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This article begins a program of research examining the network structure
of  precedent-based  judicial  decision  making,  using  the  United  States
Supreme Court as an initial example. It develops a set of Mathematica tools
that facilitate studies of large networks, including vehicles for Mathematica
to communicate with external network analysis software.

‡ Introduction
In common law jurisdictions such as the United States, courts frequently resolve
disputes  by  citation  and  analysis  of  prior  legal  cases.  The  law  may  thus  be
thought  of  as a  giant network  containing textual  information  embedded  in cases
(nodes)  and  relationship  information  called  citations  (arcs)  going  from  node  to
node.  In  recent  years,  the  science  of  studying  networks  has  developed  [1]  but,
while there have been some primitive attempts to look at subsets of the vast legal
network,  until  recently  there  has  been  little  done  to  take  advantage  of  modern
technology  and  network  theory.  This  article  borrows  techniques  developed
largely in sociology [2, 3] and physics and uses modern technology to learn about
the law simply by studying its network structure. The article makes extensive use
of the Java Universal Network/Graph Framework (JUNG) [4] via J/Link technol-
ogy  and  facilitates  communication  of  Mathematica  graph  structures  to  other
network  analysis  programs  such  as  Pajek  by  developing  methods  of  import  and
export  using  GraphML.  Although  this  article  focuses  on  tool  building,  it  is  my
hope  that  these  efforts,  along  with  pending  publications  on  legal  networks  by
Professor  Thomas A. Smith  of the University  of San Diego Law School [5] and
Professors  James  H.  Fowler  and  Sangick  Jeon  of  the  University  of  California,
Davis [6], will catalyze a set of studies in this field that will expand to cover other
judicial systems and yet more sophisticated analysis of network information. 

‡ The Database
Construction of the data used for this project was a significant undertaking. And
because  similar  challenges  are  likely  to  confront  others  working  in  this  field,
some  researchers  involved  in  either  legal  networks  or  the  XML  and  regular
expressions  technology  used  in  their  creation  may  find  the  following  account
useful.  Those  with  a  predominant  focus  on  legal  issues  may  wish  to  skip,  how-
ever, to the Characteristics of the Supreme Court Network section. The Mathematica  Journal  10:3 © 2007 Wolfram Media,  Inc.
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useful.  Those  with  a  predominant  focus  on  legal  issues  may  wish  to  skip,  how-
ever, to the Characteristics of the Supreme Court Network section. 

· Description of the Database

The raw data employed for this article is a set of files created in preparation of a
commercial  product  known  as USSC+  [7]  and  used  for  academic  purposes  here
under a license generously granted by its owner. Each of the 27,000 or so files in
the  database  contains  marked-up  versions  of  a  full  text  of  every  United  States
Supreme Court decision rendered from 1831 to early 2005, as  well as  important
decisions  from  the  inception  of  the  court  in  1790  until  1831.  (Basic  informa-
tion  on  the  court  may  be  found  at  en.wikipedia.org/wiki/Special:Search/
Supreme_Court_of_the_United_States.)  There  are  approximately  26,000  cases
in  the  database  at  present,  spanning  approximately  a  gigabyte  of  information.  A
completed  database  extending  the  entire  lifetime  of  the  court  is  projected  to  be
available in a year. (See Additional Material for a sample case file.)

This database was selected for several reasons. It contains the works of a court of
importance  so  that  the  conclusions  reached  in  this  article  may  have  importance
for an audience of legal academics as well as a more multidisciplinary group. It is
not  so large  as to be completely  unmanageable  and yet sufficiently  large to pose
significant challenges which, if surmounted,  can be used as a guide to analysis of
other  textual  databases.  It  is  structured  as  a  closed  database  in  which  links  to
cases other than Supreme Court cases are not followed. While in some sense this
artificially  confines the database, such constriction is essential to render issues of
network  analysis  tractable.  And  the owner  of  the database  was willing  to donate
its  use  for  this  academic  purpose without  complex  negotiations  over  intellectual
property rights. 

· Converting the Database into a Useful Mathematica 
Expression
Creation of the XML Files
Mathematica  was used extensively in the elaborate and somewhat ugly process of
converting this textual database into useful network information. To speed future
input/output  operations,  individual  case  files  were  combined  into  approximately
500 large  but  simple XML files,  each of  which conforms  to the following XML
schema. (The schema was created by feeding a program known as XMLSpy [8] a
copy  of  the  XML file,  having  it  deduce the  schema that  must  have  produced  it,
and  then  hand-tweaking  that  schema  [9].)  During  this  process,  problematic
characters such as ampersands were converted into entities such as “&amp.” 
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XMLObjectDocumentXMLObjectDeclarationVersion  1.0, Encoding  UTF8,
Standalone  yes, XMLObjectCommentW3C Schema generated

by XMLSpy v2005 rel. 3 U http:www.altova.com,
XMLElementhttp:www.w3.org2001XMLSchema, schema,http:www.w3.org2000xmlns, xs 

http:www.w3.org2001XMLSchema,
elementFormDefault qualified,XMLElementhttp:www.w3.org2001XMLSchema, element,name  case, type  xs:string, , XMLElementhttp:www.w3.org2001XMLSchema, element, name  usreport,XMLElementhttp:www.w3.org2001XMLSchema, complexType, ,XMLElementhttp:www.w3.org2001XMLSchema, sequence, ,XMLElementhttp:www.w3.org2001XMLSchema, element,ref  case, maxOccurs  unbounded, , 

Regular  expressions  [10]  were  then  defined  to  capture  the  various  forms  of
citation contained in the simple XML files. This task was complicated by (a) the
Supreme Court’s use, during its earlier days, of different forms of citation and (b)
the  original  database  creator’s  occasional  inconsistency  in  marking  up  citations
with his own identifying flags. Two examples of these regular expressions follow.
The  group  of  all  these  regular  expressions,  along  with  the  XML  elements  into
which  each  was  to  be  transformed,  was  set  forth  in  a  list  called
report2fullxmlrules. 

Extraction of citation information from the database tests the capabilities of regu-
lar  expressions.  In general,  a  citation to  a Supreme Court  opinion  takes  the fol-
lowing  form:  a  three digit  volume number,  U.S.,  an optional  alternative  volume
designation  for  older  versions,  and  a  reference  to  the  page  of  the  volume  on
which  the  opinion  begins  (the  base  page).  Thus,  “326 U.S.  434” or  “68  U.S.  (5
How.) 116” would both be syntactically  correct citations.  (For a basic exposition
of U.S. citation forms, see en.wikipedia.org/wiki/Special:Search/Court_citation.)

Simple  extraction  of  such  information  from  the  database  via  StringCases  will
prove  overinclusive  and  underinclusive,  however.  It  will  prove  overinclusive
because some citations of this form (“@cert. denied,@ 535 U.S. 1091”) are in fact
citations to something known as “denials of certiorari,” which are generally terse
explanations  that  the  Supreme  Court  will  not  hear  a  particular  case.  These
denials  of  certiorari  are  themselves  understandably  not included  in the  underly-
ing  database,  hence  permitting  a  link  to  them  would  cause  serious  problems  of
closure.  Additionally  page  break  information  within  the  opinions  has  been
denoted  by  encapsulating  something  that  looks  like  a  Supreme  Court  citation
with  the  tag  Á.  The  compiler  of  the  database  generally  (though  not  always)
added some markup near such citations so that we see things like “@ªAnderson v.
Celebrezze,@  460  U.S.  780  <L=|460  U.S.  794|>794-95.”  This  makes  the
process  overinclusive  (and  creates  the  possibility  of  double  counting).  The
regular  expression  that  follows  captures  this  sort  of  notation.  The  process  is
underinclusive  because  in  older  Supreme  Court  opinions  the  citations  encapsu-
late the name of the private contractor publishing the works (sometimes abbrevi-
ated) between the volume and page number.

The  following  principles  were  therefore  implemented  in  the  extraction  of
citation  information.  If  a  marked-up  link  was  found,  it  was  extracted.  If  a
Supreme Court citation was found that was not preceded by a character suggest-
ing  a  denial  of  certiorari  and  not  followed  by  a  marked-up  link  string,  it  was
extracted. And, finally, legacy citation strings were extracted.
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supremecourtcitation  "?:\\d1,3\\s?:Uu:punct:
Ss:punct:\\s?:\\.0,20\\?\\s\\d1,4";

legacycitation 
"&lt;\\\\d1,2\\s?:Wall\\.?:Black?:How\\.?:Pet

\\.?:Wheat\\.?:Cranch?:Dall\\.\\s\\d1,4\\&gt;";
The  command  report2fullxml  then  used  report2fullxmrule  to  translate
each of the simple XML files into a more complex XML file matching a schema
set forth in allcases290.xml (see Additional Material).

report2fullxmls_String :
ImportStringStringReplaces, report2fullxmlrules, "SymbolicXML" 

XMLElement"segment", attribs_List, body_List 
XMLElement"segment", attribs, Casesbody, _XMLElement

A typical physically bound volume of the United States Reports, which will cover
all  or  a  portion of a Supreme Court  term, might thus now be reduced to some-
thing  like  this  (in  which  the  ellipsis  represents  text deleted  to permit  a  compact
representation).

usreport vol’134’ case segment segmentname’datasegment’ 
ftHans v. Louisiana, 134 U.S. 1 1890ft cg cgi134 U.
S. 1cgi cgicontract impairmentcgi cgicontracts
cgi cgieleventh amendmentcgi cgifederal question
jurisdictioncgi cgiimmunitycgi cgijurisdiction
cgi cgisovereign immunitycgi cgistatescgi cg 
ctHans v. Louisiana, 134 U.S. 1 1890ct yendataHans v.
Louisianayendata yendataNo. 4yendata yendataArgued
and submitted January 22, 1890yendata yendataDecided March
3, 1890yendata yendata134 U.S. 1yendata segment 
segment segmentname’syll ’ cite vol2vol page419
page cite segment segment segmentname\n\nsegment
segmentname’leadopblatchford ’ cite vol45vol 
page503page cite cite vol67vol page715
page cite cite vol74vol page299page cite 
cite vol88vol page178page cite cite vol
88vol page183page cite cite vol88vol 
page616page cite cite vol91vol page587
page cite cite vol103vol page651page 
cite cite vol109vol page522page cite 
cite vol127vol page589page cite cite 
vol98vol page61page cite cite vol111
vol page505page cite segment caseusreport
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From XML to Edges
The final major step in preparing the network was to convert the citation informa-
tion  contained  in  the  complex  XML  files  into  the  directed  “edges”  (arcs)  of  a
directed graph. 

This  step  likewise  had  its  own  subtleties.  First,  to  varying  degrees  over  the
history  of  the  Supreme  Court,  opinions  have  been  adorned  with  a  syllabus
prepared  by  a  reporter  that  attempts  to  summarize  the  case  and  may  contain
citation  information  but that  is  not considered  part of the canonical  case report.
Citations  contained  in  the  syllabus  segment  of  the  opinion  (along  with  a
“datasegment”  we  created  to  hold  “metadata”  on  the  opinion)  thus  had  to  be
discounted. The XML2cites function illustrates how SymbolicXML was manipu-
lated by the Cases command and pattern recognition to permit this extraction of
only pertinent citation information. 

XML2citesx_ :
MapCasesDeleteCases#, XMLElement"segment", Alternatives

"segmentname"  "datasegment", "segmentname"  "syll",
"segmentname"  "syll ", ___, ___, 2,

XMLElement"cite", , XMLElement"vol", , vol_,
XMLElement"page", , page_ 

FromDigitsToExpression  vol, page, 10000, 4 &,
Casesx, XMLElement"case", ___, 3

Second,  an  authoritative  definition  of  each  case  had  to  be  developed  because
these  cases  would  serve  as  the  nodes  of  the  network.  The XML2caseid  function
again shows Mathematica’s use of SymbolicXML and pattern matching to extract
the citation string. The caseid2int function shows Mathematica’s use of regular
expressions to convert this string into a (hopefully unique) seven-digit number. 

XML2caseidx_ : Map
FirstFirstCases#, XMLElement"ft", , cn : ___  cn, 2 &,
Casesx, XMLElement"segment","segmentname"  "datasegment", ___, ___, 5

caseid2ints_String :
FirstStringCasess, RegularExpressionsupremecourtcitation 

FromDigitsToExpression  "$1", "$2", 10000
We can now write a function XML2Arcs that, with the help the auxiliary XML2int
function,  takes  a  SymbolicXML  representation  of  a  complex  XML  file  and
creates  a list  of citations.  The  citations take the form of a unique representation
of each case to a page of some other case.

XML2intx_ : caseid2int  XML2caseidx
XML2Arcsx_ :
MapThreadThread## &, ThroughXML2int, XML2citesx

The following code illustrates how rapidly XML2Arcs works, as well as its output.

The variable xmldatabasedirectory is used throughout the notebook. Users of
this notebook will have to reset this variable in order to accommodate  their own
systems.  It should  also be noted  that  key expressions  generated in this notebook
(such as arcs, fullcasenames,  and so on) that may take time to regenerate may be
written to a file using the Put command. 
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The variable xmldatabasedirectory is used throughout the notebook. Users of
this notebook will have to reset this variable in order to accommodate  their own
systems.  It should  also be noted  that  key expressions  generated in this notebook
(such as arcs, fullcasenames,  and so on) that may take time to regenerate may be
written to a file using the Put command. 

xmldatabasedirectory 
ToFileName$HomeDirectory, "Databases", "USSCISI", "XML";

allxmlfiles  FileNames".xml", xmldatabasedirectory;
TimingShortXML2ArcsImport

xmldatabasedirectory "\\allcases381.xml", "SymbolicXML", 30.047 Second,3810001, 3790809, 3810001, 3120248, 3810001, 3570125,3810001, 3780505, 3810001, 3120246, 3810001, 3100354,3810001, 3810017, 3810001, 3070171,
72, 3810001, 3670130, 3810001, 3340785,3810001, 3570128, 3810001, 3810011, 3810001, 2880294,3810001, 3810014, 3810001, 3760410, 31

TimingShortstartingpages  XML2intImport# &  allxmlfiles, 332.656 Second, , 20401, 20402, 20409, 20415, 20419,
539, 5420001, 5420055, 5420074, 5420088, 5420129,
5420155, 5420177, 5420200, 5420225, 5420241

TimingShortarcs 
FlattenDeleteCasesXML2ArcsImport# &  allxmlfiles, , 237.813 Second,140304, 100286, 170518, 100087, 170518, 130043, 493141,5420241, 4740146, 5420241, 4140146, 5420241, 5300437

TimingShortfullcasenames 
FlattenMapXML2caseidImport#, "XML" &, allxmlfiles, 332.657 Second, Oswald v. New York, 2 U.S. 401,

Georgia v. Brailsford, 2 U.S. 402, Hayburn’s Case, 2 U.S. 409,
27031, Aetna Health Inc. v. Davila, 542 U.S. 200 2004,
Pliler v. Ford, No. 542 U.S. 225 2004,
Intel Corp. v. Advanced Micro Devices, Inc., 542 U.S. 241 2004

TimingShortcasenames 
MapStringReplace#, RegularExpression".,^,"  "$1" &,
fullcasenames, 30.282 Second, Oswald v. New York, Georgia v. Brailsford,

Hayburn’s Case, Georgia v. Brailsford, Chisholm v. Georgia,
27028, Hiibel v. Sixth Judicial District Court of Nevada,
Aetna Health Inc. v. Davila, Pliler v. Ford,
Intel Corp. v. Advanced Micro Devices, Inc.

The XML2Arcs  function was mapped over all complex XML files in the database
to create a list of approximately 500,000 citations, which was stored in a file.

The  third  subtlety  is  that  the  citation  information  contained  in  the  underlying
case  reports,  the  complex  XML files  derived  from  them,  and  the  edges  derived
from  XML2Arcs  point  to  pages  of  various  volumes  of  the  United  States  Reports.
But  pages  are  not  the  desired  nodes  of  the  relevant  graph.  Rather,  the  desired
nodes are the cases themselves.  Thus, a mapping had to be developed between a
page citation  and a  citation to one of  these cases.  The mapping needs  to be  fast
due to the huge volume of citations that may need to be processed. 
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The  third  subtlety  is  that  the  citation  information  contained  in  the  underlying
case  reports,  the  complex  XML files  derived  from  them,  and  the  edges  derived
from  XML2Arcs  point  to  pages  of  various  volumes  of  the  United  States  Reports.
But  pages  are  not  the  desired  nodes  of  the  relevant  graph.  Rather,  the  desired
nodes are the cases themselves.  Thus, a mapping had to be developed between a
page citation  and a  citation to one of  these cases.  The mapping needs  to be  fast
due to the huge volume of citations that may need to be processed. 

The  fastest  method  we  discovered  (four  orders  of  magnitude  swifter  than  any
alternative, including use of the RangeLists command) was inspired by a note in
the  advanced  documentation  for  regular  expressions,  which states  that  there  are
cases  where  it  is  advantageous  to  translate  a  normal  expression-matching  prob-
lem  to  a  string-matching  problem.  The  concept,  illustrated  here  with  a  very
simple example, was to add a delimiter “a” to the pages of all the starting pages of
cases  and  a  delimiter  “b”  to  all  citations.  We  then  sort  the  joinder  of  the  thus-
delimited  starting  and  citation  pages,  convert  each  item  in  the  resulting  two-
dimensional list to a string, flatten the list, and perform a StringJoin operation. 

samplestartingpages 
ThreadTableRandomInteger, 0, 5500000, 4, a2867461, a, 4078658, a, 18459, a, 2152337, a

samplecitationpages  ThreadTableRandomInteger,MinFirst  samplestartingpages, 5500000, 8, b2470135, b, 3980369, b, 5060642, b, 3793785, b,4687066, b, 5472645, b, 1919039, b, 756349, b
InputFormsj  StringJoin  FlattenMapToString,

SortJoinsamplestartingpages, samplecitationpages, 2
"18459a756349b1919039b2152337a2470135b2867461a3793785b3980369b4078658a46
87066b5060642b5472645b"

We then find all  instances that  match the regular  expression  consisting of num-
bers  followed  by  a,  followed  by  anything  except  a,  followed  by  numbers,  and
followed  by  b.  These  represent,  in  a  fashion,  all  the  citations  that  cite  to  the
starting page of a case.

sc  StringCasessj, RegularExpression"\\da^a\\db"18459a756349b1919039b, 2152337a2470135b,
2867461a3793785b3980369b, 4078658a4687066b5060642b5472645b

With the StringSplit  command,  it then  becomes a  relatively  simple matter  to
map each citation page to its base page.

MapToExpression, FlattenMapThreadRuleRest#, First# &,
MapStringSplit#, "a"  "b" &, sc, 2756349  18459, 1919039  18459,

2470135  2152337, 3793785  2867461, 3980369  2867461,
4687066  4078658, 5060642  4078658, 5472645  4078658

This can all be combined into a single page2startingpage function.
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page2startingpagestartingpages_, citationpages_ :
MapToExpression, FlattenMap

ThreadRuleRest#, First# &,
MapStringSplit#, "a"  "b" &, StringCasesStringJoin 

FlattenMapToString, SortJoinThreadstartingpages, a,
Threadcitationpages, b, 2,

RegularExpression"\\da^a\\db", 2
The  stunning  speed  of  this  approach  is  demonstrated  on  our  problem,  which
involves 27,037 cases and 493,147 arcs.

Timingrealarcs  Modulep2sprules, sp2rules, flatstartingpages,
flatstartingpages  Flattenstartingpages;
sp2rules 
DispatchMapIndexed#1 #21 &, flatstartingpages;

p2sprules  page2startingpageflatstartingpages,
UnionFlattenarcs;

arcs . Dispatchp2sprules . Dispatch
MapIndexed#1  #21 &, flatstartingpages;8.032 Second, Null

Alternatives of the Full Database
The  bulk  of  the  work  in  preparing  the  network  for  analysis  is  now  complete.
There  remain,  however,  a  few  minor  tasks.  A  graph  produced  from  this  list  of
citations  would  be  multiply  connected.  However,  it  is  often  useful  and  faster  to
work with a simple network. We thus eliminate the multiple edges. The result is
a list containing a little over a quarter million citations.

DeleteRepetitionsX_ :
Blockt, tn_ : tn  Sequence; n; t  X

Lengthuniquerealarcs  DeleteRepetitionsrealarcs
258819

A  second  set  of  issues  involves  mistakes  in  the  database.  Neither  the  Supreme
Court  nor  the  individuals  creating  the original  database  are  perfect.  They  occa-
sionally transpose digits or simply miscite other opinions.  While no algorithm is
likely  to  be  capable  of  spotting (let  alone  fixing)  all  these  errors,  we can at least
spot  instances  in which  a  case  purports  to cite  a  case  written  well  in  the  future.
Given  the  inordinate  amount  of  labor  it  would  take  to  correct  these  erroneous
citations,  and  given  my  judgment  that  the  retention  of  unreformed  erroneous
citations  would  be  worse  than  their  deletion,  a  small  program  was  written  to
delete them from the database. 

TimingLengthcleanedarcs 
Selectuniquerealarcs, Min1.1#1, #1  30  #2 &1.219 Second, 258602

A  third  set  of  issues  involves  bidirectional  links.  On  occasion,  judicial  opinions
issued closely in time cite each other. While these bidirectional links are permissi-
ble  in  a  directed  graph,  they  are  impermissible  in  a  simple  undirected  graph.
Since,  on  occasion,  it  is  the  undirected  graph  that  needs  to  be  studied,  these
bidirectional links had to be flagged and, as appropriate, removed. 

508 Seth J. Chandler

The Mathematica  Journal  10:3 © 2007 Wolfram Media,  Inc.



A  third  set  of  issues  involves  bidirectional  links.  On  occasion,  judicial  opinions
issued closely in time cite each other. While these bidirectional links are permissi-
ble  in  a  directed  graph,  they  are  impermissible  in  a  simple  undirected  graph.
Since,  on  occasion,  it  is  the  undirected  graph  that  needs  to  be  studied,  these
bidirectional links had to be flagged and, as appropriate, removed. 

TimingShort
finalarcs  Withstrange  Selectcleanedarcs, #2  #1 &,

normal  Selectcleanedarcs, #2  #1 &,
Complementcleanedarcs, Intersection

normal, Reverse  strange1.203 Second, 476, 266, 597, 245, 597, 410,597, 436, 765, 203, 258038, 27037, 26152,27037, 26685, 27037, 26719, 27037, 26811
‡ Using Mathematica as a Communications Hub with 

JUNG, Pajek, and GraphML
Networks  based  on  legal  source  material  tend  to  be  large.  A  court  may  issue
thousands of opinions with many more thousands of links. Indeed, Smith reports
in his  work that  a leading database of federal  and state cases contains more than
four million cases. A statute or legal code may contain thousands of nodes such as
its  sections,  paragraphs,  and subparagraphs.  Often such codes contain thousands
more  cross  references.  It  thus  becomes  important  to  have  a  toolkit  available
capable  of  handling  large  networks.  This  section  of  the  article  describes  the
building  of  that  toolkit.  Again,  those  with  a  predominant  focus  on the  implica-
tions  of all  this  for an understanding  of the law may wish to forge swiftly  ahead
to the next section.

· The Problem with Exclusive Use of Mathematica

Much as we might like to use Mathematica  as the primary vehicle for analysis  on
such large network problems, that desire is challenged by the difficulty of Combi-
natorica  [11],  its  leading  network  analysis  package,  in  ubiquitously  scaling  to
networks of this size. While some of the routines contained in the Combinatorica
package  designed  for  analysis  of  networks  perform  adequately,  others  do  not
scale  well  to  large  graphs;  still  others  (including  simple functions  such as  InDe
grees)  simply  crash  the  kernel.  Moreover,  although  Combinatorica  indeed  con-
tains  a  rich  library  of  network  analysis  functions,  it  lacks  some  of  the  more
recently developed algorithms in the field, including those for computing various
importance measures. 

· The Packages

We  therefore  created  a  set  of  three  packages  (see  the  GraphTheory  folder  in
Additional  Material)  that  permit  Mathematica  to  serve  as  the  hub  of  a  network
connecting  its  own  graph  structures  to  three  alternative  methodologies:  (1)
JUNG`,  a  lengthy  package  that  interacts  with  JUNG,  a  software  library  that
provides  a  common  and  extensible  language  for  the  modeling,  analysis,  and
visualization  of  data  that  can  be  represented  as  a  graph  or  network;  (2)  Pajek`
(“spider”),  a  package  that  exports  to  and  imports  from  the  simple  CSV-like  file
format  used  by  Pajek,  a  Windows-based  public  domain  program (vlado.fmf.uni-
lj.si/pub/networks/pajek)  that  appears  to  have  gained  some  traction  among
network analysts; and (3) GraphML`,  a package that exports to and imports  from
files written in a species of XML known as GraphML, which is used by a variety
of programs.
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We  therefore  created  a  set  of  three  packages  (see  the  GraphTheory  folder  in
Additional  Material)  that  permit  Mathematica  to  serve  as  the  hub  of  a  network
connecting  its  own  graph  structures  to  three  alternative  methodologies:  (1)
JUNG`,  a  lengthy  package  that  interacts  with  JUNG,  a  software  library  that
provides  a  common  and  extensible  language  for  the  modeling,  analysis,  and
visualization  of  data  that  can  be  represented  as  a  graph  or  network;  (2)  Pajek`
(“spider”),  a  package  that  exports  to  and  imports  from  the  simple  CSV-like  file
format  used  by  Pajek,  a  Windows-based  public  domain  program (vlado.fmf.uni-
lj.si/pub/networks/pajek)  that  appears  to  have  gained  some  traction  among
network analysts; and (3) GraphML`,  a package that exports to and imports  from
files written in a species of XML known as GraphML, which is used by a variety
of programs.

Figure 1 illustrates the functionality  provided by these three packages.  JUNG`  is
labeled in blue, GraphML` is labeled in green, and Pajek` is labeled in red. 

Figure 1. The functionality of the JUNG`, GraphML`, and Pajek` packages.

JUNG
The  JUNG`  package  provides  access  to  the  JUNG  libraries.  This  package
requires  the  user to  have previously  downloaded  the relevant  Java archives  (JAR
files)  from  jung.sourceforge.net  and  placed  them  in  a  local  directory.  It  also
requires  the  user  to  download  several  needed  dependent  Java  archives,  such  as
XML  parsers,  according  to  the  directions  provided  at  that  site.  With  these
libraries in place, the JUNG` package leverages J/Link to permit access to JUNG
algorithms and data  structures from within Mathematica. In particular,  it permits
the Mathematica user to convert a Combinatorica graph object into a JUNG graph
object  suitable  for  analysis  using  various  JUNG algorithms—all  without  leaving
the  Mathematica  environment.  The user  can likewise  take a  JUNG graph object
and convert it back into a Combinatorica graph object. 
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The  JUNG`  package  provides  access  to  the  JUNG  libraries.  This  package
requires  the  user to  have previously  downloaded  the relevant  Java archives  (JAR
files)  from  jung.sourceforge.net  and  placed  them  in  a  local  directory.  It  also
requires  the  user  to  download  several  needed  dependent  Java  archives,  such  as
XML  parsers,  according  to  the  directions  provided  at  that  site.  With  these
libraries in place, the JUNG` package leverages J/Link to permit access to JUNG
algorithms and data  structures from within Mathematica. In particular,  it permits
the Mathematica user to convert a Combinatorica graph object into a JUNG graph
object  suitable  for  analysis  using  various  JUNG algorithms—all  without  leaving
the  Mathematica  environment.  The user  can likewise  take a  JUNG graph object
and convert it back into a Combinatorica graph object. 

Here  are  some  illustrations  of  the  functionality  provided  by  the  package.  First,
we load JUNG`, which in turn loads various Java classes and various Mathematica
packages  such  as  Combinatorica.  (Readers  may need to  alter  $Path  to  accommo-
date their own placement of the relevant packages.)

SeedRandom102257
WithjungPath  ToFileName$InstallationDirectory,

"AddOns", "Applications", "GraphTheory",
IfNotMemberQ$Path, jungPath, AppendTo$Path, jungPath;

Needs"JUNG‘"
Second,  we  create  an  edge-weighted  and  vertex-labeled  random  graph  using
basic Combinatorica commands.

rg  SetEdgeWeightsSetVertexLabels
RandomGraph12, 0.25, Type  Directed, CharacterRange"A", "L",

WeightingFunction RandomInteger, WeightRange  1, 5;
Then we convert the Combinatorica graph into a JUNG graph object.

Timingjg  Graph2JUNGGraphrg0.312487 Second,
«JavaObjectedu.uci.ics.jung.graph.impl.DirectedSparseGraph »

As  the  following  code  shows,  the  converted  JUNG  graph  object  has  the  same
number  of  vertices  and  edges,  the  same  edges  and  edge  weights,  and  the  same
vertex labels as the Combinatorica graph from which it derives.Vrg  JUNGVjg, Mrg  JUNGMjg,

SortJUNGEdgesjg, EdgeWeight  Edgesrg, EdgeWeight,
JUNGGetVertexLabelsjg  GetVertexLabelsrgTrue, True, True, True

We  can  convert  the  JUNG  graph  back  into  a  Combinatorica  graph  and  confirm
that  the  result  of  this  round  trip  is  visually  the  same  and  isomorphic  to  the
original graph.
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ShowGraphicsArrayShowGraphSpringEmbeddingrg,
TextStyle  FontFamily  "Helvetica", FontSize  10,
PlotLabel  "Before Round Trip", DisplayFunction  Identity,

ShowGraphSpringEmbeddingrg2  JUNGGraph2Graphjg,
PlotLabel  "After Round Trip", DisplayFunction Identity,
TextStyle  FontFamily  "Helvetica", FontSize  10,

PlotLabel "IsomorphicQrg,rg2  " 
ToStringIsomorphicQrg, rg2 
"\nEdgesrg,EdgeWeightSortEdgesrg2,EdgeWeight  " 
ToStringEdgesrg, EdgeWeight  SortEdgesrg2, EdgeWeight,

TextStyle FontFamily  "Helvetica", FontSize  10;

Once the graph has been converted  to a JUNG graph object,  we can use J/Link
to  access  the considerable  JUNG library  of  graph algorithms on a  more custom
basis.  Here,  for  example,  we  show  how  we  might  compute  the  “betweenness
centrality”  of  the  various  nodes  of  the  graph—a  topic  discussed  further  in  The
Most Between Cases section.

betweenness  JavaNew
"edu.uci.ics.jung.algorithms.importance.BetweennessCentrality",
jg, True, False; betweennesssetMaximumIterations50;

betweennesssetNormalizeRankingsTrue;
betweennessevaluate
Outer#1#2 &, betweennessgetRankingstoArray,originalPos, rankScore .vertexno_, score_  JUNGGetVertexLabelsjgvertexno, scoreA, 26.3333, C, 18.6667, J, 17.9167,E, 16.3333, L, 16.25, F, 15.5, D, 6.25, B, 4.83333,G, 2.33333, H, 0.333333, I, 0.25, K, 0.

Communicating with Pajek and GraphML
The  tools  developed  in  preparation  for  this  article  also  permit  us  to  get  either
JUNG or Combinatorica graphs into and out of Mathematica in ways that facilitate
their  analysis by other specialized programs.  Pajek`  uses basic Mathematica  string
manipulation  commands  to  translate  Combinatorica  graphs  into  Pajek  network
strings,  which  can  then  be  exported  in  the  conventional  fashion.  Pajek  network
files  can  likewise  be  imported  back  into  Mathematica  as  Combinatorica  graph
objects.

512 Seth J. Chandler

The Mathematica  Journal  10:3 © 2007 Wolfram Media,  Inc.

IsomorphicQ rg,rg2 True
Edges rg,EdgeWeight Sort Edges rg2,EdgeWeight True

Before Round Trip

A
B

C

D

EF

G

H

I

J

K L

After Round Trip

A
B

C

D

EF

G

H

I

J

K L



The  tools  developed  in  preparation  for  this  article  also  permit  us  to  get  either
JUNG or Combinatorica graphs into and out of Mathematica in ways that facilitate
their  analysis by other specialized programs.  Pajek`  uses basic Mathematica  string
manipulation  commands  to  translate  Combinatorica  graphs  into  Pajek  network
strings,  which  can  then  be  exported  in  the  conventional  fashion.  Pajek  network
files  can  likewise  be  imported  back  into  Mathematica  as  Combinatorica  graph
objects.

Needs"Pajek‘"
ExportToFileName$HomeDirectory, "Temp", "pfn1.net",

Graph2PajekNetworkStringrg, "Text";
JUNGGraph2PajekNetworkFile
ToFileName$HomeDirectory, "Temp", "pfn2.net", jg

The  following  graphic  illustrates  some  of  the  possibilities  for  analysis  facilitated
by this  link to  Pajek.  Here,  for  example,  we show a diagram produced  by  Pajek
(and  exported  in  encapsulated  PostScript).  Pajek  has  taken  a  graph  exported  by
Mathematica,  embedded  it  using  the  Fruchterman–Reingold  algorithm  and
labeled the vertices.

ShowImportToFileName$HomeDirectory, "Temp", "pnf2.eps",
PlotRange  0, 1200, 0, 800
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Pajek

The GraphML`  package uses Mathematica’s  SymbolicXML  capabilities  to permit
users to export Combinatorica graphs into a species of XML known as GraphML,
which  is  used  by  some  network  analysis  and  visualization  programs  as  a  storage
medium.  GraphML  files  can  likewise  be  imported  back  into  Mathematica  as
Combinatorica graphs. 

Needs"GraphML‘"
ShallowGraph2SymbolicXMLrg, 6
XMLObjectDocumentXMLObjectDeclarationVersion  1.0, Encoding  UTF8,

XMLObjectComment This file was written by Mathematica 5.1,
XMLElementgraphml,2  http:graphml.graphdrawing.orgxmlns,2  http:www.w3.org2001XMLSchemainstance,2  http:graphml.graphdrawing.orgxmlns http:

graphml.graphdrawing.orgxmlns1.0graphml.xsd,XMLElementgraph, 1, 53, 
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The following code shows that basic information is not lost in a round trip from
a Mathematica graph to a SymbolicXML representation. 

IsomorphicQSymbolicXML2GraphGraph2SymbolicXMLrg, rg
True

‡ Characteristics of the Supreme Court Network
The variety of tools now in place permits a multi-pronged rudimentary probe of
the  structure of  the Supreme Court  network.  The efforts  shown here are not,  it
should be emphasized, anything approaching an exhaustive analysis, but simply a
proof of concept along with an exposition of several initial findings.

We can create a Pajek network file that represents our database.

pajekdatadirectory 
ToFileName$HomeDirectory, "Databases", "Pajek";

ExportToFileNamepajekdatadirectory, "sctg.net",
StringJoin  "Vertices 27037\n",

MapIndexedToString#21  " \""  #1  "\"\n" &, casenames,
"Arcs\n", MapToString#1  " "  ToString#2  " 1\n" &,
finalarcs, "Text"

Assuming  the  particular  machine  on  which  this  process  is  implemented  can
accommodate  a  large  Java  heap,  we  can  also  read  it  back  in  as  a  JUNG  graph
object. The process takes less than a minute.

j  PajekNetworkFile2JUNGGraph
ToFileNamepajekdatadirectory, "sctg.net"

«JavaObjectedu.uci.ics.jung.graph.impl.SparseGraph »

We can also swiftly read it in as a Mathematica graph object.

Timingg  Withfop  FromOrderedPairsfinalarcs, Type  Undirected,
Graphfop1, MapThreadAppend#1, VertexLabel  #2 &,fop2, fullcasenames, EdgeDirection  False0.5 Second, Graph:258047, 27037, Undirected

· Density

The  density  of  a  network  is  the  number  of  edges  it  contains  divided  by  the
number  of  edges  a  completely  connected  network  could  contain.  We  calculate
density  using  both  JUNG and  Mathematica.  The  Supreme  Court  network  has  a
very  low  density  of  about  0.0007,  reflecting  the  fact  that  only  258,047  of  the
theoretically possible 365 million possible citations exist. N JUNGMj


JUNGVj JUNGVj  1 2 , N Mg


Vg Vg  12 0.000706038, 0.000706038
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· Degree Distribution

The  degree  of  a  node  in a  network  is  the  number  of  connections  it  contains  to
other  nodes  in  the  network.  The  distribution  of  degrees  among  the  nodes  in  a
network  is  often  indicative  of  how  information  passes  throughout  the  network.
The following  code shows how Mathematica  and JUNG via  J/Link  can combine
to generate this information. 

networkdegreedistributions 
Withindex  Indexer‘newIndexerj, 1, Table

Through#outDegree &, #inDegree &indexgetVertexi,i, 1, JUNGVj;
The  following  graphic  shows the  distribution  of  degrees  in  our  Supreme  Court
database using in degree exceedance: the x-axis shows the number of citations to
a  case  and  the  y-axis  shows  the  number  of  cases  for  which  the  number  of  cita-
tions  to  it  equals  or  exceeds  the  value  on  the  x-axis.  (This  method  of  analysis
avoids binning problems that potentially  plague alternative methods.) The larger
black dots show the results for our Supreme Court database. 

This  plot,  with  a  significant  upward  bowing,  does  not  correspond  with  the
downward sloping straight line that we would expect to see were the distribution
taken  from a power  distribution,  such as  that  generated by a  scale-free  network.
Neither does it correspond well to what we would expect to see were the distribu-
tion taken from a normal distribution, which is roughly what we would see if the
distribution were generated by a truly random graph. 

However,  one  distribution  that  does  match  quite  well  the  sort  of  exceedance
found  in  the  Supreme  Court  database  is  a  Weibull  Distribution
(‰-I xÅÅÅÅÅb Ma xa-1 a b-a ),  which  measures  the  lifetime  of  an object  before  it  fails.  The
little gray points on the plot show what we would expect to see resulting from a
Weibull  distribution.  As  we  can  see,  it  is  a  pretty  close  match,  suggesting  that
perhaps  the  number  of  citations  to  a  case  is  simply  a  function  of  its  intellectual
longevity and that cases fail much in the same manner as mechanical parts.

exceedance  Withn  Last  networkdegreedistributions,
TableCountn, _?#  i &, i, 0, 340;
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Needs"Statistics‘DataManipulation‘"
We  can  also  look  at  a  correlation  between  in  degree  and  out  degree  in  the
Supreme Court network. We see modest correlation, suggesting that the number
of cases an opinion cites may be a proxy for the importance of the case, as well as
for the territory covered by the case, both of which would increase the probabil-
ity that a subsequent case would cite it.

ListPlot3DBinCountsMapLog10, # &,
DeleteCasesnetworkdegreedistributions, ___, 0, ___, 2  N,0.0001, 3, 0.2, 0.001, 3, 0.2, PlotRange  0, 970,

TextStyle  FontFamily  "HelveticaOblique", FontSize  8,
AxesLabel  StyleForm"Cites",

FontFamily  "Helvetica", FontSize  10,
StyleForm"Cited By", FontFamily  "Helvetica", FontSize  10,
StyleForm"Count ", FontFamily  "Helvetica", FontSize  10,

MeshRange  0, 3, 0, 3,
Ticks  #, HoldForm10# &  Range0, 3,#, HoldForm10# &  Range0, 3, Automatic;
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· Clustering

We can use JUNG conveniently to figure out how clustered the Supreme Court
network  is.  The  following  code,  which  takes  upwards  of  a  minute  to  execute,
creates a set of clusters.

wcc  JavaNew"edu.uci.ics.jung.algorithms.
cluster.WeakComponentClusterer"extractj

«JavaObjectedu.uci.ics.jung.algorithms.cluster.VertexClusterSet »

We can sort the clusters by size from largest to smallest  and then get the size of
the largest cluster, which turns out to be 25,654. Thus, virtually all of the cases in
the  Supreme  Court  database  are  connected  to  each  other.  The  remainder  lie  in
tiny subnetworks.

wccsort; wccgetCluster0size
25654

We  can  also  determine  the  k-radius  clustering  coefficient  for  the  undirected
version of the graph. We do so by taking a sample of vertices in the network and
dividing,  for  each  vertex,  the  number  of  edges  in  the  subgraph  induced  on  a
k-radius  neighborhood  of  that  vertex  with  the  number  of  edges  (vHv - 1L ê 2,
where  v  is  the  number  of  vertices  in  that  neighborhood)  that  would  exist  in  a
complete  graph  impressed  on  that  k-radius  neighborhood.  We  then  take  the
average of these quotients to approximate the clustering coefficient for the entire
graph. All of this can be done within Mathematica, albeit somewhat slowly.
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We  can  also  determine  the  k-radius  clustering  coefficient  for  the  undirected
version of the graph. We do so by taking a sample of vertices in the network and
dividing,  for  each  vertex,  the  number  of  edges  in  the  subgraph  induced  on  a
k-radius  neighborhood  of  that  vertex  with  the  number  of  edges  (vHv - 1L ê 2,
where  v  is  the  number  of  vertices  in  that  neighborhood)  that  would  exist  in  a
complete  graph  impressed  on  that  k-radius  neighborhood.  We  then  take  the
average of these quotients to approximate the clustering coefficient for the entire
graph. All of this can be done within Mathematica, albeit somewhat slowly.

When these  experiments  are  done, they tend to yield clustering coefficients  that
have medians  and means in the 0.3 to 0.4 range. This suggests that  the scope of
many  cases  is  sufficiently  narrow  and  the  court’s  research  ability  is  sufficiently
high that most related cases are able to “communicate” with each other. And this
fact  may  be  partly  responsible  for  (or  at  least  reflective  of)  what  is  generally
regarded as the complexity of much Supreme Court jurisprudence.

clusteringcoefficientg_Graph, vertex_Integer, k_Integer :

Moduleisg  InduceSubgraphg, Neighborhoodg, vertex, k,
v  Visg;
Ifv  1, 2 

Misg

Visg Visg  1 , 

Shortcoefficients 
DeleteCasesWithr  RandomKSubsetRangeVg, 500, Threadr, Mapclusteringcoefficientg, #, 1 &, r, _Integer, 81, 2


5
, 174, 54


143

, 212, 8

15

, 365, 1

2
, 494, 2


3
, 453,26612, 214


783

, 26646, 86

195

, 26720, 61

220

, 26907, 2

5
, 27008, 2


3


NThroughMean, MedianLast  coefficients0.36035, 0.325
We  can  also  test  whether  clustering  has  changed  over  the  years.  The  linear
regression shows that the sequence number of the case (a proxy for age) accounts
for  only  about  1%  of  the variation  in clustering  coefficients.  And  while,  techni-
cally,  sequence  number  has  a  statistically  significant  negative  coefficient,  the
effect  is  awfully  small.  It  is  fair  to  say,  then,  that  clustering  has  not  changed
dramatically over the years.

Needs"Statistics‘LinearRegression‘"
r  Regresscoefficients, 1, caseseqno, caseseqno


RSquared  0.0124372

Estimate SE TStat PValue

1 4.101 2.102 2.101 0.

caseseqno 3.1106 1.3106 2.4 1.6102




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· Node Centrality Measures

We can  use our  set  of  tools  to  study  the  importance  of  various  Supreme Court
decisions,  as  determined  simply  from  the  connectivity  information  in  a  way
unaffected (and unbiased) by the contents of the decisions. 

The Most Cited Cases
One measure of importance  is simply  the number  of times a case has been cited
by other Supreme Court cases. We can use a mix of Mathematica  and JUNG via
J/Link  to  conduct  this  analysis.  The  resulting  list  of  cases  is  largely  familiar  to
most  scholars  of American  constitutional  law.  The first  two,  McCulloch  v.  Mary-
land and  Gibbons v. Ogden,  by way of example,  establish the federal government’s
broad power over commerce.  The third and fourth involve the rights of accused
criminals.  And  the  fifth  is  a  critical  case  involving  allocation  of  power  in  the
American  government  among  its  executive,  legislative,  and  judicial  branches.
The  only  one  of  these  most-cited  cases  decided  in  the  last  40  years  is  Chevron,
U.S.A.  v.  NRDC,  a  case  allocating  power  between  the  executive  and  judicial
branches over interpretation of statutes.

mostcited 
SortThreadcasenames, Last  networkdegreedistributions,
#12  #22 &;

Case Cited By

McCulloch v. Maryland

Gibbons v. Ogden

Boyd v. United States

Miranda v. Arizona

Marbury v. Madison

Erie Railroad Co. v. Tompkins

Ashwander v. Tennessee Valley Auth.

Osborn v. Bank of the United States

Cantwellv. Connecticut

Cohens v. Virginia

NAACP v. Button

Ex Parte Young

Yick Wo v. Hopkins

Gideon v. Wainwright

NAACP v. Patterson

New York Times Co. v. Sullivan

Chevron U.S.A., Inc. v. NRDC

Brown v. Board of Education of Topeka

Johnson v. Zerbst

Mapp v. Ohio

341

265

214

210

195

194

190

190

177

168

166

165

165

163

160

157

155

154

153

150

The Most Connected Cases (the Kevin Bacon Game Applied to 
Law)
We can use Pajek (with Pajek network files created by Mathematica) to play what
is sometimes called the Kevin Bacon game on the Supreme Court network. (The
original  Kevin  Bacon  game  is  described  more  fully  at  en.wikipedia.org/wiki/
Special:Search/Six_Degrees_of_Kevin_Bacon).  To  do  this,  we  compute  the
“geodesic”  between  each  node  (case)  and  each  other  node  to  which  it  is  con-
nected.  By  geodesic,  network  theorists  mean  the  shortest  path  between  two
nodes in the same way that on earth a geodesic is  the shortest path between two
points  on  the  surface.  There  are  a  couple  of  ways  to  measure  closeness,  but  a
typical  one  is  to  compute  the  total  length  of  geodesics  between  each  node  and
each  other  node  to  which  it  is  connected  and  then  to  divide  that  sum  by  the
number  of  vertices  in  the  network.  The  following  table,  which  is  the  result  of
Pajek  churning  through  the  data  for  close  to  an  hour,  shows  the  most  central
Supreme Court decisions among the large group of weakly connected cases. The
network was converted into an undirected one prior to the analysis. Again, these
tend to be cases that are well known. The only decision from the past 40 years on
the  list  is  Seminole  Tribe  of  Florida  v.  Florida,  a  1996 decision  limiting the power
to bring lawsuits against state governments.
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We can use Pajek (with Pajek network files created by Mathematica) to play what
is sometimes called the Kevin Bacon game on the Supreme Court network. (The
original  Kevin  Bacon  game  is  described  more  fully  at  en.wikipedia.org/wiki/
Special:Search/Six_Degrees_of_Kevin_Bacon).  To  do  this,  we  compute  the
“geodesic”  between  each  node  (case)  and  each  other  node  to  which  it  is  con-
nected.  By  geodesic,  network  theorists  mean  the  shortest  path  between  two
nodes in the same way that on earth a geodesic is  the shortest path between two
points  on  the  surface.  There  are  a  couple  of  ways  to  measure  closeness,  but  a
typical  one  is  to  compute  the  total  length  of  geodesics  between  each  node  and
each  other  node  to  which  it  is  connected  and  then  to  divide  that  sum  by  the
number  of  vertices  in  the  network.  The  following  table,  which  is  the  result  of
Pajek  churning  through  the  data  for  close  to  an  hour,  shows  the  most  central
Supreme Court decisions among the large group of weakly connected cases. The
network was converted into an undirected one prior to the analysis. Again, these
tend to be cases that are well known. The only decision from the past 40 years on
the  list  is  Seminole  Tribe  of  Florida  v.  Florida,  a  1996 decision  limiting the power
to bring lawsuits against state governments.

Case or Citation Average Distance

McCulloch v. Maryland

Ashwander v. Tennessee Valley Auth.

Erie Railroad Co. v. Tompkins

Baker v. Carr

Crowell v. Benson

Cohens v. Virginia

Marbury v. Madison

Burnet v. Coronado Oil & Gas Co.

Glidden Co. v. Zdanok

Gibbons v. Ogden

Monroe v. Pape

Yakus v. United States

Ex Parte Young

Joint Anti  Fascist Refugee Committee v.McGrath
SeminoleTribe of Florida v. Florida

Osborn v. Bank of the United States

Home Building & Loan Assn. v. Blaisdell

NationalMut. Ins. Co. v. Tidewater Tran

Fay v. Noia

Carter v. Carter Coal Co.

2.8660

2.9010

2.9170

2.9270

2.9280

2.9580

2.9690

2.9750

3.0020

3.0150

3.0190

3.0210

3.0260

3.0280

3.0280

3.0380

3.0440

3.0450

3.0520

3.0570

We  can  also  look  at  the  closeness  centralization  of  the  main  component  of  the
Supreme  Court  network.  This  statistic  basically  measures  the  amount  of  varia-
tion in closeness scores of the vertices. Centralized networks such as star topolo-
gies  have  closeness  centralization  towards  one.  Decentralized  networks  have
closeness  centralization  towards  zero.  The  main  component  of  the  Supreme
Court network has a closeness centralization of 0.19711. It is thus a fairly decen-
tralized network.
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The Most Between Cases
A related measure of importance frequently used in this field is betweenness. Just
as  various  sites  or  routes  lie  on  multiple  earth  geodesics  with  varying
probability—Reykjavik,  Iceland  lies  roughly  on  many  geodesics  flown  by  air
traffic; Perth, Australia lies on much fewer—so too various nodes and edges on a
network  will  lie  on  geodesics  with  varying  probability.  The  intuition  is  that  the
nodes  or  edges  that  lie  on  the  highest  proportion  of  network  geodesics  are  the
most  important  purveyors  of  information  due  to  the  assumed  proclivity  of
information  to  flow  by  the  fastest  route  available.  Cases  with  high  betweenness
serve  as  a  communications  hub  that  facilitates  the  transmission  of  ideas.  Edges
with high betweenness are vitally accelerating the transmission of ideas, too.

The  following  chart,  generated  using  Pajek,  shows  the  most  between  cases  and
citations  in  the  Supreme  Court  database.  Interestingly,  it  is  a  compendium
largely of what we might call structural cases, involving issues such as the alloca-
tion  of  power  between  the  federal  government  and the  states,  the  separation  of
federal  power  among  the  executive,  legislative,  and  judicial  branches,  or  the
appropriate role for precedent itself. Most of these cases would be well known to
American  constitutional  experts  and  indeed  comprise  a  significant  part  of  the
curriculum in courses in the area of federal jurisdiction.

Case or Citation Betweenness

Crowell v. Benson

Erie RailroadCo. v. Tompkins

McCulloch v. Maryland

Baker v. Carr

Burnet v. Coronado Oil & Gas Co.

Ashwander v. Tennessee Valley Auth.

Cohens v. Virginia

Glidden Co. v. Zdanok

Fay v. Noia

Home Building & Loan Assn. v. Blaisdell

Marbury v. Madison

Commissioner v. Estate of Church

Osborn v. Bank of the United States

Minnesota Rate Case

Fergusonv. Moore  McCormack Lines, Inc.

Gibbons v. Ogden

Olmsteadv. United States

Joint Anti  Fascist Refugee Committee v. McGrath
Yakus v. United States

Murdock v. Memphis

0.0133

0.0116

0.0112

0.0097

0.0087

0.0085

0.0071

0.0065

0.0057

0.0056

0.0056

0.0054

0.0052

0.0052

0.0051

0.0050

0.0049

0.0046

0.0045

0.0044

· The Main Core of Supreme Court Jurisprudence

An experiment sometimes conducted on networks is  to discover their main core.
To  do  so,  we  start  removing  nodes  that  have  fewer  than  some  number  (k)  of
connections to other nodes  in the network.  When we do this, we find, however,
that  we must  iteratively  repeat  the  procedure  because,  after  the  first  pass,  there
may have been some cases that had k + m connections but, of those, more than m
were  removed  in  an  earlier  pass.  By  the  time  this  procedure  hits  a  fixed  point,
each  case  in the  resulting  network  will  be  connected  to  at  least  k  other  cases  in
the  resulting  network.  As  we  start  increasing  k,  we  get  a  set  of  cases  that  are
increasingly  well  cited  and  increasingly  interdependent.  And  we  can  see  how
high k  can go before the network disappears  altogether.  This  maximum value of
k induces what is sometimes known as the main core of a network. The following
code implements this procedure. 
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Optionskcore  Verbose  True, maxIters  50, extraIters  0;
kcoreg_Graph, k_Integer, opts___ : Modulevb, mi, ei,vb, mi, ei Verbose, maxIters, extraIters . opts . Optionskcore;

NestWhileFunctiongr, Ifvb, PrintVgr, Mgr;
InduceSubgraphgr, FlattenPositionBinCounts

Flattengr1, 0.5, Vgr  0.5, 1, _?#  k &,
g, V#1  V#2 &, 2, 2, mi, ei

Some experimentation shows that the main core of Supreme Court jurisprudence
consists of 122 cases each with 28 or more links to other cases in the main core. 

Timingmaincoregraph  kcoreg, 28, Verbose  False218.5 Second, Graph:2485, 122, Undirected
Figure 2 shows a visualization of the main core. Most of the cases involve rights
of  free  speech  and  association  under  the  American  constitution.  Perhaps  not
surprisingly,  the  density  of  the  main  core  is  about  0.34,  more  than  500  times
greater than the density of the network as a whole. 
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Figure 2. The main core of Supreme Court jurisprudence.

We  can  also  examine  the  Markov  Centrality  of  each  of  the  cases  in  the  main
core. The Markov Centrality of a node in a network is simply the probability that
we would end up at that node after taking a random walk on the network. It can
be  computed  using  the  eigenvectors  of  the  transition  matrix  created  by  the
graph.  Here  is  a  list  of  the  10  most  central  cases  in  the  main  core  of  Supreme
Court jurisprudence, using the Markov Centrality measure.
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We  can  also  examine  the  Markov  Centrality  of  each  of  the  cases  in  the  main
core. The Markov Centrality of a node in a network is simply the probability that
we would end up at that node after taking a random walk on the network. It can
be  computed  using  the  eigenvectors  of  the  transition  matrix  created  by  the
graph.  Here  is  a  list  of  the  10  most  central  cases  in  the  main  core  of  Supreme
Court jurisprudence, using the Markov Centrality measure.

TakePartGetVertexLabelsmaincoregraph,
ReverseOrderingWithev  First

EigenvectorsMap#Max1, Total# &, NToAdjacencyMatrix
maincoregraphT , 1, ev Totalev, 10Schneider v. State, NAACP v. Button,

Cantwell v. Connecticut, Thornhill v. Alabama,
Young v. American Mini Theatres, Inc., Kovacs v. Cooper,
Chaplinsky v. New Hampshire, Grayned v. City of Rockford,
Lovell v. City of Griffin, New York Times Co. v. Sullivan

Our  supposition  is  that,  because  of  the  high  degree  of  connectivity  in  the  free
speech field, changes in doctrine produced by new cases are particularly  influen-
tial  and  may  create  considerable  disequilibrium  in  the  jurisprudential  system,
much in the same way that  a  new disease  is  likely to  produce a  more prolonged
and extensive disequilibrium state of public health in a highly connected commu-
nity  than in some isolated  pocket of the world.  This  high degree of interdepen-
dence  provides  scientific  support  for  the  notion  that  the  law  of  free  speech  is
particularly complex.

‡ Conclusion
· What We Can Learn About Network Analysis

of the Law

This exploration delivers several valuable findings. First, it confirms that analysis
of the sizeable works of a court as a form of large networks is now possible using
modern  computers  [12].  Second,  it  shows  how  network  analysis  can  refine  our
understanding  of  the  seamless  web  to  which  the  law  is  often  analogized.  The
Supreme  Court  network  is  a  large  and  intricately  tangled  web,  to  be  sure,  but
deep  within  there  is  structure  that  our  mathematical  probes  can  now  discern.
Measures such as betweenness, closeness, and Markov Centrality help us find the
cases  that  lie at the core of a judicial  system. Measures  such as clustering enable
us  to  understand  the  degree  of  interdependence  of  cases  that  comprise  the
database.  And  notions  such  as  that  of  a  main  core  help  identify  areas  that  are
particularly complex. 

We also return with several specific preliminary findings about American law and
its  leading  court.  Although,  precisely  because  networks  are  intricate  creatures,
these  findings  must  be  re-examined  as  the  database  is  perfected.  It  appears  that
structural cases involving the role of the federal courts appear to lie quite literally
at  the  core  of  Supreme  Court  jurisprudence.  These  older  structural  cases  lie
closer  to  other  cases  than  do  those  in  competing  bodies  of  jurisprudence,  and
they  appear  more  important  in  the  transmission  of  information  across  the
network  as  to  the  rules  of  the  law.  Cases  involving  the  power  of  the  federal
government  to regulate commerce also appear critical. The law governing rights
of  free speech and association is  one in which the density of the seamless  web is
greatest,  in  which the reductionism  occasioned  by  study  of a  single  case is  most
likely to mislead as to the functioning of the legal organism. In this area, the level
of  interconnection  among  cases  is  extraordinarily  high.  Reinterpretations  of  a
particular  case  are  likely  to  reverberate  significantly  throughout  a  complex
system,  making  the  area  particularly  difficult  for  scholars  who  would  like  an
understanding  of  those  rights  to  reach  some  sort  of  equilibrium.  Although  the
density of the Supreme Court network is in general quite low, clustering appears
to be quite high. Related cases tend to find each other with a high regularity and
only a small fraction of cases lack connection to the main body of Supreme Court
jurisprudence.
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of  interconnection  among  cases  is  extraordinarily  high.  Reinterpretations  of  a
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system,  making  the  area  particularly  difficult  for  scholars  who  would  like  an
understanding  of  those  rights  to  reach  some  sort  of  equilibrium.  Although  the
density of the Supreme Court network is in general quite low, clustering appears
to be quite high. Related cases tend to find each other with a high regularity and
only a small fraction of cases lack connection to the main body of Supreme Court
jurisprudence.

· What We Can Learn about Mathematica

This  article  also  delivers  mixed  findings  about  Mathematica.  On  the  one  hand,
particularly  as  extended  via  J/Link,  the  language  and  program  show  great
strength  and  flexibility.  An  inexperienced  Java  programmer  was  able  to  use
J/Link  to  access  the  latest  in  network  analysis  technology  and  use  the  speed  of
Java  to  conduct  complex  analyses  on a  large  database.  On the other hand, some
of  the  analysis  proved  difficult  using  either  Mathematica  directly  or  as  a  tool  to
manipulate  JUNG libraries via J/Link.  For  some of the most  complex  computa-
tions,  resort  had  to  be  made  to  Pajek,  an  external  program  with  very  limited
extensibility;  Mathematica  was  relegated  to  the  lesser  (though  nontrivial)  role  of
data  preparation.  As  network  analysis  extends  its  domain  outwards  from  physics
and into biology, sociology, and now law, the case for Mathematica  to internalize
at least some of the capabilities presented becomes stronger. A revamped Combina-
torica,  where  much  of  the  analysis  could  be  conducted  without  learning  Java
programming  style  or  coping  with  the  complexities  or  development  of  JUNG
Java  libraries,  would  certainly  help.  On  the  other  hand,  the  time  needed  for
JUNG or Pajek to complete some tasks, such as betweenness, suggests that some
of  the  difficulty  experienced  in  preparing  this  article  may  possibly  result  more
from incurable  shortcomings  with  existing  algorithms  than  failures  of  computer
implementation.

· Future Explorations

This article has just scratched the surface of a large research program. While we
have  learned  a  few  things  about  Supreme  Court  jurisprudence  and  have  eluci-
dated some choices scholars may make in teaching and studying its decisions, we
yet  know  little  about  (a)  how  the  Supreme  Court  network  compares  to  other
precedent-based  legal  systems;  (b)  how  its  network  features  have  evolved  over
time; (c) how information about the content of the cases can be used to refine an
analysis  of  its  network  structure;  (d)  whether  its  connectivity  structure  can  be
approximated  or  generated  by  any  simple  program;  and  (e)  how  the  Supreme
Court  network  compares  to  other  common  law  networks  and  various  statutory
networks,  including the Uniform Commercial  Code, the United States tax code,
or other legal texts. Moreover, while we now have powerful tools at our disposal,
there is still very much the issue of extracting meaning from the mass of statistics
that  are  capable  of  being  produced.  This  article  leaps  from  thinking  about
judicial  opinions merely as text to thinking about the set of judicial opinions as a
true  network.  The  full  implications  of  this  additional  perspective  are  yet  to  be
fully discerned.
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