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Tricks of the Trade

Edited by Paul Abbott

This is a column of programming tricks and techniques, most of
which, we hope, will be contributed by our readers, either
directly as submissions to The Mathematica Journal or as an
edited answer to a question posted in the Mathematica
newsgroup, comp.soft-sys.math.mathematica.

Sum-Free Set

The sumset of two or more subsets of an additive group is the set of all sums formed by
taking one element from each set (see planetmath.org/sumset.html). The sumset can be
computed using Tuples.

SumSet[s__List] := Union[Total /@ Tuples[{s}]]
Define @ to be SumSet.

CirclePlus := SumSet
Here is the sumset {1, 2} & {1, 3, 5} & {2}.

1,2} {1,3,5) & {2}

{4,5,6,7,8,9}

A sum-free set S is a set for which the intersection of S and the sumset S @ S is empty (see
mathworld.wolfram.com/Sum-FreeSet.html).

SumFreeQ[s_List] := s\ (s ®s) = {}
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For example, the sum-free subsets of {1, 2, 3} are () = {}, {1}, {2}, {3}, {1, 3}, and {2, 3}.
SumFreeQ /@ {{}, {1}, {2}, {3}, {1, 3}, {2, 3}}
{True, True, True, True, True, True}
Note that {1, 2} is not sum-free.
SumFreeQI[{1, 2}]
False
Here are the sum-free subsets of {1, 3,5, 7, 8}.

Select[Subsets[{1, 3, 5, 7, 8}], SumFreeQ]

{3 {1}, (3%, {54, {73, {8}, {1, 3}, {1, 5}, {1, 7}, {1, 8}, {3, 5},
{3, 7}, {3, 8}, {5, 7}, {5, 8}, {7, 8}, {1, 3, 5}, {1, 3, 7}, {1, 3, 8},
{1,5,7},{1,5,8},(3,5,7},{3,7,8},{5,7,8},{1,3,5,7}}
Sum-free subsets of {1, 2, ..., n} can be computed recursively as follows.

SumFreeSet[0] = {{}};

SumFreeSet[n_] :

SumFreeSet[n]
SumFreeSet[n - 1] U

# U {n} &) /@ Select[SumFreeSet[n — 1], B (n - &) = {} &]

The key to this computation is the use of the test H#((m—-H)={} & on
SumFreeSet[n — 1] to construct elements of SumFreeSet[n].

Here are the sum-free subsets forn =0, 1, ..., 4.

Column [Table[SumFreeSet[n], {n, 0, 4}]]

{}

{1

{41, 21

{1} {20, 31 {1, 3}, {2, 3}

{1 A1) (20, (3}, {4), {1, 3}, {1, 4}, {2, 3}, {3, 4}}
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Alternatively, sum-free subsets can be computed using NestList, starting from the empty

set.
Module[{n = 0},
Column [
NestList[
(++n; #1J (#1U {n} &) /@Select[#1, #1(\n-#1 == {} &]) &,
{{}}, 5111
{th
{3, (1
{t}, {1}, {23}
{th, {13, {2}, {3}, {1, 3}, {2, 3}}
{{h {1}, {23, (3}, {4}, {1, 3}, {1, 4}, {2, 3}, {3, 4}}
(11 {10, 423, (31, 14, (5}, {1, 3). {1, 4}, {1, 5},
(2.3}, (2.5}, (3. 4}, 13, 5}, {4, 5}, {1.3, 5. (3. 4. 5}
The number of sum-free subsets for each n are 1,2, 3, 6,9, 16, .... Searching for this se-

quence at oeis.org, we find that it is AO07865.
Length /@ First[%]

{1,2,3,6,9, 16}

Using Sow and Reap, here is the number of sum-free subsets for 0 < n < 25.

Module[{r = 0},
First@
Last@
Reap @
Nest|
(++n; Sow[Length[H]];
#U @ U(n) &) /@ Select[#, # N (n - #) = {} &]) &, {{}}, 25]]

{1,2,3,6,9,16, 24, 42, 61, 108, 151, 253, 369, 607, 847,
1400, 1954, 3139, 4398, 6976, 9583, 15456, 20982, 32816, 45417}
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m Asymptotic Expansion and x

Gregory’s series (mathworld.wolfram.com/GregorySeries.html) is a slowly convergent for-

mula for 7.
o (= l)k—l
4>
o 2k-1
T

Truncating the series after 50,000 terms (half a power of 10, in this case 10°) yields a re-
sult that is incorrect in the 6™ digit.

50000 (_1yk-1

gregory = 4°50 Z
k=1

2k-1

3.1415726535897952384626423832795041041971666293751

pi = N[, 50]

3.1415926535897932384626433832795028841971693993751

1 — |log,y(pi — gregory)]
6

However, comparing these two numbers, it is surprising how many digits they have in com-
mon [1, 2].

RealDigits[pi] — RealDigits[gregory]

{{0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0, 1,0,
0, 0’ 07 0’ 07 07 09 _29 7’ 8’ 07 0’ 07 0’ 09 0’ 3’ _3’ 7, 0’ 07 0’ 07 0}5 0}
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Moreover, the index of the position of the least significant digit of each block of different
digits is an odd multiple of 5.

Partition[Rest @ First[ %], 5]

00 0 0 2
00 0 0 O
00 0 0 -2
00 0 0 O
00 0 1 O
00 0 0 O
00 -27 8
00 0 0 O
03 -3720

The differences can be computed using FromDigits.

FromDigits /@ %

{2,0,-2,0,10,0,-122, 0, 2770}

We can represent the difference between m and Gregory’s series truncated after 50,000
terms as

2 122
3.1415926535897932384626433832795028841971693993751,
2 10 2770

where numbers above the center line are negative and those below the line are positive.

Searching for the sequence of differences at The On-Line Encyclopedia of Integer
Sequences™ (OEIS™) ., we find that they are twice the Euler numbers, E,;
(oeis.org/A011248).

Table[{k’ 2E2k}s {ks 05 4}]

0 2

1 -2
2 10
3 -122
4 2770
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Empirically, we have determined the asymptotic difference between m and the truncated
Gregory’s series.

Ex;

diff[n_, m_] = 2 Z —
k=01

See [1] for a proof of this result.

Adding the asymptotic difference to the truncated Gregory’s series and putting

n =2x50000 = 10°, we can recover 7 to (at least) 50 decimal places.
7 — gregory — diff [105, 4]
0.x107

The asymptotic difference can be computed directly using Series.

Assuming[n >0 /\ Z ez,

FullSimplify[Series[FunctionExpand[n -4 i v ], {n, oo, 9}]]]
= 2k-1

2 2 10 122 2770 1)\0
———+t—-—+ +O[—]

n I’l3 I’ls I’l7 n9 n

See also [3].

m Hadamard Regularization

Hadamard regularization is a technique for handling divergent integrals (essentially keep-
ing only the finite part of the integral) and plays an important role in several branches of
mathematical physics (see [4, 5] and mathworld.wolfram.com/HadamardIntegral .html).
Consider evaluating

1 L f»
k= — [ dy
r(_a/) —1 (1 _y)(Hl

in the Hadamard sense, where O <n<a<n+1 and ne Z, that is, n = |a] and
fec™*[-1,1].
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Tricks of the Trade 7

Using integration by parts via pattern matching, we can increase the exponent of (1 —y)™
until it is integrable, thatis, -1 < p < 0.

byparts = f(l - yP-f [yldy = f(y) f(l -ydy- f(f(l -y? Cﬂ)’) oy, f(ndy;

Here is the formal result of integrating by parts once.

1 f) L
f dy /. byparts // FullSimplify // Expand

l"(_ (}') (1 _ y)(l+1
fO) -y Ja=-y fody
al'(—a) al'(—a)

The (1 —y)™ f(y) term is singular at y = 1 if @ > 0. Here is the result of three partial
integrations.

1
Collect[Nest[tt /. byparts &, f /O dy, 3], {rom, rCwm},
F—a)J (1-y!

memmmﬂ

JrPoa-yrdy a-yPe e A-ptre fod-nT
IrG-aw ré-ow re-aw rad-ow

Neglecting the singular terms at y = 1, we evaluate the partial integrals at y = —1.

—% [. HoldPattern[Integrate[__]]:>0 /.y » —1

227 f(=1) . 217 f(=1) . 277 f(=1)
rG-a) r2-a) I(l-a)

The pattern is clear. Dropping the singular terms at y = 1, we obtain
1 )
k= — | dy =
F(_a) —1 (1 _y)a+1

n k—a 1 1

2
S (P | 7f 1 =y Fn+Dy gy
ggrw—a+1yf( )+FM—a+1)_f R dy

As a definite example, consider

1 exp(y)
—d
Il (1 _y)a/+1
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Direct integration followed by series expansion about € = 0 reveals the singular terms.

1 1-¢ exp(y)
Assuming[l >e>0, d y]
r(_ a,) -1 (1 _ y)af+1

e(l(—a,e)-T'(-a,?2))
I'(-a)

Series[%, {€, 0, 1}] // ExpandAll

el(-a,?2) e ee
- +e_"( - + 0(62))+e
I'(-a) al'(—a) (@-1)T(-a)

Now €7 is singular at € = 0 for & > 0, and €'~ is either singular if & > 1 or vanishes if
0 <@ < 1. So both terms are ignorable. Hence the nonsingular part can be extracted as
follows.

K, [Expl = % /. € ® - 0 // FullSimplify
el(-a,?2)
I'(-a)

e —

For example, here is the exact result for @ = 3 /2.

K3 [Exp] // FunctionExpand // Simplify

eerf(\/;)+ L

deV2nm

Alternatively, using the identity obtained using integration by parts, we obtain the same
answer.

Module[{a =3/2,n, f = Exp}, n = Floor[al;

kZ(; ﬁ P+ ﬁ f 1(1 -9 D dy) iy
Simplify
\/— 3
eerf( 2 )+ m
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