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We give a procedure to plot parametric curves on the sphere whose advan-
tages over classical graphs in the Cartesian plane are obvious whenever the
graph involves infinite domains or infinite branches.

‡ Introduction
Graphing  a  curve  in  the  Cartesian  plane  can  be  done  only  in  a  restricted
“window” @a, bDµ @c, dD. If the function to be plotted has a large domain or range,
it  is  practically impossible to get a global view of the curve. This makes it  diffi-
cult  to  understand  the  asymptotic  behavior  of  complicated  curves  with  various
kinds  of  infinities.  Furthermore,  for  most  functions (e.g.,  polynomials  of  degree
greater  than  four),  graphing  in  a  large  window  loses  important  details,  while
graphing in a small window loses the global features.

The  remedy  is  to  compactify  the  plane  and  represent  graphs  on  the  Riemann
sphere.  The  usual  method  is  to  map  the  plane  graph  to  the  sphere  using  the
inverse  stereographic  projection.  We  prefer  a  slightly  modified  version:  we
smoothly  wrap  the  plane  x = 1  on  the  sphere  x2 + y2 + z2 = 1  using  the  inverse
stereographic  projection from the pole H-1, 0, 0L.  The origin H0, 0L  maps to the
blue point H1, 0, 0L on the sphere, and the point at infinity maps to the red point
w = H-1, 0, 0L.

‡ Benefits of the Method
· Asymptotic Behavior

Although  the  point  at  infinity  cannot  be  reached,  the  mapping  gives  points  so
close to w that it is as if we had reached it. As an illustration, here are the graphs
of a polar curve first in the plane (with asymptotes) and then on the sphere.

In[1]:= polarcurve = Tan@Pi tê4D;
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In[2]:= PolarPlot@polarcurve, 8t, -2 p, 2 p<,
Axes Ø False, PlotRange Ø 4 88-1, 1<, 8-1, 1<<D

Out[2]=

The default view point shows w, the image of the point at infinity.

In[3]:= defaultviewpoint = SpherePolarPlot@polarcurve, 8t, -2 p, 2 p, .01 p<D

Out[3]=
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Here  is  an  animation where  the  view point  goes  once  around the equator.  The
blue point zero is the image of the origin in the plane.

In[4]:= Animate@SpherePolarPlot@polarcurve,
8t, -2 p, 2 p, .01 p<, ViewPoint Ø 2 8Cos@kD, Sin@kD, 0<D,

8k, 0, 2 p, .025 p<, SaveDefinitions Ø TrueD

Out[4]=

k

To see through the sphere we use the Opacity option.

In[5]:= SpherePolarPlot@polarcurve, 8t, -2 p, 2 p, .01 p<, Opacity Ø 0.5D

Out[5]=

· Sensitivity and Faithfulness

This  modified  inverse  stereographic  projection  m  is  very  sensitive  close  to  the
origin: two points near the origin in the plane will appear far apart on the sphere.
On the other hand, points near infinity will appear close together, thus showing
the  asymptotic  behavior  that  is  the  qualitative  property  of  the  curve  far  away
from the origin.
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Faithfulness means that mapping the plane curve to the sphere does not alter the
shape  of  the  curve.  In  particular,  at  w,  the  slopes  of  the  different  branches  are
exactly  what  they  should  be.  We  illustrate  this  by  plotting  the  function
x4 - x - 0.5.

In[6]:= quartic = x^4 - x - 0.5;

In[7]:= Plot@quartic, 8x, -2, 2<D

Out[7]=
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Making the interval somewhat larger loses details close to the origin. 

In[8]:= Plot@quartic, 8x, -10, 10<D

Out[8]=
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Here is the same curve on the sphere, viewed to show zero and then w. 

In[9]:= SpherePlot@quartic, 8x, -10, 10, 0.01<, ViewPoint Ø 81, 0.5, -0.3<D

Out[9]=

The derivatives at ±¶ are ¶, and, indeed, we see that the curve is vertical near w.

In[10]:= SpherePlot@quartic, 8x, -10, 10, 0.01<, ViewPoint Ø 8-1, 0.5, -0.3<D

Out[10]=

· Unveiling the True Nature of a Curve

Geometers know that plane geometry is incomplete. We have to look at a curve
in the projective plane (i.e., the Riemann sphere) to get complete results.
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For example, students in high school are told that hyperbolas have two branches.

In[11]:= hyperbola = 1êH2 xL;
In[12]:= Plot@hyperbola, 8x, -3, 3<D

Out[12]=
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In  this  animation,  a  hyperbola  appears  as  a  one-branched  figure-eight  curve  on
the sphere.
In[13]:= Animate@SpherePlot@hyperbola, 8x, -100, 100, .1<,

ViewPoint Ø 2 8Sin@k + 3ê2 PiD, Cos@k + 1ê2 PiD, -.2<D,
8k, 0, 2 Pi, .05 Pi<, SaveDefinitions Ø TrueD

Out[13]=

k
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‡ The Mapping

We define the mapping m : 2 Ø S2 using the following picture.

In[14]:= Solve@8yêHx + 1L == H3ê2LêH1 + 1L, x^2 + y^2 == 1<, 8x, y<D

Out[14]= ::y Ø
24

25
, x Ø

7

25
>>

In[15]:= Show@Graphics@8Circle@80, 0<, 1D, Line@88-1, 0<, 81, 3ê2<<D,
Line@881, -1<, 81, 7ê4<<D, Line@88-5ê4, 0<, 85ê4, 0<<D,
PointSize@.025D, Point@8-1, 0<D, Point@81, 3ê2<D,
Point@87, 24<ê25D, Text@TraditionalForm@"w"D, 8-1 - .1, .1<D,
Text@TraditionalForm@PD, 87, 24 + 3<ê25D,
Text@TraditionalForm@MD, 81 - .1, 3ê2<D<,

Axes Ø 8True, False<, AspectRatio Ø AutomaticDD

Out[15]=
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The projection pole is w = H-1, 0, 0L, M = H1, u, vL œ 81<µ2  and P = Hx, y, zL is
the point corresponding to M  on S2. Then wP = t wM  and to find the mapping
m : Hu, vL # Hx, y, zL, we solve for t.

In[16]:= Solve@
8x^2 + y^2 + z^2 == 1, x == 2 t - 1, y == u t, z == v t<, t, 8x, y, z<D

Out[16]= :8t Ø 0<, :t Ø
4

4 + u2 + v2
>>

One solution gives the point w and the other solution determines the mapping to
the sphere.
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‡ The Program: Parametric Curves on the Sphere
The modified inverse stereographic function m turns out to be fairly simple.

In[17]:= m@8u_, v_<D := WithA9s = 4 + u2 + v2=, 88 - s, 4 u, 4 v<êsE
We define  the  sphere  and the  equator,  two meridians,  a  blue zero,  and a  red w
for orientation.
In[18]:= sphere@n_D :=

Graphics3D@8Yellow, Opacity@nD, Sphere@80, 0, 0<, 0.985D<D;
In[19]:= equator =

Graphics3D@8Thickness@0.003`D, Blue, First@ParametricPlot3D@
8Cos@pD, Sin@pD, 0<, 8p, 0, 2 p<, PlotPoints Ø 100DD<D;

In[20]:= meridian1 =
Graphics3D@8Thickness@0.003`D, Green, First@ParametricPlot3D@

8Cos@pD, 0, Sin@pD<, 8p, 0, 2 p<, PlotPoints Ø 100DD<D;
In[21]:= meridian2 =

Graphics3D@8Thickness@0.003`D, Cyan, First@ParametricPlot3D@
80, Cos@pD, Sin@pD<, 8p, 0, 2 p<, PlotPoints Ø 100DD<D;

In[22]:= zero = Graphics3D@8Blue, Sphere@81, 0, 0<, 0.03D<D;
In[23]:= w = Graphics3D@8Red, Sphere@8-1, 0, 0<, 0.03D<D;
To avoid  infinities,  SphereParametricPlot  is  based  on  ScatterPlot3D  rather
than  ParametricPlot3D .  In  analogy  with  Plot  and  PolarPlot,  we  define  the
functions SpherePlot  and SpherePolarPlot , both in terms of SphereParametÖ
ricPlot.
The  first  argument  to  SphereParametricPlot  is  a  pair  of  functions.  The  first
argument to SpherePlot  or SpherePolarPlot  is  a single function. The second
argument to all three functions is a range specification. A ViewPoint  option may
be given.
In[24]:= SphereParametricPlot@8fx_, fy_<,

8u_, umin_, umax_, du_<, opts___D :=

ShowB8sphere@Opacity ê. 8opts< ê. Opacity Ø 1D, equator,

meridian1, meridian2, zero, w, Graphics3D@
8Hue@0.9`D, Thickness@0.005`D, Line@Table@m@8fx, fy<D,

8u, umin, umax, duê10<DD<D<, Boxed Ø False,

ViewPoint Ø ViewPoint ê. 8opts< ê. ViewPoint Ø -:1, 1

2
,
1

3
> ,

PlotRange Ø AllF
In[25]:= SphereParametricPlot@8fx_, fy_<, 8u_, umin_, umax_<, opts___D :=

SphereParametricPlotB8fx, fy<, :u, umin, umax,
umax - umin

150
>, optsF

In[26]:= SpherePlot@r_, 8t_, tmin_, tmax_, dt_<, opts___D :=

SphereParametricPlot@8t, r<, 8t, tmin, tmax, dt<, optsD
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In[27]:= SpherePlot@r_, 8t_, tmin_, tmax_, dt_<, opts___D :=

SphereParametricPlot@8t, r<, 8t, tmin, tmax, dt<, optsD
In[28]:= SpherePolarPlot@r_, 8t_, tmin_, tmax_, dt_<, opts___D :=

SphereParametricPlot@
8r Cos@tD, r Sin@tD<, 8t, tmin, tmax, dt<, optsD

Here is one final example.

In[29]:= SphereParametricPlot@8Ht^2 - 2LêHt + 1L, Ht^3 - 8LêHt^2 - 3 t + 2L<,
8t, -100, 100, .1<, Opacity Ø .5D

Out[29]=

‡ Additional Material
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ImplicitEquOnSphere.nb

Available at 
www.mathematica-journal.com/data/uploads/2008/11/ImplicitEquOnSphere.nb.
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