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The IMTEK Mathematica Supplement (IMS) provides the basis for an Inte-
grated Engineering Development Environment  (IEDE). In this context we
created  an  open  source  linear  finite  element  modeling  environment  com-
prising  the  mechanics,  fluidics,  and  a  general  differential  operators
domain.  We  split  the  operators  from  the  geometry  and  shape  functions,
resulting  in  symbolic  operators,  which  are  well  suited  for  finite  element
code generation, and fast numerical  operators. In this article we show how
we  use the  fast  numerical  operators  for  analyzing  a  microelectromechani-
cal system device. A fast transient solution by means of model order reduc-
tion is presented. Finally, we conclude with a harmonic analysis.

‡ Introduction
The  IMTEK  Mathematica  Supplement  (IMS)  is  a  downloadable  open  source
add-on  package  for  Mathematica  [1].  The  supplement  provides  several  hundred
functions in about 40 packages. At IMTEK (the Institut für Mikrosystemtechnik)
we  encounter  a  variety  of  engineering  tasks.  The  tasks  range  from  modeling  to
analysis and culminate in the ultimate engineering goal—good design.

Unfortunately,  the design  process  is  often tedious  for several  reasons.  It  may be
very  difficult  to  extend  existing  Integrated  Engineering  Development  Environ-
ments  (IEDEs)  due  to  their  being  closed  source.  Exporting  some  parts  of  the
design  process  to  controllable  external  tools  and  applying  new  algorithms  is
time-consuming.  We  try  to  remedy  this  shortcoming  by  providing  the  open
source basis for an IEDE embedded in Mathematica.

In  order  to  evaluate  this  notebook,  IMS  must  be  installed.  Although  IMS  is  a
growing  environment,  we  try  to  maintain  the  functionality  between  different
versions.  Sometimes,  however,  obsolete  warning  messages  may  appear.  This
means  that  a  specific  function  has  been  replaced  by  a  newer  one.  The  code,
however, should still work correctly.
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‡ Integrated Engineering Development Environment
An IEDE consists of several pieces that can be smoothly interchanged to reach a
design.  The  ability  to  model  and  simulate  several  different  physical  domains
(e.g., the electrical engineering and mechanical domains) must be combined with
the ability to analyze.

This  can  be  accomplished  with  an  adequate  data  structure,  which  must  be
applicable  to  other—not  yet  conceived—domains.  We  will  demonstrate  this
process  with  a  Finite  Element  Method  (FEM)  analysis  example  and  later  show
how this concept is extendable. The finite element code is based on [2, 3, 4].

We start from the observation that engineering systems are constructed by some
“basic”  components  that  are  related  to  each  other  via  some  connectivity,  to  be
further  specified.  This  connectivity  can  then  be  transformed  into  a  system  of
ordinary differential equations (ODEs) (Figure 1).

Figure 1.  Common to many engineering applications is  the scenario  that components  are
somehow connected, and, by some means, they and their  representations in reality have a
system of ODEs describing them. 

A  typical  engineering  application  would  be  the  components  of  an  electrical
circuit such as resistors, inductors, capacitances,  and sources. These elements are
connected  to  each  other  via  “nodes”  (Figure  2).  The  elements  and  nodes  reside
in  a  graph.  The  elements  are  not  restricted  to  circuit  elements,  but  can  be
elements such as finite elements that the engineer might need.

The system of equations is a system of second-order ODEs. The coefficients are
the mass, damping, and stiffness matrices.  The load is a vector of a list of multi-
ple load vectors.

Figure  2.  The  connectivity  in  engineering  applications  can  be  captured  with  graphs
consisting of  nodes  and elements,  where the different element types  come from different
application  areas.  In  IMS  the  data  structure  representing  graphs  is  called  imsNexus.  The
system  of  ODEs  is  represented by  a  system of  second-order  ODEs  with  matrix  coefficients.
The underlying data structures are matrices.

In this article we show how we use the graph data structure, apply finite element
operators  in  the  elements  in  the  graph,  and  obtain  a  system  of  equations
(Figure 3). The finite element operators are taken from the classical scalar partial
differential  equations  (PDEs).  The  concept,  however,  is  general,  and  for  differ-
ent engineering domains different operators can assemble a system of equations.
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In this article we show how we use the graph data structure, apply finite element
operators  in  the  elements  in  the  graph,  and  obtain  a  system  of  equations
(Figure 3). The finite element operators are taken from the classical scalar partial
differential  equations  (PDEs).  The  concept,  however,  is  general,  and  for  differ-
ent engineering domains different operators can assemble a system of equations.

Figure 3.  An operator can be applied to each of  the elements  in a graph. Every operator
returns an element matrix (an imsElementMatrix data structure). This is then assembled into
a  global  matrix  by  the  assembler  routine.  The  operators  can  come  from  a  wide  range  of
engineering areas.

‡ Heat Anemometer Application Example
Here  we  model  a  heat  flow  anemometer.  Figure  4  shows  a  schematic  of  the
device.

Flow Field

Silicon

Heater

Thermo Sensors

Figure 4. A schematic of a heat flow anemometer.

In a  piece of bulk  silicon we have embedded a  small  heater device.  To the right
and  left  are  two  temperature  sensors.  If  the  heater  is  switched  on,  both  sensors
will  measure  the same temperature.  Once a flow field is  flowing over  the silicon
device,  the  temperature  distribution  will  shift  and  the  left  sensor  will  be  cooler
than  the  right  sensor.  From  the  temperature  difference  we  can  calculate  the
speed  of  the  flow  field.  This  is  the  principle  of  an  anemometer.  More  about
thermal measurements in fluids can be found in [5].
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In a  piece of bulk  silicon we have embedded a  small  heater device.  To the right
and  left  are  two  temperature  sensors.  If  the  heater  is  switched  on,  both  sensors
will  measure  the same temperature.  Once a flow field is  flowing over  the silicon
device,  the  temperature  distribution  will  shift  and  the  left  sensor  will  be  cooler
than  the  right  sensor.  From  the  temperature  difference  we  can  calculate  the
speed  of  the  flow  field.  This  is  the  principle  of  an  anemometer.  More  about
thermal measurements in fluids can be found in [5].

In the next section we calculate the temperature distribution in the device and its
surrounding area.

‡ The Equation
In the most general assumption, we wish to model the following equation:

(1)

s “2 u + g “u
Diffusion Convection´̈ ¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨̈¨¨¨̈ ¨̈ ­ Æ¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨̈¨̈ ¨̈

= f
Load

Stiffness Matrix Load Matrix

The heater element  will be modeled with a load matrix and the airflow with the
convection term. The general heat transfer is modeled with the diffusion term.

‡ Loading Predefined Mesh
We begin by loading the Imtek`Interfaces`EasyMesh` package.

In[86]:= Needs"Imtek‘Interfaces‘EasyMesh‘"
Then we import the EasyMesh-generated example mesh. 

In[87]:= numberOfNodes, mesherNodes, numberOfElements,
mesherElements, numberOfSides, sides  imsReadEasyMesh
ToFileName  "Imtek", "IMSData", "ApplicationExamples", "FEM",
"AnemometerMesh", imsStartNodeNumbering 1 ;

· Creating the Nodes

First we load the following packages.

In[88]:= Needs"Imtek‘Graph‘"
Needs"Imtek‘MeshElementLibrary‘"

Then  we take  the  raw nodes  and make IMS  nodes  from them.  Each  of  the  raw
nodes is a list of a unique node identification number (id), the coordinates 8x, y<,
and  a  marker.  This  marker  was  inserted  by  the  mesh  generator  and  indicates
whether the node belongs to one of the domain segments or not.

We  also  divide  the  nodes  into  boundary  nodes  and  interior  nodes.  Boundary
nodes are the nodes on the simulation domain boundary that specify the bound-
ary conditions.  In the mesh input file we have specified that  markers 1, 2, and 3
are  on  the  simulation  boundary.  All  other nodes  are  interior  nodes.  Either  they
belong  to  interior  domain  segments  (and  carry  the  marker  7)  or  they  do  not
belong to any segment at all (and carry the marker 0).
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We  also  divide  the  nodes  into  boundary  nodes  and  interior  nodes.  Boundary
nodes are the nodes on the simulation domain boundary that specify the bound-
ary conditions.  In the mesh input file we have specified that  markers 1, 2, and 3
are  on  the  simulation  boundary.  All  other nodes  are  interior  nodes.  Either  they
belong  to  interior  domain  segments  (and  carry  the  marker  7)  or  they  do  not
belong to any segment at all (and carry the marker 0).

The  IMS  nodes  we  create  also  carry  a  unique  identification  number  (id),  the
coordinates  8x, y<,  the marker,  a value of the solution (initially  set to 0),  and the
type of the boundary condition.

In[90]:= interiorNodes 
Select mesherNodes, #4  0  #4  7  &  . id_, x_, y_, marker_   imsMakeNode id,  x, y , marker ;

Here we select from the list of all mesh nodes those entries where the marker is 0
or 7.

This displays all the nodes that have a marker of 7.

In[91]:= Show Graphics Point #  & # 2, 3  &  Select mesherNodes, #4  7 &  ,
AspectRatio  0.25 

The boundary nodes are those nodes that have a fourth entry not equal to 0 or 7.
Additionally  we  set  boundary  conditions  in  the  nodes  according  to  the  markers
for  the  specific  node.  The nodes  now carry  the  id,  the  coordinates,  the  marker,
the boundary condition value, and the boundary condition type.

In[92]:= boundaryNodes 
Select mesherNodes, #4  0 && #4  7  &  . id_, x_, y_, marker_  

Which
marker  1,
imsMakeNode id,  x, y , marker,  0. , "Dirichlet" ,
marker  2, imsMakeNode id,  x, y ,
marker,  0. , "Dirichlet" ,

marker  3, imsMakeNode id,  x, y ,
marker,  0. , "Dirichlet" ;

· Creating the Elements

Now  we  set  up  the  elements.  Dirichlet  boundary  conditions  are  only  set  up  in
the  nodes.  Neumann  boundary  conditions  also  need  an  entry  in  the  elements.
Each element consisting of two Neumann boundary nodes will additionally carry
the boundary values for the nodes involved.
First we join all nodes and obtain the Neumann boundary node ids.
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In[93]:= allNodes  Sort Join interiorNodes, boundaryNodes ,
OrderedQ  imsGetIds #1 , imsGetIds #2    & ;

neumannBoundaryNodesIds  imsGetIds
Select boundaryNodes, imsGetDatas #   "Neumann" &  

Out[94]= 
To  construct  the  elements,  we  choose  those  elements  that  have  a  count  of  two
Neumann  boundary  nodes  and  insert  the  Neumann  values  of  the  boundary
nodes  into  the  elements.  All  other  elements  are  constructed  in  such  a  way  that
they  carry  their  identification  id,  the  incident  ids  (i.e.,  the  ids  of  the  nodes
making up the specific element), and the element marker.

The element  marker,  in contrast to the node marker,  states to which of the four
parts  of  the  simulation  device  the  element  belongs.  Marker  1  is  for  the  silicon
device,  marker 2 is the heater,  marker 3 is  the free cut,  and marker 4 is  the flow
box.

In[95]:= allElements 
mesherElements .  id_, i_, j_, k_, ei_, ej_, ek_, si_,

sj_, sk_, xV_, yV_, marker_  
If Plus  Count neumannBoundaryNodesIds, #  &  i, j, k    2,
imsMakeTriangleLinear1DOF id,  i, j, k , marker,
imsGetValues allNodes  i, j, k    ,

imsMakeTriangleLinear1DOF id,  i, j, k , marker ;
Each  element  has  a  marker  similar  to  the  markers  in  a  node.  The  element
markers  can  later  be  used  to  specify  the  behavior  of  finite  element  functions  in
different areas of the mesh.

· Creating the Mesh

Now we generate the mesh.

In[96]:= femMesh  imsMakeNexus boundaryNodes, interiorNodes, allElements ;
In[97]:= numberOfNodes

Out[97]= 3991

In[98]:= numberOfElements

Out[98]= 7785

Since each node belongs to several triangles, we have more triangles than nodes.

· Displaying the Mesh

Here we display the mesh.
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In[99]:= Show Graphics  imsDrawElements femMesh , device  ,
PlotRange  All, AspectRatio  Automatic 

Here we display the mesh inside the silicon and those elements with marker 1.

In[100]:= siliconElementIds  imsGetIds
Select imsGetElements femMesh ,  imsGetMarkers #   1  &  ;

In[101]:= Show Graphics  imsDrawElements femMesh, siliconElementIds   ,
PlotRange  All, AspectRatio  0.25 

‡ Physics Setup 
The  finite  element  operator  functions  need  some  further  specifications.  For
example, the diffusion operators need some information about the isotropy of the
material underneath, and each finite element operator needs a function to specify
its  behavior.  Setting  the  function  values  to  0  will  turn  off  the  operator  in  that
region.  The  functions  obtain  the  marker  of  the  element  they  are  currently
computing  and  the  coordinates  of  the  center  of  mass  of  this  element.  This
information should be enough to specify complex functions in complex regions.

We  have  not  spoken  about  the  dimensions  of  the  device.  For  meshing  it  was
convenient to set the dimensions to 10-6  (i.e., a micrometer scale). That implies,
however,  that  we  have  to  scale  the  material  data  accordingly.  This  is  what  the
xyScale values do.

We  have  four  markers  for  the  elements.  Depending  on  where  an  element  is
physically  situated  in  the  simulation  domain,  it  may  have  different  properties.
We  have  four  parts  in  our  simulation  domain.  The  silicon  parts  (silicon  device
and heater) have different material data than the air parts (free cut and flow box).
The  convection  part  of  the  equation  is  only  active  in  the  flow  box  part  of  the
simulation domain. Thus,  in the other parts we set the convection function to 0.
The heater  is  similar.  With  this mechanism  we can switch  different  parts  of the
PDE on and off in different parts of the simulation domain.
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· Anisotropy

We assume the heat conduction of silicon to be 148 W/(K m) and that  of air  to
be 23.9 * 10-3  W/(K m).

In[102]:= anisotropyScale  10^6;
anisotropyFunction  Function  marker, x, y ,

Evaluate
Which
marker  1,
Evaluate anisotropyScale  148.    1., 0. ,  0., 1.   ,
marker  2, Evaluate anisotropyScale 

148.    1., 0. ,  0., 1.   ,
marker  3, Evaluate anisotropyScale  23.9 

10^3    1., 0. ,  0., 1.   ,
marker  4, Evaluate anisotropyScale  23.9 

10^3    1., 0. ,  0., 1.   ;
· Convection

The  specific  heat  of  air  is  approximately  1000  J/(Kg  K)  and  the  density  is  1.29
Kg êm3 .

In[104]:= convectionScale  1.;
velocity  10^1.;
convectionFunction  Function  marker, x, y ,

Evaluate
Which
marker  1,  0., 0. ,
marker  2,  0., 0. ,
marker  3,  0., 0. ,
marker  4,
Evaluate  convectionScale    10001.29  velocity  y   anemometerHeight  flowHeight2   flowHeight2  ^2  1 , 0.  ;

· Load

We have a heat source of 1010  Kg ê Hs2  mL.
In[107]:= loadScale  10^6;

loadFunction  Function  marker, x, y ,
Evaluate
Which
marker  1, 0.,
marker  2, Evaluate loadScale  10^10. ,
marker  3, 0.,
marker  4, 0.;
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In[109]:=  Graphics‘PlotField‘

In[110]:= PlotVectorField Flatten convectionFunction 4, x, y  ,x, baseX, anemometerLength , y, anemometerHeight,
anemometerHeight  flowHeight , PlotRange  All 

‡ Steady-State Solution
· Initialization

First we load the Imtek`ShowStatus` package.

In[111]:= Needs"Imtek‘ShowStatus‘"
· Matrix Assembly

In[112]:= Needs"Imtek‘FEMOperators‘"
Needs"Imtek‘Assembler‘"

The assembly  of the global  matrix is  divided into  several steps.  First  we need to
initialize  the  required  global  matrices,  the  stiffness  matrix,  and  the  load  vector.
The element dimension specifies  the size of the element stiffness  matrix and the
element  right-hand side vector.  We want to loop over  all elements.  First we get
the element (let us call it i) from the mesh and get this element’s nodes. We also
need the rows and columns that this element contributes to in the global matrix.

First  we  create  two  matrices  with  0  entries—one  for  initializing  each  element
stiffness  matrix  (elementSMEmpty)  and  one  for  initializing  the  element  right-
hand side (elementRHSEmpty).

In  the main  computation each  operator  is  applied to  each element  i.  The  input
to  each  operator  is  an  element  matrix  and  an  element  right-hand  side  matrix.
Each  operator  also  returns  those  two  matrices,  now  occupied  by  the  values
computed  for  this  element.  The  order  in  which  the  operators  are  applied  does
not matter. In the last step the element matrix is assembled into the global matrix.

In[114]:= stiffness  SparseArray , numberOfNodes, numberOfNodes, 0. ;
load  Table 0.,  numberOfNodes ,  1  ;

In[116]:= elementDim 
Length imsGetIncidentsIds imsGetElements femMesh, 1   ;

In[117]:= elementSMEmpty  Table 0.,  elementDim ,  elementDim ;
elementRHSEmpty  Table 0.,  elementDim ,  1 ;
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In[119]:= Do
imsShowStatus "Computing Element Number: " 

ToString i   " from "  ToString numberOfElements  ; element initialization 
thisElement  imsGetElements femMesh, i ;
elementNodes 
imsGetNodes femMesh, imsGetIncidentsIds thisElement  ;

rows  cols  imsGetIds elementNodes ;
elementSM  imsMakeElementMatrix elementSMEmpty, rows, cols ;
elementRHS  imsMakeElementMatrix elementRHSEmpty, rows,  1  ; main computation  elementSM, elementRHS  
imsNFEMDiffusion  elementSM, elementRHS ,
thisElement, elementNodes, anisotropyFunction ; elementSM, elementRHS  

imsNFEMLoad  elementSM, elementRHS ,
thisElement, elementNodes, loadFunction ; elementSM, elementRHS  

imsNFEMConvection  elementSM, elementRHS ,
thisElement, elementNodes, convectionFunction ; elementSM, elementRHS  

imsNFEMNeumann elementSM, elementRHS , thisElement, elementNodes ; build the global stiffness and load 
imsAssemble elementSM, stiffness ;
imsAssemble elementRHS, load ;
,  i, numberOfElements ;

· Dirichlet Boundary Conditions

The  last  step  before  solving  the system  of  equations  is  to  build  in the  Dirichlet
boundary values. For this we load the Imtek`BoundaryConditions` package.

In[120]:= Needs"Imtek‘BoundaryConditions‘"
Then we select the Dirichlet boundary nodes from the mesh.

In[121]:= diriNodes  Select imsGetBoundaryNodes femMesh ,
imsGetDatas #   "Dirichlet" & ;

The Dirichlet operators get a matrix (stiffness), a vector (flattLoad), and the
position  and  value  of  the  Dirichlet  boundary  condition.  We  create  a  list  of
position (node id) and value pairs.
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In[122]:= positionValuePairs  Transpose imsGetIds diriNodes , Flatten imsGetValues diriNodes, 1    ;
This maps the Dirichlet operator on the list of position and value pairs.

In[123]:= flattLoad  Flatten load ;
Map imsDirichlet  stiffness, flattLoad , #1, #2  &,

positionValuePairs ;
· Solving

In[125]:= Needs"Imtek‘System‘"
In[126]:= load  Partition flattLoad, 1 ;

stationarySystem  imsMakeSystem load,  stiffness  
Out[127]= imsSystem3991, 1, 1, 0, 0

To solve the system of equations we load the Imtek`SystemAnalysis` package.

In[128]:= Needs"Imtek‘SystemAnalysis‘"
In[129]:= solution  imsStationarySolve stationarySystem ;
· Initialize Post Process

Now we look at the result.

First  we set  the values  of the solution  into the nodes.  Since a  node may contain
solution values at several time steps—which we so far do not have—we partition
the  solution  into  sublists  of  size  1  (see  Nodes  in  the  IMTEK  documentation  in
the Help Browser).

In[130]:= newNodes  imsSetValues allNodes, Partition solution, 1  ;
We then sort them into boundary and interior nodes.

In[131]:= newBoundaryNodes 
newNodes imsGetIds imsGetBoundaryNodes femMesh   ;

newInteriorNodes 
newNodes imsGetIds imsGetInteriorNodes femMesh   ;

Here we create a new graph with the new nodes that carry the solution.

In[133]:= solutionMesh 
imsMakeNexus newBoundaryNodes, newInteriorNodes, allElements ;

· Contour Plot

To  visualize  a  contour  plot  of  the  solution,  we  sort  the  nodes  and  obtain  their
coordinates.

In[134]:= coordinates  imsGetCoords Sort imsGetNodes solutionMesh ,
OrderedQ imsGetIds  #1, #2    &  ;

Next we obtain the incidents.
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In[135]:= incidents  imsGetIncidentsIds imsGetElements solutionMesh  ;
Then we load the Imtek`UnstructuredPlot` package.

In[136]:= Needs"Imtek‘UnstructuredPlot‘"
To set the contours we find the minimum and maximum values.

In[137]:=  minSol, maxSol   Min solution , Max solution 
Out[137]= 0., 0.119914

In[138]:= stepSize  maxSol  minSol30.
Out[138]= 0.00399714

Here is the result.

In[139]:= femP 
imsUnstructuredContourPlotcoordinates Range numberOfNodes  ,
incidents, Flatten solution , AspectRatio  Automatic,
Contours  Range minSol, maxSol, stepSize , Mesh  False,
PlotRange  All, DisplayFunction  Identity ;

In[140]:= Show  femP, Graphics device  ,
DisplayFunction  $DisplayFunction 

‡ Transient Solution via Model Order Reduction
· The Equation

Now we model the following equation:

(2)

r
∂u
ÅÅÅÅÅÅÅÅÅÅ
∂ t

Transient

+ s “2 u + g “ u
Diffusion Convection´̈ ¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨̈¨¨¨̈ ¨̈ ­ Æ¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨̈¨̈ ¨̈

= f
Load

Damping Matrix Stiffness Matrix Load Matrix

The new term is the partial time derivative.

· The Physics

In  order  to  scale  the  damping  function  correctly,  we  need  to  set  the  damping
function.  With  the  specific  heat  of  approximately  700  J/(Kg  K)  for  silicon  and
1000 J(Kg JK) for air. The densities are 2330 Kg êm3  for silicon and 1.29 Kg êm3

for air.
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In[141]:= dampingScale  10^6.;

In[142]:= dampingFunction  Compile   marker, _Integer , x, y ,
Evaluate Which

marker  1, Evaluate dampingScale  7002330 ,
marker  2, Evaluate dampingScale  7002330 ,
marker  3, Evaluate dampingScale 1000. 1.29 ,
marker  4, Evaluate dampingScale 1000. 1.29 ;

· The Damping Matrix Assembly

Since  the stiffness  matrix has  already been assembled,  we now devote our  atten-
tion  to  the  damping  matrix  matC.  This  approach  is  exactly  the  same  as  for  the
stiffness matrix. Now, however, we use the FEMTransient operator.

First we create an empty sparse array for the damping matrix.

In[143]:= damping  SparseArray , numberOfNodes, numberOfNodes, 0. ;
Next  we  obtain  the  element  dimension  and  create  an  empty  element  damping
matrix and an empty right-hand side matrix.

In[144]:= elementDim 
Length imsGetIncidentsIds imsGetElements femMesh, 1   ;

In[145]:= elementDMEmpty  Table 0.,  elementDim ,  elementDim ;
elementRHSEmpty  Table 0.,  elementDim ,  1 ;

While assembling the stiffness matrix, we used a Do loop. Now we look at a more
functional programming style. First we get all elements for the mesh.

In[147]:= allElements  imsGetElements femMesh ;
Next we obtain all element nodes, element rows, and columns.

In[148]:= allElementNodes 
imsGetNodes femMesh, #  &  imsGetIncidentsIds allElements ;

allRows  allCols  imsGetIds allElementNodes ;
We create all empty element matrices with the correct row and column entries.

In[150]:= allEmptyElements  
imsMakeElementMatrix elementDMEmpty, #, # ,
imsMakeElementMatrix elementRHSEmpty, #,  1   &  allRows;

Now we thread the transient operator over all empty elements.

In[151]:= allFilledElements 
Thread imsNFEMTransientMatrix allEmptyElements,

allElements, allElementNodes, dampingFunction  ;
In the last step we assemble the filled local damping and right-hand side matrices
into the global damping matrix and the global right-hand side vector.
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In[152]:= Map imsAssemble # 1 , damping ;
imsAssemble # 2 , load ; &, allFilledElements ;

To account for the Dirichlet values, we set the matrix entries to 0.

In[153]:= damping All, positionValuePairsAll, 1   
damping positionValuePairsAll, 1 , All   0.;

Finally, we generate a transient system.

In[154]:= transientSystem  imsSetDamping stationarySystem,  damping  
Out[154]= imsSystem3991, 1, 1, 1, 0
· Model Order Reduction

To perform a transient simulation, it is useful to reduce the order of the equation
system and to thus accomplish the transient solution in a short time.

First we load the Imtek`Arnoldi` package.

In[155]:= Needs"Imtek‘Arnoldi‘"
Then we reduce our original system to the dimension we want.

In[156]:= dimension  30; reducedSystem, matV  
imsArnoldiReduction transientSystem, dimension ;

· Transient Solution

As an excitation we choose a unit step.

To compute the transient behavior we use TransientSolve.

In[158]:= tStart  0.;
tEnd  210^3.

Out[159]= 0.002

In[160]:= Timing reducedSolution  
x . imsTransientSolve reducedSystem, x,  t, tStart, tEnd ,

UnitStep, SolveDelayed True, StepMonitor  imsShowStatust 
Out[160]= 0.32 Second, InterpolatingFunction0., 0.002, 

Here we reverse the projection.

In[161]:= tStep   tEnd  tStart 5;
time  Range tStart, tEnd, tStep ;
solutionData  Transpose matV. reducedSolution #  &  time ;
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· Post Process

The  post  processing  is  along  the  same  lines  as  previously  stated.  This  time,
however, each node has several solution values, one for each time step. 

In[164]:= transientNodes 
imsSetValues allNodes, Partition #, 1  &  solutionData ;

In[165]:= boundaryNodes 
transientNodes imsGetIds imsGetBoundaryNodes femMesh   ;

interiorNodes 
transientNodes imsGetIds imsGetInteriorNodes femMesh   ;

Then we create a new graph with the new nodes that carry the solution.

In[167]:= solutionMesh 
imsMakeNexus boundaryNodes, interiorNodes, allElements ;

· Transient Contour Plot

The minimum of the solution value should be around zero.

In[168]:=  minSol, maxSol    MinsolutionData, MaxsolutionData
Out[168]= 2.81451023 , 0.116894

In[169]:= stepSize  maxSol  minSol25.
Out[169]= 0.00467578

In[170]:= Show GraphicsArray Partition Show 
imsUnstructuredContourPlot coordinates, incidents,
Flatten imsGetValues transientNodes, Sequence #, 1   ,
Contours  Range minSol, maxSol, stepSize ,
PlotRange  All, AspectRatio  Automatic,
DisplayFunction  Identity ,

Graphics device   &  Range Length time  , 2 , DisplayFunction  $DisplayFunction 
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‡ Integrated Engineering Development Environment 
Future
A future  application  of  this  example  might  couple  the  computed  model  with  an
electrical  circuit  model.  Generally  more engineering  domains  need to be added,
which implies an implementation of new operators. The finite element operators
would be extended to arbitrary dimensions and elements.

‡ Conclusion
We have shown that the concept of using graphs, operators, and system assembly
can  be  used  to  create  an  Integrated  Engineering  Development  Environment.
Thus we have an environment  in which to create  different  engineering  domains
as  well  as  to  extend  and  solve  them.  It  is  just  a  matter  of  plugging  in  new
domains.  We have added numerical  capabilities  to Mathematica  in  the sense that
we  can  solve  some  classical  PDEs  on  arbitrary  formed  domains.  With  model
order reduction,  a  transient solution  can be found in less time than many desig-
nated commercial software tools.
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