDS  with  FL  or  critically  assess  their  propos-
als.  This  lack  of  detailed  analysis  makes  it  challenging  for  cybersecu-
rity  experts  to  pinpoint  the  critical  problems  of  integrating  FL  into
IDS for the IoT. 

In  an  earlier  study  [9],  we  evaluated  FL  for  IDS  in  IoT  environ-
ments,  using  dense  neural  networks  (DNNs)  as  the  base  learner.  The
evaluation  considered  two  data  configurations:  a  raw  data  setup,
which  preserves  the  original  class  distribution  across  devices,  and  a
balanced  data  setup,  which  ensures  an  equal  number  of  attack  and
non-attack  samples  per  device  to  mitigate  class  imbalance;  and  two
aggregation  methods:  federated  averaging  (FedAVG)  [10]  and  feder-
ated  stochastic  gradient  descent  (FedSGD)  [11].  Experiments  were
conducted with groups of 5, 15 and 30 devices over 100 optimization
rounds,  utilizing  the  NF-ToN-IoT-v2  dataset.  The  previous  study  [9]
identified  the  most  effective  configuration  as  the  combination  of  raw
data, the FedAvg method and a five-device setup. To validate or chal-
lenge  these  findings  [9],  we  extended  this  work  by:  (1)  incorporating
convolutional neural networks (CNNs) as an additional deep learning
(DL) base learner; (2) including federated proximal (FedPROX) as an
additional  FL  aggregation  method;  (3)  applying  feature  selection  (FS)
techniques  such  as  analysis  of  variance  (ANOVA)  and  chi-squared
test  (Chi2)  with  two  feature  thresholds:  50%  (feature  reduction)  and
100% (no FS, serving as a baseline); and (4) integrating the NF-BoT-
IoT-v2  dataset,  which  was  generated  in  a  different  context  than  the
NF-ToN-IoT-v2 dataset. 

The  selection  of  these  FS  filters  is  informed  by  their  minimal  com-
putational  resource  demands  and  extensive  use  in  the  selection  of
subsets of features in diverse fields [12, 13]. The feature subsets were
constructed  using  two  feature  thresholds:  50%,  which  reduces  the
number  of  features  to  half  of  the  total  set;  and  100%,  which  retains
the  entire  original  feature  set  without  applying  any  selection,  thus
serving  as  a  baseline  for  performance  comparison  [13–15].  Addi-
tionally,  two  DL  learning  architectures,  DNN  and  CNN,  are
employed  due  to  their  widespread  adoption  in  intrusion  detection
[16–18]. FedAVG, FedSGD and FedPROX are selected as FL learning
aggregation  methods  owing  to  their  demonstrated  efficiency  and
prominence  within  the  FL  domain  [10,  11].  The  chosen  range  of
devices (5, 15 and 30) is aligned with established literature recommen-
dations [19–21]. 

This  study  evaluates  the  performance  of  144  FL  configurations,
derived  from  the  combination  of  two  datasets,  three  aggregation
servers, two DL architectures, two data setups, two feature thresholds
and  three  device  counts,  across  100  optimization  rounds.  This
comprehensive evaluation framework represents a novel contribution,
facilitating  a  robust  comparison  of  model  performance  under  diverse
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configurations to ensure reliable intrusion detection in varied IoT envi-
ronments.  Additionally,  four  widely  adopted  evaluation  metrics  are
employed: accuracy, recall, precision and receiver operating character-
istic  area  under  the  curve  (AUC)  [22].  The  classifiers  are  analyzed
using  the  Scott–Knott  (SK)  test  to  cluster  them  and  identify  the  most
stable  cluster  through  statistical  performance  comparison.  In  addi-
tion, the Borda count (BC) ranking system is applied to determine the
top-performing models based on multiple performance criteria. 

The  present  paper  aims  to  address  the  following  research  ques-
tions: 

◼ RQ1:  What  are  the  best  aggregation  methods  among  FedAvg,
FedPROX and FedSGD in the context of FL for attack detection? 

◼ RQ2:  What  is  the  best  configuration  of  FL  for  the  detection  of  attacks
across different settings? 

◼ RQ3:  Which  DL  architecture  is  the  most  suitable  for  FL  as  a  base
learner?

Here is an outline of the key contributions of this paper: 

Proposing a framework for evaluating FL in the context of IDS. 1.

Constructing  144  FL  configurations  with  various  data  setups,  feature
thresholds, aggregation servers, device numbers and IoT datasets. 

2.

Determining  the  best  aggregation  methods  for  FL  in  the  context  of
intrusion  detection  using  the  NF-ToN-IoT-v2  and  NF-BoT-IoT-v2
datasets. 

3.

Determining the best DL base learner for FL in the context of intrusion
detection. 

4.

Identifying the optimal FL setup across different configurations.5.

This  paper  is  organized  as  follows:  Section  2  examines  relevant
literature.  Section  3  outlines  the  datasets,  federated  aggregators  used,
performance  metrics,  statistical  tests  and  research  methodology
adopted  in  this  paper.  Section  4  presents  a  detailed  analysis  of  the
findings  and  compares  our  results  with  those  of  existing  studies.  Sec-
tion  5  addresses  the  study’s  limitations  and  validity  considerations.
Finally,  Section  6  concludes  the  paper  and  proposes  avenues  for
future research. 

Related Work 2.

Numerous relevant studies have focused on anomaly detection in dif-
ferent fields, especially in the IoT, using different FL approaches. This
section provides a summary of key research on using FL for intrusion
detection in IoT contexts.
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Mothukuri  et  al.  [22]  suggested  a  method  that  applied  federated
training  sessions  to  gated  recurrent  units  (GRUs)  models.  This
method  ensured  data  remained  on  local  IoT  devices,  sharing  only  the
model’s  learned  weights  with  the  central  server  of  the  FL.  Addition-
ally,  it  used  an  ensemble  method  to  combine  updates  from  various
sources,  enhancing  the  global  ML  model’s  accuracy.  Their  findings
showed that this approach surpassed traditional centralized ML meth-
ods  in  protecting  data  privacy  and  achieved  an  overall  average  accu-
racy of 90.255% in detecting attacks. Campos et al. [23] introduced a
study  that  examined  an  FL-powered  IDS  using  a  multiclass  classifier
to identify various attacks in an IoT environment. They used three dis-
tinct  configurations  (basic,  balanced  and  mixed)  derived  by  dividing
the  ToN_IoT  dataset  based  on  the  IP  addresses  of  IoT  devices  and
attack  types.  The  study  also  assessed  two  aggregation  functions,
Fed++  and  FedAvg,  utilizing  the  IBMFL  framework.  Their  findings
suggested  that  selecting  instances  based  on  the  Shannon  entropy  of
each local dataset can enhance overall accuracy and achieved the best
results  (close  to  95.6%),  comparable  to  those  from  a  scenario  where
data  is  evenly  distributed  among  all  participants.  Chen  et  al.  [24]
introduced  FedAGRU,  an  FL  method  using  an  attention  GRU,  aimed
at enhancing FedAVG algorithms. This model is crafted to detect poi-
soning  attacks  and  remove  updates  with  minimal  contribution,  lead-
ing  to  an  efficient  global  model  with  reduced  communication  costs.
Tested  on  three  datasets  (WSN-DS,  KDD-CUP99  and  CICIDS2017),
FedAGRU demonstrated effective performance, achieving an accuracy
of 99.82% on data that is not independent and identically distributed
(non-IID). 

Althunayyan  et  al.  [25]  proposed  robust  multi-stage  IDS  tailored
for  in-vehicle  networks  using  a  hybrid  DL  approach.  Their  system
combines an artificial neural network (ANN) to detect known attacks
and a long short-term memory (LSTM) autoencoder to identify novel
threats  using  the  car  hacking  dataset.  By  employing  hierarchical  FL
(H-FL),  the  model  enhances  privacy  by  ensuring  that  sensitive  in-
vehicle data remains local while aggregating learned patterns at a cen-
tral  server.  Experimental  results  demonstrated  exceptional  detection
performance,  with  F1-scores  exceeding  0.99  for  known  attacks  and
0.95  for  unseen  ones,  alongside  a  remarkably  low  false  alarm  rate  of
0.016%.  Bukhari  et  al.  [26]  introduced  a  novel  intrusion  detection
model  employing  a  hybrid  architecture  of  stacked  CNN  (SCNN)  and
bidirectional  LSTM  (Bi-LSTM),  leveraging  FL  for  privacy  preserva-
tion  in  wireless  sensor  networks  (WSNs).  This  approach  allowed  dis-
tributed  sensor  nodes  to  collaboratively  train  a  global  model  without
sharing  raw  data,  ensuring  data  privacy.  The  model  utilized  the
WSN-DS  and  CIC-IDS-2017  datasets,  achieving  an  accuracy  of
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99.9%  across  both  datasets.  Jin  et  al.  [27]  proposed  an  FL-IIDS  to
address the catastrophic forgetting issue in FL environments. The sys-
tem  employed  dynamic  example  memory  and  innovative  loss  func-
tions,  such  as  class  gradient  balance  loss  and  sample  label  smoothing
loss,  to  improve  local  model  performance  for  both  old  and  new
classes.  Additionally,  a  relay  client  mechanism  was  introduced  to
select  the  best  old  model  at  a  global  level,  further  mitigating  catas-
trophic forgetting. Using the UNSW-NB15 and CICIDS2018 datasets,
the  framework  demonstrated  enhanced  classification  accuracy  and
memory  retention  for  older  classes,  achieving  final  accuracies  of
68.76% and 99.62% on the respective datasets. 

Table 1 sums up the findings, datasets used, classifiers investigated
and  the  best  performance  values  of  some  related  studies  dealing  with
the use of FL-IDS in the IoT context. 

Paper Dataset 
FL 

Technique 
Best 
Accuracy Findings 

Mothukuri et 

al. [22] 

Modbus 

network 

dataset 

FLAverage 

with GRU 

base learner 

and RF 

ensembler 

90.25% Introduced a method that used 

federated training sessions on 

GRU models with the Modbus 

network dataset, keeping data 

on local IoT devices. It also 

applied an ensemble technique 

to merge updates from diverse 

sources, improving the overall 

accuracy of the global ML 

model. Results reached an 

average accuracy of 90.255% 

in identifying attacks. 
Campos et al. 

[23] 
ToN_IoT Two 

aggregation 

methods 

(Fed++ and 

FedAVG) 

using soft-
max 

regression as 
base learner 

95.6% Investigated an FL-IDS 

employing a multiclass 

classifier within an IoT setting, 

utilizing the ToN_IoT dataset 

across three data scenarios. It 

evaluated two aggregation 

functions, Fed++ and 

FedAVG, to determine their 

effectiveness in conjunction 

with softmax regression using 

the IBMFL framework. The 

findings indicated that 

choosing instances according 

to the Shannon entropy of each 

local dataset could improve 
overall accuracy, achieving 

results near 90%, which were 
comparable to other scenarios 
examined. 
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Paper Dataset 
FL 

Technique 
Best 
Accuracy Findings 

Chen et al. 
[24] 

WSN-DS, 
KDD-
CUP99, 

CICIDS2017 

FedAGRU 

based on 

(GRU-SVM, 

GRU-
softmax, 
Improved 

CNN 

(ICNN) and 

VAE) 

99.82% Presented FedAGRU, an FL 

technique that incorporated a 

GRU to improve FedAVG 

algorithms. Designed to 

identify and filter out attacks 
and updates with low 

contribution, FedAGRU aimed 

to create an effective global 
model while lowering 

communication costs. It 

showed impressive results, 

achieving 99.82% accuracy on 

non-IID data. 
Althunayyan 

et al. [25] 

Car Hacking H-FL using 

ANN and 

LSTM 

0.95 (F1-score) Proposed a multi-stage IDS 

combining an ANN for known 

attacks and an LSTM-

autoencoder for unseen 

attacks, achieving a detection 

with F1-scores exceeding 0.99 

for known attacks and 0.95 for 

unseen ones, alongside a 

remarkably low false alarm 

rate of 0.016%. 
Bukhari et al. 

[26] 

WSN-DS, 

CIC-
IDS2017 

FL with 

SCNN-Bi-
LSTM 

99.9% Proposed a hybrid FL-based 

SCNN-Bi-LSTM model, 
achieving a notable accuracy of 

99.9% in detecting intrusions 
while preserving data privacy 

and significantly reducing false 
positives and false negatives. 

Jin et al. [27] UNSW-

NB15, 
CICIDS2018 

FL-IIDS 

with 

dynamic 

memory and 

relay clients 

99.62% Proposed FL-IIDS to address 

catastrophic forgetting in FL 

using class gradient balance 

and label smoothing. Achieved 

68.76% accuracy on UNSW-

NB15 and 99.62% on 

CICIDS2018. 

Table 1. Summary of the literature review.

Experimental Design 3.

This  section  describes  the  datasets,  performance  metrics  and  method-
ology employed for the empirical evaluations conducted in the study.

Dataset Description3.1

Figure  1  depicts  the  workflow  for  generating  traffic  flow  data  using
the  nProbe  tool,  developed  by  Ntop  [28]  and  based  on  the  NetFlow
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standard  Version  9.  This  process  involves  extracting  key  attributes
from  network  flow  data  stored  in  the  pcap  format  and  labeling
the  extracted  records,  which  are  then  saved  in  CSV  format.  These
attributes  can  be  utilized  for  training  or  evaluating  ML  models.
This  study  employs  three  intrusion  detection  datasets  with  a  shared
feature set:

◼ NF-ToN-IoT-v2:  This  dataset  was  created  from  the  ToN-IoT  dataset
using  the  nProbe  tool,  as  detailed  by  Sarhan  et  al.  [29].  The  ToN-IoT
dataset,  generated  in  an  industrial  network  testbed,  includes  data  from
various virtual machines running Windows, Linux and Kali Linux oper-
ating  systems.  It  captures  both  normal  and  cyber-attack  events  within
IoT  networks,  covering  attack  types  such  as  backdoor,  DoS,  DDoS,
injection,  MITM,  password  attacks,  ransomware,  scanning  and  XSS
attacks.  As  illustrated  in  Figure  2(a),  the  NF-ToN-IoT-v2  dataset  con-
sists  of  169 440469  samples,  with  intrusion  events  accounting  for
63.99% and normal events for 36.01%. 

Figure 1. The feature extraction workflow.

Figure 2. (a) Classes distribution of NF-ToN-IoT-v2; and (b) classes distribu-
tion of NF-Bot-IoT-v2.

◼ NF-BoT-IoT-v2:  This  dataset  was  derived  from  the  BoT-IoT  dataset
[30] using the nProbe tool. The BoT-IoT dataset was created through a
combination  of  network  platforms,  simulated  IoT  services  and  feature
extraction  integrated  with  forensic  analytics.  It  was  developed  at  the
UNSW Canberra Research Cyber Range Lab using an ESXi-configured
cluster  of  virtual  machines  managed  via  the  vSphere  platform.  This
setup,  connected  to  both  LAN  and  WAN,  enabled  IoT  service
simulation  using  Node-RED  and  AWS  IoT  Hub,  with  MQTT  protocol
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facilitating  machine-to-machine  communication.  Attack  scenarios
include  reconnaissance,  DoS,  DDoS  and  data  theft.  Figure  2(b)  shows
that  the  NF-BoT-IoT-v2  dataset  contains  37763497  samples,  with
99.64% representing intrusion events and 0.36% normal events. 

Federated Learning Aggregation Methods3.2

This  section  explains  the  FL  aggregation  methods  used  in  this  paper,
specifically  FedProx,  FedAVG  and  FedSGD.  These  optimization  algo-
rithms  are  designed  to  train  ML  models  across  distributed  devices
while ensuring data privacy is maintained.

◼ Federated  Averaging  (FedAvg)  is  a  distributed  optimization  algorithm
designed for FL. It operates by selecting a subset of devices in each com-
munication  round,  performing  local  stochastic  gradient  descent  (SGD)
for a fixed number of epochs on each device and averaging the resulting
model updates on a central server. While effective in reducing communi-
cation  costs,  FedAvg  assumes  uniform  computational  capabilities
across devices and does not account for statistical heterogeneity, which
can lead to divergence or unstable convergence in practical, non-IID set-
tings.  Its  simplicity  and  empirical  success  have  made  it  a  baseline
method  in  FL,  though  it  lacks  theoretical  guarantees  for  heterogeneous
environments [31]. 

◼ Federated optimization framework (FedProx) is designed to address sta-
tistical  heterogeneity  in  distributed  networks.  It  extends  FedAvg  by
introducing  a  proximal  term  to  the  local  subproblems,  which  restricts
the  updates  to  remain  close  to  the  global  model.  This  modification
enhances  convergence  robustness  and  stability,  particularly  in  non-IID
data settings. FedProx provides theoretical guarantees under a bounded
dissimilarity  assumption  and  demonstrates  improved  empirical  perfor-
mance  across  diverse  datasets  compared  to  FedAvg.  The  framework  is
flexible,  allowing  any  local  solver,  and  maintains  the  privacy  and  effi-
ciency benefits of FL [32]. 

◼ Federated  Stochastic  Gradient  Descent  (FedSGD)  is  a  distributed  opti-
mization  method  used  in  FL  to  train  models  across  decentralized
devices  while  preserving  data  privacy.  Unlike  standard  SGD,  it  com-
putes  gradients  locally  on  each  client  and  aggregates  them  on  a  central
server  to  update  the  global  model.  Each  client  performs  a  single  gradi-
ent  step  using  local  data  before  transmitting  the  update.  FedSGD  pro-
motes  consistency  across  local  models  by  penalizing  weight  divergence
through  a  regularization  term,  such  as  total  variation  minimization.
While  communication-efficient,  this  method  requires  careful  tuning  of
hyperparameters, including learning rate and regularization strength, to
address statistical heterogeneity [33]. 

Performance Measures3.3

Four  criteria  were  used  to  evaluate  the  federated  DL  variants  of  this
study:  accuracy,  recall,  precision  and  receiver  operating  characteristic
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AUC [34]. They are defined by equations (1) to (4), respectively:

Accuracy 
TP + TN

TP + TN + FP + FN
(1)

Precision 
TP

TP + FP
(2)

Recall 
TP

TP + FN
(3)

AUC  
0

1

TPFP-1(x)dx ≈ 

i1

n-1 TPi + TPi+1

2
 (FPi+1 - FPi) (4)

where  TP  are  true  positives,  FP  are  false  positives,  TN  are  true  nega-
tives, and FN are false negatives.

Statistical Tests and the Borda Count Ranking Method3.4

This section provides an explanation of the SK test and the BC rank-
ing  system.  The  SK  test  groups  classifiers  through  statistical  compar-
isons,  while  the  BC  ranking  system  is  a  voting-based  method  used  to
rank models within the best SK test cluster by evaluating multiple per-
formance criteria.

◼ Scott–Knott  (SK)  is  a  clustering  algorithm  frequently  used  for  compar-
ing multiple groups in the  ANOVA studies. It avoids the issue of over-
lapping  groups.  Effectively,  the  SK  method  begins  with  all  observed
mean  effects  grouped  together.  It  then  continuously  divides  these
groups  into  smaller  subgroups,  ensuring  that  no  two  subgroups  share
any common members [35]. 

◼ Borda count (BC) is a voting method to rank candidates by preference.
Each  candidate  gets  points  based  on  their  rank,  with  lower  ranks  get-
ting fewer points. The points are then added up, and the candidate with
the highest total wins. In this paper, we used the BC ranking system to
identify  the  top-performing  model,  treating  all  performance  measures
equally [36]. 

Methodology3.5

Figure 3 illustrates the methodology used to evaluate and compare the
impact  of  different  aggregation  methods  and  the  number  of  devices
on the detection performance of FL-based IDS. The study assessed the
performance  of  three  aggregation  methods  (FedAVG,  FedSGD  and
FedProx)  using  two  NetFlow  IoT  datasets  (NF-ToN-IoT-v2  and
NF-BoT-IoT-v2)  under  balanced  and  raw  data  setups  with  two  fea-
ture  thresholds  (50%  and  100%).  The  experiments  were  conducted
with 5, 15 and 30 devices over 100 training rounds. Performance eval-
uation  was  conducted  using  the  SK  test  and  the  BC  voting  system.
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The experimental procedure comprised the following steps:

◼ Step  1:  The  raw  data  was  preprocessed  to  ensure  quality  and  consis-
tency across both datasets. Initial steps included the removal of missing
values, duplicate records and non-informative attributes. Numerical fea-
tures were examined for multicollinearity, and those with a Pearson cor-
relation  above  0.95  and  a  variance  inflation  factor  (VIF)  below  5  were
selectively  removed.  Categorical  features  were  optimized:  (1)  Features
with  high  cardinality  were  consolidated  to  reduce  dimensionality.  For
instance,  IP  address  fields  were  grouped  into  five  categories:  three
private address ranges, public addresses and localhost entries. Port num-
bers  were  categorized  as  well-known,  registered  or  dynamic  ports;
(2)  Other  categorical  features  were  retained  with  minimal  classes,  such
as PROTOCOL and DNS_QUERY_TYPE, which contain six and 12 distinct
values,  respectively.  The  L7_PROTO  attribute  was  simplified  by  retain-
ing the five most frequent values and grouping the rest under an “Oth-
ers” category, which accounted for approximately 3.4% of all entries. 

Figure 3. Experimental process.

In  addition,  standardization  was  applied  to  scale  numerical  features  to
have zero mean and unit variance, using 

Z 
xi - μ

σ
(5)

where  xi  is  the  data  point,  μ  is  the  mean  and  σ  is  the  standard
deviation.

◼ Step 2: Set up a simulated IoT network using virtual instances with Ten-
sorFlow Federated (TFF). Three sets of end devices (5, 15 and 30) were
created,  with  each  device  labeled  as  Devicei.  Three  central  server
instances  were  configured  to  implement  FedAVG,  FedSGD  and
FedProx,  and  two  DL  base  learners:  DNN,  as  shown  in  Table  2;  and
CNN,  as  shown  in  Table  3,  were  built.  The  central  servers  facilitated
the  exchange  of  DL  model  parameters  between  the  mobile  IoT  devices
and  the  central  FL  server.  The  two  datasets,  NF-ToN-IoT-v2  and  NF-
BoT-IoT-v2,  were  divided  into  two  sections  based  on  different  data
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distribution  strategies:  (1)  The  raw  data  setup  preserved  the  original
class  imbalance  of  the  dataset  by  distributing  data  across  devices  in
accordance  with  the  natural  proportion  of  attack  and  non-attack  sam-
ples;  and  (2)  The  balanced  data  setup  ensured  an  equal  number  of
attack and non-attack samples per device, thereby mitigating the effects
of  class  imbalance  and  facilitating  fairer  model  training  across  all
clients.  The  hyperparameters  used  across  the  different  configurations
are summarized in Table 4. 

Layer Type Details
Dense Layer 1 Units: 128, Activation: ReLU, Input Shape: 

(len(Features),) 
Dense Layer 2 Units: 64, Activation: ReLU 

Dense Layer 3 Units: 1, Activation: Sigmoid (for binary 

classification) 

Table 2. DNN architecture.

Layer Type Details
Conv1D Layer 1 Filters: 32, Kernel size: 3, Activation: ReLU 

MaxPooling1D Layer 1 Pool size: 2 

Conv1D Layer 2 Filters: 64, Kernel size: 3, Activation: ReLU 

MaxPooling1D Layer 2 Pool size: 2 

Flatten Layer Converts 1D feature maps into a vector. 
Dense Layer 1 Units: 128, Activation: ReLU 

Dense Layer 2 Units: 1, Activation: Sigmoid (for binary 

classification) 

Table 3. CNN architecture.

Parameter Description and Group
Evaluation 

Optimizer 
Adam optimizer used for model evaluation across 
all configurations 

Number of Rounds 100 rounds of federated training used in all 
setups 

Training Optimizer • FedProx: SGD (lr0.1, clipvalue1.0)
 • FedSGD: Implicit optimizer, no learning rate 
specified 

 • FedAvg: SGD (lr0.1)
Learning Rate 0.1 (FedProx and FedAvg); unspecified in 

FedSGD 

Gradient Clipping Applied only in FedProx (clipvalue1.0) 
Proximal Term 

Coefficient 
0.001 (only for FedProx setup) 

Model Loss 
Function 

BinaryCrossentropy used in all configurations 

Table 4. FL and DL hyperparameters.
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This  non-IID  configuration  reflects  realistic  FL  deployment  scenar-
ios  in  heterogeneous  IoT  environments,  where  devices  naturally
observe  locally  distinct  data  distributions.  In  our  paper,  the  local
datasets assigned to each client were generated using a split-and-shuffle
strategy that maintained non-identical class proportions across devices,
thereby  ensuring  a  non-IID  data  distribution  throughout  all  experi-
ments (raw and balanced). 

Each  configuration  (raw  and  balanced)  was  further  analyzed  under
two feature thresholds: 50%, where only half of the most relevant fea-
tures  were  selected;  and  100%,  where  all  original  features  were
retained without applying any FS, serving as a baseline for performance
comparison.  Each  local  dataset  i  was  assigned  to  its  respective  virtual
Devicei. 

◼ Step  3:  Construct  and  evaluate  the  performance  of  144  FL  configura-
tions  (2  datasets  *  2  data  setups  *  2  feature  thresholds  *  2  DL  base
learners * 3 number of devices * 3 federated aggregation methods). The
evaluation  metrics  included  accuracy,  recall,  precision  and  AUC,
assessed over 100 training rounds. Additionally, the SK test and BC sys-
tem were employed to rank the FL configurations for each device count
and aggregation method. 

◼ Step  4:  Compare  the  performance  of  FedAVG,  FedProx  and  FedSGD,
as  well  as  evaluate  the  performance  of  DNN  and  CNN  for  each
dataset, data setup, feature threshold and device count. Finally, the opti-
mal  FL  configuration  for  cyber-detection  within  the  NetFlow  IoT
dataset framework was identified. 

Abbreviation3.6

To  make  it  easier  for  readers  and  simplify  model  names,  this  paper
adopts specific naming conventions for models as follows:

DLBaseLearner_DataSetup&FeatureThreshold_AggregationMethod_
NumberOfDevices

The abbreviations for data setup techniques are as follows: B repre-
sents balanced data, and R represents raw data. The aggregation tech-
niques are abbreviated as AVG for FedAVG, PROX for FedProx and
SGD  for  FedSGD.  For  instance,  the  configuration  DNN_R50_SGD_5
denotes the use of DNN as a base learner, raw data as the data setup,
a  50%  feature  threshold  and  FedSGD  as  the  aggregation  method,
applied to five devices. 

Results and Discussions 4.

This  section  examines  the  results  of  applying  the  FL  technique  with
DNN  and  CNN  architectures,  evaluating  three  aggregation  methods
(FedAVG,  FedPROX  and  FedSGD),  two  data  setups  (raw  and
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balanced),  two  feature  thresholds  (50%  and  100%)  and  three  device
configurations  (5,  15  and  30).  The  analysis  is  conducted  over  100
rounds  using  the  NF-ToN-IoT-v2  and  NF-BoT-IoT-v2  datasets  for
binary  classification.  The  presentation  and  the  discussion  of  the
results are structured to address the RQs of Section 1.

Evaluating and Comparing Aggregation Methods of Federated 

Deep Learning for Attack Detection (RQ1)

4.1

This subsection examines the impact of the three aggregation methods
(FedAVG,  FedPROX  and  FedSGD)  on  the  performance  of  different
FL  configurations,  focusing  on  identifying  the  aggregation  method
that enhances the accuracy of FL-based IDS in IoT contexts. The anal-
ysis  evaluates  the  average  accuracy  of  models  across  different  device
counts  for  each  dataset,  feature  threshold  and  data  setup  over  100
rounds, as illustrated in Figures 4, 5 and 6. For instance, average accu-
racy  values  across  device  numbers  are  computed  for  each  round.
In  Figure  4(a),  a  balanced  data  setup  using  DNN  and  FedAVG  for  5
and  15  devices  is  represented  as  DNN_B50_AVG_5  and
DNN_B50_AVG_15,  respectively.  Similarly,  in  Figure  4(b),  a  raw
data  setup  using  CNN  and  FedAVG  for  5  and  15  devices  is  denoted
as CNN_R50_AVG_5 and CNN_R50_AVG_15, respectively.

Figure  4  illustrates  the  average  accuracy  values  obtained  using
FedAVG  for  NF-TON-IoT-v2  and  NF-BoT-IoT-v2  across  different
feature  thresholds,  feature  setups,  DL  base  learners  and  device  num-
bers. We observe that: 

◼ From Figure 4(a), which presents the FL models generated using the NF-
ToN-IoT-V2 dataset with 50% of the features and a balanced data con-
figuration,  the  FL  models  showed  progressive  improvement  up  to
round  10,  after  which  their  performance  stabilized,  achieving  an  accu-
racy  of  96%.  However,  the  CNN_B50_AVG_5  model  deviated  from
this trend, stabilizing at an accuracy of 50%. 

◼ From  Figure  4(b),  which  presents  the  FL  models  generated  using  the
NF-ToN-IoT-V2 dataset with 50% of the features and a raw data con-
figuration,  the  FL  models  exhibited  progressive  improvement  up  to
round  20,  after  which  their  accuracy  stabilized  at  96%.  However,  two
models,  CNN_R50_AVG_5  and  CNN_R50_AVG_15,  deviated  from
this  trend.  The  CNN_R50_AVG_5  model  stabilized  at  an  accuracy  of
64%,  while  the  CNN_R50_AVG_15  model  experienced  a  significant
drop in accuracy at round 85, ultimately stabilizing at 64%. 

◼ From Figure 4(c), which presents the FL models generated using the NF-
ToN-IoT-V2  dataset  with  100%  of  the  features  and  a  balanced  data
configuration,  all  FL  models  showed  progressive  improvement  up  to
round  12,  after  which  their  performance  stabilized,  achieving  an  accu-
racy  of  98%.  However,  the  CNN_B100_AVG_5  model  exhibited
notable  drops  in  accuracy,  with  a  decrease  to  approximately  63%  in
round 9 and another decline to 50% in round 39. 
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. Average  accuracy  of  FedAVG  for  NF-ToN-IoT-v2  with:  (a)  bal-
anced  data  setup  and  50%  of  features;  (b)  raw  data  setup  and  50%  of  fea-
tures;  (c)  balanced  data  setup  and  100%  of  features;  (d)  raw  data  setup  and
100%  of  features;  and  for  NF-BoT-IoT-v2  with:  (e)  balanced  data  setup  and
50%  of  features;  (f)  raw  data  setup  and  50%  of  features;  (g)  balanced  data
setup and 100% of features; and (h) raw data setup and 100% of features.
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◼ From  Figure  4(d),  which  presents  the  FL  models  generated  using  the
NF-ToN-IoT-V2 dataset with 100% of the features and a raw data con-
figuration,  the  FL  models  showed  progressive  improvement  up  to
round  5,  after  which  their  performance  stabilized,  achieving  an  accu-
racy  of  98%.  However,  the  CNN_R100_AVG_5  model  deviated  from
this trend, stabilizing at an accuracy of 64%. 

◼ From Figure 4(e), which presents the FL models generated using the NF-
BoT-IoT-V2 dataset with 50% of the features and a balanced data con-
figuration,  the  FL  models  exhibited  steady  improvement  over  the
rounds,  stabilizing  during  the  final  10  rounds.  Accuracy  ranged  from
approximately  97%  for  the  CNN_B50_AVG_30  model  to  100%  for
the DNN_B50_AVG_5 model. 

◼ From  Figure  4(f),  which  presents  the  FL  models  generated  using  the
NF-BoT-IoT-V2  dataset  with  50%  of  the  features  and  a  raw  data  con-
figuration,  the  FL  models  exhibited  steady  improvement  over  the
rounds,  stabilizing  during  the  final  10  rounds.  Accuracy  ranged  from
approximately  99.75%  for  the  CNN_R50_AVG_30  model  to  99.95%
for the CNN_R50_AVG_5 model.

◼ From Figure 4(g), which presents the FL models generated using the NF-
BoT-IoT-V2  dataset  with  100%  of  the  features  and  a  balanced  data
configuration,  the  FL  models  exhibited  steady  improvement  over  the
rounds,  stabilizing  during  the  final  10  rounds.  Accuracy  ranged  from
approximately  98%  for  the  CNN_B100_AVG_30  model  to  100%  for
the CNN_B100_AVG_5 model. 

◼ From  Figure  4(h),  which  presents  the  FL  models  generated  using  the
NF-BoT-IoT-V2 dataset with 100% of the features and a raw data con-
figuration,  the  FL  models  exhibited  steady  improvement  over  the
rounds,  stabilizing  during  the  final  20  rounds.  Accuracy  ranged  from
approximately 99.83% for the CNN_R100_AVG_30 model to 99.92%
for the DNN_R100_AVG_5 model.

Under  FedAVG,  final  accuracy  for  NF-ToN-IoT-V2  ranged  from
approximately  50%  to  98%,  typically  stabilizing  within  five  to  20
rounds. For NF-BoT-IoT-V2, accuracy spanned about 97% to 100%,
reaching  stability  in  five  to  20  rounds.  Some  configurations  achieved
perfect accuracy, while others dropped to 50% or 64%. 

Figure  5  illustrates  the  average  accuracy  values  obtained  using
FedSGD  for  NF-TON-IoT-V2  and  NF-BoT-IoT-V2  across  different
feature  thresholds,  feature  setups,  DL  base  learners  and  device  num-
bers. We observe that: 

◼ From  Figure  5(a),  presenting  the  FL  models  generated  using  the  NF-
ToN-IoT-V2 dataset with 50% of the features and a balanced data con-
figuration,  the  FL  models  showed  progressive  improvement  up  to
round  60,  after  which  their  performance  stabilized.  Accuracy  ranged
from  approximately  72%  for  the  CNN_B50_  SGD_15  model  to  76%
for  the  DNN_B50_SGD_30  model.  However,  the  CNN_B50_  SGD_15
model exhibited notable drops in accuracy, with a decrease to approxi-
mately 50% in round 60.
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Figure 5. Average  accuracy  of  FedSGD  for  NF-ToN-IoT-v2  with:  (a)  bal-
anced  data  setup  and  50%  of  features;  (b)  raw  data  setup  and  50%  of  fea-
tures;  (c)  balanced  data  setup  and  100%  of  features;  (d)  raw  data  setup  and
100%  of  features;  and  for  NF-BoT-IoT-v2  with:  (e)  balanced  data  setup  and
50%  of  features;  (f)  raw  data  setup  and  50%  of  features;  (g)  balanced  data
setup and 100% of features; and (h) raw data setup and 100% of features.
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◼ From  Figure  5(b),  presenting  the  FL  models  generated  using  the  NF-
ToN-IoT-V2 dataset with 50% of the features and a raw data configu-
ration,  the  FL  models  showed  progressive  improvement  up  to  round
40, then a decrease up to around 60 revolutions, after which their per-
formance  stabilized.  Accuracy  ranged  from  approximately  67.5%  for
the  CNN_R50_SGD_5  model  to  77%  for  the  DNN_R50_SGD_30
model. 

◼ From  Figure  5(c),  presenting  the  FL  models  generated  using  the  NF-
ToN-IoT-V2  dataset  with  100%  of  the  features  and  a  balanced  data
configuration,  the  FL  models  showed  progressive  improvement  up  to
round  50,  after  which  their  performance  stabilized.  Accuracy  ranged
from  approximately  70%  for  the  CNN_B100_SGD_30  model  to  80%
for the DNN_B100_SGD_30 model. However, the CNN_B100_SGD_5
model exhibited significant oscillations between rounds 70 and 100. 

◼ From  Figure  5(d),  presenting  the  FL  models  generated  using  the  NF-
ToN-IoT-V2 dataset with 100% of the features and a raw data configu-
ration,  all  FL  models  exhibited  oscillations  within  100  rounds,  except
for  the  DNN_R100_SGD_15  model,  which  stabilized  within  70
rounds,  achieving  a  maximum  accuracy  of  76%  and  a  minimum  accu-
racy of 71%, which was achieved by CNN_R100_SGD_15. 

◼ From  Figure  5(e),  presenting  the  FL  models  generated  using  the  NF-
BoT-IoT-V2 dataset with 50% of the features and a balanced data con-
figuration,  the  FL  models  showed  progressive  improvement  up  to
round  5,  after  which  their  performance  stabilized.  Accuracy  ranged
from approximately 93% for the CNN_B50_SGD_5 model to 96% for
the DNN_B50_SGD_30 model. 

◼ From  Figure  5(f),  presenting  the  FL  models  generated  using  the  NF-
BoT-IoT-V2 dataset with 50% of the features and a raw data configura-
tion,  the  FL  models  showed  progressive  improvement  up  to  round  2,
after which their performance stabilized. Accuracy ranged from approx-
imately  99.5%  for  the  CNN_R50_  SGD_30  model  to  99.8%  for  the
DNN_R50_SGD_5 model. 

◼ From  Figure  5(g),  presenting  the  FL  models  generated  using  the  NF-
BoT-IoT-V2  dataset  with  100%  of  the  features  and  a  balanced  data
configuration,  the  FL  models  showed  progressive  improvement  up  to
round  10,  after  which  their  performance  stabilized.  Accuracy  ranged
from approximately 93% for the CNN_B100_ SGD_30 model to 95%
for the DNN_B100_SGD_30 model. 

◼ From  Figure  5(h),  presenting  the  FL  models  generated  using  the  NF-
BoT-IoT-V2 dataset with 100% of the features and a raw data configu-
ration,  the  FL  models  showed  progressive  improvement  up  to  round
80,  after  which  their  performance  stabilized.  Accuracy  ranged  from
approximately 99.7% for the CNN_R50_ SGD_30 model to 99.8% for
the DNN_R100_SGD_30 model. 

FedSGD  models  exhibit  consistent  improvement  followed  by
performance  stabilization  under  varying  feature  thresholds,  data
configurations  and  device  numbers.  For  NF-ToN-IoT-V2,  balanced

526 A. Hamdouchi and A. Idri

Complex Systems, 34 © 2026



data configurations converge to accuracies between 70% and 80% at
rounds  50  to  60,  with  occasional  drops  or  oscillations.  Raw  data
setups  show  a  more  volatile  pattern  but  stabilize  around  40  to  70
rounds,  attaining  67.5%  to  77%  accuracy.  In  contrast,  NF-BoT-IoT-
V2  reaches  higher  final  accuracies—93%  to  99.8%—  and  typically
stabilizes earlier. 

Figure  6  illustrates  the  average  accuracy  values  obtained  using
FedPROX  for  NF-TON-IoT-V2  and  NF-BoT-IoT-V2  across  different
feature  thresholds,  feature  setups,  DL  base  learners  and  device  num-
bers. We observe that: 

◼ From  Figure  6(a),  presenting  the  FL  models  generated  using  the  NF-
ToN-IoT-V2 dataset with 50% of the features and a balanced data con-
figuration,  the  FL  models  showed  progressive  improvement  up  to
round  20,  after  which  their  performance  stabilized.  Accuracy  ranged
from approximately 95% for the DNN_B50_ PROX_15 model to 97%
for the DNN_B50_PROX_5 model. However, the CNN_B50_PROX_5
and  DNN_  B50_PROX_15  models  exhibited  significant  oscillations
between rounds 50 and 100. 

◼ From  Figure  6(b),  presenting  the  FL  models  generated  using  the  NF-
ToN-IoT-V2 dataset with 50% of the features and a raw data configu-
ration, the FL models showed progressive improvement up to round 3,
after  which  their  performance  stabilized,  achieving  an  accuracy  of
97%.  However,  the  CNN_R50_PROX_5  and  DNN_R50_PROX_5
models deviated from this trend. The CNN_R50_PROX_5 model stabi-
lized  at  an  accuracy  of  72%,  while  the  DNN_R50_PROX_5  model
exhibited oscillations, ultimately achieving an accuracy of 65%. 

◼ From  Figure  6(c),  presenting  the  FL  models  generated  using  the  NF-
ToN-IoT-V2  dataset  with  100%  of  the  features  and  a  balanced  data
configuration,  the  FL  models  showed  progressive  improvement  up  to
round  5,  after  which  their  performance  stabilized,  achieving  an  accu-
racy of 97%. 

◼ From  Figure  6(d),  presenting  the  FL  models  generated  using  the  NF-
ToN-IoT-V2 dataset with 100% of the features and a raw data configu-
ration, the FL models showed progressive improvement up to round 2,
after  which  their  performance  stabilized,  achieving  an  accuracy  of
97%.  However,  the  DNN_R100_PROX_5  and  CNN_R100_PROX_5
models  deviated  from  this  trend.  The  CNN_R100_PROX_5  model
stabilized  at  an  accuracy  of  62%,  while  the  DNN_R100_PROX_5
model exhibited oscillations, ultimately achieving an accuracy of 63%. 

◼ From  Figure  6(e),  presenting  the  FL  models  generated  using  the  NF-
BoT-IoT-V2 dataset with 50% of the features and a balanced data con-
figuration,  the  FL  models  exhibited  steady  improvement  over  the
rounds,  stabilizing  during  the  final  10  rounds.  Accuracy  ranged  from
approximately  96%  for  the  CNN_B50_PROX_30  model  to  100%  for
the  CNN_B50_PROX_5  model.  However,  the  DNN_B50_PROX_5
model exhibited significant oscillations between rounds 75 and 100. 
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Figure 6. Average  accuracy  of  FedPROX  for  NF-ToN-IoT-v2  with:  (a)  bal-
anced  data  setup  and  50%  of  features;  (b)  raw  data  setup  and  50%  of  fea-
tures;  (c)  balanced  data  setup  and  100%  of  features;  (d)  raw  data  setup  and
100%  of  features;  and  for  NF-BoT-IoT-v2  with:  (e)  balanced  data  setup  and
50%  of  features;  (f)  raw  data  setup  and  50%  of  features;  (g)  balanced  data
setup and 100% of features; and (h) raw data setup and 100% of features.
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◼ From  Figure  6(f),  presenting  the  FL  models  generated  using  the
NF-BoT-IoT-V2  dataset  with  50%  of  the  features  and  a  raw  data
configuration,  the  FL  models  exhibited  steady  improvement  over  the
rounds,  stabilizing  during  the  final  20  rounds.  Accuracy  ranged  from
approximately  99.75%  for  the  CNN_R50_PROX_30  model  to
99.96% for the CNN_R50_PROX_5 model. 

◼ From  Figure  6(g),  presenting  the  FL  models  generated  using  the  NF-
BoT-IoT-V2  dataset  with  100%  of  the  features  and  a  balanced  data
configuration,  the  FL  models  exhibited  steady  improvement  over  the
rounds,  stabilizing  during  the  final  30  rounds.  Accuracy  ranged  from
approximately 98% for the CNN_B100_PROX_30 model to 100% for
the CNN_B100_PROX_5 model. 

◼ From  Figure  6(h),  presenting  the  FL  models  generated  using  the  NF-
BoT-IoT-V2 dataset with 100% of the features and a raw data configu-
ration,  the  FL  models  showed  progressive  improvement  up  to  round
50,  after  which  their  performance  stabilized.  Accuracy  ranged  from
approximately  99.85%  for  the  CNN_R100_PROX_30  model  to
99.95% for the CNN_R100_PROX_5 model. 

Under  FedPROX,  FL  models  generally  converge  to  high  accuracy
for both NF-ToN-IoT-V2 and NF-BoT-IoT-V2, though some configu-
rations  exhibit  performance  drops  or  oscillations.  For  NF-ToN-IoT-
V2,  balanced  data  setups  typically  stabilize  around  95%  to  97%
accuracy,  while  certain  raw  configurations  fall  to  62%  to  72%.  In
contrast, NF-BoT-IoT-V2 models frequently exceed 96%, with multi-
ple cases reaching 100%. 

Overall, FedAVG and FedPROX tend to achieve higher final accu-
racies  and  faster  stabilization  than  FedSGD,  especially  on  NF-BoT-
IoT-V2, where multiple configurations consistently reach or approach
100%.  However,  FedAVG  occasionally  experiences  sharp  accuracy
drops  on  NF-ToN-IoT-V2,  while  FedPROX  shows  more  consistent
but still imperfect stability in a few raw-data cases. FedSGD generally
converges  to  lower  or  more  volatile  accuracy  on  NF-ToN-IoT-V2,
although  it  remains  competitive  on  NF-BoT-IoT-V2.  Hence,  for
robust  performance  across  both  datasets,  FedPROX  offers  a  slight
edge  overall,  with  FedAVG  performing  comparably  or  better  in  cer-
tain NF-BoT-IoT-V2 scenarios. 

Evaluating Optimal Federated Learning Configurations for 

Attack Detection across Devices (RQ2)

4.2

In  this  subsection,  we  compare  different  FL  configurations  by  mixing
aggregation  methods,  data  setups,  DL  base  learners  and  numbers  of
devices  for  each  dataset  and  feature  threshold.  We  used  the  SK  test,
focusing  on  accuracy,  to  group  models  and  pinpoint  the  most  effec-
tive SK clusters, as illustrated in Figures 7 and 8. Additionally, we use
the  BC  method  to  prioritize  models  within  the  top  SK  clusters,  based
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on  metrics  such  as  accuracy,  AUC,  recall  and  precision,  as  shown  in
Tables  5  and  6.  The  SK  test  results  are  displayed  on  a  graph  where
the  x  axis  categorizes  FL  classifier  variants  by  cluster,  arranging  the
best  clusters  from  left  to  right,  and  the  y  axis  shows  accuracy  scores.
Each  vertical  line’s  central  dot  represents  the  mean  accuracy,  while
the line itself illustrates the accuracy outcomes over 100 rounds for a
given FL classifier. The analysis involves calculating the average accu-
racy  of  each  round  i  across  devices,  denoted  as  Averagei,  using  equa-

tion (6). For example, Figure 7(a) presents the SK test results of 36 FL
configurations  using  50%  of  the  features  of  the  NF-ToN-IoT-v2
dataset.  In  this  context,  DNN_R50_AVG_5  represents  the  accuracy
averages  of  DNN_R50_AVG  (a  DNN  model  with  a  raw  data  setup,
50%  of  features  and  FedAVG)  applied  to  five  devices  over  100
rounds (Average1, … , Average100):

Averagei 
∑j1
#Devices Accuracyj

#Devices
. (6)

For the NF-ToN-IoT-v2 dataset:

◼ Figure  7(a)  presents  the  SK  results  for  50%  of  the  features,  identifying
11  clusters:  (1)  The  first  cluster  contains  15  FL  models,  including
10  DNN  models  and  5  CNN  models.  Among  the  DNN  models,  five
use  raw  data  (DNN_R50_PROX_30,  DNN_R50_PROX_15,
DNN_R50_AVG_30,  DNN_R50_AVG_15  and  DNN_R50_AVG_5),
and  five  use  a  balanced  data  setup  with  the  same  configurations  as  the
raw  data  models.  For  the  CNN  models,  two  use  raw  data  with
FedPROX  (CNN_R50_PROX_15  and  CNN_R50_PROX_30),  two  use
a  balanced  data  setup  with  the  same  configurations  as  the  raw  data
models,  and  one  additional  model  is  CNN_B50_AVG_30;  (2)  the
second  cluster  includes  two  models,  CNN_B50_PROX_5  and
DNN_B50_PROX_5;  (3)  the  third  cluster  includes  two  CNN  models
using  FedAVG  and  raw  data  (CNN_R50_AVG_30  and
CNN_R50_AVG_15);  (4)  the  fourth  cluster  contains  two  DNN
models  (DNN_R50_SGD_30  and  DNN_R50_SGD_15)  and  one  CNN
model  (CNN_B50_SGD_30);  (5)  the  fifth  cluster  includes  two
DNN  models  using  balanced  data  and  FedSGD  (DNN_B50_SGD_5
and DNN_B50_SGD_30); (6) the sixth cluster includes two DNN mod-
els (DNN_R50_SGD_5 and DNN_B50_SGD_15) and one CNN model
(CNN_R50_SGD_15);  (7)  the  seventh  cluster  contains  three  CNN
models  (CNN_R50_SGD_30,  CNN_R50_PROX_5  and  CNN_B50_S-
GD_5);  (8)  the  eighth  cluster  contains  a  single  model,  CNN_B50_S-
GD_15;  (9)  the  ninth  cluster  contains  two  models,  CNN_R50_SGD_5
and  DNN_R50_PROX_5;  (10)  the  tenth  cluster  contains  a  single
model,  CNN_R50_AVG_5;  and  (11)  the  final  cluster,  includes  two
CNN models using SGD with device counts of 5 and 15. 
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(a)

(b)

Figure 7. SK  test  results  for  FL  configurations  using  NF-ToN-IoT-v2  with:
(a) 50% of features; and (b) 100% of features.

◼ Figure 7(b) presents the SK results for 100% of the features, identifying
seven  clusters:  (1)  The  first  cluster  contains  21  FL  models,  comprising
11  DNN  models  and  10  CNN  models.  The  DNN  models  include  all
configurations using both data setups (raw and balanced), two aggrega-
tion  methods  (FedAVG  and  FedPROX)  and  three  device  counts  (5,  15
and  30),  except  for  DNN_R100_PROX_5,  which  is  not  included.
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Similarly, the CNN models follow the same configurations as the DNN
models, except that CNN_R100_AVG_5 is absent; (2) the second clus-
ter includes three DNN models configured with balanced data, FedSGD
and the three device counts (5, 15 and 30); (3) the third cluster contains
two  DNN  models  (DNN_R100_SGD_5  and  DNN_R100_SGD_15)
and  one  CNN  model  (CNN_B100_SGD_5);  (4)  the  fourth  cluster
includes  two  models,  CNN_B100_SGD_30  and  DNN_R100_SGD_30;
(5)  the  fifth  cluster  consists  of  four  CNN  models  using  FedSGD:
CNN_B100_SGD_5,  CNN_R100_SGD_15,  CNN_R100_SGD_30  and
CNN_B100_SGD_15;  (6)  the  sixth  cluster  contains  two  models,
DNN_R100_PROX_5 and CNN_R100_AVG_5; and (7) the final clus-
ter includes a single model, CNN_R100_PROX_5. 

For the NF-BoT-IoT-v2 dataset: 

◼ Figure  8(a)  displays  the  SK  results  for  50%  of  the  features,  revealing
the  presence  of  eight  clusters.  The  first  cluster  consists  of  all  classifiers
based  on  the  raw  data  setup  (18  models),  combining  various  DL  base
learners,  federated  aggregation  methods  and  numbers  of  devices.
Models  using  balanced  data  setups  are  distributed  as  follows:  (1)  the
second  cluster  includes  four  models  (two  DNN  and  two  CNN)  using
FedPROX and FedAVG with five devices; (2) the third cluster contains
two  DNN  models  using  FedPROX  and  FedAVG  with  five  devices;  (3)
the  fourth  cluster  comprises  two  DNN  models  (DNN_B50_AVG_30
and  DNN_R50_PRX_30)  and  two  CNN  models  (CNN_B50_AVG_15
and  CNN_R50_PRX_15);  (4)  the  fifth  cluster  includes  two  CNN
models,  one  using  FedAVG  with  30  devices  and  the  other  combining
FedAVG  and  FedPROX;  (5)  the  sixth  cluster  contains  a  single  model,
DNN_R50_SGD_30;  (6)  the  seventh  cluster  consists  of  two  DNN
models  using  SGD  with  five  and  15  devices;  and  (7)  the  final  cluster
comprises  three  CNN  models  using  SGD  with  device  counts  of  5,  15
and 30. 

◼ Figure 8(b) presents the SK results for 100% of the features, identifying
nine  distinct  clusters.  The  first  cluster  includes  all  classifiers  based  on
the  raw  data  setup  (18  models),  incorporating  various  DL  base  learn-
ers,  federated  aggregation  methods  and  device  counts.  The  models
using  balanced  data  setups  are  distributed  as  follows:  (1)  the  second
cluster  includes  two  CNN  models  using  five  devices  with  FedAVG  and
FedPROX;  (2)  the  third  cluster  includes  two  DNN  models  using  five
devices  with  FedAVG  and  FedPROX;  (3)  the  fourth  cluster  includes
two  DNN  models  using  15  devices  with  FedAVG  and  FedPROX;
(4) the fifth cluster comprises two DNN models (DNN_B100_AVG_30
and  DNN_B100_PROX_30)  and  two  CNN  models
(CNN_B100_AVG_15  and  CNN_B100_PROX_15);  (5)  the  sixth  clus-
ter  includes  two  CNN  models  using  30  devices  with  FedAVG  and
FedPROX; (6) the seventh cluster includes two DNN models employing
the  FedSGD  aggregation  method  with  five  and  30  devices;  (7)  the
eighth  cluster  contains  a  single  model,  DNN_B100_SGD_15;  and
(8)  the  final  cluster  comprises  three  CNN  models  using  FedSGD  with
device counts of 5, 15 and 30. 
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(a)

(b)

Figure 8. SK  test  results  for  FL  configurations  using  NF-BoT-IoT-v2  with:
(a) 50% of features; and (b) 100% of features.`

In  summary,  for  the  NF-ToN-IoT-v2  dataset,  the  most  effective
configurations  involve  combining  DNN  with  FedAVG  and
FedPROX,  using  both  raw  and  balanced  data  setups.  CNN  models
paired with FedAVG and FedPROX also demonstrated robust perfor-
mance.  For  the  NF-BoT-IoT-v2  dataset,  the  raw  data  setup  showed
optimal results when combined with various FL aggregation methods,

Exploring Federated Deep Learning for IoT Cyberattacks 533

https://doi.org/10.25088/ComplexSystems.34.4.509

https://doi.org/10.25088/ComplexSystems.34.4.509


including  FedAVG,  FedPROX  and  FedSGD.  These  findings  indicate
that  combining  a  raw  data  setup  with  FedPROX  or  FedAVG  and
DNN  architecture  is  generally  the  most  effective  approach  for  IoT
security  tasks.  However,  specific  scenarios  within  the  NF-BoT-IoT-v2
dataset  may  favor  CNN  architecture  and  benefit  from  balanced  data
setups. 

The  best  model  from  the  first  SK  cluster  was  identified  using  the
BC system for each feature threshold, based on accuracy, AUC, recall
and  precision.  The  results  are  detailed  in  Tables  5  and  6  for
NF-ToN-IoT-v2  and  NF-BoT-IoT-v2,  respectively.  Furthermore,  the
comparison  of  top-performing  models  across  different  feature  thresh-
olds  (17  and  35  features)  shows  that  their  performance  is  relatively
consistent  over  both  the  NF-ToN-IoT-v2  and  NF-BoT-IoT-v2
datasets,  as  detailed  in  Tables  5  and  6.  Specifically,  the  best  model:
(1)  for  NF-ToN-IoT-v2  is  DNN_R50_PROX_30,  achieving  an
accuracy  of  97.80%,  an  AUC  of  0.9970,  a  recall  of  98.86%  and  a
precision of 97.72% using only 17 features; and (2) for NF-BoT-IoT-
v2  is  CNN_R50_PROX_5,  with  an  accuracy  of  99.87%,  an  AUC  of
0.  9892,  a  recall  of  99.99%  and  a  precision  of  99.88%  using  17
features. 

# of Features Model Accuracy AUC Recall Precision BC 

17 DNN_R50_PROX_30 97.80% 0.9970 98.86% 97.72% 54 

CNN_R50_PROX_15 97.65% 0.9901 98.96% 97.58% 46 

CNN_R50_PROX_30 97.57% 0.9893 98.48% 97.71% 41 

DNN_R50_AVG_15 97.57% 0.9861 98.86% 97.39% 38 

CNN_B50_PROX_15 97.53% 0.9948 98.14% 96.97% 34 

DNN_R50_PROX_15 97.19% 0.9921 97.63% 97.98% 32 

DNN_R50_AVG_30 97.51% 0.9858 98.84% 97.32% 31 

DNN_B50_PROX_30 97.26% 0.9956 97.43% 97.12% 27 

DNN_B50_PROX_15 97.27% 0.9939 97.37% 97.18% 26 

CNN_B50_PROX_30 97.44% 0.9894 98.01% 96.92% 24 

DNN_B50_AVG_30 97.17% 0.9860 98.13% 96.28% 18 

DNN_B50_AVG_15 97.15% 0.9858 98.18% 96.23% 16 

DNN_B50_AVG_5 97.16% 0.9852 98.15% 96.26% 15 

DNN_R50_AVG_5 96.49% 0.9787 96.90% 97.68% 11 

CNN_B50_AVG_30 96.94% 0.9839 98.01% 96.03% 7 

35 CNN_R100_PROX_15 98.45% 0.9988 98.97% 98.60% 78 

CNN_R100_PROX_30 98.39% 0.9986 99.02% 98.48% 76 

CNN_B100_PROX_15 98.32% 0.9987 98.28% 98.36% 66 

CNN_B100_PROX_30 98.26% 0.9986 98.23% 98.28% 59 

DNN_R100_PROX_30 98.08% 0.9982 99.00% 98.03% 59 

CNN_B100_AVG_15 98.27% 0.9985 98.19% 98.35% 57 

CNN_B100_AVG_30 98.22% 0.9985 98.18% 98.26% 51 

DNN_R100_PROX_15 97.98% 0.9970 98.91% 98.07% 46 
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# of Features Model Accuracy AUC Recall Precision BC 

35 CNN_R100_AVG_15 97.92% 0.9973 98.80% 97.97% 42 

DNN_B100_AVG_30 98.05% 0.9981 98.10% 98.00% 39 

DNN_R100_AVG_5 97.78% 0.9971 98.79% 97.99% 38 

DNN_B100_PROX_30 97.83% 0.9982 98.12% 97.76% 35 

DNN_B100_PROX_15 97.83% 0.9976 98.22% 97.78% 35 

DNN_B100_AVG_5 97.73% 0.9977 98.23% 97.57% 31 

CNN_R100_AVG_30 97.59% 0.9959 98.62% 97.62% 25 

DNN_R100_AVG_30 97.39% 0.9962 98.94% 97.40% 25 

CNN_B100_AVG_5 97.52% 0.9906 96.59% 98.20% 18 

CNN_B100_PROX_5 97.68% 0.9959 98.09% 97.65% 17 

DNN_B100_AVG_15 97.40% 0.9974 98.10% 97.26% 16 

DNN_R100_AVG_15 96.97% 0.9899 98.94% 96.99% 16 

DNN_B100_PROX_5 97.61% 0.9955 97.92% 97.44% 11 

Table 5. BC ranking of FL variants within the best SK cluster for each feature
threshold over NF-ToN-IoT-v2.

# of Features Model Accuracy AUC Recall Precision BC 

17 CNN_R50_PROX_5 99.87% 0.9892 99.99% 99.88% 60 

CNN_R50_AVG_5 99.87% 0.9901 99.99% 99.88% 57 

DNN_R50_PROX_5 99.86% 0.9934 99.99% 99.87% 50 

DNN_R50_AVG_5 99.86% 0.9894 99.99% 99.87% 48 

CNN_R50_PROX_15 99.81% 0.9744 99.99% 99.81% 48 

DNN_R50_PROX_15 99.80% 0.9874 99.99% 99.81% 47 

DNN_R50_AVG_15 99.80% 0.9880 99.99% 99.81% 42 

DNN_R50_PROX_30 99.79% 0.9836 99.99% 99.80% 41 

DNN_R50_AVG_30 99.78% 0.9570 99.99% 99.78% 37 

CNN_R50_AVG_15 99.78% 0.9770 99.99% 99.79% 36 

CNN_R50_SGD_15 99.59% 0.2579 100.00% 99.59% 25 

CNN_R50_PROX_30 99.76% 0.9573 99.98% 99.77% 22 

CNN_R50_AVG_30 99.76% 0.9506 99.98% 99.77% 21 

DNN_R50_SGD_15 99.58% 0.4102 100.00% 99.58% 21 

CNN_R50_SGD_5 99.59% 0.2083 100.00% 99.59% 20 

DNN_R50_SGD_30 99.62% 0.6877 99.99% 99.63% 17 

DNN_R50_SGD_5 99.59% 0.7425 99.94% 99.64% 12 

CNN_R50_SGD_30 99.57% 0.2178 99.99% 99.58% 8 

35 DNN_R100_AVG_5 99.89% 0.9957 99.99% 99.90% 59 

DNN_R100_PROX_5 99.89% 0.9950 99.99% 99.90% 58 

DNN_R100_PROX_15 99.86% 0.9894 99.99% 99.87% 52 

DNN_R100_AVG_15 99.85% 0.9857 99.99% 99.86% 47 

CNN_R100_PROX_5 99.87% 0.9780 99.99% 99.89% 43 

CNN_R100_AVG_5 99.87% 0.9808 99.99% 99.88% 41 

DNN_R100_PROX_30 99.85% 0.9823 99.99% 99.86% 40 

Table 6. (continues).
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# of Features Model Accuracy AUC Recall Precision BC 

35 DNN_R100_AVG_30 99.85% 0.9789 99.99% 99.86% 35 

CNN_R100_AVG_15 99.85% 0.9687 99.99% 99.86% 34 

CNN_R100_PROX_15 99.84% 0.9674 99.99% 99.86% 30 

DNN_R100_SGD_15 99.75% 0.9206 100.00% 99.75% 27 

DNN_R100_SGD_30 99.71% 0.8199 100.00% 99.71% 25 

CNN_R100_AVG_30 99.83% 0.9537 99.99% 99.85% 23 

CNN_R100_SGD_15 99.69% 0.6649 100.00% 99.69% 22 

DNN_R100_SGD_5 99.69% 0.8171 100.00% 99.69% 22 

CNN_R100_PROX_30 99.83% 0.9444 99.99% 99.84% 18 

CNN_R100_SGD_5 99.68% 0.5103 100.00% 99.68% 18 

CNN_R100_SGD_30 99.67% 0.6192 100.00% 99.68% 18 

Table 6. BC ranking of FL variants within the best SK cluster for each feature
threshold over NF-BoT-IoT-v2.

Optimal Deep Learning Base Learners for Federated Learning 

Models in IoT Intrusion Detection (RQ3)

4.3

This subsection evaluates the impact of DNN and CNN base learners
on  the  performance  of  FL  methods  to  identify  the  most  effective
learner for enhancing classification accuracy in an FL setup. The anal-
ysis  considers  each  dataset,  data  configuration,  feature  threshold,
aggregation method and device count. The SK test, based on accuracy
as  shown  in  Figures  7  and  8,  was  employed  to  compare  the  perfor-
mance  of  different  models.  Additionally,  the  BC  method  was  used  to
rank  the  FL  models  within  the  top  SK  clusters  based  on  accuracy,
AUC,  recall  and  precision  metrics.  Tables  5  and  6  present  the  rank-
ings of the FL models within the best SK clusters for the NF-ToN-IoT-
v2  and  NF-BoT-IoT-v2  datasets,  respectively.  To  identify  the  overall
top-performing  DL  base  learner,  independent  of  the  dataset  and  fea-
ture thresholds, the occurrences of each learner in the best SK clusters
and their BC ranks were tallied, as shown in Table 7.

DL Base 
Learner

Occurrences in the 
Best Cluster

Median Ranking in the 
Best Cluster

DNN 39 9 

CNN 33 10 

Table 7. BC ranking and occurrences in the best cluster for DL base learners.

As  shown  in  Table  7,  the  results  indicate  that  DNN  is  the  top-
performing  DL  base  learner  for  cyber  detection  in  the  FL  context.
DNN  appears  in  the  best  cluster  39  times,  compared  to  CNN,  which
appears  33  times.  Additionally,  DNN  achieves  a  better  median  rank
of 9 in the best cluster, compared to CNN’s median rank of 10. These

536 A. Hamdouchi and A. Idri

Complex Systems, 34 © 2026



findings  demonstrate  that  DNN-based  techniques  significantly
enhance  anomaly  detection  in  the  FL  context  within  IoT  envi-
ronments. 

Results Comparison with State-of-the-Art Methods4.4

In this subsection, we contrast our experimental outcomes with those
from earlier research. Table 8 shows the performance of the best data
setups, aggregation methods and device counts from our study, along-
side  results  from  previous  studies,  focusing  on  key  performance  met-
rics. Table 8 acts as a reference for assessing the progress and success
of our method. This comparison aims to provide a clear and impartial
evaluation of our approach’s effectiveness in the field of FL-IDS.

Table 8 succinctly juxtaposes the performance metrics of our inves-
tigation with the antecedent studies. This comparative analysis under-
scores  a  pivotal  advancement:  Our  methodology  exhibits  superior
performance  across  critical  dimensions,  including  accuracy,  AUC,
recall and precision, thereby substantiating its efficacy as a formidable
FL-IDS  framework.  The  empirical  evidence  presented  in  Table  8
attests  to  the  methodological  enhancements  facilitated  by  our
approach, thereby augmenting the efficacy and adaptability of FL-IDS
paradigms. 

Publication Dataset Technique

# of 

Features Accuracy AUC Precision

Our study NF-ToN-IoT-v2 DNN 17 97.80% 0.9970 98.86% 

NF-BoT-IoT-v2 CNN 99.87% 0.9892 99.99% 

Chen et al. [24] NF-ToN-IoT-v2 F-NIDS 96.20% - 88.50% 

Sarhan et al. [31] NF-BoT-IoT-v2 F-DNN 43 93.08% 0.9560 - 

Sarhan et al. [32] NF-BoT-IoT-v2 HBFL 99.46% - 96.86%

Yu [33] NF-ToN-IoT-v2 FedAVG 92.78% 0.9170 92.76% 

Table 8. Performance results comparison with previous studies.

Limitations and Validity 5.

To ensure the reliability of this study, it is important to clearly define
the  scope  and  limitations  of  the  conclusions.  Certain  classification
tasks  were  not  conducted  due  to  the  large  size  of  some  datasets  and
the  significant  time  required  for  exhaustive  model  parameter  tuning.
Additionally, the base learners used in this paper were designed with-
out  detailed  hyperparameter  optimization.  Adjusting  these  hyperpa-
rameters could influence the performance of FL models and may lead
to improved outcomes in IDS-based FL applications.

This paper also relied on a simulated FL environment using TFF to
emulate  the  behavior  of  IoT  devices.  While  this  approach  provides
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flexibility  and  scalability  during  experimentation,  future  work  should
aim  to  deploy  these  models  on  real  IoT  hardware  using  lightweight
frameworks  such  as  TinyML.  Furthermore,  evaluating  FL  perfor-
mance  over  resource-constrained  wireless  communication  protocols
like  LoRaWAN  would  provide  more  realistic  insights  into  the  practi-
cal deployment challenges of FL in IoT networks. 

The  findings  presented  here  offer  valuable  insights  for  advancing
future research on FL, especially in designing more practical and effi-
cient FL models for cybersecurity in IoT and related domains. 

Conclusion and Future Work 6.

The study evaluated and compared 144 federated learning (FL) config-
urations  for  binary  classification  of  network  intrusions,  using  dense
neural  networks  (DNNs)  and  convolutional  neural  networks  (CNNs)
as base learning models. The configurations incorporated three aggre-
gation  methods  (FedAVG,  FedPROX  and  FedSGD),  three  device
scenarios (5, 15 and 30 devices), two feature thresholds derived from
ANOVA  and  Chi2  as  FS  techniques,  and  two  data  setups  (raw  and
balanced). The analysis was conducted on two NetFlow IoT datasets,
NF-ToN-IoT-v2  and  NF-BoT-IoT-v2.  Evaluation  metrics  included
accuracy,  AUC,  recall  and  precision,  complemented  by  the  SK  statis-
tical test and the BC ranking system. The key findings of this research
are  summarized  as  follows:  (1)  FedAVG  and  FedPROX  consistently
demonstrated  superior  final  accuracy  and  faster  convergence  com-
pared  to  FedSGD;  (2)  DNN  architecture  with  FedPROX  or  FedAVG
was  typically  the  most  effective  approach  for  IoT  security;  and
(3) DNN was identified as the most effective deep learning (DL) base
learner for cyber detection in the FL context, consistently outperform-
ing  CNN  in  best  cluster  appearances  and  median  ranking.  These
results highlighted the importance of using FL to develop a decentral-
ized  IDS  tailored  for  Internet  of  Things  (IoT)  networks  to  detect
attacks.

We  intend  future  work  to  expand  empirical  evaluations  to  further
validate  or  challenge  these  findings.  This  may  involve  testing  with
diverse  datasets  to  assess  the  robustness  and  adaptability  of  FL-based
intrusion  detection  systems  (IDS)  across  various  IoT  environments.
Additionally,  exploring  alternative  models  within  FL  frameworks
could  offer  valuable  insights  for  optimizing  performance  and  effi-
ciency.  Further  research  could  also  focus  on  deploying  these  models
on embedded devices using TinyML and FL methodologies. 
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