
The Mathematica® Journal

 The Network Structure
 of Supreme Court
 Jurisprudence

Seth J. Chandler

This article begins a program of research examining the network structure
of precedent-based judicial decision making, using the United States
Supreme Court as an initial example. It develops a set of Mathematica tools
that facilitate studies of large networks, including vehicles for Mathematica
to communicate with external network analysis software.

‡ Introduction
In common law jurisdictions such as the United States, courts frequently resolve
disputes by citation and analysis of prior legal cases. The law may thus be
thought of as a giant network containing textual information embedded in cases
(nodes) and relationship information called citations (arcs) going from node to
node. In recent years, the science of studying networks has developed [1] but,
while there have been some primitive attempts to look at subsets of the vast legal
network, until recently there has been little done to take advantage of modern
technology and network theory. This article borrows techniques developed
largely in sociology [2, 3] and physics and uses modern technology to learn about
the law simply by studying its network structure. The article makes extensive use
of the Java Universal Network/Graph Framework (JUNG) [4] via J/Link technol-
ogy and facilitates communication of Mathematica graph structures to other
network analysis programs such as Pajek by developing methods of import and
export using GraphML. Although this article focuses on tool building, it is my
hope that these efforts, along with pending publications on legal networks by
Professor Thomas A. Smith of the University of San Diego Law School [5] and
Professors James H. Fowler and Sangick Jeon of the University of California,
Davis [6], will catalyze a set of studies in this field that will expand to cover other
judicial systems and yet more sophisticated analysis of network information.

‡ The Database
Construction of the data used for this project was a significant undertaking. And
because similar challenges are likely to confront others working in this field,
some researchers involved in either legal networks or the XML and regular
expressions technology used in their creation may find the following account
useful. Those with a predominant focus on legal issues may wish to skip, how-
ever, to the Characteristics of the Supreme Court Network section. The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

This article has not been updated for Mathematica 8.

Construction of the data used for this project was a significant undertaking. And
because similar challenges are likely to confront others working in this field,
some researchers involved in either legal networks or the XML and regular
expressions technology used in their creation may find the following account
useful. Those with a predominant focus on legal issues may wish to skip, how-
ever, to the Characteristics of the Supreme Court Network section.

· Description of the Database

The raw data employed for this article is a set of files created in preparation of a
commercial product known as USSC+ [7] and used for academic purposes here
under a license generously granted by its owner. Each of the 27,000 or so files in
the database contains marked-up versions of a full text of every United States
Supreme Court decision rendered from 1831 to early 2005, as well as important
decisions from the inception of the court in 1790 until 1831. (Basic informa-
tion on the court may be found at en.wikipedia.org/wiki/Special:Search/
Supreme_Court_of_the_United_States.) There are approximately 26,000 cases
in the database at present, spanning approximately a gigabyte of information. A
completed database extending the entire lifetime of the court is projected to be
available in a year. (See Additional Material for a sample case file.)

This database was selected for several reasons. It contains the works of a court of
importance so that the conclusions reached in this article may have importance
for an audience of legal academics as well as a more multidisciplinary group. It is
not so large as to be completely unmanageable and yet sufficiently large to pose
significant challenges which, if surmounted, can be used as a guide to analysis of
other textual databases. It is structured as a closed database in which links to
cases other than Supreme Court cases are not followed. While in some sense this
artificially confines the database, such constriction is essential to render issues of
network analysis tractable. And the owner of the database was willing to donate
its use for this academic purpose without complex negotiations over intellectual
property rights.

· Converting the Database into a Useful Mathematica
Expression
Creation of the XML Files
Mathematica was used extensively in the elaborate and somewhat ugly process of
converting this textual database into useful network information. To speed future
input/output operations, individual case files were combined into approximately
500 large but simple XML files, each of which conforms to the following XML
schema. (The schema was created by feeding a program known as XMLSpy [8] a
copy of the XML file, having it deduce the schema that must have produced it,
and then hand-tweaking that schema [9].) During this process, problematic
characters such as ampersands were converted into entities such as “&.”

502 Seth J. Chandler

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

XMLObjectDocumentXMLObjectDeclarationVersion  1.0, Encoding  UTF8,
Standalone  yes, XMLObjectCommentW3C Schema generated

by XMLSpy v2005 rel. 3 U http:www.altova.com,
XMLElementhttp:www.w3.org2001XMLSchema, schema,http:www.w3.org2000xmlns, xs 

http:www.w3.org2001XMLSchema,
elementFormDefault qualified,XMLElementhttp:www.w3.org2001XMLSchema, element,name  case, type  xs:string, , XMLElementhttp:www.w3.org2001XMLSchema, element, name  usreport,XMLElementhttp:www.w3.org2001XMLSchema, complexType, ,XMLElementhttp:www.w3.org2001XMLSchema, sequence, ,XMLElementhttp:www.w3.org2001XMLSchema, element,ref  case, maxOccurs  unbounded, , 

Regular expressions [10] were then defined to capture the various forms of
citation contained in the simple XML files. This task was complicated by (a) the
Supreme Court’s use, during its earlier days, of different forms of citation and (b)
the original database creator’s occasional inconsistency in marking up citations
with his own identifying flags. Two examples of these regular expressions follow.
The group of all these regular expressions, along with the XML elements into
which each was to be transformed, was set forth in a list called
report2fullxmlrules.

Extraction of citation information from the database tests the capabilities of regu-
lar expressions. In general, a citation to a Supreme Court opinion takes the fol-
lowing form: a three digit volume number, U.S., an optional alternative volume
designation for older versions, and a reference to the page of the volume on
which the opinion begins (the base page). Thus, “326 U.S. 434” or “68 U.S. (5
How.) 116” would both be syntactically correct citations. (For a basic exposition
of U.S. citation forms, see en.wikipedia.org/wiki/Special:Search/Court_citation.)

Simple extraction of such information from the database via StringCases will
prove overinclusive and underinclusive, however. It will prove overinclusive
because some citations of this form (“@cert. denied,@ 535 U.S. 1091”) are in fact
citations to something known as “denials of certiorari,” which are generally terse
explanations that the Supreme Court will not hear a particular case. These
denials of certiorari are themselves understandably not included in the underly-
ing database, hence permitting a link to them would cause serious problems of
closure. Additionally page break information within the opinions has been
denoted by encapsulating something that looks like a Supreme Court citation
with the tag Á. The compiler of the database generally (though not always)
added some markup near such citations so that we see things like “@ªAnderson v.
Celebrezze,@ 460 U.S. 780 <L=|460 U.S. 794|>794-95.” This makes the
process overinclusive (and creates the possibility of double counting). The
regular expression that follows captures this sort of notation. The process is
underinclusive because in older Supreme Court opinions the citations encapsu-
late the name of the private contractor publishing the works (sometimes abbrevi-
ated) between the volume and page number.

The following principles were therefore implemented in the extraction of
citation information. If a marked-up link was found, it was extracted. If a
Supreme Court citation was found that was not preceded by a character suggest-
ing a denial of certiorari and not followed by a marked-up link string, it was
extracted. And, finally, legacy citation strings were extracted.

 The Network Structure of Supreme Court Jurisprudence 503

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

The following principles were therefore implemented in the extraction of
citation information. If a marked-up link was found, it was extracted. If a
Supreme Court citation was found that was not preceded by a character suggest-
ing a denial of certiorari and not followed by a marked-up link string, it was
extracted. And, finally, legacy citation strings were extracted.

supremecourtcitation  "?:\\d1,3\\s?:Uu:punct:
Ss:punct:\\s?:\\.0,20\\?\\s\\d1,4";

legacycitation 
"<\\\\d1,2\\s?:Wall\\.?:Black?:How\\.?:Pet

\\.?:Wheat\\.?:Cranch?:Dall\\.\\s\\d1,4\\>";
The command report2fullxml then used report2fullxmrule to translate
each of the simple XML files into a more complex XML file matching a schema
set forth in allcases290.xml (see Additional Material).

report2fullxmls_String :
ImportStringStringReplaces, report2fullxmlrules, "SymbolicXML"

XMLElement"segment", attribs_List, body_List 
XMLElement"segment", attribs, Casesbody, _XMLElement

A typical physically bound volume of the United States Reports, which will cover
all or a portion of a Supreme Court term, might thus now be reduced to some-
thing like this (in which the ellipsis represents text deleted to permit a compact
representation).

usreport vol’134’ case segment segmentname’datasegment’ 
ftHans v. Louisiana, 134 U.S. 1 1890ft cg cgi134 U.
S. 1cgi cgicontract impairmentcgi cgicontracts
cgi cgieleventh amendmentcgi cgifederal question
jurisdictioncgi cgiimmunitycgi cgijurisdiction
cgi cgisovereign immunitycgi cgistatescgi cg 
ctHans v. Louisiana, 134 U.S. 1 1890ct yendataHans v.
Louisianayendata yendataNo. 4yendata yendataArgued
and submitted January 22, 1890yendata yendataDecided March
3, 1890yendata yendata134 U.S. 1yendata segment 
segment segmentname’syll ’ cite vol2vol page419
page cite segment segment segmentname\n\nsegment
segmentname’leadopblatchford ’ cite vol45vol 
page503page cite cite vol67vol page715
page cite cite vol74vol page299page cite 
cite vol88vol page178page cite cite vol
88vol page183page cite cite vol88vol 
page616page cite cite vol91vol page587
page cite cite vol103vol page651page 
cite cite vol109vol page522page cite 
cite vol127vol page589page cite cite 
vol98vol page61page cite cite vol111
vol page505page cite segment caseusreport

504 Seth J. Chandler

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

From XML to Edges
The final major step in preparing the network was to convert the citation informa-
tion contained in the complex XML files into the directed “edges” (arcs) of a
directed graph.

This step likewise had its own subtleties. First, to varying degrees over the
history of the Supreme Court, opinions have been adorned with a syllabus
prepared by a reporter that attempts to summarize the case and may contain
citation information but that is not considered part of the canonical case report.
Citations contained in the syllabus segment of the opinion (along with a
“datasegment” we created to hold “metadata” on the opinion) thus had to be
discounted. The XML2cites function illustrates how SymbolicXML was manipu-
lated by the Cases command and pattern recognition to permit this extraction of
only pertinent citation information.

XML2citesx_ :
MapCasesDeleteCases#, XMLElement"segment", Alternatives

"segmentname"  "datasegment", "segmentname"  "syll",
"segmentname"  "syll ", ___, ___, 2,

XMLElement"cite", , XMLElement"vol", , vol_,
XMLElement"page", , page_ 

FromDigitsToExpression  vol, page, 10000, 4 &,
Casesx, XMLElement"case", ___, 3

Second, an authoritative definition of each case had to be developed because
these cases would serve as the nodes of the network. The XML2caseid function
again shows Mathematica’s use of SymbolicXML and pattern matching to extract
the citation string. The caseid2int function shows Mathematica’s use of regular
expressions to convert this string into a (hopefully unique) seven-digit number.

XML2caseidx_ : Map
FirstFirstCases#, XMLElement"ft", , cn : ___  cn, 2 &,
Casesx, XMLElement"segment","segmentname"  "datasegment", ___, ___, 5

caseid2ints_String :
FirstStringCasess, RegularExpressionsupremecourtcitation 

FromDigitsToExpression  "$1", "$2", 10000
We can now write a function XML2Arcs that, with the help the auxiliary XML2int
function, takes a SymbolicXML representation of a complex XML file and
creates a list of citations. The citations take the form of a unique representation
of each case to a page of some other case.

XML2intx_ : caseid2int  XML2caseidx
XML2Arcsx_ :
MapThreadThread## &, ThroughXML2int, XML2citesx

The following code illustrates how rapidly XML2Arcs works, as well as its output.

The variable xmldatabasedirectory is used throughout the notebook. Users of
this notebook will have to reset this variable in order to accommodate their own
systems. It should also be noted that key expressions generated in this notebook
(such as arcs, fullcasenames, and so on) that may take time to regenerate may be
written to a file using the Put command.

 The Network Structure of Supreme Court Jurisprudence 505

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

The variable xmldatabasedirectory is used throughout the notebook. Users of
this notebook will have to reset this variable in order to accommodate their own
systems. It should also be noted that key expressions generated in this notebook
(such as arcs, fullcasenames, and so on) that may take time to regenerate may be
written to a file using the Put command.

xmldatabasedirectory 
ToFileName$HomeDirectory, "Databases", "USSCISI", "XML";

allxmlfiles  FileNames".xml", xmldatabasedirectory;
TimingShortXML2ArcsImport

xmldatabasedirectory "\\allcases381.xml", "SymbolicXML", 30.047 Second,3810001, 3790809, 3810001, 3120248, 3810001, 3570125,3810001, 3780505, 3810001, 3120246, 3810001, 3100354,3810001, 3810017, 3810001, 3070171,
72, 3810001, 3670130, 3810001, 3340785,3810001, 3570128, 3810001, 3810011, 3810001, 2880294,3810001, 3810014, 3810001, 3760410, 31

TimingShortstartingpages  XML2intImport# &  allxmlfiles, 332.656 Second, , 20401, 20402, 20409, 20415, 20419,
539, 5420001, 5420055, 5420074, 5420088, 5420129,
5420155, 5420177, 5420200, 5420225, 5420241

TimingShortarcs 
FlattenDeleteCasesXML2ArcsImport# &  allxmlfiles, , 237.813 Second,140304, 100286, 170518, 100087, 170518, 130043, 493141,5420241, 4740146, 5420241, 4140146, 5420241, 5300437

TimingShortfullcasenames 
FlattenMapXML2caseidImport#, "XML" &, allxmlfiles, 332.657 Second, Oswald v. New York, 2 U.S. 401,

Georgia v. Brailsford, 2 U.S. 402, Hayburn’s Case, 2 U.S. 409,
27031, Aetna Health Inc. v. Davila, 542 U.S. 200 2004,
Pliler v. Ford, No. 542 U.S. 225 2004,
Intel Corp. v. Advanced Micro Devices, Inc., 542 U.S. 241 2004

TimingShortcasenames 
MapStringReplace#, RegularExpression".,^,"  "$1" &,
fullcasenames, 30.282 Second, Oswald v. New York, Georgia v. Brailsford,

Hayburn’s Case, Georgia v. Brailsford, Chisholm v. Georgia,
27028, Hiibel v. Sixth Judicial District Court of Nevada,
Aetna Health Inc. v. Davila, Pliler v. Ford,
Intel Corp. v. Advanced Micro Devices, Inc.

The XML2Arcs function was mapped over all complex XML files in the database
to create a list of approximately 500,000 citations, which was stored in a file.

The third subtlety is that the citation information contained in the underlying
case reports, the complex XML files derived from them, and the edges derived
from XML2Arcs point to pages of various volumes of the United States Reports.
But pages are not the desired nodes of the relevant graph. Rather, the desired
nodes are the cases themselves. Thus, a mapping had to be developed between a
page citation and a citation to one of these cases. The mapping needs to be fast
due to the huge volume of citations that may need to be processed.

506 Seth J. Chandler

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

The third subtlety is that the citation information contained in the underlying
case reports, the complex XML files derived from them, and the edges derived
from XML2Arcs point to pages of various volumes of the United States Reports.
But pages are not the desired nodes of the relevant graph. Rather, the desired
nodes are the cases themselves. Thus, a mapping had to be developed between a
page citation and a citation to one of these cases. The mapping needs to be fast
due to the huge volume of citations that may need to be processed.

The fastest method we discovered (four orders of magnitude swifter than any
alternative, including use of the RangeLists command) was inspired by a note in
the advanced documentation for regular expressions, which states that there are
cases where it is advantageous to translate a normal expression-matching prob-
lem to a string-matching problem. The concept, illustrated here with a very
simple example, was to add a delimiter “a” to the pages of all the starting pages of
cases and a delimiter “b” to all citations. We then sort the joinder of the thus-
delimited starting and citation pages, convert each item in the resulting two-
dimensional list to a string, flatten the list, and perform a StringJoin operation.

samplestartingpages 
ThreadTableRandomInteger, 0, 5500000, 4, a2867461, a, 4078658, a, 18459, a, 2152337, a

samplecitationpages  ThreadTableRandomInteger,MinFirst  samplestartingpages, 5500000, 8, b2470135, b, 3980369, b, 5060642, b, 3793785, b,4687066, b, 5472645, b, 1919039, b, 756349, b
InputFormsj  StringJoin  FlattenMapToString,

SortJoinsamplestartingpages, samplecitationpages, 2
"18459a756349b1919039b2152337a2470135b2867461a3793785b3980369b4078658a46
87066b5060642b5472645b"

We then find all instances that match the regular expression consisting of num-
bers followed by a, followed by anything except a, followed by numbers, and
followed by b. These represent, in a fashion, all the citations that cite to the
starting page of a case.

sc  StringCasessj, RegularExpression"\\da^a\\db"18459a756349b1919039b, 2152337a2470135b,
2867461a3793785b3980369b, 4078658a4687066b5060642b5472645b

With the StringSplit command, it then becomes a relatively simple matter to
map each citation page to its base page.

MapToExpression, FlattenMapThreadRuleRest#, First# &,
MapStringSplit#, "a"  "b" &, sc, 2756349  18459, 1919039  18459,

2470135  2152337, 3793785  2867461, 3980369  2867461,
4687066  4078658, 5060642  4078658, 5472645  4078658

This can all be combined into a single page2startingpage function.

 The Network Structure of Supreme Court Jurisprudence 507

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

page2startingpagestartingpages_, citationpages_ :
MapToExpression, FlattenMap

ThreadRuleRest#, First# &,
MapStringSplit#, "a"  "b" &, StringCasesStringJoin 

FlattenMapToString, SortJoinThreadstartingpages, a,
Threadcitationpages, b, 2,

RegularExpression"\\da^a\\db", 2
The stunning speed of this approach is demonstrated on our problem, which
involves 27,037 cases and 493,147 arcs.

Timingrealarcs  Modulep2sprules, sp2rules, flatstartingpages,
flatstartingpages  Flattenstartingpages;
sp2rules 
DispatchMapIndexed#1 #21 &, flatstartingpages;

p2sprules  page2startingpageflatstartingpages,
UnionFlattenarcs;

arcs . Dispatchp2sprules . Dispatch
MapIndexed#1  #21 &, flatstartingpages;8.032 Second, Null

Alternatives of the Full Database
The bulk of the work in preparing the network for analysis is now complete.
There remain, however, a few minor tasks. A graph produced from this list of
citations would be multiply connected. However, it is often useful and faster to
work with a simple network. We thus eliminate the multiple edges. The result is
a list containing a little over a quarter million citations.

DeleteRepetitionsX_ :
Blockt, tn_ : tn  Sequence; n; t  X

Lengthuniquerealarcs  DeleteRepetitionsrealarcs
258819

A second set of issues involves mistakes in the database. Neither the Supreme
Court nor the individuals creating the original database are perfect. They occa-
sionally transpose digits or simply miscite other opinions. While no algorithm is
likely to be capable of spotting (let alone fixing) all these errors, we can at least
spot instances in which a case purports to cite a case written well in the future.
Given the inordinate amount of labor it would take to correct these erroneous
citations, and given my judgment that the retention of unreformed erroneous
citations would be worse than their deletion, a small program was written to
delete them from the database.

TimingLengthcleanedarcs 
Selectuniquerealarcs, Min1.1#1, #1  30  #2 &1.219 Second, 258602

A third set of issues involves bidirectional links. On occasion, judicial opinions
issued closely in time cite each other. While these bidirectional links are permissi-
ble in a directed graph, they are impermissible in a simple undirected graph.
Since, on occasion, it is the undirected graph that needs to be studied, these
bidirectional links had to be flagged and, as appropriate, removed.

508 Seth J. Chandler

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

A third set of issues involves bidirectional links. On occasion, judicial opinions
issued closely in time cite each other. While these bidirectional links are permissi-
ble in a directed graph, they are impermissible in a simple undirected graph.
Since, on occasion, it is the undirected graph that needs to be studied, these
bidirectional links had to be flagged and, as appropriate, removed.

TimingShort
finalarcs  Withstrange  Selectcleanedarcs, #2  #1 &,

normal  Selectcleanedarcs, #2  #1 &,
Complementcleanedarcs, Intersection

normal, Reverse  strange1.203 Second, 476, 266, 597, 245, 597, 410,597, 436, 765, 203, 258038, 27037, 26152,27037, 26685, 27037, 26719, 27037, 26811
‡ Using Mathematica as a Communications Hub with

JUNG, Pajek, and GraphML
Networks based on legal source material tend to be large. A court may issue
thousands of opinions with many more thousands of links. Indeed, Smith reports
in his work that a leading database of federal and state cases contains more than
four million cases. A statute or legal code may contain thousands of nodes such as
its sections, paragraphs, and subparagraphs. Often such codes contain thousands
more cross references. It thus becomes important to have a toolkit available
capable of handling large networks. This section of the article describes the
building of that toolkit. Again, those with a predominant focus on the implica-
tions of all this for an understanding of the law may wish to forge swiftly ahead
to the next section.

· The Problem with Exclusive Use of Mathematica

Much as we might like to use Mathematica as the primary vehicle for analysis on
such large network problems, that desire is challenged by the difficulty of Combi-
natorica [11], its leading network analysis package, in ubiquitously scaling to
networks of this size. While some of the routines contained in the Combinatorica
package designed for analysis of networks perform adequately, others do not
scale well to large graphs; still others (including simple functions such as InDe
grees) simply crash the kernel. Moreover, although Combinatorica indeed con-
tains a rich library of network analysis functions, it lacks some of the more
recently developed algorithms in the field, including those for computing various
importance measures.

· The Packages

We therefore created a set of three packages (see the GraphTheory folder in
Additional Material) that permit Mathematica to serve as the hub of a network
connecting its own graph structures to three alternative methodologies: (1)
JUNG`, a lengthy package that interacts with JUNG, a software library that
provides a common and extensible language for the modeling, analysis, and
visualization of data that can be represented as a graph or network; (2) Pajek`
(“spider”), a package that exports to and imports from the simple CSV-like file
format used by Pajek, a Windows-based public domain program (vlado.fmf.uni-
lj.si/pub/networks/pajek) that appears to have gained some traction among
network analysts; and (3) GraphML`, a package that exports to and imports from
files written in a species of XML known as GraphML, which is used by a variety
of programs.

 The Network Structure of Supreme Court Jurisprudence 509

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

We therefore created a set of three packages (see the GraphTheory folder in
Additional Material) that permit Mathematica to serve as the hub of a network
connecting its own graph structures to three alternative methodologies: (1)
JUNG`, a lengthy package that interacts with JUNG, a software library that
provides a common and extensible language for the modeling, analysis, and
visualization of data that can be represented as a graph or network; (2) Pajek`
(“spider”), a package that exports to and imports from the simple CSV-like file
format used by Pajek, a Windows-based public domain program (vlado.fmf.uni-
lj.si/pub/networks/pajek) that appears to have gained some traction among
network analysts; and (3) GraphML`, a package that exports to and imports from
files written in a species of XML known as GraphML, which is used by a variety
of programs.

Figure 1 illustrates the functionality provided by these three packages. JUNG` is
labeled in blue, GraphML` is labeled in green, and Pajek` is labeled in red.

Figure 1. The functionality of the JUNG`, GraphML`, and Pajek` packages.

JUNG
The JUNG` package provides access to the JUNG libraries. This package
requires the user to have previously downloaded the relevant Java archives (JAR
files) from jung.sourceforge.net and placed them in a local directory. It also
requires the user to download several needed dependent Java archives, such as
XML parsers, according to the directions provided at that site. With these
libraries in place, the JUNG` package leverages J/Link to permit access to JUNG
algorithms and data structures from within Mathematica. In particular, it permits
the Mathematica user to convert a Combinatorica graph object into a JUNG graph
object suitable for analysis using various JUNG algorithms—all without leaving
the Mathematica environment. The user can likewise take a JUNG graph object
and convert it back into a Combinatorica graph object.

510 Seth J. Chandler

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

Mathematica

Pajek

Pajek
Network File

GraphML
File

JLink

JUNG
Libraries

JUNGGraph2GraphML
&

GraphML2JUNG

Graph2PajekNetworkString
&

PajekNetworkString2Graph

JUNGGraph2PajekNetworkFile
&

PajekNetworkFile2JUNGGraph

Various
Pajek Commands

Graph2JUNGGraph&
JUNGGraph2Graph

JLink commands
to Jung

Graph2GraphML
&

GraphML2Graph

Other
Programs Textual

Database

Regular Expression
commands

The JUNG` package provides access to the JUNG libraries. This package
requires the user to have previously downloaded the relevant Java archives (JAR
files) from jung.sourceforge.net and placed them in a local directory. It also
requires the user to download several needed dependent Java archives, such as
XML parsers, according to the directions provided at that site. With these
libraries in place, the JUNG` package leverages J/Link to permit access to JUNG
algorithms and data structures from within Mathematica. In particular, it permits
the Mathematica user to convert a Combinatorica graph object into a JUNG graph
object suitable for analysis using various JUNG algorithms—all without leaving
the Mathematica environment. The user can likewise take a JUNG graph object
and convert it back into a Combinatorica graph object.

Here are some illustrations of the functionality provided by the package. First,
we load JUNG`, which in turn loads various Java classes and various Mathematica
packages such as Combinatorica. (Readers may need to alter $Path to accommo-
date their own placement of the relevant packages.)

SeedRandom102257
WithjungPath  ToFileName$InstallationDirectory,

"AddOns", "Applications", "GraphTheory",
IfNotMemberQ$Path, jungPath, AppendTo$Path, jungPath;

Needs"JUNG‘"
Second, we create an edge-weighted and vertex-labeled random graph using
basic Combinatorica commands.

rg  SetEdgeWeightsSetVertexLabels
RandomGraph12, 0.25, Type  Directed, CharacterRange"A", "L",

WeightingFunction RandomInteger, WeightRange  1, 5;
Then we convert the Combinatorica graph into a JUNG graph object.

Timingjg  Graph2JUNGGraphrg0.312487 Second,
«JavaObjectedu.uci.ics.jung.graph.impl.DirectedSparseGraph »

As the following code shows, the converted JUNG graph object has the same
number of vertices and edges, the same edges and edge weights, and the same
vertex labels as the Combinatorica graph from which it derives.Vrg  JUNGVjg, Mrg  JUNGMjg,

SortJUNGEdgesjg, EdgeWeight  Edgesrg, EdgeWeight,
JUNGGetVertexLabelsjg  GetVertexLabelsrgTrue, True, True, True

We can convert the JUNG graph back into a Combinatorica graph and confirm
that the result of this round trip is visually the same and isomorphic to the
original graph.

 The Network Structure of Supreme Court Jurisprudence 511

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

ShowGraphicsArrayShowGraphSpringEmbeddingrg,
TextStyle  FontFamily  "Helvetica", FontSize  10,
PlotLabel  "Before Round Trip", DisplayFunction  Identity,

ShowGraphSpringEmbeddingrg2  JUNGGraph2Graphjg,
PlotLabel  "After Round Trip", DisplayFunction Identity,
TextStyle  FontFamily  "Helvetica", FontSize  10,

PlotLabel "IsomorphicQrg,rg2  " 
ToStringIsomorphicQrg, rg2 
"\nEdgesrg,EdgeWeightSortEdgesrg2,EdgeWeight  " 
ToStringEdgesrg, EdgeWeight  SortEdgesrg2, EdgeWeight,

TextStyle FontFamily  "Helvetica", FontSize  10;

Once the graph has been converted to a JUNG graph object, we can use J/Link
to access the considerable JUNG library of graph algorithms on a more custom
basis. Here, for example, we show how we might compute the “betweenness
centrality” of the various nodes of the graph—a topic discussed further in The
Most Between Cases section.

betweenness  JavaNew
"edu.uci.ics.jung.algorithms.importance.BetweennessCentrality",
jg, True, False; betweennesssetMaximumIterations50;

betweennesssetNormalizeRankingsTrue;
betweennessevaluate
Outer#1#2 &, betweennessgetRankingstoArray,originalPos, rankScore .vertexno_, score_  JUNGGetVertexLabelsjgvertexno, scoreA, 26.3333, C, 18.6667, J, 17.9167,E, 16.3333, L, 16.25, F, 15.5, D, 6.25, B, 4.83333,G, 2.33333, H, 0.333333, I, 0.25, K, 0.

Communicating with Pajek and GraphML
The tools developed in preparation for this article also permit us to get either
JUNG or Combinatorica graphs into and out of Mathematica in ways that facilitate
their analysis by other specialized programs. Pajek` uses basic Mathematica string
manipulation commands to translate Combinatorica graphs into Pajek network
strings, which can then be exported in the conventional fashion. Pajek network
files can likewise be imported back into Mathematica as Combinatorica graph
objects.

512 Seth J. Chandler

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

IsomorphicQ rg,rg2 True
Edges rg,EdgeWeight Sort Edges rg2,EdgeWeight True

Before Round Trip

A
B

C

D

EF

G

H

I

J

K L

After Round Trip

A
B

C

D

EF

G

H

I

J

K L

The tools developed in preparation for this article also permit us to get either
JUNG or Combinatorica graphs into and out of Mathematica in ways that facilitate
their analysis by other specialized programs. Pajek` uses basic Mathematica string
manipulation commands to translate Combinatorica graphs into Pajek network
strings, which can then be exported in the conventional fashion. Pajek network
files can likewise be imported back into Mathematica as Combinatorica graph
objects.

Needs"Pajek‘"
ExportToFileName$HomeDirectory, "Temp", "pfn1.net",

Graph2PajekNetworkStringrg, "Text";
JUNGGraph2PajekNetworkFile
ToFileName$HomeDirectory, "Temp", "pfn2.net", jg

The following graphic illustrates some of the possibilities for analysis facilitated
by this link to Pajek. Here, for example, we show a diagram produced by Pajek
(and exported in encapsulated PostScript). Pajek has taken a graph exported by
Mathematica, embedded it using the Fruchterman–Reingold algorithm and
labeled the vertices.

ShowImportToFileName$HomeDirectory, "Temp", "pnf2.eps",
PlotRange  0, 1200, 0, 800

A

B

C
D

E
F

G

HI J

K

L

Pajek

The GraphML` package uses Mathematica’s SymbolicXML capabilities to permit
users to export Combinatorica graphs into a species of XML known as GraphML,
which is used by some network analysis and visualization programs as a storage
medium. GraphML files can likewise be imported back into Mathematica as
Combinatorica graphs.

Needs"GraphML‘"
ShallowGraph2SymbolicXMLrg, 6
XMLObjectDocumentXMLObjectDeclarationVersion  1.0, Encoding  UTF8,

XMLObjectComment This file was written by Mathematica 5.1,
XMLElementgraphml,2  http:graphml.graphdrawing.orgxmlns,2  http:www.w3.org2001XMLSchemainstance,2  http:graphml.graphdrawing.orgxmlns http:

graphml.graphdrawing.orgxmlns1.0graphml.xsd,XMLElementgraph, 1, 53, 

 The Network Structure of Supreme Court Jurisprudence 513

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

The following code shows that basic information is not lost in a round trip from
a Mathematica graph to a SymbolicXML representation.

IsomorphicQSymbolicXML2GraphGraph2SymbolicXMLrg, rg
True

‡ Characteristics of the Supreme Court Network
The variety of tools now in place permits a multi-pronged rudimentary probe of
the structure of the Supreme Court network. The efforts shown here are not, it
should be emphasized, anything approaching an exhaustive analysis, but simply a
proof of concept along with an exposition of several initial findings.

We can create a Pajek network file that represents our database.

pajekdatadirectory 
ToFileName$HomeDirectory, "Databases", "Pajek";

ExportToFileNamepajekdatadirectory, "sctg.net",
StringJoin  "Vertices 27037\n",

MapIndexedToString#21  " \""  #1  "\"\n" &, casenames,
"Arcs\n", MapToString#1  " "  ToString#2  " 1\n" &,
finalarcs, "Text"

Assuming the particular machine on which this process is implemented can
accommodate a large Java heap, we can also read it back in as a JUNG graph
object. The process takes less than a minute.

j  PajekNetworkFile2JUNGGraph
ToFileNamepajekdatadirectory, "sctg.net"

«JavaObjectedu.uci.ics.jung.graph.impl.SparseGraph »

We can also swiftly read it in as a Mathematica graph object.

Timingg  Withfop  FromOrderedPairsfinalarcs, Type  Undirected,
Graphfop1, MapThreadAppend#1, VertexLabel  #2 &,fop2, fullcasenames, EdgeDirection  False0.5 Second, Graph:258047, 27037, Undirected

· Density

The density of a network is the number of edges it contains divided by the
number of edges a completely connected network could contain. We calculate
density using both JUNG and Mathematica. The Supreme Court network has a
very low density of about 0.0007, reflecting the fact that only 258,047 of the
theoretically possible 365 million possible citations exist. N JUNGMj


JUNGVj JUNGVj  1 2 , N Mg


Vg Vg  12 0.000706038, 0.000706038

514 Seth J. Chandler

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

· Degree Distribution

The degree of a node in a network is the number of connections it contains to
other nodes in the network. The distribution of degrees among the nodes in a
network is often indicative of how information passes throughout the network.
The following code shows how Mathematica and JUNG via J/Link can combine
to generate this information.

networkdegreedistributions 
Withindex  Indexer‘newIndexerj, 1, Table

Through#outDegree &, #inDegree &indexgetVertexi,i, 1, JUNGVj;
The following graphic shows the distribution of degrees in our Supreme Court
database using in degree exceedance: the x-axis shows the number of citations to
a case and the y-axis shows the number of cases for which the number of cita-
tions to it equals or exceeds the value on the x-axis. (This method of analysis
avoids binning problems that potentially plague alternative methods.) The larger
black dots show the results for our Supreme Court database.

This plot, with a significant upward bowing, does not correspond with the
downward sloping straight line that we would expect to see were the distribution
taken from a power distribution, such as that generated by a scale-free network.
Neither does it correspond well to what we would expect to see were the distribu-
tion taken from a normal distribution, which is roughly what we would see if the
distribution were generated by a truly random graph.

However, one distribution that does match quite well the sort of exceedance
found in the Supreme Court database is a Weibull Distribution
(‰-I xÅÅÅÅÅb Ma xa-1 a b-a), which measures the lifetime of an object before it fails. The
little gray points on the plot show what we would expect to see resulting from a
Weibull distribution. As we can see, it is a pretty close match, suggesting that
perhaps the number of citations to a case is simply a function of its intellectual
longevity and that cases fail much in the same manner as mechanical parts.

exceedance  Withn  Last  networkdegreedistributions,
TableCountn, _?#  i &, i, 0, 340;

10 20 50 100 200
Citations To

1

10

100

1000

10000

sesa
C

ni
esabata

D
hti

w
eerge

D nI
¥

x

ExceedanceGraph for In Degree Distribution
of SupremeCourt Network

 The Network Structure of Supreme Court Jurisprudence 515

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

Needs"Statistics‘DataManipulation‘"
We can also look at a correlation between in degree and out degree in the
Supreme Court network. We see modest correlation, suggesting that the number
of cases an opinion cites may be a proxy for the importance of the case, as well as
for the territory covered by the case, both of which would increase the probabil-
ity that a subsequent case would cite it.

ListPlot3DBinCountsMapLog10, # &,
DeleteCasesnetworkdegreedistributions, ___, 0, ___, 2  N,0.0001, 3, 0.2, 0.001, 3, 0.2, PlotRange  0, 970,

TextStyle  FontFamily  "HelveticaOblique", FontSize  8,
AxesLabel  StyleForm"Cites",

FontFamily  "Helvetica", FontSize  10,
StyleForm"Cited By", FontFamily  "Helvetica", FontSize  10,
StyleForm"Count ", FontFamily  "Helvetica", FontSize  10,

MeshRange  0, 3, 0, 3,
Ticks  #, HoldForm10# &  Range0, 3,#, HoldForm10# &  Range0, 3, Automatic;

100

101

102

103

Cites
100

101

102

103

CitedBy
0

200
400
600
800

Count

100

101

102

103

Cites

· Clustering

We can use JUNG conveniently to figure out how clustered the Supreme Court
network is. The following code, which takes upwards of a minute to execute,
creates a set of clusters.

wcc  JavaNew"edu.uci.ics.jung.algorithms.
cluster.WeakComponentClusterer"extractj

«JavaObjectedu.uci.ics.jung.algorithms.cluster.VertexClusterSet »

We can sort the clusters by size from largest to smallest and then get the size of
the largest cluster, which turns out to be 25,654. Thus, virtually all of the cases in
the Supreme Court database are connected to each other. The remainder lie in
tiny subnetworks.

wccsort; wccgetCluster0size
25654

We can also determine the k-radius clustering coefficient for the undirected
version of the graph. We do so by taking a sample of vertices in the network and
dividing, for each vertex, the number of edges in the subgraph induced on a
k-radius neighborhood of that vertex with the number of edges (vHv - 1L ê 2,
where v is the number of vertices in that neighborhood) that would exist in a
complete graph impressed on that k-radius neighborhood. We then take the
average of these quotients to approximate the clustering coefficient for the entire
graph. All of this can be done within Mathematica, albeit somewhat slowly.

516 Seth J. Chandler

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

We can also determine the k-radius clustering coefficient for the undirected
version of the graph. We do so by taking a sample of vertices in the network and
dividing, for each vertex, the number of edges in the subgraph induced on a
k-radius neighborhood of that vertex with the number of edges (vHv - 1L ê 2,
where v is the number of vertices in that neighborhood) that would exist in a
complete graph impressed on that k-radius neighborhood. We then take the
average of these quotients to approximate the clustering coefficient for the entire
graph. All of this can be done within Mathematica, albeit somewhat slowly.

When these experiments are done, they tend to yield clustering coefficients that
have medians and means in the 0.3 to 0.4 range. This suggests that the scope of
many cases is sufficiently narrow and the court’s research ability is sufficiently
high that most related cases are able to “communicate” with each other. And this
fact may be partly responsible for (or at least reflective of) what is generally
regarded as the complexity of much Supreme Court jurisprudence.

clusteringcoefficientg_Graph, vertex_Integer, k_Integer :

Moduleisg  InduceSubgraphg, Neighborhoodg, vertex, k,
v  Visg;
Ifv  1, 2

Misg

Visg Visg  1 , 

Shortcoefficients 
DeleteCasesWithr  RandomKSubsetRangeVg, 500, Threadr, Mapclusteringcoefficientg, #, 1 &, r, _Integer, 81, 2


5
, 174, 54


143

, 212, 8

15

, 365, 1

2
, 494, 2


3
, 453,26612, 214


783

, 26646, 86

195

, 26720, 61

220

, 26907, 2

5
, 27008, 2


3


NThroughMean, MedianLast  coefficients0.36035, 0.325
We can also test whether clustering has changed over the years. The linear
regression shows that the sequence number of the case (a proxy for age) accounts
for only about 1% of the variation in clustering coefficients. And while, techni-
cally, sequence number has a statistically significant negative coefficient, the
effect is awfully small. It is fair to say, then, that clustering has not changed
dramatically over the years.

Needs"Statistics‘LinearRegression‘"
r  Regresscoefficients, 1, caseseqno, caseseqno


RSquared  0.0124372

Estimate SE TStat PValue

1 4.101 2.102 2.101 0.

caseseqno 3.1106 1.3106 2.4 1.6102





 The Network Structure of Supreme Court Jurisprudence 517

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

· Node Centrality Measures

We can use our set of tools to study the importance of various Supreme Court
decisions, as determined simply from the connectivity information in a way
unaffected (and unbiased) by the contents of the decisions.

The Most Cited Cases
One measure of importance is simply the number of times a case has been cited
by other Supreme Court cases. We can use a mix of Mathematica and JUNG via
J/Link to conduct this analysis. The resulting list of cases is largely familiar to
most scholars of American constitutional law. The first two, McCulloch v. Mary-
land and Gibbons v. Ogden, by way of example, establish the federal government’s
broad power over commerce. The third and fourth involve the rights of accused
criminals. And the fifth is a critical case involving allocation of power in the
American government among its executive, legislative, and judicial branches.
The only one of these most-cited cases decided in the last 40 years is Chevron,
U.S.A. v. NRDC, a case allocating power between the executive and judicial
branches over interpretation of statutes.

mostcited 
SortThreadcasenames, Last  networkdegreedistributions,
#12  #22 &;

Case Cited By

McCulloch v. Maryland

Gibbons v. Ogden

Boyd v. United States

Miranda v. Arizona

Marbury v. Madison

Erie Railroad Co. v. Tompkins

Ashwander v. Tennessee Valley Auth.

Osborn v. Bank of the United States

Cantwellv. Connecticut

Cohens v. Virginia

NAACP v. Button

Ex Parte Young

Yick Wo v. Hopkins

Gideon v. Wainwright

NAACP v. Patterson

New York Times Co. v. Sullivan

Chevron U.S.A., Inc. v. NRDC

Brown v. Board of Education of Topeka

Johnson v. Zerbst

Mapp v. Ohio

341

265

214

210

195

194

190

190

177

168

166

165

165

163

160

157

155

154

153

150

The Most Connected Cases (the Kevin Bacon Game Applied to
Law)
We can use Pajek (with Pajek network files created by Mathematica) to play what
is sometimes called the Kevin Bacon game on the Supreme Court network. (The
original Kevin Bacon game is described more fully at en.wikipedia.org/wiki/
Special:Search/Six_Degrees_of_Kevin_Bacon). To do this, we compute the
“geodesic” between each node (case) and each other node to which it is con-
nected. By geodesic, network theorists mean the shortest path between two
nodes in the same way that on earth a geodesic is the shortest path between two
points on the surface. There are a couple of ways to measure closeness, but a
typical one is to compute the total length of geodesics between each node and
each other node to which it is connected and then to divide that sum by the
number of vertices in the network. The following table, which is the result of
Pajek churning through the data for close to an hour, shows the most central
Supreme Court decisions among the large group of weakly connected cases. The
network was converted into an undirected one prior to the analysis. Again, these
tend to be cases that are well known. The only decision from the past 40 years on
the list is Seminole Tribe of Florida v. Florida, a 1996 decision limiting the power
to bring lawsuits against state governments.

518 Seth J. Chandler

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

We can use Pajek (with Pajek network files created by Mathematica) to play what
is sometimes called the Kevin Bacon game on the Supreme Court network. (The
original Kevin Bacon game is described more fully at en.wikipedia.org/wiki/
Special:Search/Six_Degrees_of_Kevin_Bacon). To do this, we compute the
“geodesic” between each node (case) and each other node to which it is con-
nected. By geodesic, network theorists mean the shortest path between two
nodes in the same way that on earth a geodesic is the shortest path between two
points on the surface. There are a couple of ways to measure closeness, but a
typical one is to compute the total length of geodesics between each node and
each other node to which it is connected and then to divide that sum by the
number of vertices in the network. The following table, which is the result of
Pajek churning through the data for close to an hour, shows the most central
Supreme Court decisions among the large group of weakly connected cases. The
network was converted into an undirected one prior to the analysis. Again, these
tend to be cases that are well known. The only decision from the past 40 years on
the list is Seminole Tribe of Florida v. Florida, a 1996 decision limiting the power
to bring lawsuits against state governments.

Case or Citation Average Distance

McCulloch v. Maryland

Ashwander v. Tennessee Valley Auth.

Erie Railroad Co. v. Tompkins

Baker v. Carr

Crowell v. Benson

Cohens v. Virginia

Marbury v. Madison

Burnet v. Coronado Oil & Gas Co.

Glidden Co. v. Zdanok

Gibbons v. Ogden

Monroe v. Pape

Yakus v. United States

Ex Parte Young

Joint Anti  Fascist Refugee Committee v.McGrath
SeminoleTribe of Florida v. Florida

Osborn v. Bank of the United States

Home Building & Loan Assn. v. Blaisdell

NationalMut. Ins. Co. v. Tidewater Tran

Fay v. Noia

Carter v. Carter Coal Co.

2.8660

2.9010

2.9170

2.9270

2.9280

2.9580

2.9690

2.9750

3.0020

3.0150

3.0190

3.0210

3.0260

3.0280

3.0280

3.0380

3.0440

3.0450

3.0520

3.0570

We can also look at the closeness centralization of the main component of the
Supreme Court network. This statistic basically measures the amount of varia-
tion in closeness scores of the vertices. Centralized networks such as star topolo-
gies have closeness centralization towards one. Decentralized networks have
closeness centralization towards zero. The main component of the Supreme
Court network has a closeness centralization of 0.19711. It is thus a fairly decen-
tralized network.

 The Network Structure of Supreme Court Jurisprudence 519

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

The Most Between Cases
A related measure of importance frequently used in this field is betweenness. Just
as various sites or routes lie on multiple earth geodesics with varying
probability—Reykjavik, Iceland lies roughly on many geodesics flown by air
traffic; Perth, Australia lies on much fewer—so too various nodes and edges on a
network will lie on geodesics with varying probability. The intuition is that the
nodes or edges that lie on the highest proportion of network geodesics are the
most important purveyors of information due to the assumed proclivity of
information to flow by the fastest route available. Cases with high betweenness
serve as a communications hub that facilitates the transmission of ideas. Edges
with high betweenness are vitally accelerating the transmission of ideas, too.

The following chart, generated using Pajek, shows the most between cases and
citations in the Supreme Court database. Interestingly, it is a compendium
largely of what we might call structural cases, involving issues such as the alloca-
tion of power between the federal government and the states, the separation of
federal power among the executive, legislative, and judicial branches, or the
appropriate role for precedent itself. Most of these cases would be well known to
American constitutional experts and indeed comprise a significant part of the
curriculum in courses in the area of federal jurisdiction.

Case or Citation Betweenness

Crowell v. Benson

Erie RailroadCo. v. Tompkins

McCulloch v. Maryland

Baker v. Carr

Burnet v. Coronado Oil & Gas Co.

Ashwander v. Tennessee Valley Auth.

Cohens v. Virginia

Glidden Co. v. Zdanok

Fay v. Noia

Home Building & Loan Assn. v. Blaisdell

Marbury v. Madison

Commissioner v. Estate of Church

Osborn v. Bank of the United States

Minnesota Rate Case

Fergusonv. Moore  McCormack Lines, Inc.

Gibbons v. Ogden

Olmsteadv. United States

Joint Anti  Fascist Refugee Committee v. McGrath
Yakus v. United States

Murdock v. Memphis

0.0133

0.0116

0.0112

0.0097

0.0087

0.0085

0.0071

0.0065

0.0057

0.0056

0.0056

0.0054

0.0052

0.0052

0.0051

0.0050

0.0049

0.0046

0.0045

0.0044

· The Main Core of Supreme Court Jurisprudence

An experiment sometimes conducted on networks is to discover their main core.
To do so, we start removing nodes that have fewer than some number (k) of
connections to other nodes in the network. When we do this, we find, however,
that we must iteratively repeat the procedure because, after the first pass, there
may have been some cases that had k + m connections but, of those, more than m
were removed in an earlier pass. By the time this procedure hits a fixed point,
each case in the resulting network will be connected to at least k other cases in
the resulting network. As we start increasing k, we get a set of cases that are
increasingly well cited and increasingly interdependent. And we can see how
high k can go before the network disappears altogether. This maximum value of
k induces what is sometimes known as the main core of a network. The following
code implements this procedure.

520 Seth J. Chandler

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

An experiment sometimes conducted on networks is to discover their main core.
To do so, we start removing nodes that have fewer than some number (k) of
connections to other nodes in the network. When we do this, we find, however,
that we must iteratively repeat the procedure because, after the first pass, there
may have been some cases that had k + m connections but, of those, more than m
were removed in an earlier pass. By the time this procedure hits a fixed point,
each case in the resulting network will be connected to at least k other cases in
the resulting network. As we start increasing k, we get a set of cases that are
increasingly well cited and increasingly interdependent. And we can see how
high k can go before the network disappears altogether. This maximum value of
k induces what is sometimes known as the main core of a network. The following
code implements this procedure.

Optionskcore  Verbose  True, maxIters  50, extraIters  0;
kcoreg_Graph, k_Integer, opts___ : Modulevb, mi, ei,vb, mi, ei Verbose, maxIters, extraIters . opts . Optionskcore;

NestWhileFunctiongr, Ifvb, PrintVgr, Mgr;
InduceSubgraphgr, FlattenPositionBinCounts

Flattengr1, 0.5, Vgr  0.5, 1, _?#  k &,
g, V#1  V#2 &, 2, 2, mi, ei

Some experimentation shows that the main core of Supreme Court jurisprudence
consists of 122 cases each with 28 or more links to other cases in the main core.

Timingmaincoregraph  kcoreg, 28, Verbose  False218.5 Second, Graph:2485, 122, Undirected
Figure 2 shows a visualization of the main core. Most of the cases involve rights
of free speech and association under the American constitution. Perhaps not
surprisingly, the density of the main core is about 0.34, more than 500 times
greater than the density of the network as a whole.

 The Network Structure of Supreme Court Jurisprudence 521

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

Figure 2. The main core of Supreme Court jurisprudence.

We can also examine the Markov Centrality of each of the cases in the main
core. The Markov Centrality of a node in a network is simply the probability that
we would end up at that node after taking a random walk on the network. It can
be computed using the eigenvectors of the transition matrix created by the
graph. Here is a list of the 10 most central cases in the main core of Supreme
Court jurisprudence, using the Markov Centrality measure.

522 Seth J. Chandler

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
21

22

23

24

25

26

27

28

29

30

31

32

33 34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61 62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80
81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

1. Schenck v. United States
2. Gitlow v. People
3. Whitney v. California
4. Stromberg v. California
5. Near v. Minnesota
6. Grosjean v. American Press Co ., Inc.
7. DeJonge v. Oregon
8. Herndon v. Lowry
9. Lovell v. City of Griffin
10. Hague v. Committee for Industrial Organization
11. Schneider v. State
12. Thornhill v. Alabama
13. Cantwell v. Connecticut
14. Cox v. New Hampshire
15. Bridges v. California
16. Chaplinsky v. New Hampshire
17. Jamison v. Texas
18. Murdock v. Pennsylvania
19. Martin v. City of Struthers
20. Thomas v. Collins
21. Winters v. New York
22. Saia v. New York
23. Kovacs v. Cooper
24. Terminiello v. Chicago
25. American Communications Assn . v. Douds
26. Niemotko v. Maryland
27. Kunz v. New York
28. Dennis v. United States
29. Breard v. Alexandria
30. Beauharnais v. Illinois
31. Joseph Burstyn , Inc. v. Wilson
32. Poulos v. New Hampshire
33. Roth v. United States
34. Staub v. City of Baxley
35. NAACP v. Patterson
36. Speiser v. Randall
37. Smith v. California
38. Shelton v. Tucker
39. Times Film Corp . v. City of Chicago
40. Konigsberg v. State Bar of California

41. Communist Party v. SACB
42. Garner v. Louisiana
43. NAACP v. Button
44. Bantam Books , Inc. v. Sullivan
45. Edwards v. South Carolina
46. Gibson v. Florida Legislative Investigation Comm .
47. New York Times Co . v. Sullivan
48. Cox v. Louisiana
49. Cox v. Louisiana
50. Freedman v. Maryland
51. Dombrowski v. Pfister
52. Brown v. Louisiana
53. Adderly v. Florida
54. Walker v. City of Birmingham
55. United States v. O’Brien
56. Tinker v. Des Moines Sch . Dist .
57. Shuttlesworth v. City of Birmingham
58. Brandenburg v. Ohio
59. Cohen v. California
60. Gooding v. Wilson
61. Police Dept. of City of Chicago v. Mosley
62. Grayned v. City of Rockford
63. Branzburg v. Hayes
64. California v. LaRue
65. CBS v. Democratic Nat’l Committee
66. Miller v. California
67. Paris Adult Theatre I v. Slaton
68. Broadrick v. Oklahoma
69. Lehman v. City of Shaker Heights
70. Gertz v. Robert Welch , Inc.
71. Southeastern Promotions , Ltd. v. Conrad
72. Bigelow v. Virginia
73. Erznoznik v. City of Jacksonville
74. Buckley v. Valeo
75. Greer v. Spock
76. Va . Pharmacy Bd . v. Va . Consumer Council
77. Young v. American Mini Theatres , Inc.
78. Bates v. State Bar of Arizona
79. First Nat’l Bank of Boston v. Bellotti
80. Ohralik v. Ohio State Bar Assn .
81. FCC v. Pacifica Foundation

82. Schaumburg v. Citizens for Better Environment
83. Carey v. Brown
84. Consolidated Edison Co . v. Public Svc . Comm ’n
85. Central Hudson Gas & Elec . v. Public Svc . Comm ’n
86. Schad v. Borough of Mount Ephraim
87. Heffron v. Soc ’y for Krishna Consciousness
88. USPS v. Council of Greenburgh Civic Assns .
89. Metromedia , Inc. v. City of San Diego
90. New York v. Ferber
91. NAACP v. Claiborne Hardware Co .
92. Perry Educ . Ass ’n v. Perry Educators ’ Ass ’n
93. United States v. Grace
94. Bolger v. Youngs Drug Products Corp .
95. Minn. Bd . Commun . for Colleges v. Knight
96. City Council v. Taxpayers for Vincent
97. Sec ’y of State of Md. v. Munson Co .
98. Clark v. Commun . for Nonviolence
99. Regan v. Time , Inc.
100. Dun & Bradstreet , Inc. v. Greenmoss Builders
101. Cornelius v. NAACP Leg . Def . Fund
102. City of Renton v. Playtime Theatres
103. Boos v. Barry
104. Lakewood v. Plain Dealer Publ . Co .
105. Frisby v. Schultz
106. Texas v. Johnson
107. Ward v. Rock Against Racism
108. FW PBS v. City of Dallas
109. United States v. Kokinda
110. Barnes v. Glen Theatre , Inc.
111. Simon & Schuster v. Crime Victims Bd .
112. Forsyth County v. Nationalist Movement
113. R .A.V . v. City of St . Paul
114. Soc ’y for Krisha Consciousness v. Lee
115. Cincinnati v. Discovery Network
116. City of Ladue v. Gilleo
117. Turner Broadcasting System , Inc. v. FCC
118. Telecommunications Consortium v. FCC
119. National Endowment for the Arts v. Finley
120. Nixon v. Shrink Missouri Government PAC
121. Hill v. Colorado
122. McConnell v. Federal Election Commission

We can also examine the Markov Centrality of each of the cases in the main
core. The Markov Centrality of a node in a network is simply the probability that
we would end up at that node after taking a random walk on the network. It can
be computed using the eigenvectors of the transition matrix created by the
graph. Here is a list of the 10 most central cases in the main core of Supreme
Court jurisprudence, using the Markov Centrality measure.

TakePartGetVertexLabelsmaincoregraph,
ReverseOrderingWithev  First

EigenvectorsMap#Max1, Total# &, NToAdjacencyMatrix
maincoregraphT , 1, ev Totalev, 10Schneider v. State, NAACP v. Button,

Cantwell v. Connecticut, Thornhill v. Alabama,
Young v. American Mini Theatres, Inc., Kovacs v. Cooper,
Chaplinsky v. New Hampshire, Grayned v. City of Rockford,
Lovell v. City of Griffin, New York Times Co. v. Sullivan

Our supposition is that, because of the high degree of connectivity in the free
speech field, changes in doctrine produced by new cases are particularly influen-
tial and may create considerable disequilibrium in the jurisprudential system,
much in the same way that a new disease is likely to produce a more prolonged
and extensive disequilibrium state of public health in a highly connected commu-
nity than in some isolated pocket of the world. This high degree of interdepen-
dence provides scientific support for the notion that the law of free speech is
particularly complex.

‡ Conclusion
· What We Can Learn About Network Analysis

of the Law

This exploration delivers several valuable findings. First, it confirms that analysis
of the sizeable works of a court as a form of large networks is now possible using
modern computers [12]. Second, it shows how network analysis can refine our
understanding of the seamless web to which the law is often analogized. The
Supreme Court network is a large and intricately tangled web, to be sure, but
deep within there is structure that our mathematical probes can now discern.
Measures such as betweenness, closeness, and Markov Centrality help us find the
cases that lie at the core of a judicial system. Measures such as clustering enable
us to understand the degree of interdependence of cases that comprise the
database. And notions such as that of a main core help identify areas that are
particularly complex.

We also return with several specific preliminary findings about American law and
its leading court. Although, precisely because networks are intricate creatures,
these findings must be re-examined as the database is perfected. It appears that
structural cases involving the role of the federal courts appear to lie quite literally
at the core of Supreme Court jurisprudence. These older structural cases lie
closer to other cases than do those in competing bodies of jurisprudence, and
they appear more important in the transmission of information across the
network as to the rules of the law. Cases involving the power of the federal
government to regulate commerce also appear critical. The law governing rights
of free speech and association is one in which the density of the seamless web is
greatest, in which the reductionism occasioned by study of a single case is most
likely to mislead as to the functioning of the legal organism. In this area, the level
of interconnection among cases is extraordinarily high. Reinterpretations of a
particular case are likely to reverberate significantly throughout a complex
system, making the area particularly difficult for scholars who would like an
understanding of those rights to reach some sort of equilibrium. Although the
density of the Supreme Court network is in general quite low, clustering appears
to be quite high. Related cases tend to find each other with a high regularity and
only a small fraction of cases lack connection to the main body of Supreme Court
jurisprudence.

 The Network Structure of Supreme Court Jurisprudence 523

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

We also return with several specific preliminary findings about American law and
its leading court. Although, precisely because networks are intricate creatures,
these findings must be re-examined as the database is perfected. It appears that
structural cases involving the role of the federal courts appear to lie quite literally
at the core of Supreme Court jurisprudence. These older structural cases lie
closer to other cases than do those in competing bodies of jurisprudence, and
they appear more important in the transmission of information across the
network as to the rules of the law. Cases involving the power of the federal
government to regulate commerce also appear critical. The law governing rights
of free speech and association is one in which the density of the seamless web is
greatest, in which the reductionism occasioned by study of a single case is most
likely to mislead as to the functioning of the legal organism. In this area, the level
of interconnection among cases is extraordinarily high. Reinterpretations of a
particular case are likely to reverberate significantly throughout a complex
system, making the area particularly difficult for scholars who would like an
understanding of those rights to reach some sort of equilibrium. Although the
density of the Supreme Court network is in general quite low, clustering appears
to be quite high. Related cases tend to find each other with a high regularity and
only a small fraction of cases lack connection to the main body of Supreme Court
jurisprudence.

· What We Can Learn about Mathematica

This article also delivers mixed findings about Mathematica. On the one hand,
particularly as extended via J/Link, the language and program show great
strength and flexibility. An inexperienced Java programmer was able to use
J/Link to access the latest in network analysis technology and use the speed of
Java to conduct complex analyses on a large database. On the other hand, some
of the analysis proved difficult using either Mathematica directly or as a tool to
manipulate JUNG libraries via J/Link. For some of the most complex computa-
tions, resort had to be made to Pajek, an external program with very limited
extensibility; Mathematica was relegated to the lesser (though nontrivial) role of
data preparation. As network analysis extends its domain outwards from physics
and into biology, sociology, and now law, the case for Mathematica to internalize
at least some of the capabilities presented becomes stronger. A revamped Combina-
torica, where much of the analysis could be conducted without learning Java
programming style or coping with the complexities or development of JUNG
Java libraries, would certainly help. On the other hand, the time needed for
JUNG or Pajek to complete some tasks, such as betweenness, suggests that some
of the difficulty experienced in preparing this article may possibly result more
from incurable shortcomings with existing algorithms than failures of computer
implementation.

· Future Explorations

This article has just scratched the surface of a large research program. While we
have learned a few things about Supreme Court jurisprudence and have eluci-
dated some choices scholars may make in teaching and studying its decisions, we
yet know little about (a) how the Supreme Court network compares to other
precedent-based legal systems; (b) how its network features have evolved over
time; (c) how information about the content of the cases can be used to refine an
analysis of its network structure; (d) whether its connectivity structure can be
approximated or generated by any simple program; and (e) how the Supreme
Court network compares to other common law networks and various statutory
networks, including the Uniform Commercial Code, the United States tax code,
or other legal texts. Moreover, while we now have powerful tools at our disposal,
there is still very much the issue of extracting meaning from the mass of statistics
that are capable of being produced. This article leaps from thinking about
judicial opinions merely as text to thinking about the set of judicial opinions as a
true network. The full implications of this additional perspective are yet to be
fully discerned.

524 Seth J. Chandler

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

This article has just scratched the surface of a large research program. While we
have learned a few things about Supreme Court jurisprudence and have eluci-
dated some choices scholars may make in teaching and studying its decisions, we
yet know little about (a) how the Supreme Court network compares to other
precedent-based legal systems; (b) how its network features have evolved over
time; (c) how information about the content of the cases can be used to refine an
analysis of its network structure; (d) whether its connectivity structure can be
approximated or generated by any simple program; and (e) how the Supreme
Court network compares to other common law networks and various statutory
networks, including the Uniform Commercial Code, the United States tax code,
or other legal texts. Moreover, while we now have powerful tools at our disposal,
there is still very much the issue of extracting meaning from the mass of statistics
that are capable of being produced. This article leaps from thinking about
judicial opinions merely as text to thinking about the set of judicial opinions as a
true network. The full implications of this additional perspective are yet to be
fully discerned.

‡ References
[1] D. J. Watts, Small Worlds, Princeton: Princeton University Press, 1999.

[2] W. de Nooy, A. Mrvar, and V. Batagelj, Exploratory Social Network Analysis with
Pajek, Structural Analysis in the Social Sciences (No. 27), Cambridge: Cambridge
University Press, 2005.

[3] P. J. Carrington, ed., J. Scott, and S. Wasserman, Models and Methods in Social
Network Analysis, Structural Analysis in the Social Studies (No. 28), Cambridge:
Cambridge University Press, 2005.

[4] “JUNG (Java Universal Network/Graph Framework),” (Dec 2005)
jung.sourceforge.net.

[5] T. Smith, “The Web of Law,” San Diego Legal Studies Research Paper No. 06-11
(Spring 2005) ssrn.com/abstract=642863.

[6] J. H. Fowler and S. Jeon, “The Authority of Supreme Court Precedent: A Network
Analysis,” (Jun 29, 2005)
jhfowler.ucsd.edu/authority_of_supreme_court_precedent.pdf.

[7] “The USSC+ Database of U.S. Supreme Court Opinions,” Houston, TX: Infosynthe-
sis, Inc., (Dec 2005) supremecourtdatabase.org.

[8] “ALTOVA—XML, Data Integration, UML, and Web Services Tools,” Beverly, MA:
Altova, (Dec 2005) www.altova.com.

[9] N. Bradley, The XML Schema Companion, Boston: Addison-Wesley, 2004.

[10] J. Friedl, Mastering Regular Expressions, 2nd ed., Beijing: O’Reilly Media, Inc.,
2002.

[11] S. Pemmaraju and S. Skiena, Computational Discrete Mathematics: Combinatorics
and Graph Theory with Mathematica, Cambridge: Cambridge University Press,
2004.

[12] D. G. Post and M. B. Eisen, “How Long Is the Coastline of the Law? Thoughts on
the Fractal Nature of Legal Systems,” Journal of Legal Studies, 29(1), 2000
pp. 545–584.

‡ Additional Material
Chandler.zip

 The Network Structure of Supreme Court Jurisprudence 525

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

S. J. Chandler, “The Network Structure of Supreme Court Jurisprudence,” The Mathemat-
ica Journal, 2012. dx.doi.org/10.3888/tmj.10.3-5.

Available at www.mathematica-journal.com/data/uploads/2012/05/Chandler.zip.

About the Author
Seth J. Chandler is a law professor at the University of Houston Law Center, where he also
serves as Co-Director of its Health Law & Policy Institute. Chandler has published and
presented numerous articles on the use of Mathematica in insurance law and the
economic analysis of law. He has also presented works using Mathematica at two
conferences on A New Kind of Science. He holds a J.D. degree from Harvard University
and an A.B. from Princeton University.

Seth J. Chandler
University of Houston Law Center
100 Law Center
Houston, Texas 77025
SChandler@uh.edu

526 Seth J. Chandler

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

