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The Internet of Things (IoT) connects billions of devices that operate
autonomously, increasing the risk of cyber threats, such as theft and
manipulation of personal data. This has increased interest in utilizing
deep learning (DL) methods to develop intrusion detection systems
(IDS). In general, DL-based IDS rely on centralized approaches, which
require IoT devices to transmit data to central servers for analysis. How-
ever, these centralized methods raise privacy concerns, prompting the
adoption of federated learning (FL) as a promising alternative. This
paper evaluates and compares various FL configurations using dense
neural networks (DNNs) and convolutional neural networks (CNNs)
as base models. The research explores three aggregation methods
(FedAVG, FedPROX and FedSGD), three device counts (5, 15 and 30),
two data setups (raw and balanced) and two feature selection methods
(analysis of variance and chi-squared) with two feature thresholds
(50% and 100%). The evaluation was conducted on the NF-ToN-IoT-
v2 and NF-BoT-IoT-v2 datasets, using the Scott—Knott test and the
Borda count method to analyze 144 FL configurations. The results indi-
cate that FedAVG and FedPROX outperform other aggregation meth-
ods, with DNNSs identified as the most effective base model for attack
detection in FL environments. The top-performing models, using only
17 features, were DNN_RS50_PROX_30 (accuracy of 97.80%) and
CNN_RS0_PROX_5 (accuracy of 99.87%) for NF-BoT-loT-v2 and
NF-ToN-IoT-v2, respectively.

Keywords: intrusion detection system; federated learning; deep
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I 1. Introduction

In today’s digital era, the production and storage of data have sky-
rocketed, fueled by cheaper storage and the trend of recording every
digital interaction. This growth is further amplified by the rise in
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Internet of Things (IoT) devices, such as smart home gadgets, the
development of smart cities and Industry 4.0 advancements. Big data
companies highly value the information from these devices for
insights and business intelligence, making data a crucial asset that
must be protected [1].

As data has become increasingly central to daily operations and
critical infrastructures, ensuring cybersecurity has become more vital
than ever for preventing disruptions, unauthorized access and
breaches. The field of information security continuously evolves to
address emerging threats. Historically, cybersecurity efforts were pri-
marily focused on a limited number of expert-operated systems. The
proliferation of smartphones equipped with sensors and the genera-
tion of massive volumes of sensitive data were once unimaginable.
Today, intrusion detection systems (IDS) play a crucial role in moni-
toring and detecting cyber threats at early stages. The adoption of
machine learning (ML) has significantly enhanced the capabilities of
IDS, transitioning from static systems reliant on databases of known
threats to dynamic, self-adaptive methods. However, early ML-based
systems struggled with adaptability and suffered from delayed
updates, leaving them vulnerable for extended periods [2].

To address these challenges, modern IDS increasingly leverage ML
models capable of autonomously learning and identifying novel
threats. However, despite improved detection accuracy, most ML-
based IDS solutions are built on centralized architectures, where a sin-
gle entity aggregates and processes data from multiple devices. This
centralization raises significant privacy concerns, particularly in IoT
environments such as smart wearables and healthcare devices, where
the data is highly sensitive and voluminous. Consequently, there is a
growing need for decentralized approaches to data management and
learning. Federated learning (FL) has emerged as a promising solu-
tion, enabling collaborative model training across distributed devices
without exposing raw data, thus improving privacy preservation in
sensitive loT ecosystems [3].

FL was introduced in 2016 as a method where devices (also known
as clients or parties) collaborate on learning without sharing their
data. Instead, they send updates to a global model on a central entity
(known as an aggregator or coordinator) for aggregation. FL aims to
enhance user privacy by ensuring device data remains unshared with
others [3].

Recently, there has been growing interest in creating FL-based IDS
for IoT environments [4-6]. However, several proposed methods
depended on unrealistic data distribution across parties and failed to
evaluate various FL aggregation methods or the impact of using differ-
ent numbers of devices [7]. Additionally, the review [8] pointed out
the difficulties of implementing FL in the IoT but did not provide
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guidance on enhancing IDS with FL or critically assess their propos-
als. This lack of detailed analysis makes it challenging for cybersecu-
rity experts to pinpoint the critical problems of integrating FL into
IDS for the ToT.

In an earlier study [9], we evaluated FL for IDS in IoT environ-
ments, using dense neural networks (DNNs) as the base learner. The
evaluation considered two data configurations: a raw data setup,
which preserves the original class distribution across devices, and a
balanced data setup, which ensures an equal number of attack and
non-attack samples per device to mitigate class imbalance; and two
aggregation methods: federated averaging (FedAVG) [10] and feder-
ated stochastic gradient descent (FedSGD) [11]. Experiments were
conducted with groups of 5, 15 and 30 devices over 100 optimization
rounds, utilizing the NF-ToN-IoT-v2 dataset. The previous study [9]
identified the most effective configuration as the combination of raw
data, the FedAvg method and a five-device setup. To validate or chal-
lenge these findings [9], we extended this work by: (1) incorporating
convolutional neural networks (CNNs) as an additional deep learning
(DL) base learner; (2) including federated proximal (FedPROX) as an
additional FL aggregation method; (3) applying feature selection (FS)
techniques such as analysis of variance (ANOVA) and chi-squared
test (Chi2) with two feature thresholds: 50% (feature reduction) and
100% (no FS, serving as a baseline); and (4) integrating the NF-BoT-
[oT-v2 dataset, which was generated in a different context than the
NF-ToN-IoT-v2 dataset.

The selection of these FS filters is informed by their minimal com-
putational resource demands and extensive use in the selection of
subsets of features in diverse fields [12, 13]. The feature subsets were
constructed using two feature thresholds: 50%, which reduces the
number of features to half of the total set; and 100%, which retains
the entire original feature set without applying any selection, thus
serving as a baseline for performance comparison [13-15]. Addi-
tionally, two DL learning architectures, DNN and CNN, are
employed due to their widespread adoption in intrusion detection
[16-18]. FedAVG, FedSGD and FedPROX are selected as FL learning
aggregation methods owing to their demonstrated efficiency and
prominence within the FL domain [10, 11]. The chosen range of
devices (5, 15 and 30) is aligned with established literature recommen-
dations [19-21].

This study evaluates the performance of 144 FL configurations,
derived from the combination of two datasets, three aggregation
servers, two DL architectures, two data setups, two feature thresholds
and three device counts, across 100 optimization rounds. This
comprehensive evaluation framework represents a novel contribution,
facilitating a robust comparison of model performance under diverse
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configurations to ensure reliable intrusion detection in varied IoT envi-
ronments. Additionally, four widely adopted evaluation metrics are
employed: accuracy, recall, precision and receiver operating character-
istic area under the curve (AUC) [22]. The classifiers are analyzed
using the Scott—-Knott (SK) test to cluster them and identify the most
stable cluster through statistical performance comparison. In addi-
tion, the Borda count (BC) ranking system is applied to determine the
top-performing models based on multiple performance criteria.

The present paper aims to address the following research ques-
tions:

= RQ1: What are the best aggregation methods among FedAvg,
FedPROX and FedSGD in the context of FL for attack detection?

= RQ2: What is the best configuration of FL for the detection of attacks
across different settings?

= RQ3: Which DL architecture is the most suitable for FL as a base
learner?

Here is an outline of the key contributions of this paper:
1. Proposing a framework for evaluating FL in the context of IDS.

2. Constructing 144 FL configurations with various data setups, feature
thresholds, aggregation servers, device numbers and ToT datasets.

3. Determining the best aggregation methods for FL in the context of
intrusion detection using the NF-ToN-IoT-v2 and NF-BoT-lIoT-v2
datasets.

4. Determining the best DL base learner for FL in the context of intrusion
detection.

5. Identifying the optimal FL setup across different configurations.

This paper is organized as follows: Section 2 examines relevant
literature. Section 3 outlines the datasets, federated aggregators used,
performance metrics, statistical tests and research methodology
adopted in this paper. Section 4 presents a detailed analysis of the
findings and compares our results with those of existing studies. Sec-
tion 5 addresses the study’s limitations and validity considerations.
Finally, Section 6 concludes the paper and proposes avenues for
future research.

I 2. Related Work

Numerous relevant studies have focused on anomaly detection in dif-
ferent fields, especially in the IoT, using different FL approaches. This
section provides a summary of key research on using FL for intrusion
detection in IoT contexts.
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Mothukuri et al. [22] suggested a method that applied federated
training sessions to gated recurrent units (GRUs) models. This
method ensured data remained on local IoT devices, sharing only the
model’s learned weights with the central server of the FL. Addition-
ally, it used an ensemble method to combine updates from various
sources, enhancing the global ML model’s accuracy. Their findings
showed that this approach surpassed traditional centralized ML meth-
ods in protecting data privacy and achieved an overall average accu-
racy of 90.255% in detecting attacks. Campos et al. [23] introduced a
study that examined an FL-powered IDS using a multiclass classifier
to identify various attacks in an IoT environment. They used three dis-
tinct configurations (basic, balanced and mixed) derived by dividing
the ToN_IoT dataset based on the IP addresses of IoT devices and
attack types. The study also assessed two aggregation functions,
Fed++ and FedAvg, utilizing the IBMFL framework. Their findings
suggested that selecting instances based on the Shannon entropy of
each local dataset can enhance overall accuracy and achieved the best
results (close to 95.6%), comparable to those from a scenario where
data is evenly distributed among all participants. Chen et al. [24]
introduced FedAGRU, an FL method using an attention GRU, aimed
at enhancing FedAVG algorithms. This model is crafted to detect poi-
soning attacks and remove updates with minimal contribution, lead-
ing to an efficient global model with reduced communication costs.
Tested on three datasets (WSN-DS, KDD-CUP99 and CICIDS2017),
FedAGRU demonstrated effective performance, achieving an accuracy
of 99.82% on data that is not independent and identically distributed
(non-IID).

Althunayyan et al. [25] proposed robust multi-stage IDS tailored
for in-vehicle networks using a hybrid DL approach. Their system
combines an artificial neural network (ANN) to detect known attacks
and a long short-term memory (LSTM) autoencoder to identify novel
threats using the car hacking dataset. By employing hierarchical FL
(H-FL), the model enhances privacy by ensuring that sensitive in-
vehicle data remains local while aggregating learned patterns at a cen-
tral server. Experimental results demonstrated exceptional detection
performance, with Fl-scores exceeding 0.99 for known attacks and
0.95 for unseen ones, alongside a remarkably low false alarm rate of
0.016%. Bukhari et al. [26] introduced a novel intrusion detection
model employing a hybrid architecture of stacked CNN (SCNN) and
bidirectional LSTM (Bi-LSTM), leveraging FL for privacy preserva-
tion in wireless sensor networks (WSNs). This approach allowed dis-
tributed sensor nodes to collaboratively train a global model without
sharing raw data, ensuring data privacy. The model utilized the
WSN-DS and CIC-IDS-2017 datasets, achieving an accuracy of
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99.9% across both datasets. Jin et al. [27] proposed an FL-IIDS to
address the catastrophic forgetting issue in FL environments. The sys-
tem employed dynamic example memory and innovative loss func-
tions, such as class gradient balance loss and sample label smoothing
loss, to improve local model performance for both old and new
classes. Additionally, a relay client mechanism was introduced to
select the best old model at a global level, further mitigating catas-
trophic forgetting. Using the UNSW-NB15 and CICIDS2018 datasets,
the framework demonstrated enhanced classification accuracy and
memory retention for older classes, achieving final accuracies of
68.76% and 99.62% on the respective datasets.

Table 1 sums up the findings, datasets used, classifiers investigated
and the best performance values of some related studies dealing with
the use of FL-IDS in the IoT context.

FL Best
Paper Dataset Technique Accuracy | Findings
Mothukuri et | Modbus FLAverage 90.25%  |Introduced a method that used
al. [22] network with GRU federated training sessions on
dataset base learner GRU models with the Modbus
and RF network dataset, keeping data
ensembler on local IoT devices. It also
applied an ensemble technique
to merge updates from diverse
sources, improving the overall
accuracy of the global ML
model. Results reached an
average accuracy of 90.255%
in identifying attacks.
Campos et al. |ToN_IoT Two 95.6% Investigated an FL-IDS
[23] aggregation employing a multiclass
methods classifier within an IoT setting,
(Fed++ and utilizing the ToN_IoT dataset
FedAVG) across three data scenarios. It
using soft- evaluated two aggregation
max functions, Fed++ and

regression as
base learner

FedAVG, to determine their
effectiveness in conjunction
with softmax regression using
the IBMFL framework. The
findings indicated that
choosing instances according
to the Shannon entropy of each
local dataset could improve
overall accuracy, achieving
results near 90%, which were
comparable to other scenarios
examined.
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FL Best
Paper Dataset Technique Accuracy Findings
Chen et al. WSN-DS, FedAGRU 99.82% Presented FedAGRU, an FL
[24] KDD- based on technique that incorporated a
CUP99, (GRU-SVM, GRU to improve FedAVG
CICIDS2017 | GRU- algorithms. Designed to
softmax, identify and filter out attacks
Improved and updates with low
CNN contribution, FedAGRU aimed
(ICNN) and to create an effective global
VAE) model while lowering
communication costs. It
showed impressive results,
achieving 99.82% accuracy on
non-IID data.
Althunayyan Car Hacking |H-FL using [0.95 (F1-score) |Proposed a multi-stage IDS
et al. [25] ANN and combining an ANN for known
LSTM attacks and an LSTM-
autoencoder for unseen
attacks, achieving a detection
with Fl-scores exceeding 0.99
for known attacks and 0.95 for
unseen ones, alongside a
remarkably low false alarm
rate of 0.016%.
Bukharietal. | WSN-DS, FL with 99.9% Proposed a hybrid FL-based
[26] CIC- SCNN-Bi- SCNN-Bi-LSTM model,
IDS2017 LSTM achieving a notable accuracy of
99.9% in detecting intrusions
while preserving data privacy
and significantly reducing false
positives and false negatives.
Jin et al. [27] UNSW- FL-IIDS 99.62% Proposed FL-IIDS to address
NB15, with catastrophic forgetting in FL
CICIDS2018 | dynamic using class gradient balance

memory and
relay clients

and label smoothing. Achieved
68.76% accuracy on UNSW-
NB15 and 99.62% on
CICIDS2018.

Table 1. Summary of the literature review.

I 3. Experimental Design

This section describes the datasets, performance metrics and method-
ology employed for the empirical evaluations conducted in the study.

I 3.1 Dataset Description

Figure 1 depicts the workflow for generating traffic flow data using
the nProbe tool, developed by Ntop [28] and based on the NetFlow
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standard Version 9. This process involves extracting key attributes
from network flow data stored in the pcap format and labeling
the extracted records, which are then saved in CSV format. These
attributes can be utilized for training or evaluating ML models.
This study employs three intrusion detection datasets with a shared
feature set:

» NF-ToN-IoT-v2: This dataset was created from the ToN-lIoT dataset
using the nProbe tool, as detailed by Sarhan et al. [29]. The ToN-IoT
dataset, generated in an industrial network testbed, includes data from
various virtual machines running Windows, Linux and Kali Linux oper-
ating systems. It captures both normal and cyber-attack events within
IoT networks, covering attack types such as backdoor, DoS, DDoS,
injection, MITM, password attacks, ransomware, scanning and XSS
attacks. As illustrated in Figure 2(a), the NF-ToN-IoT-v2 dataset con-
sists of 169440469 samples, with intrusion events accounting for
63.99% and normal events for 36.01%.

Features

e extraction Extracted [NOADRY| Attack (o)
D10110101, ﬁ ﬁ
1000110

from peaps ‘Q features label (__J
Data.pcap nProbe Datasets

NetFlow data

Figure 1. The feature extraction workflow.

NF-ToN-loT-v2 NF-BoT-loT-v2

No Attack
Attack
No Attack
Attack

Figure 2. (a) Classes distribution of NF-ToN-IoT-v2; and (b) classes distribu-
tion of NF Bot ToT-v2.

» NF-BoT-IoT-v2: This dataset was derived from the BoT-IoT dataset
[30] using the nProbe tool. The BoT-IoT dataset was created through a
combination of network platforms, simulated IoT services and feature
extraction integrated with forensic analytics. It was developed at the
UNSW Canberra Research Cyber Range Lab using an ESXi-configured
cluster of virtual machines managed via the vSphere platform. This
setup, connected to both LAN and WAN, enabled IoT service
simulation using Node-RED and AWS IoT Hub, with MQTT protocol
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facilitating machine-to-machine communication. Attack scenarios
include reconnaissance, DoS, DDoS and data theft. Figure 2(b) shows
that the NF-BoT-lIoT-v2 dataset contains 37763497 samples, with
99.64% representing intrusion events and 0.36% normal events.

I 3.2 Federated Learning Aggregation Methods

This section explains the FL aggregation methods used in this paper,
specifically FedProx, FedAVG and FedSGD. These optimization algo-
rithms are designed to train ML models across distributed devices
while ensuring data privacy is maintained.

» Federated Averaging (FedAvg) is a distributed optimization algorithm
designed for FL. It operates by selecting a subset of devices in each com-
munication round, performing local stochastic gradient descent (SGD)
for a fixed number of epochs on each device and averaging the resulting
model updates on a central server. While effective in reducing communi-
cation costs, FedAvg assumes uniform computational capabilities
across devices and does not account for statistical heterogeneity, which
can lead to divergence or unstable convergence in practical, non-IID set-
tings. Its simplicity and empirical success have made it a baseline
method in FL, though it lacks theoretical guarantees for heterogeneous
environments [31].

» Federated optimization framework (FedProx) is designed to address sta-
tistical heterogeneity in distributed networks. It extends FedAvg by
introducing a proximal term to the local subproblems, which restricts
the updates to remain close to the global model. This modification
enhances convergence robustness and stability, particularly in non-IID
data settings. FedProx provides theoretical guarantees under a bounded
dissimilarity assumption and demonstrates improved empirical perfor-
mance across diverse datasets compared to FedAvg. The framework is
flexible, allowing any local solver, and maintains the privacy and effi-
ciency benefits of FL [32].

» Federated Stochastic Gradient Descent (FedSGD) is a distributed opti-
mization method used in FL to train models across decentralized
devices while preserving data privacy. Unlike standard SGD, it com-
putes gradients locally on each client and aggregates them on a central
server to update the global model. Each client performs a single gradi-
ent step using local data before transmitting the update. FedSGD pro-
motes consistency across local models by penalizing weight divergence
through a regularization term, such as total variation minimization.
While communication-efficient, this method requires careful tuning of
hyperparameters, including learning rate and regularization strength, to
address statistical heterogeneity [33].

| 3.3 Performance Measures

Four criteria were used to evaluate the federated DL variants of this
study: accuracy, recall, precision and receiver operating characteristic
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AUC [34]. They are defined by equations (1) to (4), respectively:

TP + TN
Accuracy = (1)
TP + TN + FP + FN
TP
Precision = ————— ()
TP + FP
TP
Recall = — 3)
TP + FN
1 n-l TP; + TP, 1
AUC = f TP(FP~!(x))dx ~ ZT x (FP;4q — FP;) (4)
0

i=1
where TP are true positives, FP are false positives, TN are true nega-
tives, and FN are false negatives.

| 3.4 Statistical Tests and the Borda Count Ranking Method

This section provides an explanation of the SK test and the BC rank-
ing system. The SK test groups classifiers through statistical compar-
isons, while the BC ranking system is a voting-based method used to
rank models within the best SK test cluster by evaluating multiple per-
formance criteria.

= Scott-Knott (SK) is a clustering algorithm frequently used for compar-
ing multiple groups in the ANOVA studies. It avoids the issue of over-
lapping groups. Effectively, the SK method begins with all observed
mean effects grouped together. It then continuously divides these
groups into smaller subgroups, ensuring that no two subgroups share
any common members [35].

= Borda count (BC) is a voting method to rank candidates by preference.
Each candidate gets points based on their rank, with lower ranks get-
ting fewer points. The points are then added up, and the candidate with
the highest total wins. In this paper, we used the BC ranking system to
identify the top-performing model, treating all performance measures
equally [36].

|l 3.5 Methodology

Figure 3 illustrates the methodology used to evaluate and compare the
impact of different aggregation methods and the number of devices
on the detection performance of FL-based IDS. The study assessed the
performance of three aggregation methods (FedAVG, FedSGD and
FedProx) using two NetFlow IoT datasets (NF-ToN-IoT-v2 and
NF-BoT-IoT-v2) under balanced and raw data setups with two fea-
ture thresholds (50% and 100%). The experiments were conducted
with 5, 15 and 30 devices over 100 training rounds. Performance eval-
uation was conducted using the SK test and the BC voting system.
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The experimental procedure comprised the following steps:

m Step 1: The raw data was preprocessed to ensure quality and consis-
tency across both datasets. Initial steps included the removal of missing
values, duplicate records and non-informative attributes. Numerical fea-
tures were examined for multicollinearity, and those with a Pearson cor-
relation above 0.95 and a variance inflation factor (VIF) below 5 were
selectively removed. Categorical features were optimized: (1) Features
with high cardinality were consolidated to reduce dimensionality. For
instance, IP address fields were grouped into five categories: three
private address ranges, public addresses and localhost entries. Port num-
bers were categorized as well-known, registered or dynamic ports;
(2) Other categorical features were retained with minimal classes, such
as PROTOCOL and DNS_QUERY_TYPE, which contain six and 12 distinct
values, respectively. The L7_PROTO attribute was simplified by retain-
ing the five most frequent values and grouping the rest under an “Oth-
ers” category, which accounted for approximately 3.4% of all entries.

2 a(E=
i > = BordaCount
: H FedAVG
k] =
5 EH . [
- 48 s
~ — -
2 FedSGD Metrics Best model
E Accuracy AUC
B &
d s )| ol
: — Y-
FedProx

Figure 3. Experimental process.

In addition, standardization was applied to scale numerical features to
have zero mean and unit variance, using

Xi— M
Z= 3)
o
where x; is the data point, u is the mean and o is the standard
deviation.

m Step 2: Set up a simulated IoT network using virtual instances with Ten-
sorFlow Federated (TFF). Three sets of end devices (5, 15 and 30) were
created, with each device labeled as Device;. Three central server
instances were configured to implement FedAVG, FedSGD and
FedProx, and two DL base learners: DNN, as shown in Table 2; and
CNN, as shown in Table 3, were built. The central servers facilitated
the exchange of DL model parameters between the mobile ToT devices
and the central FL server. The two datasets, NF-ToN-IoT-v2 and NF-
BoT-IoT-v2, were divided into two sections based on different data
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distribution strategies: (1) The raw data setup preserved the original
class imbalance of the dataset by distributing data across devices in
accordance with the natural proportion of attack and non-attack sam-
ples; and (2) The balanced data setup ensured an equal number of
attack and non-attack samples per device, thereby mitigating the effects
of class imbalance and facilitating fairer model training across all
clients. The hyperparameters used across the different configurations
are summarized in Table 4.

Layer Type Details

Dense Layer 1 |Units: 128, Activation: ReLU, Input Shape:
(Ien(Features),)

Dense Layer 2 | Units: 64, Activation: ReLU

Dense Layer 3 |Units: 1, Activation: Sigmoid (for binary
classification)

Table 2. DNN architecture.

Layer Type Details

Conv1D Layer 1 Filters: 32, Kernel size: 3, Activation: ReLU

MaxPooling1D Layer 1 |Pool size: 2

Conv1D Layer 2 Filters: 64, Kernel size: 3, Activation: ReLU

MaxPooling1D Layer 2 | Pool size: 2

Flatten Layer Converts 1D feature maps into a vector.

Dense Layer 1 Units: 128, Activation: ReLU

Dense Layer 2 Units: 1, Activation: Sigmoid (for binary
classification)

Table 3. CNN architecture.

Parameter Description and Group

Evaluation Adam optimizer used for model evaluation across

Optimizer all configurations

Number of Rounds | 100 rounds of federated training used in all
setups

Training Optimizer |+ FedProx: SGD (Ir=0.1, clipvalue=1.0)
» FedSGD: Implicit optimizer, no learning rate

specified
« FedAvg: SGD (Ir=0.1)
Learning Rate 0.1 (FedProx and FedAvg); unspecified in
FedSGD
Gradient Clipping | Applied only in FedProx (clipvalue=1.0)
Proximal Term 0.001 (only for FedProx setup)
Coefficient
Model Loss BinaryCrossentropy used in all configurations
Function

Table 4. FL and DL hyperparameters.
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This non-IID configuration reflects realistic FL deployment scenar-
ios in heterogeneous IoT environments, where devices naturally
observe locally distinct data distributions. In our paper, the local
datasets assigned to each client were generated using a split-and-shuffle
strategy that maintained non-identical class proportions across devices,
thereby ensuring a non-IID data distribution throughout all experi-
ments (raw and balanced).

Each configuration (raw and balanced) was further analyzed under
two feature thresholds: 50%, where only half of the most relevant fea-
tures were selected; and 100%, where all original features were
retained without applying any FS, serving as a baseline for performance
comparison. Each local dataset i was assigned to its respective virtual
Device;.

» Step 3: Construct and evaluate the performance of 144 FL configura-
tions (2 datasets * 2 data setups * 2 feature thresholds = 2 DL base
learners * 3 number of devices * 3 federated aggregation methods). The
evaluation metrics included accuracy, recall, precision and AUC,
assessed over 100 training rounds. Additionally, the SK test and BC sys-
tem were employed to rank the FL configurations for each device count
and aggregation method.

» Step 4: Compare the performance of FedAVG, FedProx and FedSGD,
as well as evaluate the performance of DNN and CNN for each
dataset, data setup, feature threshold and device count. Finally, the opti-
mal FL configuration for cyber-detection within the NetFlow IoT
dataset framework was identified.

| 3.6 Abbreviation
To make it easier for readers and simplify model names, this paper
adopts specific naming conventions for models as follows:

DLBaseLearner_DataSetup&FeatureThreshold_AggregationMethod_
NumberOfDevices

The abbreviations for data setup techniques are as follows: B repre-
sents balanced data, and R represents raw data. The aggregation tech-
niques are abbreviated as AVG for FedAVG, PROX for FedProx and
SGD for FedSGD. For instance, the configuration DNN_RS50_SGD_5
denotes the use of DNN as a base learner, raw data as the data setup,
a 50% feature threshold and FedSGD as the aggregation method,
applied to five devices.

I 4. Results and Discussions

This section examines the results of applying the FL technique with
DNN and CNN architectures, evaluating three aggregation methods
(FedAVG, FedPROX and FedSGD), two data setups (raw and
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balanced), two feature thresholds (50% and 100%) and three device
configurations (5, 15 and 30). The analysis is conducted over 100
rounds using the NF-ToN-IoT-v2 and NF-BoT-lIoT-v2 datasets for
binary classification. The presentation and the discussion of the
results are structured to address the RQs of Section 1.

4.1 Evaluating and Comparing Aggregation Methods of Federated
I Deep Learning for Attack Detection (RQ1)

This subsection examines the impact of the three aggregation methods
(FedAVG, FedPROX and FedSGD) on the performance of different
FL configurations, focusing on identifying the aggregation method
that enhances the accuracy of FL-based IDS in IoT contexts. The anal-
ysis evaluates the average accuracy of models across different device
counts for each dataset, feature threshold and data setup over 100
rounds, as illustrated in Figures 4, 5 and 6. For instance, average accu-
racy values across device numbers are computed for each round.
In Figure 4(a), a balanced data setup using DNN and FedAVG for 5
and 15 devices is represented as DNN_B50_AVG_5 and
DNN_BS0_AVG_135, respectively. Similarly, in Figure 4(b), a raw
data setup using CNN and FedAVG for 5 and 15 devices is denoted
as CNN_R50_AVG_S5 and CNN_RS50_AVG_135, respectively.

Figure 4 illustrates the average accuracy values obtained using
FedAVG for NF-TON-IoT-v2 and NF-BoT-IoT-v2 across different
feature thresholds, feature setups, DL base learners and device num-
bers. We observe that:

= From Figure 4(a), which presents the FL. models generated using the NF-
ToN-IoT-V2 dataset with 50% of the features and a balanced data con-
figuration, the FL models showed progressive improvement up to
round 10, after which their performance stabilized, achieving an accu-
racy of 96%. However, the CNN_B50_AVG_5 model deviated from
this trend, stabilizing at an accuracy of 50%.

= From Figure 4(b), which presents the FL models generated using the
NF-ToN-1oT-V2 dataset with 50% of the features and a raw data con-
figuration, the FL models exhibited progressive improvement up to
round 20, after which their accuracy stabilized at 96%. However, two
models, CNN_RS50_AVG_5 and CNN_RS50_AVG_15, deviated from
this trend. The CNN_RS50_AVG_S5 model stabilized at an accuracy of
64%, while the CNN_RS50_AVG_15 model experienced a significant
drop in accuracy at round 835, ultimately stabilizing at 64%.

= From Figure 4(c), which presents the FL models generated using the NF-
ToN-IoT-V2 dataset with 100% of the features and a balanced data
configuration, all FL models showed progressive improvement up to
round 12, after which their performance stabilized, achieving an accu-
racy of 98%. However, the CNN_B100_AVG_5 model exhibited
notable drops in accuracy, with a decrease to approximately 63% in
round 9 and another decline to 50% in round 39.
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Figure 4. Average accuracy of FedAVG for NF-ToN-IoT-v2 with: (a) bal-
anced data setup and 50% of features; (b) raw data setup and 50% of fea-
tures; (c) balanced data setup and 100% of features; (d) raw data setup and
100% of features; and for NF-BoT-IoT-v2 with: (e) balanced data setup and
50% of features; (f) raw data setup and 50% of features; (g) balanced data
setup and 100% of features; and (h) raw data setup and 100% of features.
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From Figure 4(d), which presents the FL models generated using the
NF-ToN-1oT-V2 dataset with 100% of the features and a raw data con-
figuration, the FL models showed progressive improvement up to
round 5, after which their performance stabilized, achieving an accu-
racy of 98%. However, the CNN_R100_AVG_5 model deviated from
this trend, stabilizing at an accuracy of 64 %.

From Figure 4(e), which presents the FL. models generated using the NF-
BoT-IoT-V2 dataset with 50% of the features and a balanced data con-
figuration, the FL models exhibited steady improvement over the
rounds, stabilizing during the final 10 rounds. Accuracy ranged from
approximately 97% for the CNN_B50_AVG_30 model to 100% for
the DNN_B50_AVG_5 model.

From Figure 4(f), which presents the FL models generated using the
NF-BoT-IoT-V2 dataset with 50% of the features and a raw data con-
figuration, the FL models exhibited steady improvement over the
rounds, stabilizing during the final 10 rounds. Accuracy ranged from
approximately 99.75% for the CNN_RS50_AVG_30 model to 99.95%
for the CNN_RS50_AVG_S model.

From Figure 4(g), which presents the FL models generated using the NF-
BoT-IoT-V2 dataset with 100% of the features and a balanced data
configuration, the FL models exhibited steady improvement over the
rounds, stabilizing during the final 10 rounds. Accuracy ranged from
approximately 98% for the CNN_B100_AVG_30 model to 100% for
the CNN_B100_AVG_35 model.

From Figure 4(h), which presents the FL models generated using the
NF-BoT-IoT-V2 dataset with 100% of the features and a raw data con-
figuration, the FL models exhibited steady improvement over the
rounds, stabilizing during the final 20 rounds. Accuracy ranged from
approximately 99.83% for the CNN_R100_AVG_30 model to 99.92%
for the DNN_R100_AVG_5 model.

Under FedAVG, final accuracy for NF-ToN-IoT-V2 ranged from
approximately 50% to 98%, typically stabilizing within five to 20
rounds. For NF-BoT-IoT-V2, accuracy spanned about 97% to 100%,
reaching stability in five to 20 rounds. Some configurations achieved
perfect accuracy, while others dropped to 50% or 64%.

Figure 5 illustrates the average accuracy values obtained using
FedSGD for NF-TON-IoT-V2 and NF-BoT-1oT-V2 across different
feature thresholds, feature setups, DL base learners and device num-
bers. We observe that:

= From Figure 5(a), presenting the FL models generated using the NF-

ToN-IoT-V2 dataset with 50% of the features and a balanced data con-
figuration, the FL models showed progressive improvement up to
round 60, after which their performance stabilized. Accuracy ranged
from approximately 72% for the CNN_B50_ SGD_15 model to 76%
for the DNN_B50_SGD_30 model. However, the CNN_B50_ SGD_15
model exhibited notable drops in accuracy, with a decrease to approxi-
mately 50% in round 60.
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Figure 5. Average accuracy of FedSGD for NF-ToN-lIoT-v2 with: (a) bal-
anced data setup and 50% of features; (b) raw data setup and 50% of fea-
tures; (c) balanced data setup and 100% of features; (d) raw data setup and
100% of features; and for NF-BoT-lIoT-v2 with: (e) balanced data setup and
50% of features; (f) raw data setup and 50% of features; (g) balanced data
setup and 100% of features; and (h) raw data setup and 100% of features.
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From Figure 5(b), presenting the FL models generated using the NF-
ToN-IoT-V2 dataset with 50% of the features and a raw data configu-
ration, the FL models showed progressive improvement up to round
40, then a decrease up to around 60 revolutions, after which their per-
formance stabilized. Accuracy ranged from approximately 67.5% for
the CNN_RS50_SGD_5 model to 77% for the DNN_RS50_SGD_30
model.

From Figure 5(c), presenting the FL models generated using the NF-
ToN-IoT-V2 dataset with 100% of the features and a balanced data
configuration, the FL models showed progressive improvement up to
round 50, after which their performance stabilized. Accuracy ranged
from approximately 70% for the CNN_B100_SGD_30 model to 80%
for the DNN_B100_SGD_30 model. However, the CNN_B100_SGD_5
model exhibited significant oscillations between rounds 70 and 100.

From Figure 5(d), presenting the FL models generated using the NF-
ToN-IoT-V2 dataset with 100% of the features and a raw data configu-
ration, all FL models exhibited oscillations within 100 rounds, except
for the DNN_R100_SGD_15 model, which stabilized within 70
rounds, achieving a maximum accuracy of 76% and a minimum accu-
racy of 71%, which was achieved by CNN_R100_SGD_15.

From Figure 5(e), presenting the FL models generated using the NF-
BoT-IoT-V2 dataset with 50% of the features and a balanced data con-
figuration, the FL models showed progressive improvement up to
round 5, after which their performance stabilized. Accuracy ranged
from approximately 93% for the CNN_B50_SGD_5 model to 96% for
the DNN_B50_SGD_30 model.

From Figure 5(f), presenting the FL models generated using the NF-
BoT-IoT-V2 dataset with 50% of the features and a raw data configura-
tion, the FL models showed progressive improvement up to round 2,
after which their performance stabilized. Accuracy ranged from approx-
imately 99.5% for the CNN_RS50_ SGD_30 model to 99.8% for the
DNN_RS50_SGD_5 model.

From Figure 5(g), presenting the FL models generated using the NF-
BoT-IoT-V2 dataset with 100% of the features and a balanced data
configuration, the FL models showed progressive improvement up to
round 10, after which their performance stabilized. Accuracy ranged
from approximately 93% for the CNN_B100_ SGD_30 model to 95%
for the DNN_B100_SGD_30 model.

From Figure 5(h), presenting the FL models generated using the NF-
BoT-IoT-V2 dataset with 100% of the features and a raw data configu-
ration, the FL models showed progressive improvement up to round
80, after which their performance stabilized. Accuracy ranged from
approximately 99.7% for the CNN_R50_ SGD_30 model to 99.8% for
the DNN_R100_SGD_30 model.

FedSGD models exhibit consistent improvement followed by
performance stabilization under varying feature thresholds, data
configurations and device numbers. For NF-ToN-IoT-V2, balanced
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data configurations converge to accuracies between 70% and 80% at
rounds 50 to 60, with occasional drops or oscillations. Raw data
setups show a more volatile pattern but stabilize around 40 to 70
rounds, attaining 67.5% to 77% accuracy. In contrast, NF-BoT-IoT-
V2 reaches higher final accuracies—93% to 99.8%— and typically
stabilizes earlier.

Figure 6 illustrates the average accuracy values obtained using
FedPROX for NF-TON-IoT-V2 and NF-BoT-IoT-V2 across different
feature thresholds, feature setups, DL base learners and device num-
bers. We observe that:

» From Figure 6(a), presenting the FL models generated using the NF-
ToN-IoT-V2 dataset with 50% of the features and a balanced data con-
figuration, the FL models showed progressive improvement up to
round 20, after which their performance stabilized. Accuracy ranged
from approximately 95% for the DNN_B50_ PROX_15 model to 97%
for the DNN_BS50_PROX_5 model. However, the CNN_B50_PROX_5
and DNN_ B50_PROX_15 models exhibited significant oscillations
between rounds 50 and 100.

= From Figure 6(b), presenting the FL models generated using the NF-
ToN-IoT-V2 dataset with 50% of the features and a raw data configu-
ration, the FL. models showed progressive improvement up to round 3,
after which their performance stabilized, achieving an accuracy of
97%. However, the CNN_RS50_PROX_5 and DNN_R50_PROX_S
models deviated from this trend. The CNN_R50_PROX_5 model stabi-
lized at an accuracy of 72%, while the DNN_RS50_PROX_5 model
exhibited oscillations, ultimately achieving an accuracy of 65%.

= From Figure 6(c), presenting the FL models generated using the NF-
ToN-IoT-V2 dataset with 100% of the features and a balanced data
configuration, the FL models showed progressive improvement up to
round 5, after which their performance stabilized, achieving an accu-
racy of 97%.

= From Figure 6(d), presenting the FL models generated using the NF-
ToN-IoT-V2 dataset with 100% of the features and a raw data configu-
ration, the FL. models showed progressive improvement up to round 2,
after which their performance stabilized, achieving an accuracy of
97%. However, the DNN_R100_PROX_5 and CNN_R100_PROX_35
models deviated from this trend. The CNN_R100_PROX_5 model
stabilized at an accuracy of 62%, while the DNN_R100_PROX_5
model exhibited oscillations, ultimately achieving an accuracy of 63%.

= From Figure 6(e), presenting the FL models generated using the NF-
BoT-IoT-V2 dataset with 50% of the features and a balanced data con-
figuration, the FL models exhibited steady improvement over the
rounds, stabilizing during the final 10 rounds. Accuracy ranged from
approximately 96% for the CNN_B50_PROX_30 model to 100% for
the CNN_BS50_PROX_5 model. However, the DNN_B50_PROX_5
model exhibited significant oscillations between rounds 75 and 100.
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Figure 6. Average accuracy of FedPROX for NF-ToN-lIoT-v2 with: (a) bal-
anced data setup and 50% of features; (b) raw data setup and 50% of fea-
tures; (c) balanced data setup and 100% of features; (d) raw data setup and
100% of features; and for NF-BoT-lIoT-v2 with: (e) balanced data setup and
50% of features; (f) raw data setup and 50% of features; (g) balanced data
setup and 100% of features; and (h) raw data setup and 100% of features.
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» From Figure 6(f), presenting the FL models generated using the
NF-BoT-IoT-V2 dataset with 50% of the features and a raw data
configuration, the FL models exhibited steady improvement over the
rounds, stabilizing during the final 20 rounds. Accuracy ranged from
approximately 99.75% for the CNN_RS50_PROX_30 model to
99.96% for the CNN_RS50_PROX_5 model.

= From Figure 6(g), presenting the FL models generated using the NF-
BoT-IoT-V2 dataset with 100% of the features and a balanced data
configuration, the FL models exhibited steady improvement over the
rounds, stabilizing during the final 30 rounds. Accuracy ranged from
approximately 98% for the CNN_B100_PROX_30 model to 100% for
the CNN_B100_PROX_5 model.

= From Figure 6(h), presenting the FL models generated using the NF-
BoT-IoT-V2 dataset with 100% of the features and a raw data configu-
ration, the FL models showed progressive improvement up to round
50, after which their performance stabilized. Accuracy ranged from
approximately 99.85% for the CNN_R100_PROX_30 model to
99.95% for the CNN_R100_PROX_5 model.

Under FedPROX, FL models generally converge to high accuracy
for both NF-ToN-I0T-V2 and NF-BoT-IoT-V2, though some configu-
rations exhibit performance drops or oscillations. For NF-ToN-IoT-
V2, balanced data setups typically stabilize around 95% to 97%
accuracy, while certain raw configurations fall to 62% to 72%. In
contrast, NF-BoT-IoT-V2 models frequently exceed 96%, with multi-
ple cases reaching 100%.

Overall, FedAVG and FedPROX tend to achieve higher final accu-
racies and faster stabilization than FedSGD, especially on NF-BoT-
[0T-V2, where multiple configurations consistently reach or approach
100%. However, FedAVG occasionally experiences sharp accuracy
drops on NF-ToN-IoT-V2, while FedPROX shows more consistent
but still imperfect stability in a few raw-data cases. FedSGD generally
converges to lower or more volatile accuracy on NF-ToN-IoT-V2,
although it remains competitive on NF-BoT-IoT-V2. Hence, for
robust performance across both datasets, FedPROX offers a slight
edge overall, with FedAVG performing comparably or better in cer-
tain NF-BoT-IoT-V2 scenarios.

4.2 Evaluating Optimal Federated Learning Configurations for
I Attack Detection across Devices (RQ2)

In this subsection, we compare different FL configurations by mixing
aggregation methods, data setups, DL base learners and numbers of
devices for each dataset and feature threshold. We used the SK test,
focusing on accuracy, to group models and pinpoint the most effec-
tive SK clusters, as illustrated in Figures 7 and 8. Additionally, we use
the BC method to prioritize models within the top SK clusters, based
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on metrics such as accuracy, AUC, recall and precision, as shown in
Tables 5 and 6. The SK test results are displayed on a graph where
the x axis categorizes FL classifier variants by cluster, arranging the
best clusters from left to right, and the y axis shows accuracy scores.
Each vertical line’s central dot represents the mean accuracy, while
the line itself illustrates the accuracy outcomes over 100 rounds for a
given FL classifier. The analysis involves calculating the average accu-
racy of each round i across devices, denoted as Average;, using equa-
tion (6). For example, Figure 7(a) presents the SK test results of 36 FL
configurations using 50% of the features of the NF-ToN-lIoT-v2
dataset. In this context, DNN_RS0_AVG_S represents the accuracy
averages of DNN_RS0_AVG (a DNN model with a raw data setup,
50% of features and FedAVG) applied to five devices over 100
rounds (Average,, ..., Average,.):

YiBeviees Accuracy;

(6)

Average; = -
HDevices

For the NF-ToN-IoT-v2 dataset:

» Figure 7(a) presents the SK results for 50% of the features, identifying
11 clusters: (1) The first cluster contains 15 FL models, including
10 DNN models and 5 CNN models. Among the DNN models, five
use raw data (DNN_RS50_PROX_30, DNN_R50_PROX_135,
DNN_RS50_AVG_30, DNN_RS50_AVG_15 and DNN_RS50_AVG_5),
and five use a balanced data setup with the same configurations as the
raw data models. For the CNN models, two use raw data with
FedPROX (CNN_RS50_PROX_15 and CNN_RS50_PROX_30), two use
a balanced data setup with the same configurations as the raw data
models, and one additional model is CNN_BS50_AVG_30; (2) the
second cluster includes two models, CNN_B50_PROX_5 and
DNN_B50_PROX_5; (3) the third cluster includes two CNN models
using FedAVG and raw data (CNN_RS0_AVG_30 and
CNN_RS50_AVG_15); (4) the fourth cluster contains two DNN
models (DNN_RS50_SGD_30 and DNN_R50_SGD_15) and one CNN
model (CNN_B50_SGD_30); (5) the fifth cluster includes two
DNN models using balanced data and FedSGD (DNN_B50_SGD_5
and DNN_B50_SGD_30); (6) the sixth cluster includes two DNN mod-
els (DNN_RS50_SGD_5 and DNN_B50_SGD_15) and one CNN model
(CNN_RS50_SGD_15); (7) the seventh cluster contains three CNN
models (CNN_R50_SGD_30, CNN_R50_PROX_5 and CNN_B50_S-
GD_5); (8) the eighth cluster contains a single model, CNN_B50_S-
GD_15; (9) the ninth cluster contains two models, CNN_R50_SGD_5
and DNN_RS50_PROX_5; (10) the tenth cluster contains a single
model, CNN_R50_AVG_S5; and (11) the final cluster, includes two
CNN models using SGD with device counts of § and 15.
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Figure 7. SK test results for FL configurations using NF-ToN-IoT-v2 with:

of features.

100%

)

of features; and (b

(a) 50%

= Figure 7(b) presents the SK results for 100% of the features, identifying

seven clusters: (1) The first cluster contains 21 FL models, comprising
11 DNN models and 10 CNN models. The DNN models include all

configurations using both data setups (raw and balanced), two aggrega-
tion methods (FedAVG and FedPROX) and three device counts (5, 15

and 30), except for DNN_R100_PROX_5, which is not included.
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Similarly, the CNN models follow the same configurations as the DNN
models, except that CNN_R100_AVG_S5 is absent; (2) the second clus-
ter includes three DNN models configured with balanced data, FedSGD
and the three device counts (5, 15 and 30); (3) the third cluster contains
two DNN models (DNN_R100_SGD_5 and DNN_R100_SGD_15)
and one CNN model (CNN_B100_SGD_5); (4) the fourth cluster
includes two models, CNN_B100_SGD_30 and DNN_R100_SGD_30;
(5) the fifth cluster consists of four CNN models using FedSGD:
CNN_B100_SGD_5, CNN_R100_SGD_15, CNN_R100_SGD_30 and
CNN_B100_SGD_15; (6) the sixth cluster contains two models,
DNN_R100_PROX_5 and CNN_R100_AVG_5; and (7) the final clus-
ter includes a single model, CNN_R100_PROX_S.

For the NF-BoT-IoT-v2 dataset:

» Figure 8(a) displays the SK results for 50% of the features, revealing

the presence of eight clusters. The first cluster consists of all classifiers
based on the raw data setup (18 models), combining various DL base
learners, federated aggregation methods and numbers of devices.
Models using balanced data setups are distributed as follows: (1) the
second cluster includes four models (two DNN and two CNN) using
FedPROX and FedAVG with five devices; (2) the third cluster contains
two DNN models using FedPROX and FedAVG with five devices; (3)
the fourth cluster comprises two DNN models (DNN_B50_AVG_30
and DNN_RS50_PRX_30) and two CNN models (CNN_B50_AVG_15
and CNN_R50_PRX_15); (4) the fifth cluster includes two CNN
models, one using FedAVG with 30 devices and the other combining
FedAVG and FedPROX; (5) the sixth cluster contains a single model,
DNN_R50_SGD_30; (6) the seventh cluster consists of two DNN
models using SGD with five and 15 devices; and (7) the final cluster
comprises three CNN models using SGD with device counts of 5, 15
and 30.

Figure 8(b) presents the SK results for 100% of the features, identifying
nine distinct clusters. The first cluster includes all classifiers based on
the raw data setup (18 models), incorporating various DL base learn-
ers, federated aggregation methods and device counts. The models
using balanced data setups are distributed as follows: (1) the second
cluster includes two CNN models using five devices with FedAVG and
FedPROX; (2) the third cluster includes two DNN models using five
devices with FedAVG and FedPROX; (3) the fourth cluster includes
two DNN models using 15 devices with FedAVG and FedPROX;
(4) the fifth cluster comprises two DNN models (DNN_B100_AVG_30
and DNN_B100_PROX_30) and two CNN models
(CNN_B100_AVG_15 and CNN_B100_PROX_15); (5) the sixth clus-
ter includes two CNN models using 30 devices with FedAVG and
FedPROX; (6) the seventh cluster includes two DNN models employing
the FedSGD aggregation method with five and 30 devices; (7) the
eighth cluster contains a single model, DNN_B100_SGD_15; and
(8) the final cluster comprises three CNN models using FedSGD with
device counts of 5, 15 and 30.
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Figure 8. SK test results for FL configurations using NF-BoT-IoT-v2 with:

(b) 100% of features.

of features; and

%

(a) 50

In summary, for the NF-ToN-IoT-v2 dataset, the most effective

and
FedPROX, using both raw and balanced data setups. CNN models

combining DNN with FedAVG

involve

configurations

paired with FedAVG and FedPROX also demonstrated robust perfor-

mance. For the NF-BoT-IoT-v2 dataset, the raw data setup showed

optimal results when combined with various FL aggregation methods,
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including FedAVG, FedPROX and FedSGD. These findings indicate
that combining a raw data setup with FedPROX or FedAVG and
DNN architecture is generally the most effective approach for IoT
security tasks. However, specific scenarios within the NF-BoT-IoT-v2
dataset may favor CNN architecture and benefit from balanced data
setups.

The best model from the first SK cluster was identified using the
BC system for each feature threshold, based on accuracy, AUC, recall
and precision. The results are detailed in Tables 5 and 6 for
NF-ToN-IoT-v2 and NF-BoT-IoT-v2, respectively. Furthermore, the
comparison of top-performing models across different feature thresh-
olds (17 and 35 features) shows that their performance is relatively
consistent over both the NF-ToN-IoT-v2 and NF-BoT-IoT-v2
datasets, as detailed in Tables 5 and 6. Specifically, the best model:
(1) for NF-ToN-IoT-v2 is DNN_RS50_PROX_30, achieving an
accuracy of 97.80%, an AUC of 0.9970, a recall of 98.86% and a
precision of 97.72% using only 17 features; and (2) for NF-BoT-IoT-
v2 is CNN_RS50_PROX_S5, with an accuracy of 99.87%, an AUC of
0. 9892, a recall of 99.99% and a precision of 99.88% using 17
features.

# of Features | Model Accuracy | AUC | Recall |Precision |BC

17 DNN_R50_PROX_30 97.80% |0.9970 |98.86% | 97.72% | 54

CNN_RS50_PROX_15 97.65% 0.9901 |98.96% | 97.58% |46

CNN_RS50_PROX_30 97.57% 0.9893 |98.48% | 97.71% |41

DNN_RS0_AVG_15 97.57% 0.9861 |98.86% | 97.39% |38

CNN_B50_PROX_15 97.53% |0.9948 |98.14% | 96.97% | 34

DNN_RS50_PROX_15 97.19% |0.9921 |97.63% | 97.98% |32

DNN_RS50_AVG_30 97.51% |0.9858 |98.84% | 97.32% |31

DNN_B50_PROX_30 97.26% |0.9956 |97.43% | 97.12% |27

DNN_B50_PROX_15§ 97.27% |0.9939 |97.37% | 97.18% |26

CNN_B50_PROX_30 97.44% 0.9894 |98.01% | 96.92% |24

DNN_B5S0_AVG_30 97.17% |0.9860 |98.13% | 96.28% |18

DNN_BS0_AVG_15 97.15% |0.9858 |98.18% | 96.23% |16

DNN_BS0_AVG_5 97.16% |0.9852 |98.15% | 96.26% |15
DNN_RS50_AVG_S 96.49% |0.9787 [96.90% | 97.68% |11
CNN_B50_AVG_30 96.94% |0.9839 98.01% | 96.03% | 7
35 CNN_R100_PROX_15 | 98.45% [0.9988 |98.97% | 98.60% |78

CNN_R100_PROX_30 | 98.39% [0.9986 |99.02% | 98.48% |76

CNN_B100_PROX_15 | 98.32% [0.9987 |98.28% | 98.36% |66

CNN_B100_PROX_30 | 98.26% [0.9986 |98.23% | 98.28% |59

DNN_R100_PROX_30 | 98.08% |0.9982 [99.00% | 98.03% |59

CNN_B100_AVG_15 98.27% 10.9985 |98.19% | 98.35% |57

CNN_B100_AVG_30 98.22% 10.9985 |98.18% | 98.26% |51

DNN_R100_PROX_15 | 97.98% |0.9970 [98.91% | 98.07% |46
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# of Features | Model Accuracy | AUC | Recall |Precision |BC
35 CNN_R100_AVG_15 97.92% 10.9973 |98.80% | 97.97% |42
DNN_B100_AVG_30 98.05% [0.9981 |98.10% | 98.00% |39
DNN_R100_AVG_S 97.78% 10.9971 |98.79% | 97.99% |38
DNN_B100_PROX_30 | 97.83% [0.9982 |98.12% | 97.76% |35
DNN_B100_PROX_15 | 97.83% |0.9976 |98.22% | 97.78% |35
DNN_B100_AVG_S5 97.73% (0.9977 |98.23% | 97.57% |31
CNN_R100_AVG_30 97.59% 10.9959 |98.62% | 97.62% |25
DNN_R100_AVG_30 97.39% [0.9962 |98.94% | 97.40% |25
CNN_B100_AVG_S 97.52% 10.9906 |96.59% | 98.20% |18
CNN_B100_PROX_S 97.68% [0.9959 198.09% | 97.65% |17
DNN_B100_AVG_15 97.40% |0.9974 |98.10% | 97.26% |16
DNN_R100_AVG_1S§ 96.97% |0.9899 198.94% | 96.99% |16
DNN_B100_PROX_S 97.61% [0.9955 |97.92% | 97.44% |11

Table 5. BC ranking of FL variants within the best SK
threshold over NF-ToN-IoT-v2.

cluster for each feature

# of Features | Model Accuracy | AUC Recall |Precision |BC
17 CNN_RS50_PROX_S 99.87% 10.9892 | 99.99% | 99.88% |60
CNN_RS0_AVG_S 99.87% 10.9901 | 99.99% | 99.88% |57
DNN_RS50_PROX_S 99.86% |0.9934 | 99.99% | 99.87% |50
DNN_RS50_AVG_S 99.86% [0.9894 | 99.99% | 99.87% |48
CNN_R50_PROX_15 99.81% [0.9744 | 99.99% | 99.81% |48
DNN_RS50_PROX_15 99.80% |0.9874 | 99.99% | 99.81% |47
DNN_RS0_AVG_15 99.80% [0.9880 | 99.99% | 99.81% |42
DNN_RS50_PROX_30 99.79% (0.9836 | 99.99% | 99.80% |41
DNN_RS50_AVG_30 99.78% 0.9570 | 99.99% | 99.78% |37
CNN_RSO0_AVG_15 99.78% |0.9770 | 99.99% | 99.79% |36
CNN_RS50_SGD_15 99.59% 10.2579 |100.00% | 99.59% |25
CNN_RS50_PROX_30 99.76% |0.9573 | 99.98% | 99.77% |22
CNN_RS0_AVG_30 99.76% |0.9506 | 99.98% | 99.77% |21
DNN_RS50_SGD_15 99.58% |0.4102 {100.00% | 99.58% |21
CNN_RS50_SGD_S 99.59% 0.2083 |100.00% | 99.59% |20
DNN_RS50_SGD_30 99.62% |0.6877 | 99.99% | 99.63% |17
DNN_RS50_SGD_S 99.59% |0.7425 | 99.94% | 99.64% |12
CNN_RS50_SGD_30 99.57% 0.2178 | 99.99% | 99.58% | 8
35 DNN_R100_AVG_S 99.89% 10.9957 | 99.99% | 99.90% |59
DNN_R100_PROX_S 99.89% 10.9950 | 99.99% | 99.90% |58
DNN_R100_PROX_15 | 99.86% |0.9894 | 99.99% | 99.87% |52
DNN_R100_AVG_15 99.85% |0.9857 | 99.99% | 99.86% |47
CNN_R100_PROX_S5 99.87% |0.9780 | 99.99% | 99.89% |43
CNN_R100_AVG_S 99.87% 10.9808 | 99.99% | 99.88% |41
DNN_R100_PROX_30 | 99.85% |0.9823 | 99.99% | 99.86% |40

Table 6. (continues).
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# of Features | Model Accuracy | AUC Recall |Precision |BC

35 DNN_R100_AVG_30 99.85% |0.9789 | 99.99% | 99.86% |35

CNN_R100_AVG_15 99.85% |0.9687 | 99.99% | 99.86% |34

CNN_R100_PROX_15 | 99.84% |0.9674 | 99.99% | 99.86% |30

DNN_R100_SGD_15 99.75% 0.9206 |100.00% | 99.75% |27

DNN_R100_SGD_30 99.71% |0.8199 |100.00% | 99.71% |25

CNN_R100_AVG_30 99.83% |0.9537 | 99.99% | 99.85% |23

CNN_R100_SGD_15 99.69% |0.6649 |100.00% | 99.69% |22

DNN_R100_SGD_5 99.69% |0.8171 |100.00% | 99.69% |22

CNN_R100_PROX_30 | 99.83% |0.9444 | 99.99% | 99.84% |18

CNN_R100_SGD_5 99.68% |0.5103 |100.00% | 99.68% |18

CNN_R100_SGD_30 99.67% |0.6192 |100.00% | 99.68% |18

Table 6. BC ranking of FL variants within the best SK cluster for each feature
threshold over NF-BoT-IoT-v2.

4.3 Optimal Deep Learning Base Learners for Federated Learning
I Models in loT Intrusion Detection (RQ3)

This subsection evaluates the impact of DNN and CNN base learners
on the performance of FL methods to identify the most effective
learner for enhancing classification accuracy in an FL setup. The anal-
ysis considers each dataset, data configuration, feature threshold,
aggregation method and device count. The SK test, based on accuracy
as shown in Figures 7 and 8, was employed to compare the perfor-
mance of different models. Additionally, the BC method was used to
rank the FL models within the top SK clusters based on accuracy,
AUC, recall and precision metrics. Tables 5 and 6 present the rank-
ings of the FL models within the best SK clusters for the NF-ToN-IoT-
v2 and NF-BoT-IoT-v2 datasets, respectively. To identify the overall
top-performing DL base learner, independent of the dataset and fea-
ture thresholds, the occurrences of each learner in the best SK clusters
and their BC ranks were tallied, as shown in Table 7.

DL Base |Occurrences in the | Median Ranking in the
Learner |Best Cluster Best Cluster

DNN 39 9

CNN 33 10

Table 7. BC ranking and occurrences in the best cluster for DL base learners.

As shown in Table 7, the results indicate that DNN is the top-
performing DL base learner for cyber detection in the FL context.
DNN appears in the best cluster 39 times, compared to CNN, which
appears 33 times. Additionally, DNN achieves a better median rank
of 9 in the best cluster, compared to CNN’s median rank of 10. These
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findings demonstrate that DNN-based techniques significantly
enhance anomaly detection in the FL context within IoT envi-
ronments.

|l 4.4 Results Comparison with State-of-the-Art Methods

In this subsection, we contrast our experimental outcomes with those
from earlier research. Table 8 shows the performance of the best data
setups, aggregation methods and device counts from our study, along-
side results from previous studies, focusing on key performance met-
rics. Table 8 acts as a reference for assessing the progress and success
of our method. This comparison aims to provide a clear and impartial
evaluation of our approach’s effectiveness in the field of FL-IDS.

Table 8 succinctly juxtaposes the performance metrics of our inves-
tigation with the antecedent studies. This comparative analysis under-
scores a pivotal advancement: Our methodology exhibits superior
performance across critical dimensions, including accuracy, AUC,
recall and precision, thereby substantiating its efficacy as a formidable
FL-IDS framework. The empirical evidence presented in Table 8
attests to the methodological enhancements facilitated by our
approach, thereby augmenting the efficacy and adaptability of FL-IDS
paradigms.

#of

Publication Dataset Technique | Features | Accuracy | AUC | Precision
Our study NF-ToN-IoT-v2 |DNN 17 97.80% 10.9970 |98.86%

NF-BoT-IoT-v2 |CNN 99.87% 10.9892 199.99%
Chen et al. [24] |NF-ToN-IoT-v2 |F-NIDS 96.20% - 88.50%
Sarhan et al. [31] | NF-BoT-IoT-v2 |F-DNN 43 93.08% 10.9560 |-
Sarhan et al. [32] | NF-BoT-loT-v2 |HBFL 99.46% - 96.86%
Yu [33] NF-ToN-IoT-v2 |FedAVG 92.78% 10.9170 |92.76%

Table 8. Performance results comparison with previous studies.

I 5. Limitations and Validity

To ensure the reliability of this study, it is important to clearly define
the scope and limitations of the conclusions. Certain classification
tasks were not conducted due to the large size of some datasets and
the significant time required for exhaustive model parameter tuning.
Additionally, the base learners used in this paper were designed with-
out detailed hyperparameter optimization. Adjusting these hyperpa-
rameters could influence the performance of FL models and may lead
to improved outcomes in IDS-based FL applications.

This paper also relied on a simulated FL environment using TFF to
emulate the behavior of ToT devices. While this approach provides
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flexibility and scalability during experimentation, future work should
aim to deploy these models on real IoT hardware using lightweight
frameworks such as TinyML. Furthermore, evaluating FL perfor-
mance over resource-constrained wireless communication protocols
like LoORaWAN would provide more realistic insights into the practi-
cal deployment challenges of FL in IoT networks.

The findings presented here offer valuable insights for advancing
future research on FL, especially in designing more practical and effi-
cient FL models for cybersecurity in IoT and related domains.

I 6. Conclusion and Future Work

The study evaluated and compared 144 federated learning (FL) config-
urations for binary classification of network intrusions, using dense
neural networks (DNNs) and convolutional neural networks (CNNs)
as base learning models. The configurations incorporated three aggre-
gation methods (FedAVG, FedPROX and FedSGD), three device
scenarios (5, 15 and 30 devices), two feature thresholds derived from
ANOVA and Chi2 as FS techniques, and two data setups (raw and
balanced). The analysis was conducted on two NetFlow IoT datasets,
NF-ToN-IoT-v2 and NF-BoT-lIoT-v2. Evaluation metrics included
accuracy, AUC, recall and precision, complemented by the SK statis-
tical test and the BC ranking system. The key findings of this research
are summarized as follows: (1) FedAVG and FedPROX consistently
demonstrated superior final accuracy and faster convergence com-
pared to FedSGD; (2) DNN architecture with FedPROX or FedAVG
was typically the most effective approach for IoT security; and
(3) DNN was identified as the most effective deep learning (DL) base
learner for cyber detection in the FL context, consistently outperform-
ing CNN in best cluster appearances and median ranking. These
results highlighted the importance of using FL to develop a decentral-
ized IDS tailored for Internet of Things (IoT) networks to detect
attacks.

We intend future work to expand empirical evaluations to further
validate or challenge these findings. This may involve testing with
diverse datasets to assess the robustness and adaptability of FL-based
intrusion detection systems (IDS) across various IoT environments.
Additionally, exploring alternative models within FL frameworks
could offer valuable insights for optimizing performance and effi-
ciency. Further research could also focus on deploying these models
on embedded devices using TinyML and FL methodologies.
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