
The Mathematica®  Journal

Exploring Board Game 
Strategies
A Recreational Application of GUIKit 

Yves Papegay
The  programming  paradigms  available  in  Mathematica  together  with  the
level  of  generality  that  can  be  obtained  through  its  symbolic  capabilities
can be applied to a wide range of programming situations,  particularly the
rapid  prototyping  of  applications.  This  article  shows  our  use  of  this  out-
standing  computational  environment  to  develop  playable  prototypes  of
board  games  and  explore  game  strategies.  Mathematica  features  allow
some  general  ad  hoc  design  patterns  for  such  games  to  be  expressed,
applied,  and  further  refined.  We  show  the  benefits  of  such  an
approach—lots of code reuse, clearer design and programming, and ease of
experimentation—by  exhibiting  our  work  on  three  different  board  games.
We further show how the statistical and mathematical techniques available
with Mathematica can be used to generate reports on the playability of a par-
ticular  game  as  well  as  to  develop  winning  strategies.  We  also  show  how
J/Link and GUIKit can help refine and improve the interface of a game.

‡ Introduction
Chess,  backgammon,  Abalone,  Go,  Tic-Tac-Toe,  Mine  Sweeper,  Tetris,  and
many  others  are  well-known  examples  in  the  large  collection  of  so-called  board
games  [1].  Board  games  provide  many  interesting  topics  of  study  for  several
academic  disciplines,  which  have  their  own  scientific  societies  and  journals  [2].
Board  games  are  also  very  popular  among freeware  and  shareware  users.  There
are many ways to play against a machine, running the code online as an applet or
servlet, or on a personal computer, a PDA, or even a mobile phone.

Developing a computerized version of a board game is an exciting challenge and
a very good exercise for computer science students. From the theoretical point of
view,  the  implementation  of  the  evolution  of  a  game  usually  involves  a  wide
range of classical algorithms as well as implementation of the strategies played by
the computer. It is also important to keep in mind that the fun derived from play-
ing a game often critically relies on a nicely designed and efficient user interface. 

Incorporating  different  kinds  of  programming  paradigms,  Mathematica  [3]
embeds  a  highly  flexible  and  intuitive  language  for  prototyping  applications.

The Mathematica  Journal 10:2 © 2006 Wolfram Media, Inc.

This article has not been updated for Mathematica 8.



Using a computational environment such as a development platform allows for a
generic  and  high-level  representation  of  the  board  and  its  evolution.  It  also
makes development and testing of board game strategies easier.

The  notebook  environment  is  powerful  enough  to  set  up the  interface  between
the  game and the  player  and offers  a  good  visualization of  the  board.  However,
even  with  careful  and  sophisticated  development  the  graphics  are  not  fancy
enough  to  be  addictive  to  players.  Fortunately,  with  the  help  of  Java  toolkits,
namely  J/Link  and  GUIKit,  the  functionalities  of  Abstract  Window  Toolkit
(AWT)  and  Swing  [4]  are  within  reach  and  permit  the  dream  of  an  interface
being developed with only a small effort. 

In  the  first  part  of  this  article,  we  describe  a  generic  design  pattern  for  the
implementation of board games. Actually such a game is uniquely and completely
defined by a  quite  small  set of information  concerning  the representation  of the
board,  the  playing  rules,  the  initialization  phase,  and  the  termination  phase.
From this set of information and with the help of the generic design pattern, we
can quickly develop a playable and smart implementation of the game.

Examples of such developments are given in the second part of the article where
we describe in detail the full playable implementation of

1. HMaki—a Japanese puzzle game (a.k.a. Same Gnome by Linux users)

2. a classical lines game

3. Mancala—a well-known African game (a.k.a. Awale) 

For  each of  these  examples,  we also  provide a  tutorial  approach  to  the develop-
ment  of  a  fancy  graphical  user  interface  using  Java  technology  with  the  help  of
J/Link and GUIKit. 

The last part of the article is devoted to the exploration of strategies. One benefit
of developing our own implementation of a board game with Mathematica  is that
it  yields  perfect  control  over  the  different  steps  of  each  game,  the  ability  to
unplay or to replay some or all of those steps, to add or remove randomness, and
to add or remove interactivity during the game. Mathematica  also makes it easier
to  implement  and  apply  strategies  and  perform,  on  a  large  set  of  examples,
statistical analysis on the resulting games.

‡ A Design Pattern for Board Games
“So, in a broad sense, a board game is any that can be played on a flat
surface such as a table or floor.” David Parlett, Oxford History of Board
Games

As quoted,  the most important point when designing a board game implementa-
tion  is  to  have  a  proper  idea  of  the  board  itself,  which  represents  the  complete
status of the game at each play and the rules that determine whether or not a play
is legal. 

364 Yves Papegay

The Mathematica  Journal 10:2 © 2006 Wolfram  Media, Inc.



In  our  design,  we  should  keep  in  mind  that  we  want  the  computer  to  analyze
several games, to replay some of them, and to test some strategies.

· Some Semantics
Before  going  further,  let  us  explain  in  detail  what  is  exactly  meant  by  game,
board, play, and rules.

Game
The  game  denotes  a  complete  set  of  interactions  between  the  program—or  the
physical  support  of  the  game,  whatever  it  is—and  the  player.  Hence,  it  is  a
succession of three phases:

Ë an initialization phase when the game starts or restarts

Ë a playing phase (i.e., when the user is playing). This is the most common
behavior of the game and consists in a sequence of successive plays.

Ë a termination phase at the end of the game

Figure 1. Windows’ famous Minesweeper board.

In  the  case  of  the  well-known  Minesweeper  game  (Figure  1),  the  initialization
phase  locates  the  mines  on  the  board  and  hides  all  the  locations;  the  playing
phase consists, for the player, of de-mining by selecting one location at each play
and  getting  back  the  information  on  the  adjacent  locations.  The  termination
phase  is  what  happens  when  a  mine  explodes  or  when  the  player  discovers  the
last mine.

Board
The board represents not only the physical board but, by extension, the complete
status  of  the game at a  given  time.  By  definition,  in a  board  game,  this  status  is
well  defined  by  a  mapping  between  a  two-dimensional  set  of  locations  and
additional information (usually qualitative or discrete) for each location.

Exploring Board Game Strategies 365

The Mathematica  Journal 10:2 © 2006 Wolfram Media, Inc.



Figure 2. A chess board.

In the case of chess  (Figure 2),  the physical  board is  simply made of 64 squares,
given by their line and column references.  We also consider as part of the board
the  information,  for  each  square,  of  the  color  and  kind  of  piece  (if  any)
occupying it.

Play
By definition, a play is one step of the playing phase. At each play, the player has
to  select  which  action,  among the  legal  (valid)  ones,  to  perform.  In  most  of  the
games, such an action is completely defined just by selecting one or two locations
on the board. In other games it may involve some random process represented by
additional  parameters,  such as  the result  of  dice  throws  in a  backgammon game
(Figure 3).

Figure 3. A backgammon board.

The  information  contained  on  the  board  and  given  by  the  player  should  be
sufficient to decide whether the selected play is valid with respect to the rules of
the game.

To  execute  the  play,  the  computer  has  to  ensure  that  the  play is  valid  and then
modify the status of the game.

366 Yves Papegay

The Mathematica  Journal 10:2 © 2006 Wolfram  Media, Inc.



If the computer is also supposed to act as a player, it must then analyze the game,
select  which  action  is  the  better  one,  and  play  it.  Its  doing  so  is  another  play,
however!

Rules
The rules  are  the set  of constraints  that  determine what  can be played and how
the status of the game should be modified by a play.

Figure 4. An Othello board before black’s play.

In  Othello  (Figure  4),  the  rules  state  that  to  put  a  black  piece  somewhere  it
should enclose white pieces. The rules could consist of:

Ë A new piece should be contiguous to a piece of the other color.

Ë There must exist a segment  (horizontal, vertical,  or diagonal)  starting at
the new piece and ending at a piece with the same color containing only
pieces of the other color.

So,  if  we  denote  the  rows  from  top  to  bottom  by  A,  B,  C,  …  and  the  columns
from left to right by 1, 2, 3, … , black can only play at B2, C1, C6, D1, D2, D6,
D7, and E7.

The rules should also  state that  enclosed  pieces will  change color  after the play.
For example,  if black is  played on D6, then the white pieces in D5, E5, E6, and
F4 will be turned to black.

· Designing the Board
What differs  from one game to another concerning the board is  its size, in rows
and  columns,  and  the  possible  values  ( patterns)  for  each  of  the  locations  of  the
board.

For  simplicity  and  readability  of  the  code  in  this  article,  we  decided  to  make
extensive  use  of  global  variables,  rather  than  providing  a  lot  of  arguments  to
functions.  In  a  less  experimental  implementation,  we  would  have  used  packages
and  contexts  to  avoid  occasional  shadowing  of  symbols.  Here,  we  use  three

Exploring Board Game Strategies 367

The Mathematica  Journal 10:2 © 2006 Wolfram Media, Inc.



variables  (Width,  Height,  and  Patterns)  to  describe  the  configuration  of  the
board  and  an  additional  one  (Board)  to  store  the  board  itself.  To  give  a  better
picture, we use a chess game, as an example. 

Off�General::"spell"�
Off�General::"spell1"�
NBOptions � �WindowFrame � "Palette", WindowElements � ��,

WindowFrameElements � "CloseBox", WindowClickSelect � False,
Active � True, CellOpen � True, ShowCellBracket � False,
Selectable � False, ShowCellLabel � False, ShowCellTags � True�;

Width � 8;
Height � 8;
Patterns � Prepend�

Flatten�Outer�List, �"B", "W"�, �"R", "Kn", "B", "Q", "Kg", "P"��, 1�,
"empty"�

�empty, �B, R�, �B, Kn�, �B, B�, �B, Q�, �B, Kg�,
�B, P�, �W, R�, �W, Kn�, �W, B�, �W, Q�, �W, Kg�, �W, P��

In most  of the cases,  the board can just  be  described  by a list  of lists of integers
and  the  definition  of  a  mapping  between  integers  and  patterns—giving  the
patterns  as  a  sorted  list  is  sufficient  for that.  The computation time of  the algo-
rithms involved  in validating  plays and modifying  the board is  usually negligible
due  to  its  size,  and  it  is  not  necessary  to  further  optimize  the  representation  of
the board.

Initialization
The  board  is  computed  for  the  first  time  during  the  initialization  phase  by  the
generic NewGame function. 

When  no  randomness  is  involved  in  the  game  (e.g.,  in  chess  or  Othello),  a
configuration  flag,  NeedRandomness,  is  set  to  False,  and  the  NewGame  function
only initializes the board and possibly performs an initial play.

NewGame�� �; Not�NeedRandomness� :� �Board � InitBoard��; InitPlay��;�

When  some  randomness  is  necessary,  we will  provide  a  seed  as  an argument  to
control the randomness  and to be able to replay the same game. In this case, the
seed  of  the  pseudorandom  generator  is  stored  in  a  variable  (Seed)  to  allow
replaying  the  same  game—when  it  is  possible.  Without  an  argument,  the  last
value of Seed is used as a seed.

NewGame�s_: Seed� :�
�Seed � s; SeedRandom�s�; Board � InitBoard��; InitPlay��;�

With  the  string  "new"  as  the  argument,  a  randomly  generated  seed  is  used  and
then stored.

NewGame�"new"� :� �SeedRandom��; Seed � Random�Integer, 31991�;
SeedRandom�Seed�; Board � InitBoard��; InitPlay��;�

This ability to replay a game is a valuable feature to players who want to exercise
their skills and improve their strategies.

368 Yves Papegay

The Mathematica  Journal 10:2 © 2006 Wolfram  Media, Inc.



InitBoard  is  another  generic  function  that  builds  the  board  and  returns  the
corresponding  matrix  as  a  list  of  lists.  It  is  based  on  InitPosition,  whose
definition is unique and characteristic of each board game.

InitBoard�� :� Table�InitPosition�i, j�, �i, Height�, �j, Width��

In the example of the chess game, the initial positions are as follows.

InitPosition�1, c_� :� �2, 3, 4, 5, 6, 4, 3, 2���c��
InitPosition�2, c_� :� 7
InitPosition�7, c_� :� 13
InitPosition�8, c_� :� InitPosition�1, 9 � c� � 6
InitPosition�l_, c_� :� 1

This produces the usual representation of the chess board at the beginning of the
game.

InitBoard�� �. x_Integer :� Patterns��x�� �� MatrixForm

�

�

���������������������������������

�B, R� �B, Kn� �B, B� �B, Q� �B, Kg� �B, B� �B, Kn� �B, R�
�B, P� �B, P� �B, P� �B, P� �B, P� �B, P� �B, P� �B, P�
empty empty empty empty empty empty empty empty

empty empty empty empty empty empty empty empty

empty empty empty empty empty empty empty empty

empty empty empty empty empty empty empty empty

�W, P� �W, P� �W, P� �W, P� �W, P� �W, P� �W, P� �W, P�
�W, R� �W, Kn� �W, B� �W, Kg� �W, Q� �W, B� �W, Kn� �W, R�

�

�

���������������������������������

· Implementing the Transition Function
For  most  of  the  board  games,  playing  is  just  doing  one  of  these  three  kinds  of
actions:

Ë removing a piece from the board

Ë adding a piece to the board

Ë moving a piece

So,  from  an implementation  point  of  view,  playing amounts  simply  to  changing
the status of one (or two) position(s) of the board and can be completely defined
by giving the corresponding location(s) on the matrix as arguments to the transi-
tion  function.  A  few  games,  such  as  backgammon,  may  let  the  player  move
several  pieces  during  the  same  play.  These  cases  require  further  refinement  of
the function.

Of course,  only  some positions are  playable  and, for a  selected piece,  only  some
motions are valid with respect to the rules of the game. Those constraints require
us to check the arguments of the transition function before its application.

Hence,  the  generic  transition  function  PlayThere  relies  on  two  nongeneric
functions:  IsPlayable,  which  performs  the  checking,  and  PlayBoard,  which
changes the board.

Exploring Board Game Strategies 369

The Mathematica  Journal 10:2 © 2006 Wolfram Media, Inc.



PlayThere�p : �__Integer�� :�
Module��m � IsPlayable�p��, If�Not�FalseQ�m��, PlayBoard�p, m���

PlayThere��p1_List, p2_List�� :� Module��m � IsPlayable�p1, p2��,
If�Not�FalseQ�m��, PlayBoard�p1, p2, m���

FalseQ is analogous to the standard TrueQ  function and returns True only when
its argument is False.

FalseQ�p_� :� TrueQ�Not�p��

Many  algorithms  and  computations  can  be  invoked  by  IsPlayable  depending
on the complexity  of the rules of the games.  Usually,  however, this computation
will  also provide information  on how the board will change due to the play. For
example,  in  chess,  if  you  plan  a  play  to  capture  a  piece,  checking  this  plan  will
produce  the  capture  as  a  side  effect.  So,  the  results  computed  by  IsPlayable
usually affect  PlayBoard.  In  the implementation,  the  value returned  by the first
function is given as an argument to the second. 

· Main Loop and Interaction with the Player
The  main  loop  defines  the  game  as  a  sequence  of  plays.  It  may  be  used  for  an
interactive game and for batch games for analysis purposes. The generic function
PlayGame implements  this simple loop. We will show how to implement interac-
tion through a notebook graphical interface.

Interaction  with  the  player  is  made  through  View—for  visualization—and
through GetPlay. GetPlay may be used to apply a strategy in a batch game or to
prompt the user for the selected play in an interactive game.

PlayGame�x___� :� �NewGame�x�;
While�Not�GameOver���, �View��; PlayThere�GetPlay�����; EndGame���

The  termination  phase  of  the  game  is  performed  by  EndGame,  which  can  be
refined for a particular game but has this simple default value.

EndGame�� :� View��

· Notebook Visualization
A Mathematica  notebook, or a palette, can be used for a first approach to graphi-
cal visualization and a graphical user interface for a game. Here, we represent the
matrix of the board with an array of buttons with text (or a color) for the pattern
corresponding  to  the  location.  Each  of  the  buttons  invokes  a  transition
function—defined  in  terms  of  PlayThere—with  its  location  as  the  argument.
Control of the game is made directly through the calls and no loop is necessary.

The generic function for playing a new game is NBPlayGame,  which is analogous
to PlayGame.

NBPlayGame�x___� :� �NewGame�x�; Nbview � NotebookPut�NBView���;�

NBPlayGame displays the notebook created by NBView.

370 Yves Papegay

The Mathematica  Journal 10:2 © 2006 Wolfram  Media, Inc.



NBView�� :�
Notebook��Cell�BoxData�NBBoard�Board��, CellTags � �"board"���,
Apply�Sequence, NBOptions��

Inside NBView, NBBoard generically creates the array of buttons.

NBBoard�l_� :� GridBox�MapIndexed�NBMakeButton, l, �2��,
RowSpacings � 0, ColumnSpacings � 0�

The only nongeneric function to develop when implementing a game is NBMake�
Button. It has to take in account the transition of the board at each play, manage
the end of the game, and refresh the display. For those purposes, NBMakeButton
can use the generic NBPlayThere and NBRefresh. See the following examples for
details of implementation.

NBPlayThere�p_� :� �PlayThere�p�; NBRefresh��;�

NBRefresh�� :� �NotebookPut�NBView��, Nbview�;�

‡ The HMaki Example
“If  you  start  this  game,  you  see  a  board  full  of  tiles.  Your  task  is  to
remove as many tiles as possible  from the board. You cannot remove
single  tiles,  instead  you  have  to  remove  them  in  groups  of  adjacent
tiles  filled  with  the  same  color.”  Holger  Klawitter,  HMaki  3.9.1
Information (www.klawitter.de/palm/hmaki.html)

Figure 5. The board of SameGame, the Gnome/KDE version of HMaki.

Let us try our design pattern for implementing this board game (Figure 5). 

· Configuration of the Board
We give some values for the size of the board and the number of colors. We also
set the flag for randomness.

Exploring Board Game Strategies 371

The Mathematica  Journal 10:2 © 2006 Wolfram Media, Inc.



Width � 12;
Height � 8;
Patterns � Range�5�;
NeedRandomness � True;

Positions  of colored tiles are given by a succession of calls to the pseudorandom
number generator.

Clear�InitPosition�;
InitPosition�l_, c_� :� Random�Integer, Length�Patterns� � 1� � 1

Clear�InitPlay�; InitPlay�� :� Null

· Visualizing the Board
We are now able to initialize the game.

NewGame�"new"�

Board �� MatrixForm

�

�

�������������������������������

1 4 5 2 2 5 3 4 1 3 3 1

3 1 5 1 3 5 4 3 3 2 3 3

1 4 3 1 5 5 4 4 2 4 4 2

4 2 3 1 4 2 2 2 1 3 1 4

4 5 2 1 3 4 1 1 1 5 3 1

3 5 4 4 4 3 5 5 3 2 2 3

3 5 2 2 1 3 1 4 2 2 2 2

2 2 3 2 1 4 4 3 5 4 4 4

�

�

�������������������������������

Choosing some colors, we can define the function View for a nicer display of the
board.

Needs�"Graphics‘Colors‘"�;
HMakiColors � �LightBeige, DeepSkyBlue,

CadmiumLemon, LimeGreen, Cobalt, DeepMadderLake�;

View�� :� Show�
Graphics�RasterArray�Transpose�Map�Reverse, Transpose�Board���� �.

x_Integer :� HMakiColors��x � 1����

View��;

372 Yves Papegay

The Mathematica  Journal 10:2 © 2006 Wolfram  Media, Inc.



· Transition Function
To deal with corner and boundary situations, we define the BoardValue function
to access  the values  of the board.  It returns -1 if the arguments  for location are
outside  the bounds of  the board.  This  allows us to ignore  the boundaries  of the
board when considering the neighbours of a location.

BoardValue��l_, c_�� :�
If�Or�Not�0 � l � Height�, Not�0 � c � Width��, �1, Board��l, c���

The positions of neighbours are computed by the following two functions.

FaceNeighbours�p_� :�
Map�Plus�p, #� &, ��0, 1�, �1, 0�, �0, �1�, ��1, 0���

CornerNeighbours�p_� :�
Map�Plus�p, #� &, ���1, 1�, �1, 1�, �1, �1�, ��1, �1���

To  get  the  spot  enclosing  the  selected  location,  (i.e.,  the  neighbourhood  of
locations  with  the  same  color),  we  use  a  fixed-point  algorithm  applied  to  a
neighbourhood extension function. 

Spot�p_� :� FixedPoint�Function�y,
Union�y, Apply�Union, Map�Select�FaceNeighbours�#�, Function�x,

BoardValue�x� � BoardValue�First�y���� &, y����, �p��

IsPlayable  is  now easy to implement:  only  a non-empty  location within  a spot
of at least two can be played. The result of the function is the list of the locations
within the spot. 

IsPlayable�p_� :� If�BoardValue�p� � 0, False,
Module��s � Spot�p��, If�Length�s� � 1, s, False���

PlayBoard will “remove” the spot from the board, propagating individual tiles to
the bottom and columns to the left whenever it is possible. 

PlayBoard�p_, sp_� :� Board � Transpose�
PadRight�Select�Map�PadLeft�Select�#, Positive�, Height� &,

Transpose�ReplacePart�Board, 0, sp���, Positive�
Apply�Plus, #�� &�, Width, x� �. x � Table�0, �i, Height���;

· Main Loop
To check whether the game is  over, it is necessary to decide if there remain two
spots of the same color contiguous by a face.

GameOver�� :� And�Length�Select�Select�Flatten�Map�Split, Board�, 1�,
Length�#� 	� 1 &�, First�#� 	� 0 &�� �� 0,

Length�Select�Select�Flatten�Map�Split, Transpose�Board��, 1�,
Length�#� 	� 1 &�, First�#� 	� 0 &�� �� 0�

Interaction with the player here is very basic.

GetPlay�� :� Input�"Where do you want to play ��row,column�� ? "�

And we are able to play—but the interface is a bit cumbersome.

Exploring Board Game Strategies 373

The Mathematica  Journal 10:2 © 2006 Wolfram Media, Inc.



PlayGame�"new"�

With a Notebook Interface
To improve the interface, only one function has to be defined: one which colors
the buttons and manages the end of the game (Figure 6).

NBMakeButton�c_, �i_, j_�� :� ButtonBox�" ", ButtonData � �i, j�,
Background � HMakiColors��c � 1��, ButtonFunction �
�If�Not�GameOver���, NBPlayThere�#2� &, NotebookClose�Nbview���,

ButtonEvaluator � Automatic�

And we are able to play without the keyboard!

374 Yves Papegay

The Mathematica  Journal 10:2 © 2006 Wolfram  Media, Inc.



NBPlayGame�"new"�

Figure 6. A view of the notebook interface of the board of HMaki.

‡ Playing Lines
“Your task is to build lines of balls of the same color on the checker-
board.  Every  time  you  move  a  ball,  3  new  balls  appear.  When  you
build  a  line  of  5  or  more  balls,  these  balls  are  removed  from  the
board.  Easy?  And  exciting!!!”  5star  Free  Lines—How  to  play
(www.5star-shareware.com/Windows/Games/Logic/5star-beelines.html)

Figure 7. The board of the five-star version of the game Lines.

Once  again,  the  design  pattern  will  help  us  quickly  implement  this  game
(Figure 7).

· Configuration of the Board
The following values define the physical parameters of the board.

Exploring Board Game Strategies 375

The Mathematica  Journal 10:2 © 2006 Wolfram Media, Inc.



Width � 9;
Height � 9;
Patterns � Range�7�;
NeedRandomness � True;

Initially, the board is empty.

Clear�InitPosition�
InitPosition�l_, c_� :� 0

But before the first play, the computer makes three balls appear. 

Clear�InitPlay�
InitPlay�� :� �Next��; AddBall�NextBall�; Next��; FromLoc � ��;�

The colors  of  the next  three balls  to be  added are selected  in advance and must
be shown to the player to help him play. They are selected randomly by the Next
function and kept in a global variable, NextBall.

Next�� :�
�NextBall � Table�RandomElement�Range�Length�Patterns���, �3��;�

Adding Balls
The positions  at  which to  add  the balls  are  also  selected randomly  in the  list  of
the empty positions.

AddBall�l_List� :� Map�AddBall, l�
AddBall�c_Integer� :� Module��p � RandomElement�Position�Board, 0���,

�Board � ReplacePart�Board, c, p�; NewLine�p�;��

RandomElement  is  a  miscellaneous  function  randomly  selecting  an  element  of  a
list.

RandomElement�l_List� :� Part�l, Random�Integer, Length�l� � 1� � 1�

· Visualizing the Board
Let us initialize the game and visualize it.

NewGame�"new"�

With some colors and a few graphics primitives, we are able to display the board
and the next three balls.

LinesColors � � RGBColor�0.8, 0.8, 0.8�, Blue, Red,
PermanentGreen, Yellow, SaddleBrown, Cyan, Magenta�;

ViewBall��i_, �l_, c_��� :�
�LinesColors��i � 1��, Disk��c � 0.5, Height � l � 0.5�, 0.45��

View�� :� Show�
Graphics�Join�Map�Line���#, 0�, �#, Height��� &, Range�0, Width��,

Map�Line���0, #�, �Width, #��� &, Range�0, Height��,
Map�ViewBall, Module��p � Position�Board, x_ �; x 	� 0��,

Transpose��Extract�Board, p�, p����,
MapIndexed�ViewBall��#1, �5, 10 � #2��1����� &, NextBall����

376 Yves Papegay

The Mathematica  Journal 10:2 © 2006 Wolfram  Media, Inc.



View��;

· Transition Function
In  this  game,  a  play  consists  of  three  possible  successive  actions:  selecting  and
adding  three  balls,  moving  a  ball,  and  deleting  a  line  of  balls.  When  a  player
selects  a  ball  and  a  new  location  for  it,  this  ball  is  moved.  If  possible  a  line  is
deleted and the computer adds three balls, possibly deleting a line.

Moving Balls
To decide whether a motion is valid or not, we again use a fixed-point algorithm
applied  to  a  neighbourhood  extension  function:  the  set  of  reachable  positions  is
incrementally built from the starting position by exploring empty locations. 

We  reuse  the  function  BoardValue  to  simplify  the  computations  of  the
neighbourhood.

BoardValue��l_, c_�� :�
If�Or�Not�0 � l � Height�, Not�0 � c � Width��, �1, Board��l, c���

Neighbour is slightly different than FaceNeighbour from the previous example.

Neighbour��l_, c_�� :�
��l � 1, c�, �l, c � 1�, �l, c�, �l, c � 1�, �l � 1, c��

Possible searches for empty locations in the neighbourhood.

Possible��l_Integer, c_Integer�� :�
Select�Neighbour��l, c��, MemberQ�Position�Board, 0�, #� &�

Possible�lp_List� :� Apply�Union, Map�Possible, lp��

The fixed-point algorithm is performed by IsPlayable, which returns a Boolean.

IsPlayable�p1_, p2_� :� And�BoardValue�p1� 	� 0,
BoardValue�p2� �� 0, MemberQ�FixedPoint�Possible, p1�, p2��

PlayBoard  updates  the  board,  checks  for  lines  of  five  balls  to  delete,  and  adds
three balls.

Exploring Board Game Strategies 377

The Mathematica  Journal 10:2 © 2006 Wolfram Media, Inc.



PlayBoard�p1_, p2_, _� :�
�Board � ReplacePart�Board, BoardValue�p1�, p2�;
Board � ReplacePart�Board, 0, p1�;
If�Not�NewLine�p2��, �AddBall�NextBall�; Next��;���

Checking for Lines to Delete
To check if there is a line of five balls to delete, we try to extend the position in
four  (nonoriented)  directions  as  long  as  the  color  of  the  ball  remains  the  same.
This is performed by Extend.

Extend�pos_, dir_� :�
FixedPoint�If�BoardValue�First�#�� dir� � BoardValue�First�#��,

Prepend�#, First�#� � dir�, #� &,
FixedPoint�If�BoardValue�Last�#� � dir� � BoardValue�Last�#��,

Append�#, Last�#� � dir�, #� &, pos��
Extend�pos_� :� Map�Extend��pos�, #� &,

��1, 0�, �1, 1�, �0, 1�, ��1, 1���

DeleteBall suppresses the balls from the line.

DeleteBall�p_� :� �Board � ReplacePart�Board, 0, p�;�

And NewLine is the top-level function, returning a Boolean.

NewLine�p_� :�
Module��l � Flatten�Select�Extend�p�, Length�#� � 4 &�, 1��,
�Map�DeleteBall, l�; Not�l �� �����

· Main Loop
Playing
The game continues until fewer than three slots are available for the balls.

GameOver�� :� Length�Select�Flatten�Board�, # �� 0 &�� � 3

Once again, the interface with the player is extremely basic.

GetPlay�� :� Input�"which motion �

��start_line,start_column�,�end_line,end_column���?"�

But we can play!

378 Yves Papegay

The Mathematica  Journal 10:2 © 2006 Wolfram  Media, Inc.



PlayGame�"new"�

· A Notebook Interface
To  cope  with  the  display  of  the  “balls  to  come”,  it  is  necessary  to  adapt  the
NBView  function and develop the dedicated  function NBNext,  which is  similar to
NBBoard.

NBView�� :�
Notebook��Cell�BoxData�NBNext�NextBall��, CellTags � �"next"��,

Cell�BoxData�NBBoard�Board��, CellTags � �"board"���,
Apply�Sequence, NBOptions��

NBNext�l_� :�
GridBox��Map�ButtonBox�" ", Background � LinesColors��# � 1��� &, l���

To  select  two  locations,  the  player  clicks  twice  in  a  play  on  the  board.  This  is
taken into account through the variable FromLoc and by a small difference in the
implementation of NBPlayThere.

NBMakeButton�c_, �i_, j_�� :�
ButtonBox�" ", ButtonData � �i, j�, Background � LinesColors��c � 1��,
ButtonFunction � �If�Not�GameOver���, NBPlayThere��FromLoc, #2�� &,

NotebookClose�Nbview���, ButtonEvaluator � Automatic�

NBPlayThere����, p_�� :� �FromLoc � p; NBRefresh���
NBPlayThere�p_� :� �PlayThere�p�; FromLoc � ��; NBRefresh���

Exploring Board Game Strategies 379

The Mathematica  Journal 10:2 © 2006 Wolfram Media, Inc.



With the notebook interface, playing becomes easier, even if the graphical design
is not so nice.

NBPlayGame�"new"�

‡ Mancala: A Two-Player Game

Figure 8. A board of 4 x 8 Mancala.

Mancala  is  the  ancient  game  of  counting  and  strategy  where  each  player  must
attempt to collect  as many stones  as possible  before one of the players clears his
side of stones (Figure 8). There are many versions of this traditional game.

Here are the rules of the version we will implement:

380 Yves Papegay

The Mathematica  Journal 10:2 © 2006 Wolfram  Media, Inc.



Each player has a  side of the board. The six cups nearest  each player
belong  to  him  and  his  mancala—another  cup  in  which  to  place  the
captured  stones—is  to  the  right.  Players  alternate  turns.  During  his
turn,  each  player  selects  a  cup of  stones  from  one box on his  side  of
the  board.  Each  stone  is  placed  one  by  one  in  the  cups  around  the
board  (going  counterclockwise),  including  his  mancala  but  not  the
opponent’s  mancala.  If  the  last  stone  lands  in the  player’s  own man-
cala, that player goes again. If the last stone lands in an empty cup on
the  player’s  own side,  he captures  all  the stones  from the opponent’s
cup directly opposite that cup. The game is over when a player has no
more  stones  in play on the  board.  The winner  is  the player  with  the
greatest total of stones in his mancala.

· Configuration of the Board
The  following  values  define  the  physical  parameters  of  the  board  (i.e.,  in  our
example  a  set  of  six  cups  for  each  of  the  two players).  The  last  column  of  each
row  corresponds  to  the  mancala  of  the  player.  The  patterns  are  the  number  of
stones in a cup.

Width � 6 � 1;
Height � 2;
Patterns � Range�48�;
NeedRandomness � False;

Initially, the stones are equally distributed in the cups.

Clear�InitPosition�
InitPosition�l_, Width� :� 0
InitPosition�l_, c_� :� Last�Patterns���Height �Width � 1��

We use an additional global variable, Player, to manage the players.

Clear�InitPlay�
InitPlay�� :� �Player � 1;�

· Visualizing the Board
A  very  basic  visualization  of  the  board  is  sufficient  for  playing—mancalas  are
separated.

NewGame��

View�� :� Print��Last�First�Board��,
MatrixForm��Reverse�Most�First�Board���, Most�Last�Board����,
Last�Last�Board����

View��

	0, 
 4 4 4 4 4 4

4 4 4 4 4 4
�, 0�

Exploring Board Game Strategies 381

The Mathematica  Journal 10:2 © 2006 Wolfram Media, Inc.



· Transition Function
In this  game,  playing is  just  selecting  one  of  the cups.  IsPlayable  only  verifies
that the selected cup is not empty.

IsPlayable��p_, Width�� :� False
IsPlayable��p_, c_�� :�
Module��n � Board��p, c���, If�n �� 0, False, n��

The rules of the evolution of the board are much trickier to implement as many
different cases may arise. GiveStone redistributes the stones of the selected cup.

GiveStone��1, c_�, n_Integer� :�
Map�Partition�#, Width, Width, �1, 1�, 0� &,
Partition�Join�Array�0 &, c�, Array�1 &, n��,
2 Width � 1, 2 Width � 1, �1, 1�, 0��

GiveStone��2, c_�, n_Integer� :� Partition�
Append�Prepend�Flatten�GiveStone��1, c�, n�, 1�, Array�0 &, Width��,
Array�0 &, Width��, 2�

Other�1� � 2; Other�2� � 1;

Other  just  permutes  1 and 2,  while PlayBoard  manages  the complete  evolution
of the board.

PlayBoard��p_, c_�, n_Integer� :�
�Board � ReplacePart�Board, 0, �p, c��;
Board � Fold�Plus, Board, GiveStone��p, c�, n��;
Module��m � Mod�c � n, 2 Width � 1��, If�m �� Width, Null,

�Player � Other�Player�; If�And�m � Width, Board��p, m�� �� 1�,
�Board � ReplacePart�Board, Board��Other�p�, Width � m�� �

Board��p, Width�� � 1, �p, Width��;
Board � ReplacePart�Board, 0, �Other�p�, Width � m��;
Board � ReplacePart�Board, 0, �p, m��;������

· Main Loop
The game ends when one player’s cups are empty. 

GameOver�� :� Apply�Or, Map�Union�Most�#�� �� �0� &, Board��

For  this  game,  the  basic  textual  interface  for  playing  is  quite  convenient,  as  the
player is only asked for one digit at each play. 

GetPlay�� :�
�Player, Input�"Player " �� ToString�Player� �� ": which cup �1�6� ?"��

When  one  player  has  no  more  stones,  the  other  player  puts  all  his  remaining
stones  in  his  mancala.  This  is  implemented  by  a  refinement  of  the  function
EndGame.

EndGame�� :� �Board �
Map�Append�Array�0 &, Width � 1�, Apply�Plus, #�� &, Board�; View���

382 Yves Papegay

The Mathematica  Journal 10:2 © 2006 Wolfram  Media, Inc.



PlayGame��

	0, 
 4 4 4 4 4 4

4 4 4 4 4 4
�, 0�

	1, 
 5 5 5 0 4 4

4 4 4 4 4 4
�, 0�

	2, 
 0 5 5 0 4 4

5 5 5 5 4 4
�, 0�

	2, 
 0 5 5 0 4 4

5 0 6 6 5 5
�, 1�

	2, 
 0 5 6 1 5 5

5 0 6 6 5 0
�, 2�

	8, 
 0 6 7 2 6 0

0 0 6 6 5 0
�, 2�

	8, 
 0 6 7 2 7 1

0 0 0 7 6 1
�, 3�

	8, 
 0 7 8 0 7 1

0 0 0 7 6 1
�, 3�

	8, 
 0 7 8 0 7 1

0 0 0 7 6 0
�, 4�

	8, 
 0 7 9 1 8 2

0 0 0 0 7 1
�, 5�

	8, 
 0 7 10 0 8 2

0 0 0 0 7 1
�, 5�

	8, 
 0 7 10 0 8 2

0 0 0 0 7 0
�, 6�

	8, 
 0 8 11 1 9 3

0 0 0 0 0 1
�, 7�

	8, 
 0 8 12 2 10 0

0 0 0 0 0 1
�, 7�

	40, 
 0 0 0 0 0 0

0 0 0 0 0 0
�, 8�

Exploring Board Game Strategies 383

The Mathematica  Journal 10:2 © 2006 Wolfram Media, Inc.



‡ Interface with GUIKit
“GUIKit  simplifies  the  construction  and  layout  of  common  user
interface  programming  and  eliminates  the  need  to  write  code  using
the underlying Java programming language.” GUIKit online documenta-
tion (documents.wolfram.com/solutions/guikit).

Although  we  have  succeeded  in  easily  building  a  graphical  interface  for  playing
using  the  notebooks  and  buttons  in  them,  the  result  is  very  poor  in  terms  of
graphics and functionalities.

Until  a  new  version  of  graphics  management  exists  in  Mathematica,  there  is  no
way,  within  notebooks,  to  make  a  part  of  a  graphic  object  active.  But  GUIKit
makes  the  power  of  J/Link  and  the  richness  of  AWT  and  Swing  Java  libraries
accessible.

In this section,  we go back to the HMaki example and show how to build a nice
and efficient interface with this new package.

· Visualizing the Board
GUIKit  provides Widget["IndexedImagePanel"],  which allows us to display an
array  or  rectangles  with  different  colors.  Very  few  settings  are  necessary  to
represent the HMaki board with this widget.

Needs�"GUIKit‘"�;

Width � 20; Height � 15; Patterns � Range�5�;
NeedRandomness � True; PixelSize � 12;

IndexedImagePanelWidget :�
Widget�"IndexedImagePanel", �"preferredSize" �

Widget�"Dimension", �"width" � PixelSize �Width � 2�,
"height" � PixelSize �Height � 2���, "imageWidth" � Width,

"imageHeight" � Height, "imagePixelSize" � PixelSize,
"imageColorMapSize" � Length�HMakiColors�,
"imageGrid" � True, "imageGridColor" �
Widget�"Color", InitialArguments � �255, 255, 255��,

"scaleImage" � False, "imageColorComponents" � Flatten�
Map�Floor�255 #� &, Map�Apply�List, #� &, HMakiColors���,

"imagePixels" � Flatten�Board�, MouseClickBinding�,
Name � "hmakiPanel"�;

To transform this widget into an active one, we have to bind the event of clicking
with the mouse to the action of playing and refreshing the board.

MouseClickBinding � BindEvent�"mouseClicked",
Script�mouseEvent � WidgetReference�"#"�; coords � InvokeMethod�

�"hmakiPanel", "getImagePixelCoordinatesAt"�, mouseEvent�;
PlayThere�Reverse�coords� � �1, 1��; SetPropertyValue�
�"hmakiPanel", "imagePixels"�, Flatten�Board����;

384 Yves Papegay

The Mathematica  Journal 10:2 © 2006 Wolfram  Media, Inc.



A  JPlayGame  function  is  then  defined,  initializing  the  game,  loading,  and  run-
ning the interface definition.

JPlayGame�x___� :� �NewGame�x�; GUIRunModal�
Widget�"Frame", �"title" � "HMaki",

"Size" � Widget�"Dimension", �"width" � 300, "height" � 257��,
"resizable" � False, IndexedImagePanelWidget��,

IncludedScriptContexts � �$Context���

Here comes the playable Java version of HMaki!

JPlayGame�"new"�

· Adding Interactivity
We now  would  like  to  be  able  to  start  a  new  game  or  replay  the  current  game
directly from the interface. 

A  good  way  to  implement  this  interactivity  is  to  define  Widget["Action"]  for
each  action  and  attach  the  corresponding  Script  to  it.  The  script  can  refer  to
any Mathematica  function,  provided  its  context  is  within  the  scope  of  the script.
Here, we use the function NewGame in our scripts. 

ActionsWidget :� �Widget�"Action", �"name" � "New Game",
BindEvent�"action", Script�playGame�"new"����,

Name � "newGameAction"�, Widget�"Action", �"name" � "Replay",
BindEvent�"action", Script�playGame�����, Name � "replayAction"�,

Script�playGame�x___� :� �NewGame�x�; SetPropertyValue�
�"hmakiPanel", "imagePixels"�, Flatten�Board�����

It is then easy to define a menu, associating an action to each of the menu items

MenuBarWidget :� Widget�"MenuBar", �Widget�"Menu",
�"text" � "Game", Widget�"MenuItem", �"text" � "NewGame",

"action" � WidgetReference�"newGameAction"���, Widget�
"MenuItem", �"action" � WidgetReference�"replayAction"�������

or associating actions with buttons.

BottomWidget :� WidgetGroup�
�Widget�"Button", �"action" � WidgetReference�"newGameAction"���,
Widget�"Button", �"action" � WidgetReference�"replayAction"���,
WidgetFill����

JPlayGame�x___� :� �NewGame�x�; GUIRunModal�
Widget�"Frame", �"title" � "HMaki",

"resizable" � False, Append�ActionsWidget, Widget�"Panel",
�IndexedImagePanelWidget, WidgetFill��, BottomWidget���,

"menus" � MenuBarWidget�, Name � "hmakiFrame"�,
IncludedScriptContexts � �$Context���

JPlayGame�"new"�

Exploring Board Game Strategies 385

The Mathematica  Journal 10:2 © 2006 Wolfram Media, Inc.



· Adding Scores
When you play HMaki, you can target various goals: suppressing as many tiles as
possible,  having  as  many  tiles  as  possible  once  all  the  groups  have  been  sup-
pressed,  suppressing  as  many  biggest  groups  as  possible,  and  so  on.  From  the
board,  it  is  possible  to compute a  score,  which measures  how close  to your  goal
you are. 

Computation
The simplest score function computes the number of tiles on the board.

Score�� :� Length�Select�Flatten�Board�, # 	� 0 &��

Visualization
To get the score on the interface, we should first set a label widget to show it as
text. 

BottomWidget :� WidgetGroup��WidgetSpace�10�,
Widget�"Button", �"action" � WidgetReference�"newGameAction"���,
Widget�"Button", �"action" � WidgetReference�"replayAction"���,
WidgetFill��, Widget�"Label", �"text" � "tiles:"��,
Widget�"Label", �"text" � ToString�Width Height��,
Name � "hmakiScore"�, WidgetSpace�10���

We should also modify what happens when the mouse is clicked inside the board
(i.e., change the definition of MouseClickBinding).

MouseClickBinding � BindEvent�"mouseClicked",
Script�mouseEvent � WidgetReference�"#"�; coords � InvokeMethod�

�"hmakiPanel", "getImagePixelCoordinatesAt"�, mouseEvent�;
PlayThere�Reverse�coords� � �1, 1��;
SetPropertyValue��"hmakiPanel", "imagePixels"�, Flatten�Board��;
SetPropertyValue��"hmakiScore", "text"�, Score�����;

JPlayGame�"new"�

The previous command produces the Java interface (Figure 9).

386 Yves Papegay

The Mathematica  Journal 10:2 © 2006 Wolfram  Media, Inc.



Figure 9. GUIKit-generated Java version of HMaki.

‡ Analysis and Strategies
In this section, we will show how easy it is to make the computer play on its own
in order to analyze  games  or analyze,  study,  and improve  playing strategies.  We
will  focus  again  on  the  HMaki  game,  which  is  complex  enough  to  demonstrate
how powerful the analysis can be with our design.

Width � 20; Height � 15; Patterns � Range�5�;
NeedRandomness � True; PixelSize � 12;

· Automatic Play 
As  randomness  is  involved  in  the  initialization  of  the  game,  we  need  to  play
repeatedly  to  study  the  game  with  statistical  tools.  So  the  computer  should  be
able to play a game alone and give us feedback on it.

Scoring
We are interested  in the final  score and the  number  of plays  necessary to  reach
the  end.  Moreover,  we  consider  two  kind  of  scores:  the  number  of  remaining
tiles  and  the  sum  of  the  scores  obtained  for  removing  each  group  of
tiles—growing  with the square of  the size  of the group. The global  value Score
contains  a list  of this  information;  it is  initialized  by InitScore  and updated by
UpdateScore.

InitScore�� :� Score � �0, 0, Width Height�

Exploring Board Game Strategies 387

The Mathematica  Journal 10:2 © 2006 Wolfram Media, Inc.



UpdateScore�� :�
Module��n � Width Height � Length�Select�Flatten�Board�, # �� 0 &���,
Score � �First�Score� � 1, Score��2�� � �Last�Score� � n � 2�^2, n��

Where to Play
Before  playing,  the  computer  should  know  where  it  is  valid  to  play  and  then
where  to play.  The function PlayableList  computes  the list  of all  the playable
locations on the board, using an almost trivial algorithm.

PlayableList�� :� Fold�PlayableList, ��, Patterns�
PlayableList�l_List, i_Integer� :�
Join�l, PlayableList�Position�Board, i���

PlayableList�l_� :� Select�l, Not�FalseQ�IsPlayable�#��� &�

The  GetPlay  function  is  rewritten  to  randomly  select  an  element  in  the  list  of
playable locations.

GetPlay�� :� RandomElement�PlayableList���

Playing
We define  BatchPlayGame,  an  analog function  to PlayGame,  to  make the  com-
puter  play.  Note the presence of the bound MaxPlay  to avoid  infinite loops and
the call to SeedRandom  to control random initialization of the board and select a
play among the list of possible beginnings.

MaxPlay � Width Height �2 ;
BatchPlayGame�x___� :� �NewGame�x�; InitScore��;

SeedRandom��; While�And�	 GameOver��, First�Score� � MaxPlay�,
PlayThere�GetPlay���; UpdateScore���; EndGame���

Timing�BatchPlayGame�"new"�;�

�3.984 Second, Null�

Score

�76, 270, 60�

In the preceding results, the high computation time is due to the poor implemen-
tation of PlayableList:  76 is  the number of plays in the game; 270 is the score
when “playing for big”; and 60 is the number of remaining tiles.

388 Yves Papegay

The Mathematica  Journal 10:2 © 2006 Wolfram  Media, Inc.



· Statistical Analysis
Once  the computer  is  able  to  play alone and produce information  on the game,
we can make it play enough games to give us statistical results. Let us conduct an
experiment.

Playing 100 Games
The  first  experiment  consists  of  playing  100  different  games;  the  second  in
playing the same game 100 times.

EndGame�� :� Null;
ScoreData1 � ��;
Do��BatchPlayGame�"new"�; AppendTo�ScoreData1, Score��, �k, 100��

ScoreData2 � ��;
Do��BatchPlayGame��; AppendTo�ScoreData2, Score��, �k, 100��

Statistical standard functions describe the dispersion of this data.

Map�N��Mean�#�, Variance�#�, StandardDeviation�#�, Median�#��� &,
Transpose�ScoreData1��

��82.56, 41.562, 6.44686, 82.�,
�317.68, 14366.9, 119.862, 302.5�, �43.8, 170.525, 13.0585, 43.5��

Map�N��Mean�#�, Variance�#�, StandardDeviation�#�, Median�#��� &,
Transpose�ScoreData2��

��85.21, 29.4403, 5.42589, 85.�,
�221.57, 2916.09, 54.0008, 215.�, �48.59, 144.608, 12.0253, 49.��

We can view the data using standard graphical functions for plotting.

ListPlot�Map�Last, ScoreData1��

20 40 60 80 100

20

40

60

Exploring Board Game Strategies 389

The Mathematica  Journal 10:2 © 2006 Wolfram Media, Inc.



ListPlot�Map�Last, ScoreData2��

20 40 60 80 100

30

40

50

60

70

The  fairly  even  dispersion  we  observe  in  these  graphics  is  a  testimony  to  the
interest of the game for a human player. 

· Strategies
Another  goal  of  statistical  analysis  is  to  compare  strategies  and  get  a  better
understanding of how to play.

Groups
Simple  strategies  for  playing  HMaki  are  based  on  knowledge  of  the  different
groups of tiles of the same colors.  The SpotList  function returns the list of the
groups computed from the board.

SpotList�� :� Fold�SpotList, ��, Patterns�
SpotList�l_List, i_Integer� :�
Join�l, SpotList���, Position�Board, i���

SpotList�sl_List, �f_, o___�� :�
Module��s � IsPlayable�f��, If�FalseQ�s�, SpotList�sl, �o��,

SpotList�Append�sl, s�, Complement��o�, s����
SpotList�sl_List, ��� :� sl

Strategies
A new  version  of  BatchPlayGame  takes  an  integer  argument  as  an  index  of  the
selected strategy, and an option for visualization.

Options�BatchPlayGame� � �Viewer � False, ViewStart � False�;
BatchPlayGame��x___�, i_Integer, v___?OptionQ� :�
�If�ViewStart �. �v� �. Options�BatchPlayGame�,

NewGame�x�; View��, NewGame�x��; InitScore��;
SeedRandom��; While�And�	 GameOver��, First�Score� � MaxPlay�,
PlayThere�GetPlay�i��; UpdateScore���;

If�Viewer �. �v� �. Options�BatchPlayGame�, EndGame����

Different instances of GetPlay correspond to different strategies of selecting the
group of tiles to remove:

1. the group is randomly selected in the list of groups

2. the group is randomly selected among the biggest groups

390 Yves Papegay

The Mathematica  Journal 10:2 © 2006 Wolfram  Media, Inc.



3. the  first  biggest  group  (starting  from  the  upper-left  corner,  then  from
left to right and top to bottom)

4. the group is randomly selected among the smallest groups

5. the  first  smallest  group  (starting  from  the  upper-left  corner,  then  from
left to right and top to bottom)

GetPlay�0� :� First�RandomElement�SpotList����
GetPlay�1� :� First�RandomElement�Module��s � SpotList���,

Module��l � Map�Length, s��, Extract�s, Position�l, Max�l�������
GetPlay�2� :� First�First�Module��s � SpotList���,

Module��l � Map�Length, s��, Extract�s, Position�l, Max�l�������
GetPlay�3� :� First�RandomElement�Module��s � SpotList���,

Module��l � Map�Length, s��, Extract�s, Position�l, Min�l�������
GetPlay�4� :� First�First�Module��s � SpotList���,

Module��l � Map�Length, s��, Extract�s, Position�l, Min�l�������

Experiment
Results  of  170  games  were  collected—10  different  games  played  17  times:  five
times  for  the  strategies  involving  randomness,  only  once  for  the  two  others.
These results took several minutes to produce.

StrategyData � ��;
�DataLine � ��; DataWord � ��;

BatchPlayGame��"new"�, 0, ViewStart � True, Viewer � True�;
AppendTo�DataWord, Score�;
Do��BatchPlayGame���, 0�; AppendTo�DataWord, Score��, �4��;
AppendTo�DataLine, DataWord�; DataWord � ��;
BatchPlayGame���, 1, Viewer � True�; AppendTo�DataWord, Score�;
Do��BatchPlayGame���, 1�; AppendTo�DataWord, Score��, �4��;
AppendTo�DataLine, DataWord�; BatchPlayGame���, 2, Viewer � True�;
AppendTo�DataLine, Score�; DataWord � ��;
BatchPlayGame���, 3, Viewer � True�; AppendTo�DataWord, Score�;
Do��BatchPlayGame���, 3�; AppendTo�DataWord, Score��, �4��;
AppendTo�DataLine, DataWord�; BatchPlayGame���, 4, Viewer � True�;
AppendTo�DataLine, Score�; AppendTo�StrategyData, DataLine��;

Do��DataLine � ��; DataWord � ��; BatchPlayGame��"new"�, 0�;
AppendTo�DataWord, Score�;
Do��BatchPlayGame���, 0�; AppendTo�DataWord, Score��, �4��;
AppendTo�DataLine, DataWord�; DataWord � ��;
Do��BatchPlayGame���, 1�; AppendTo�DataWord, Score��, �5��;
AppendTo�DataLine, DataWord�; BatchPlayGame���, 2�;
AppendTo�DataLine, Score�; DataWord � ��;
Do��BatchPlayGame���, 3�; AppendTo�DataWord, Score��, �5��;
AppendTo�DataLine, DataWord�; BatchPlayGame���, 4�;
AppendTo�DataLine, Score�; AppendTo�StrategyData, DataLine�;�, �9��

Exploring Board Game Strategies 391

The Mathematica  Journal 10:2 © 2006 Wolfram Media, Inc.



392 Yves Papegay

The Mathematica  Journal 10:2 © 2006 Wolfram  Media, Inc.



The following command produces the results in Table 1.

TableForm�Partition�Map�N�Mean�#�� &,
Transpose�Map�Flatten, Map�Function�l, Map�If�Depth�#� � 2,

Map�Function�x, N�Mean�x���, Transpose�#��, #� &, l��,
StrategyData����, 3�, TableHeadings � �Range�5� � 1,

�"Number of plays", "Playing for big", "Remaining tiles"���

Number of plays Playing for big Remaining tiles

0 86.76 343.4 39.92

1 76.54 302.04 41.6

2 75.3 319. 42.

3 97.26 411.44 36.96

4 96.2 450.2 39.2

Table 1. Mean of the results over 10 games.

We can also  visualize  these  results  with  an ad  hoc plot  function.  The  following
plots show the numbers of remaining tiles for the first strategy.

Draw�y_Integer, �x_Integer�� :� Point��x, y��
Draw�y_List, �x_Integer�� :�
Append�Map�Draw�#, �x�� &, y�, Line���x, Min�y��, �x, Max�y�����

Exploring Board Game Strategies 393

The Mathematica  Journal 10:2 © 2006 Wolfram Media, Inc.



PlotStrategy�n_Integer� :�
Graphics�Join��PointSize�0.03��, MapIndexed�Draw, Map�

If�Depth�#� � 2, Map�Last, #�, Last�#�� &, StrategyData��n�����,
Axes � True, AxesOrigin � �0, Min�Flatten�StrategyData��1���� � 5��

Show�GraphicsArray�Map�PlotStrategy, Partition�Range�2�, 2�, �2����

1 2 3 4 5

30

40

50

60

70

1 2 3 4 5
25
30
35
40
45
50
55

‡ Conclusion
This  exercise  proved  that  a  couple  of  hundreds  lines  of  Mathematica  code  are
enough  to  completely  implement  three  playable  prototypes  of  board  games
together with the corresponding  basic graphical  user interface,  plus an attractive
Java  Swing  version  of  one  of  them.  With  the  design  pattern  presented,  we
demonstrated  that  most  of  this  code  will  be  reusable  with  minor  changes  for
implementing other board games.

As  playing  is  one  of  the  oldest  human  activities,  trying  to  understand  how  the
games work  and why some  of  them are so addictive  could  be a  recreational  and
exciting challenge. The library of applications that we created could be extended
to  different  games.  Many  strategies  could  be  implemented  and  tested,  even  on
our three examples, to better understand and enjoy them.

‡ References
[1] D. Parlett, Oxford History of Board Games, Oxford: Oxford University Press, 1999.

[2] The  International  Society  for  Board  Games  Studies,  The  Research  School  CNWS,
Leiden, The Netherlands: Leiden University, (Nov 2005).

[3] S.  Wolfram,  The  Mathematica  Book,  5th  ed.,  Champaign,  Oxford:  Wolfram  Media/
Cambridge University Press, 2003.

[4] M.  Loy,  R.  Eckstein,  ed.,  D.  Wood,  J.  Elliott,  and  B.  Cole,  Java  Swing,  2nd  ed.,
Sebastopol, CA: O’Reilly & Associates, Inc., 2002.

394 Yves Papegay

The Mathematica  Journal 10:2 © 2006 Wolfram  Media, Inc.

Y. Papegay, “Exploring Board Game Strategies,” The Mathematica Journal, 2012.
dx.doi.org/10.3888/tmj.10.2-6.



About the Author
Yves Papegay  has been a computer  science researcher at  INRIA Sophia Antipolis in
southern France since 1994. One of his major research interests is symbolic computa-
tion methods, tools, and applications to modeling and simulation processes. 

Papegay joined the French team of the Wolfram Education Group in its early weeks.
He is a  daily user  of Mathematica  and has developed several  application packages
for industrial purposes.

Yves Papegay
INRIA Sophia Antipolis
COPRIN 2004 route des Lucioles
F-06902 Sophia Antipolis
France
Yves.Papegay@sophia.inria.fr

Exploring Board Game Strategies 395

The Mathematica  Journal 10:2 © 2006 Wolfram Media, Inc.


