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This  article  describes  a  streamlined  method  for  simultaneous  integration
of  an  entire  family  of  interpolating  functions  that  uses  one  and  the  same
interpolation grid in one or more dimensions. A method for creating cus-
tomized  quadrature/cubature  rules  that  takes  advantage  of  certain  special
features  of  Mathematica’s  InterpolatingFunction  objects  is  presented.
The  use  of  such  rules  leads  to  a  new  and  more  efficient  implementation
of  the  method  for  optimal  stopping  of  stochastic  systems  that  was  devel-
oped  in  [1].  In  particular,  this  new  implementation  allows  one  to  extend
the  scope  of  the  method  to  free  boundary  optimal  stopping  problems  in
higher dimensions. Concrete applications to finance~mainly to American-
style  financial  derivatives~are  presented.  In  particular,  the  price  of  an
American  put  option  that  can  be  exercised  with  any  one  of  two  uncorre-
lated  underlying  assets  is  calculated  as  a  function  of  the  observed  prices.
This  method  is  similar  in  nature  to  the  well-known  Longstaff|Schwartz
algorithm, but does not involve Monte|Carlo simulation of any kind.

‡ Preliminaries
The  most  common  encounter  with  the  concept  of  dynamic  programming~
and  here  we  will  be  concerned  only  with  continuous  time  dynamic  programm-
ing  (CTDP)~occurs  in  the  context  of  the  optimal  stopping  of  an  observ-
able  stochastic  process  with  given  termination  payoff.  This  is  a  special  case
of stochastic optimal control where the control consists of a simple on-off switch,
which,  once  turned  off,  cannot  be  turned  on  again.  A  generic  example  of  an
optimal stopping problem can be described as this: the investor observes a contin-
uous Markov process HXtLt ¥ 0 with state-space  Œ N  and with known stochastic

dynamics and, having observed at time t ¥ 0 the value X
`

t œ , where X
`

t  denotes
the  observed  realization  of  the  random  variable  Xt,  the  investor  must  decide

whether  to  terminate  the  process  immediately  and  collect  the  payoff  LHX` tL,
where L :  #   is  some a  priori  determined (deterministic)  payoff  function,  or
to wait until time t + D > t  for the next opportunity to terminate the process (in
the context of CTDP, the time step D should be understood as an infinitesimally
small  quantity).  In  addition,  having  observed  the  quantity  X

`
t œ ,  the  investor

must determine the value of the observable system (associated with that state) at
time  t ¥ 0.  In  many  situations,  the  stopping  of  the  process  cannot  occur  after
some finite deterministic time T > 0.

The Mathematica Journal 10:4  © 2008 Wolfram Media, Inc.



The  most  common  encounter  with  the  concept  of  dynamic  programming~
and  here  we  will  be  concerned  only  with  continuous  time  dynamic  programm-
ing  (CTDP)~occurs  in  the  context  of  the  optimal  stopping  of  an  observ-
able  stochastic  process  with  given  termination  payoff.  This  is  a  special  case
of stochastic optimal control where the control consists of a simple on-off switch,
which,  once  turned  off,  cannot  be  turned  on  again.  A  generic  example  of  an
optimal stopping problem can be described as this: the investor observes a contin-
uous Markov process Xt ¥  with state-space  Œ N  and with known stochastic

dynamics and, having observed at time t ¥ 0 the value X
`

t œ , where X
`

t  denotes
the  observed  realization  of  the  random  variable  Xt,  the  investor  must  decide

whether  to  terminate  the  process  immediately  and  collect  the  payoff  LHX` tL,
where L :  #   is  some a  priori  determined (deterministic)  payoff  function,  or
to wait until time t + D > t  for the next opportunity to terminate the process (in
the context of CTDP, the time step D should be understood as an infinitesimally
small  quantity).  In  addition,  having  observed  the  quantity  X

`
t œ ,  the  investor

must determine the value of the observable system (associated with that state) at
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There  is  a  vast  literature  that  deals  with  both  the  theoretical  and  the  com-
putational  aspects  of  modeling,  analysis,  and  optimal  control  of  stochastic
systems. The works of Bensoussan and Lions [2] and Davis [3] are good examples
of classical treatments of this subject. 

Many  important  problems  from  the  realm  of  finance  can  be  formulated~and
solved~as optimal stopping problems. For example, a particular business can be
established at the fixed cost of  dollars, but the actual market price of that busi-
ness  follows  some  continuous  stochastic  process  HXtLt ¥ 0,  which  is  observable.

Having observed at time t the value X
`

t, an investor who owns the right to incor-
porate such a business must decide whether to exercise that right immediately, in
which case the investor would collect the payoff of X

`
t -  dollars, or to postpone

the  investment  decision  until  time  t + D,  with  the  hope  that  the  business  will
become  more  valuable.  In  addition,  having  observed  the  value  X

`
t,  the  investor

may need to determine the market price of the guaranteed right (say, a patent) to
eventually incorporate this business~now, or at any time in the future.

Another classical  problem from the realm of finance is  the optimal exercise of a
stock option of American type, that is, an option that can be exercised at any time
prior to the expiration date. A stock option is a contract that guarantees the right
to  buy (a  call  option)  or  to  sell  (a  put  option)  a  particular  stock (the  underlying)  at
some  fixed  price  (the  strike  price,  stated  explicitly  in  the  option  contract)  at  any
time  prior  to  the  expiration  date  T  (the  maturity  date,  also  stated  in  the  option
contract).  Consider,  for  example,  an American style  put  option which expires at
some  future  date  T > 0.  On  date  t < T ,  the  holder  of  the  option  observes  the
underlying price X

`
t  and decides whether to exercise the option, that is, to sell the

stock  at  the  guaranteed  price  K  (and,  consequently,  collect  an  immediate  pay-
off of K - X

`
t  dollars) or to wait, hoping that at some future moment, but no later

than  the  expiration date  T ,  the  price  will  fall  below the current  level  X
`

t.  If  the
option is not exercised before the expiration date, the option is lost if XT ¥ K  or,
ignoring any transaction costs, is always exercised if XT < K ; that is, if the option
is  not  exercised  prior  to  the  expiration  date  T ,  on  that  date  the  owner  of  the
option collects the amount Max@K - XT , 0D.  In general, stock options are traded
in the same way that stocks are traded and, therefore, have a market value deter-
mined  by  the  laws  of  supply  and  demand.  At  the  same  time,  the  price  of  such
contracts, treated as a function of the observed stock price X

`
t,  can be calculated

from general  economic principles in conjunction with the principles of dynamic
programming.
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t,  can be calculated
from general  economic principles in conjunction with the principles of dynamic
programming.

In  general,  the  solution  to  any  optimal  stopping  problem  has  two  components:
(1) for every moment in time, t,  one must obtain a termination rule in the form
of a termination set t Œ  so that the process is terminated at the first moment t
at  which  the  event  8Xt œ t<  occurs;  and  (2)  for  every  moment  t,  one  must
determine  the  value  function  ft :  # ,  which  measures  how  “valuable”
different  possible  observations  are  at  time  t.  Clearly,  if  LH ÿ L  denotes  the
termination payoff function (e.g., in the case of an American style put option that
would  be  LHxL  =  Max@K - x, 0D,  x œ +),  then  for  every  x œ t  one  must  have
ftHxL = LHxL, while for every x – t  one must have ftHxL > LHxL; that is, one would
choose  to  continue  only  when  continuation  is  more  valuable  than  immediate
termination. Consequently,  the termination sets t,  t ¥ 0, can be identified with
the  sets  9x œ N ; ftHxL = LHxL=,  and  the  associated  optimal  stopping  time  can  be
described as

t = inf  8t œ @0, TD; ftHXtL = LHXtL<.
Thus,  the  entire  solution  to  the  optimal  stopping  problem  can  be  expressed  in
terms of the family of value functions 8 ftH ÿ L; t œ @0, TD<, which may be treated as
a single function of the form

@0, TDä ú Ht, xLö ftHxL œ .

It  is  important  to  recognize  that  the  solution  to  the  optimal  stopping  problem,
that is, the value function Ht, xL  ö  ftHxL,  must be computed before the observa-
tion process has begun. 
In  most  practical  situations,  an  approximate  solution  to  the  optimal  stopping
problem associated with some observable process HXtLt ¥ 0 and some fixed termina-
tion payoff L :  #   may be obtained as a finite sequence of approximate value
functions

X f \t
n :  # ,   t = T , T -

T

n
, T - 2 

T

n
, … , 0,

where  T > 0  is  the  termination  date  and  n  is  some  sufficiently  large  integer
number.  This  approximate  solution can be  calculated from the following recur-
sive rule, which is nothing but a special discrete version of what is known as the
dynamic  programming  equation:  for  t = T ,  we  set  X f \t

n H ÿ L ª LH ÿ L,  that  is,  at  time
t = T ,  the  value  function  coincides  with  the  termination  payoff  on  the  entire
state-space , and for t = T - T

n
, T - 2 T

n
, … , we set

(1)X f \t
n HxL := MaxBLHxL, ‰-rt  Tën EQBX f \t+Tën

n  IXt+TënN À Xt = xFF,   x œ ,

where rt  is the instantaneous discount rate at time t, and the probability measure
Q, with respect to which the conditional expectation is calculated, is the so-called
pricing measure (in general, the instantaneous discount rate rt ª rtHxL may depend

on the observed position x = X
`

t  and the pricing measure may be different from

process  HXtLt ¥ 0).  Furthermore,  for  every  t = T - T
n

,  T - 2 T
n

,  …  ,  the  approxi-
mate termination set is given by
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Q, with respect to which the conditional expectation is calculated, is the so-called
pricing measure (in general, the instantaneous discount rate rt ª rtHxL may depend

on the observed position x = X
`

 and the pricing measure may be different from
the  probability  measure  that  governs  the  actual  stochastic  dynamics  of  the
process  HXtLt ¥ 0).  Furthermore,  for  every  t = T - T

n
,  T - 2 T

n
,  …  ,  the  approxi-

mate termination set is given by

X\t ª 9x œ N ; X f \t
n HxL = LHxL=.

If, given any t œ @0, TD, the limit 

(2)ftH ÿ L ª limn â ¶ X f \ITënM en tëTu
n  H ÿ L

(d ÿ t  denotes  the  integer  part  of  a  real  number)  exists,  in  some  appropriate
topology  on  the  space  of  functions  defined  on  the  state-space  ,  then  one  can
declare that the function

@0, TDäN ú Ht, xLö ftHxL œ 

gives  the  solution  to  the  optimal  stopping  problem  with  observable  process
HXtLt ¥ 0, payoff function LH ÿ L, and pricing measure Q. 

It  is  common  to  assume  that  under  the  pricing  probability  measure  Q  the
stochastic dynamics of the observable process HXtLt ¥ 0 are given by some diffusion
equation of the form

(3)„ Xt = sHXtL „ Wt + bHXtL „ t

for  some  (sufficiently  nice)  matrix-valued  function  N ú x ö sHxL œ N⊗N ,
vector field N ú x öbHxL œ N , and some N -valued Brownian motion process
HWtLt ¥ 0, which is independent from the starting position X0 (note that HWtLt ¥ 0 is

Brownian motion with respect to the law Q). Given any x œ N , let AHxL denote
the matrix sHxL sHxLT  and let  denote the second-order field in N  given by

N ú x öx ª
1

2
 ‚
i, j=1

N

AHxLi, j  
∂2

∂xi ∂x j

+‚
i=1

N

bHxLi  
∂

∂xi

.

As is well known, under certain fairly general conditions for the coefficients sH ÿ L
and bH ÿ L, and the termination payoff L :  # , the value function

@0, TDä ú Ht, xLö ftHxL œ ,

that  is,  the  solution  to  the  associated  optimal  stopping  problem,  is  known  to
satisfy  the  following  equation,  which  is  nothing  but  a  special  case  of  the
Hamilton|Jacobi|Bellman (HJB) equation 

(4)rtHxL ftHxL = MaxArtHxLLHxL, ∂t ftHxL + x  ftHxLE,   x œ N ,

with  boundary  condition  fT HxL = LHxL,  x œ N .  This  equation  is  a  more  or  less
trivial consequence of equations (1) and (2), in conjunction with the Itô formula.
It  is  important  to  recognize  that  the  dynamic  programming  equation  (1)  is
primary  for  the  optimal  stopping  problem,  while  the  HJB  equation  (4)  is  only
secondary,  in  that  it  is  nothing  more than a  computational  tool.  Unfortunately,
equation  (4)  admits  a  closed  form solution  only  for  some rather  special  choices
of  the  payoff  function  LH ÿ L,  the  diffusion  coefficients  bH ÿ L  and  sH ÿ L,  and  the
discount  rate  rtH ÿ L.  Thus,  in  most  practical  situations,  the  HJB  equation  (4)

numerical  procedure  that  may  allow  one  to  compute  the  solution  Ht, xLö ftHxL
approximately. Essentially, all known numerical methods for solving equation (4)
are some variations of the finite difference method. The most common approach
is  to  reformulate  equation  (4)  as  a  free  boundary  value  problem:  one  must  find  a
closed  domain   Œ @0, T@ä  with  a  piecewise  differentiable  boundary  ∂  and
nonempty interior Î  ª   \ ∂,  plus a continuous function u :  # ,  which is
continuously  differentiable  with  respect  to  the  variable  t œ D0, T @  and  is  twice
continuously differentiable with respect to the variables x œ Î,  that satisfies the
following two relations everywhere inside Î
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are some variations of the finite difference method. The most common approach
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rtHxL uHt, xL = ∂t uHt, xL + x uHt, xL and uHt, xL > LHxL,   Ht, xL œ Î,

and,  finally,  satisfies  the  following  boundary  conditions  along  the  free  (i.e.,
unknown) boundary ∂

uHt, xL = LHxL and
∂

∂xi

 uHt, xL =
∂

∂xi

 LHxL,   1 § i § n,   Ht, xL œ ∂.

The  last  two  conditions  are  known,  respectively,  as  the  value  matching  and  the
smooth  pasting  conditions.  It  can  be  shown that  under  some rather  general~but
still quite technical~assumptions, the free boundary value problem that was just
described has  a  unique solution (consisting of  a  function uH ÿ , ÿL  and domain )
which then allows one to write the solution to the optimal stopping problem as
follows: for any t œ @0, TD and any x œ , one has

ftHxL =
uHt, xL , for Ht, xL œ ;
LHxL, for Ht, xL œ c ª H@0, TDäL \.

The  drawbacks  from  formulating  an  optimal  stopping  problem  as  a  free
boundary  value  problem for  some parabolic  partial  differential  equation  (PDE),
which~in  principle,  at  least~can  be  solved  numerically  by  way  of  finite
differencing,  are  well  known.  First,  the  value  matching  and  the  smooth  pasting
conditions  are  difficult  to  justify  and  this  makes  the  very  formulation  of  the
problem  rather  problematic  in  many  situations.  Second,  just  in  general,  for
purely technical reasons, it is virtually impossible to use finite differencing when
the dimension of the state-space is higher than 3 and, in fact, in the case of free
boundary  value  problems,  even  a  state-space  of  dimension  2  is  rather  chal-
lenging. Third, with the exception of the explicit finite difference scheme, which
is guaranteed to be stable only under some rather restrictive conditions, the im-
plementation  of  most  finite  differencing  procedures  on  parallel  processors  is
anything but trivial.

At the time of this writing, it is safe to say that finite differencing is no longer at
the center of attention in computational finance, where most problems are inher-
ently  complex  and  multidimensional.  Indeed,  most  of  the  research  in  computa-
tional finance in the last five years or so appears to be focused on developing new
simulation-based  tools~see  [4|8],  for  example  (even  a  cursory  review  of  the
existing literature from the last few years is certain to be very long and is beyond
the  scope  of  this  article).  Among  these  methods,  the  Longstaff|Schwartz  algo-
rithm [8] seems to be the most popular among practitioners.

The attempts  to  avoid the  use  of  finite  differencing are nothing new (there is  a
section  in  the  book  Numerical  Recipes  in  C  entitled  There  Is  More  to  Life  than
Finite  Differencing~see  [9],  p.  833).  Indeed,  Monte  Carlo,  finite  element,  and
several  other  computational  tools  have  been  in  use  for  solving  fixed  boundary
value problems for PDEs for quite some time. Apparently, from the point of view
of  stochastic  optimal  control,  it  is  more  efficient~and  in  some  ways  more
natural~to  develop  numerical  procedures  directly  from  the  dynamic  pro-
gramming  equation  (1)  and  skip  the  formulation  of  the  HJB  equation  alto-
gether~at  least  this  is  the  approach  that  most  recent  studies  in  computational
finance are taking.
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Since the solution to an optimal stopping problem is given by an infinite family
of  functions  of  the  form  ft :  # ,  t œ @0, TD,  for  some  set   Œ N ,  from  a
computational point of view the actual representation of any such object involves
two  levels  of  discretization.  First,  one  must  discretize  the  state-space  ,  that  is,
functions  defined  on    must  be  replaced  with  finite  lists  of  values  attached  to
some fixed set of distinct abscissas

9xk œ ; 1 § k § n=,
for some fixed n œ +.  This means that for every list of values  œ n,  one must
be  able  to  construct  a  function  S :  #   which  “extends”  the  discrete  assign-
ment  xk ök,  1 § k § n,  to  some  function  defined  on  the  entire  state-space  .
Second, one must discretize time, that is, replace the infinite family of functions
8 ftH ÿ L; t œ @0, TD< not just with the finite sequence of functions

X f \t
n :  # ,   t = T , T -

T

n
, T - 2 

T

n
, … , 0,

determined by the discrete dynamic programming equation (1), but, rather, with
a finite sequence of lists

HtL œ n,   t = T -
T

n
, T - 2 

T

n
, … , 0,

computed  from  the  following  space-discretized  analog  of  the  time-discrete
dynamic programming equation (1): for t = T - T

v , we set

HtLk ª MaxALIxkM, ‰-rt ITënM EQALHXT L » Xt = xkEE,   1 § k § n,

and then define 

(5)HtLk ª MaxBLIxkM, ‰-rtITënM EQBSIt+TënMIXt+TënN À Xt = xkFF, 1 § k § n,

consecutively,  for  t = T - 2 T
v ,  t = T - 3 T

v ,  … ,  where  SIt+TënM :  #   is  simply

the map that “extends” the discrete assignment xk öJt + T
v Nk.

Of  course,  in  order  to  compute  the  conditional  expectation in  equation (5),  the
distribution law of the random variable Xt+Tën  relative to the pricing measure Q

and  conditioned  to  the  event  9Xt = xk=  must  be  expressed  in  computable  form.

sion coefficients sH ÿ L and bH ÿ L that govern the stochastic dynamics of the process
HXtLt ¥ 0  under  the  pricing  measure  Q.  This  imposes  yet  another~third~level
of approximation. The simplest such approximation is to replace Xt+Tën  in equa-
tion (5) with the random quantity
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Of course,  in  order  to  compute  the  conditional  expectation in  equation (5),  the
distribution law of the random variable Xt+Tën  relative to the pricing measure Q

and  conditioned  to  the  event  Xt = x  must  be  expressed  in  computable  form.
Unfortunately, this is possible only for some rather special choices for the diffu-
sion coefficients sH ÿ L and bH ÿ L that govern the stochastic dynamics of the process
HXtLt ¥ 0  under  the  pricing  measure  Q.  This  imposes  yet  another~third~level
of approximation. The simplest such approximation is to replace Xt+Tën  in equa-
tion (5) with the random quantity

(6)yTënIxk, GM = xk + sIxkM 
T

v
 G + bIxkM

T

v
,

where G is some standard normal N -valued random variable. As a result of this
approximation, expression (5) becomes

(7)
HtLk ª Max LIxkM, ‰-rt ITënM ‡

N
SIt+TënMIyTënIxk, xMN pN HxL „ x ,

1 § k § n,

where pN H ÿ L  stands  for  the  standard normal  probability  density  function in N .
Another  (somewhat  more sophisticated)  approximation scheme for the diffusion
process  HXtLt ¥ 0  in  the  case  N = 1  is  discussed  in  [1].  Fortunately,  in  the  most
widely used diffusion models in finance, the conditional law of Xt+Tën,  given the

event 9Xt = xk=, coincides with the law of a random variable of the form yIxk, GM
for  some function yIxk, ÿM  that  can be  expressed in  computable  form,  so  that  in
this special case the right side of equation (7) is exactly identical to the right side
of  equation  (5)  and  the  approximation  given  in  equation  (6)  is  no  longer
necessary.
One must be aware that,  in general,  the distribution law of the random variable
yIxk, GM is spread on both sides of the point xk  and, even though for a reasonably

small time step T
v  this law is concentrated almost exclusively in some small neigh-

borhood of the node xk,  when this  node happens to be very close to the border
of  the  interpolation  region,  the  computation  of  the  integral  on  the  right  side
of  equation  (7)  inevitably  requires  information  about  the  function  SIt+TënMH ÿ L
outside  the  interpolation  domain.  However,  strictly  speaking,  interpolating
functions are well defined only inside the convex hull of the abscissas used in the
interpolation.  One  way  around  this  problem  is  to  choose  the  interpolation
domain in such a way that along its border the solution to the optimal stopping
problem  takes  values  that  are  very  close  to  certain  asymptotic  values.  For
example,  if  one  is  pricing  an  American  put  option  with  strike  price  of  $1,  one
may  assume  that  the  value  of  the  option  is  practically  0  when  the  price  of  the
underlying asset is above $100, regardless of the time left to maturity (of course,
this assumption may be grossly inaccurate when the volatility is very large and/or
when  the  option  matures  in  the  very  distant  future).  Consequently,  for  those
nodes xk  that are close to the border of the interpolation domain, the respective
values  HtLk  will  not  depend  on  t  and  will  not  be  updated  according  to  the  pre-
scription (7). At the same time, the remaining nodes xk  must be chosen in such a
way  that  the  probability  mass  of  the  random  variable  yIxk, GM  is  concentrated
almost exclusively inside the interpolation region. 

Dynamic Integration of Interpolating Functions 667

The Mathematica Journal 10:4  © 2008 Wolfram Media, Inc.



One must be aware that,  in general,  the distribution law of the random variable
yIxk, GM is spread on both sides of the point xk  and, even though for a reasonably

small time step T
v  this law is concentrated almost exclusively in some small neigh-

borhood of the node xk,  when this  node happens to be very close to the border
of  the  interpolation  region,  the  computation  of  the  integral  on  the  right  side
of  equation  (7)  inevitably  requires  information  about  the  function  SIt+TënMH ÿ L
outside  the  interpolation  domain.  However,  strictly  speaking,  interpolating
functions are well defined only inside the convex hull of the abscissas used in the
interpolation.  One  way  around  this  problem  is  to  choose  the  interpolation
domain in such a way that along its border the solution to the optimal stopping
problem  takes  values  that  are  very  close  to  certain  asymptotic  values.  For
example,  if  one  is  pricing  an  American  put  option  with  strike  price  of  $1,  one
may  assume  that  the  value  of  the  option  is  practically  0  when  the  price  of  the
underlying asset is above $100, regardless of the time left to maturity (of course,
this assumption may be grossly inaccurate when the volatility is very large and/or
when  the  option  matures  in  the  very  distant  future).  Consequently,  for  those
nodes xk  that are close to the border of the interpolation domain, the respective
values  HtLk  will  not  depend  on  t  and  will  not  be  updated  according  to  the  pre-
scription (7). At the same time, the remaining nodes x  must be chosen in such a
way  that  the  probability  mass  of  the  random  variable  yIxk, GM  is  concentrated
almost exclusively inside the interpolation region. 

In  general,  numerical  procedures  for  optimal  stopping  of  stochastic  systems
differ in the following: First, they differ in the space-discretization method, that
is, the method for choosing the abscissas xk and for “reconstructing” the function
SH ÿ L  from  the  (finite)  list  of  values    assigned  to  the  abscissas  xk.  Second,
numerical  procedures  differ  in  the  concrete  quadrature  rule  used  in  the  calcu-
lation  of  the  conditional  expectation  in  the  discretized  dynamic  programming
equation  (5).  The  method  described  in  this  article  is  essentially  a  refinement
of  the  method  of  dynamic  interpolation  and  integration  described  in  [1].  The
essence  of  this  method  is  that  the  functions  SH ÿ L  are  defined  by  way  of  spline
interpolation~or  some  other  type  of  interpolation~from  the  list  of  values  ,
while the integral in equation (7) is calculated by using some standard procedures
for  numerical  integration.  As  was  illustrated  in  [1],  the  implementation  of  this
procedure  in  Mathematica  is  particularly  straightforward,  since  NIntegrate
accepts  as  an  input  InterpolatingFunction  objects,  and,  in  fact,  can  handle
such objects rather efficiently.

The  key  point  in  the  method  developed  in  this  article  is  a  procedure  for
computing  a  universal  list  of  vectors  Wk œ n,  1 § k § n,  associated  with  the
abscissas  xk,  1 § k § n,  that  depend  only  on  the  stochastic  dynamics  of  HXtLt ¥ 0

and the time step T
v , so that one can write

(8)‡


SIt+TënMIyIxk, xMM pN HxL „ x = Wk ÿ  t +
T

v

for  any t  and for any k,  where   stands  for the convex hull  of  the interpolation
grid  xk,  that  is,  the  domain  of  interpolation.  Essentially,  equation (8)  is  a  varia-
tion  of  the  well-known  cubic  spline  quadrature  rule~see  §4.0  in  [9]  and  §5.2,
p. 89,  in  [10].  It  is  also  analogous  to  the  “cubature  formula,”  which  was  devel-
oped  in  [11]  with  the  help  of  a  completely  different  computational  tool
(following [14] and [11], we use the term cubature as a reference to some integra-
tion rule for multiple integrals and the term quadrature as a reference to some inte-
gration  rule  for  single  integrals).  One  of  the  principal  differences  between  the
interpolation  quadrature/cubature  rules  and  the  cubature  formula  obtained  in
[11] is that the former allows for a greater freedom in the choice of the abscissas
xk.  This  means  that,  in  practice,  one  can  choose  the  evaluation  points  in  a  way
that takes into account the geometry of the payoff function LH ÿ L and not just the
geometry of the diffusion HXtLt ¥ 0.  From a practical point of view, this feature is
quite  important  and,  in  fact,  was  the  main  reason  for  developing  what  is  now
known as Gaussian quadratures.

An entirely different method for computing conditional averages of the form 

EQBjIXt+TënN À Xt = xkF
was developed in [12] and [13]. In this method, quantities of this form are approx-
imated  by  finite  products  of  linear  operators  acting  on  the  function  jH ÿ L.  One

of  smoothness  for  the  integrand  jH ÿ L,  which,  generally,  InterpolatingÖ
Function objects may not have.
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was developed in [12] and [13]. In this method, quantities of this form are approx-
jH ÿ L

must  be  aware  that  the  methods  described  in  [11|13]  require  a  certain  degree
of  smoothness  for  the  integrand  jH ÿ L,  which,  generally,  InterpolatingÖ
Function objects may not have.

The method developed in this article bears some similarity also with the quantiza-
tion  algorithm described in  [4,  5].  The key  feature  in  both methods  is  that  one
can  separate  and  compute~once  and  for  all~certain  quantities  that  depend  on
the  observable  process  but  not  on  the  payoff  function.  Essentially,  this  means
that one must solve, simultaneously, an entire family of boundary value problems
corresponding to  different  payoff  functions.  The two methods differ  in the way
in which functions on the state-space are encoded in terms of finite lists  of  val-
ues.  The  advantages  in  using  interpolating  functions  in  general,  or  splines  in
particular, are well known: one can “restore” the pricing maps from fewer evalua-
tion  points  and  this  feature  is  crucial  for  optimal  stopping  problems  in  higher
dimensions.

‡ Making Quadrature/Cubature Rules with Mathematica
In  this  section  we  show  how  to  make  quadrature/cubature  rules  for  a  fixed  set
of abscissas that are similar to the well-known Gaussian rules or the cubic spline
rules.  We  consider  quadrature  rules  on  the  real  line    first.  To  begin  with,
suppose that one must integrate some cubic spline x öSHxL that is defined from
the  abscissas  8x1, … , xn< œ n,  x1 <  < xn,  and  from  some  list  of  tabulated
values 8v1, … , vn< œ n. Since SH ÿ L  is a cubic spline, for any fixed 1 § k § Hn - 1L
there are real numbers ak,0, ak,1, ak,2, and ak,3 for which we have

SHxL = ak,0 + ak,1 x + ak,2 x2 + ak,3 x3 for any x œ Axk, xk+1E.
As a result, one can write

(9)‡
x1

xn

SHxL „ x = ‚
k=1

n-1

‚
i=0

3 ak,i

i + 1
 Ixk+1

i+1 - xk
i+1M,

which  reduces  the  computation  of  the  integral  Ÿx1

xn SHxL „ x  to  the  computation
of the coefficients ak,i from the tabulated values vk and the abscissas xk.

Though  not  immediately  obvious,  it  so  happens  that  when  all  abscissas
x1 <  < xn  are fixed, each coefficient ak,i~and, consequently, the entire expres-
sion on the right side of equation (9)~can be treated as a linear function of the
list 8v1, … , vn< œ n  (in fact, each ak,i  is a linear function only of a small portion
of that list). This property is instrumental for the quadrature/cubature rules that
will be developed in the next section. To see why one can make this claim, recall
that  (e.g.,  see  §3.3  in  [9])  the  cubic  spline  created  from the discrete  assignment
xk övk, 1 § k § n, is given by

Dynamic Integration of Interpolating Functions 669

The Mathematica Journal 10:4  © 2008 Wolfram Media, Inc.



(10) 

SHxL ª ak,0 + ak,1 x + ak,2 x2 + ak,3 x3

= AkHxL vk + BkHxL vk+1 + CkHxL vk
″ + DkHxL vk+1

″ ,

xk § x § xk+1,   1 § k § n - 1,

where

AkHxL ª
xk+1 - x

xk+1 - xk
,

BkHxL ª 1 - AkHxL,

CkHxL ª
AkHxL3 - AkHxL

6
 Ixk+1 - xkM2,

DkHxL ª
BkHxL3 - BkHxL

6
 Ixk+1 - xkM2,

and vk
″ := S″IxkM, 1 § k § n (note that the definition implies SIxkM = vk, 1 § k § n).

Usually, one sets v1
″ = vn

″ = 0 (which gives the so-called natural splines) and deter-
mines  the  remaining  values  8v2

″, … , vn-1
″ <  from  the  requirement  that  the  cubic

spline has a continuous first derivative on the entire interval D x1, xn@ (it is a trivial
matter  to  check  that  with  this  choice  the  second  derivative  of  the  function  de-
fined  in  equation  (10)  is  automatically  continuous  on  D x1, xn @).  Finally,  recall
that  this  last  requirement  leads  to  a  system  of  n - 2  linear  equations  with  un-
knowns 8v1

″, … , vn
″<  and that the right side of each of these equations is a linear

function  of  the  list  8v1, … , vn<,  while  the  coefficients  in  the  left  side  are  linear
functions  of  the  abscissas  8x1, … , xn<~see  equation  (3.3.7)  in  [9],  for  example.
This means that each quantity in the list 8v2

″, … , vn-1
″ <  can be treated as a linear

function of the list 8v1, … , vn<. Since the quantities AkHxL, BkHxL, CkHxL, and DkHxL
are all independent from the choice of 8v1, … , vn<, one can claim that the entire
expression  in  the  right  side  of  equation  (10)  is  a  linear  function  of  the  list
8v1, … , vn<. Thus, for every 1 § k § Hn - 1L and every x œ @xi, xi+1D, we can write

SHxL ª ak,0 + ak,1 x + ak,2 x2 + ak,3 x3 = ‚
k=1

n

hk,iHxL vk ,

where hk,iH ÿ L are polynomials of degree at most 3. More importantly, these poly-
nomials are universal in the sense that they depend on the abscissas xk but not on
the tabulated values vk.  In fact, this representation holds for spline interpolation
objects  of  any degree,  except  that  in  the  general  case the degree of  the polyno-
mials hk,iH ÿ L may be bigger than 3. An analogous representation is valid for other
(non-spline)  interpolating  functions  SH ÿ L;  in  particular,  such  a  representation  is
valid for interpolating functions SH ÿ L defined by way of divided differences inter-
polation, which is the method used by ListInterpolation . For example, if SH ÿ L
denotes  the  usual  interpolating  polynomial  of  degree  n - 1  defined  from  the
discrete  assignment  xk övk,  1 § k § n,  then  hk,iH ÿ L ª hkH ÿ L  is  simply  the  kth

Lagrange  polynomial  for  the  abscissas  xk.  Thus,  when  SH ÿ L  is  an  interpolating
function object (defined by, say, splines, divided differences, or standard polyno-

xk övk 1 § k § n fH ÿ L
some  (fixed)  continuous  and  strictly  monotone  function  and  that  pH ÿ L  is  some
(fixed)  integrable  function  and,  finally,  assuming  that  the  values  zk œ ,
1 § k § n, are chosen so that fIzkM = xk, 1 § k § n, one can write
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where hk,iH ÿ L are polynomials of degree at most 3. More importantly, these poly-
nomials are universal in the sense that they depend on the abscissas xk but not on
the tabulated values vk.  In fact, this representation holds for spline interpolation
objects  of  any degree,  except  that  in  the  general  case the degree of  the polyno-
mials hk,iH ÿ L may be bigger than 3. An analogous representation is valid for other
(non-spline)  interpolating  functions  SH ÿ L;  in  particular,  such  a  representation  is
valid for interpolating functions SH ÿ L defined by way of divided differences inter-
polation, which is the method used by ListInterpolation . For example, if SH ÿ L
denotes  the  usual  interpolating  polynomial  of  degree  n - 1  defined  from  the
discrete  assignment  xk övk,  1 § k § n,  then  hk,iH ÿ L ª hkH ÿ L  is  simply  the  kth

Lagrange  polynomial  for  the  abscissas  xk.  Thus,  when  SH ÿ L  is  an  interpolating

mial interpolation) from the assignment xk övk, 1 § k § n, assuming that fH ÿ L is
some  (fixed)  continuous  and  strictly  monotone  function  and  that  pH ÿ L  is  some
(fixed)  integrable  function  and,  finally,  assuming  that  the  values  zk œ ,
1 § k § n, are chosen so that fIzkM = xk, 1 § k § n, one can write

(11)‡
z1

zn

SHfHxLL pHxL „ x = 8w1 … , wn< ÿ 8v1, … , vn< ª ‚
k=1

n

wk vk,

where

wk ª ‚
i=1

N-1

‡
zi

zi+1

hk,iHfHxLL pHxL „ x,   1 § k § n.

Since the list 8w1, … , wn< œ n  can be computed once and for all  and indepen-
dently  from  the  interpolated  values  vk,  and  since  the  calculation  of  the  integral

Ÿz1

zn SHfHxLL pHxL „ x  comes  down  to  the  calculation  of  the  dot  product  8w1 … ,
wn< ÿ 8v1, … , vn<,  the computation of the list 8w1, … , wn< œ n  may be viewed as
a  simultaneous  integration  of  all  functions  of  the  form  x öSHfHxLL pHxL  for  all
interpolating  functions  SH ÿ L  (of  the  same  interpolation  type)  that  are  based  on
one and the same (forever fixed) set of abscissas 8x1, … , xn<.  Indeed, the knowl-
edge of the list  8w1, … , wn<  turns the expression Ÿz1

zn SHfHxLL pHxL „ x  into a trivial
function  of  the  list  8v1, … , vn<,  that  is,  a  trivial  function  defined  on  the  entire
class of interpolating functions SH ÿ L. In other words, in equation (11) we have made
a quadrature (or cubature) rule.

The  preceding  remarks  contain  nothing  new  or  surprising  in  any  way  and  we
only  need  to  find  a  practical  way  for  computing  the  weights  wk.  Fortunately,
Mathematica  allows  one  to  define  InterpolatingFunction  objects  even  if  the
interpolated  values  vk  are  defined  as  symbols  that  do  not  have  actual  numerical
values  assigned  to  them.  Furthermore,  such  objects  can  be  treated  as  ordinary
functions that can be evaluated,  differentiated,  and so on~all  in symbolic form.
We  illustrate  this  powerful  feature  next  (recall  that  ListInterpolation  has
default setting InterpolationOrderØ3).

In[1]:= V = Array@vð1 &, 810<D
Out[1]= 8v1, v2, v3, v4, v5, v6, v7, v8, v9, v10<

In[2]:= S = ListInterpolation@V D
Out[2]= InterpolatingFunction@H 1 10 L, <>D

In[3]:= ∂x,x SHxL ê. 8x Æ 3.5< êê Simplify

Out[3]= 0.5 v2 - 0.5 v3 - 0.5 v4 + 0.5 v5
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In[4]:= ∂x,x SHxL ê. :x Æ
7

2
> êê Simplify

Out[4]=

1

2
Iv2 - v3 - v4 + v5M

Since,  just  by  definition,  the  restriction  of  the  function  x Ø SHxL  to  the  interval
@3, 4D coincides with a polynomial of degree 3, by Taylor’s theorem, for any fixed
x0 œ D 3, 4@, we have

SHxL = ‚
i=0

3 1

i !
 SHiLHx0L Hx - x0Li for any 3 § x § 4.

Thus, if we define

In[5]:= te@ff_, x0_D := SumB 1

i !
* ffHiLHx0L * Hx - x0Li, 8i, 0, 3<F;

then on the interval @3, 4D we can identify the function S with the dot product

In[6]:= x0 = 3.5; S34@x_D = CoefficientList@te@S, x0D, xD.91, x, x2, x3=; Clear@x0D
Mathematica can rearrange this expression as an ordinary polynomial:

In[7]:= CollectAS34HxL êê Simplify, xE
Out[7]= I-0.166667 v2 + 0.5 v3 - 0.5 v4 + 0.166667 v5M x3 +

I2. v2 - 5.5 v3 + 5. v4 - 1.5 v5M x2 +

I-7.83333 v2 + 19. v3 - 15.5 v4 + 4.33333 v5M x + 10. v2 - 20. v3 + 15. v4 - 4. v5

We can also do

In[8]:= x0 =
7

2
; SS34@x_D = CoefficientList@te@S, x0D, xD.91, x, x2, x3=; Clear@x0D

In[9]:= CollectASS34HxL êê Simplify, xE

Out[9]=

1

6
I-v2 + 3 v3 - 3 v4 + v5M x3 +

1

6
I12 v2 - 33 v3 + 30 v4 - 9 v5M x2 +

1

6
I-47 v2 + 114 v3 - 93 v4 + 26 v5M x +

1

6
I60 v2 - 120 v3 + 90 v4 - 24 v5M

Essentially, this is some sort of reverse engineering of the InterpolatingFuncÖ
tion  object S, that is, a way to “coerce” Mathematica  to reveal what polynomials
the object S is constructed of between the interpolation points.

There are other tricks that we can use in order to reverse engineer an InterpoÖ
latingFunction  object.  For  example,  with  the  definition  of  S,  the  entire
function  @3, 4D ú x öSHxL œ   can  be  restored  from  the  values  9SH3L, SI 10

3 M,
SI 11

3 M, SH4L=.  To  do  the  restoration  we  must  solve  a  linear  system  for  the  four
unknown coefficients  in  some (unknown)  cubic  polynomial.  This  can  be  imple-

CoefficientList
The only drawback in this approach is that one must resort to Solve or LinearÖ
Solve, which, generally, are more time-consuming, especially in dimensions 2 or
higher.  Of  course,  instead  of  using  reverse  engineering,  one  can  simply  imple-
ment  the  interpolation  algorithm  step-by-step,  which,  of  course,  involves  a
certain amount of work.
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There are other tricks that we can use in order to reverse engineer an InterpoÖ
latingFunction  object.  For  example,  with  the  definition  of  S,  the  entire
function  @3, 4D ú x öSHxL œ   can  be  restored  from  the  values  9SH3L, SI 10

3 M,
SI 11

3 M, SH4L=.  To  do  the  restoration  we  must  solve  a  linear  system  for  the  four

mented  in  Mathematica  rather  elegantly  without  the  use  of  CoefficientList .
The only drawback in this approach is that one must resort to Solve or LinearÖ
Solve, which, generally, are more time-consuming, especially in dimensions 2 or
higher.  Of  course,  instead  of  using  reverse  engineering,  one  can  simply  imple-
ment  the  interpolation  algorithm  step-by-step,  which,  of  course,  involves  a
certain amount of work.
For example, we have

In[10]:= S34H3.7L - SH3.7L êê Simplify

Out[10]= 3.55271 µ 10-15 v2 - 1.42109 µ 10-14 v3 + 0. v4 - 7.10543 µ 10-15 v5

In[11]:= % êê Chop

Out[11]= 0

In[12]:= SS34
37

10
- S

37

10
êê Simplify

Out[12]= 0

In the definition of S34,  the variable x0  can be given any numerical value inside
the interval D 3, 4@; the choice x0=3.5 was completely arbitrary.
In the same way, one can reverse engineer InterpolatingFunction  objects that
depend on any number of independent abscissas. Here is an example.

In[13]:= VV = ArrayAvð1,ð2 &, 810, 10<E;
In[14]:= H = ListInterpolation@VVD

Out[14]= InterpolatingFunctionB 1 10
1 10

, <>F

In[15]:= ∂x,yHIx, yM ê. 9x Æ 3.2, y Æ 3.7= êê Simplify

Out[15]= -0.0186556 v2,2 + 0.178633 v2,3 - 0.147967 v2,4 - 0.0120111 v2,5 - 0.1022 v3,2 +

0.9786 v3,3 - 0.8106 v3,4 - 0.0658 v3,5 + 0.1387 v4,2 - 1.3281 v4,3 + 1.1001 v4,4 +

0.0893 v4,5 - 0.0178444 v5,2 + 0.170867 v5,3 - 0.141533 v5,4 - 0.0114889 v5,5

In[16]:= TeAff_, x0_, y0_E :=

SumB 1

Hi !L * I j !M
* ffHi, jLIx0, y0M * Hx - x0Li * Iy - y0M j, 8i, 0, 3<, 9 j, 0, 3=F;

In[17]:= x0 = 3.5; y0 = 4.5;
H3445Ax_, y_E = FlattenACoefficientListATeAH, x0, y0E, 9x, y=E êê SimplifyE.

FlattenATableAxi  y j, 8i, 0, 3<, 9 j, 0, 3=EE; ClearAx0, y0E
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In[18]:= H3445H3.2, 4.7L - HH3.2, 4.7L êê Simplify

Out[18]= 1.7053 µ 10-13 v2,3 + 0. v2,4 - 4.54747 µ 10-13 v2,5 +

1.13687 µ 10-13 v2,6 + 0. v3,3 - 7.27596 µ 10-12 v3,4 -

2.72848 µ 10-12 v3,5 - 1.81899 µ 10-12 v3,6 - 2.04636 µ 10-12 v4,3 +

2.27374 µ 10-13 v4,4 - 2.27374 µ 10-12 v4,5 + 1.53477 µ 10-12 v4,6 +

3.41061 µ 10-13 v5,3 + 0. v5,4 + 2.27374 µ 10-13 v5,5 - 1.7053 µ 10-13 v5,6

In[19]:= % êê Chop

Out[19]= 0

In  this  example,  for  3 § x § 4  and  for  4 § y § 5,  the  quantity  H[x,y]  can  be
expressed as the following polynomial of the independent variables x and y.

In[20]:= H3445Ax, yE;
If  one  does  not  suppress  the  output  from  the  last  line  (which  would  produce  a
fairly long output), it  becomes clear that all coefficients in the polynomial of the
variables  x  and  y  are  linear  functions  of  the  array  VV œ 10⊗10.  Consequently,
if  the variables  x  and y  are integrated out,  the expression will  turn into a  linear
combination of all the entries (symbols) in the array VV.

Now  we  turn  to  concrete  applications  of  the  features  described  in  this  section.
For  the  purpose  of  illustration,  all  time-consuming  operations  in  this  notebook
are  executed  within  the  Timing  function.  The  CPU  times  reflect  the  speed  on
Dual  2  GHz  PowerPC  processors  with  2.5 GB  of  RAM.  The  Mathematica
version is  6.0.1. For all inputs with computing time longer than 1 minute, a file
that contains the returned value is made available. 

‡ Some Examples of Cubic Cubature Rules for Gaussian 
Integrals in 2

First, define the standard normal density in 2.

In[21]:= pAx_, y_E =
1

2 p
 „-

x2+y2

2 ;

In this section, we develop cubature rules for computing integrals of the form

‡
-¶

¶

„ x ‡
-¶

¶

f Hx, yL pHx, yL „ y

for certain functions f H ÿ L. We suppose that the last integral can be replaced by

(12)‡
-R

R
„ x ‡

-R

R
f Hx, yL pHx, yL „ y

without a significant loss of precision, where the value
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In[22]:= R =
84

10
;

is chosen so that

In[23]:=

1

2 p

 ‡
R

•

„-
u2

2  ‚u < $MachineEpsilon

Out[23]= True

The next step is to choose the abscissas XPkT, 1 § k § m, and YPlT, 1 § l § n:

In[24]:= X = TableBx, :x, -R, R,
4

5
>F; Y = X ;

In[25]:= m = Length@XD; n = Length@Y D;
For the sake of  simplicity,  in display equations  we will  write  xk  instead of  XPkT
and  yl  instead  of  YPlT.  Then  we  define  the  associated  array  of  symbolic  values
attached to the interpolation nodes Ixk, ylM
In[26]:= V = ArrayAvð1,ð2 &, 8m, n<E;
and produce the actual InterpolatingFunction object:

In[27]:= f = ListInterpolation@Table@8XPkT, Y PlT, 8VPk, lT<<, 8k, 1, m<, 8l, 1, n<DD

Out[27]= InterpolatingFunctionB
- 42

5
42
5

- 42
5

42
5

, <>F

Note that V was defined simply as an array of symbols and that, therefore, f can
be treated as a symbolic object, too. In any case, we have

‡
-R

R
„ x ‡

-R

R
f Hx, yL pHx, yL „ y

 = ‚
k=1

m-1

‚
l=1

n-1

‡
xk

xk+1

„ x ‡
yl

yl+1

f Hx, yL pHx, yL „ y.

Note that each double integral on the right side of the last identity is actually an
integral  of  some polynomial  of  the variables  x  and y  multiplied by the standard
normal density in 2.  Furthermore,  as  was pointed out earlier,  every coefficient
in this polynomial is actually a linear function of the array V. Since the InterpoÖ
latingFunction  object f was defined with InterpolationOrderØ3  (the default
setting for ListInterpolation), we can write

‡
xk

xk+1

„ x ‡
yl

yl+1

f Hx, yL pHx, yL „ y

 = ‚
i=0

3

‚
j=0

3

k,l,i, jHV L ‡
xk

xk+1

„ x ‡
yl

yl+1

xi  y j  pHx, yL „ y,

where k,l,i, jH ÿ L : m⊗n #   are linear functions of the tensor V  that can be com-
puted once and for all by using the method described in the previous section. In
addition, the integrals in the right side of the last identity also can be computed
once  and  for  all  by  using  straightforward  integration~this  is  the  only  place  in
the  procedure  where  actual  integration  takes  place.  Once  these  calculations  are
completed, the integral (12) can be expressed as an explicit linear function of the
array V of the form
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where k,l,i, jH ÿ L : m⊗n #   are linear functions of the tensor V  that can be com-
puted once and for all by using the method described in the previous section. In
addition, the integrals in the right side of the last identity also can be computed
once  and  for  all  by  using  straightforward  integration~this  is  the  only  place  in
the  procedure  where  actual  integration  takes  place.  Once  these  calculations  are
completed, the integral (12) can be expressed as an explicit linear function of the
array V of the form

Flatten@WDÿFlatten@VD
for some fixed tensor W œ m⊗n. Of course, the actual calculation of the tensor W
is much more involved and time consuming than the direct numerical evaluation
of  the  integral  (12)  in  those  instances  where  f  is  not  a  symbolic  object,  that  is,
when  the  symbols  vk,l  are  given  concrete  numeric  values.  The  point  is  that  the
calculation  of  the  tensor  W  is  tantamount  to  writing  the  integral  (12)  as  an
explicit function of the symbols that define f; that is, we evaluate simultaneously
the entire family of integrals for all possible choices of actual numeric values that
can be assigned to the symbols vk,l . Once the tensor W is calculated, we can write

(13)‡
-R

R
„ x ‡

-R

R
f Hx, yL pHx, yL „ y = Flatten@WDÿ Flatten@VD.

Note that this identity is exact if the abscissas Ixk, ylM are exact numbers. In other
words,  by  computing  the  tensor  W  we  have  made  a  cubature  rule.  Furthermore,
when  FH ÿ L  is  some  function  defined  in  the  rectangle  @-R, RDä @-R, RD  that  has
already been defined and the symbol V is given the numeric values

Table@FHXPkT, YPlTL, 8k, 1, m<, 8l, 1, n<D,

then  the  right  side  of  equation  (13)  differs  from  the  left  side  by  no  more  than
4 R2  times the uniform distance between the function FH ÿ L and the interpolating
function created from the assignment

Ixk, ylMö FIxk, ylM.
First, we compute~once and for all~all integrals of the form

‡
xk

xk+1

„ x ‡
yl

yl+1

xi  y j  pHx, yL „ y

for all  choices of 1 § k § m,  1 § l § n,  0 § i § 3, and 0 § j § 3, and we represent
these integrals as explicit functions of the symbols 9xk, xk+1, yl , yl+1=.
Instead  of  calculating  the  tensor  integrals,  one  may  load  its  (precomputed)
value from the files integrals.mx or integrals.txt (if available): 

<< "C:êLocalHDlocationêintegrals.mx"

or

<< "C:êLocalHDlocationêintegrals.txt"
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In[28]:= TimingA
integrals = TableAIntegrateAxi * y j * pAx, yE, 8x, Xk, Xk1<, 9y, Yl, Yl1=E,

8i, 0, 3<, 9 j, 0, 3=E;E
Out[28]= 840.43, Null<

Next,  we  replace  the  symbols  9xk, xk+1, yl , yl+1=  with  the  actual  numeric  values
of the associated abscissas on the grid: 

In[29]:= TimingAWM = TableAintegrals ê. 8Xk Æ XPkT, Xk1 Æ XPk + 1T,
Yl Æ Y PlT, Yl1 Æ Y Pl + 1T<, 8k, m - 1<, 8l, n - 1<E;E

Out[29]= 82.26533, Null<
In[30]:= Dimensions@WMD

Out[30]= 821, 21, 4, 4<
The  next  step  is  to  create  the  lists  of  the  midpoints  between  all  neighboring
abscissas 

In[31]:= Xm = TableB1

2
* HXPiT + XPi + 1TL, 8i, 1, m - 1<F;

Ym = TableB1

2
* HY PiT + Y Pi + 1TL, 8i, 1, n - 1<F;

which would allow us  to produce the Taylor  expansion of  the InterpolatingÖ
Function  object f  at  the points IXmQkU, YmQlUM œ 2,  for any 1 § k § m - 1 and
any  1 § l § n - 1.  As  noted  earlier,  for  every  choice  of  k  and  l,  the  associated
expansion coincides with the object f everywhere in the rectangle

@XPkT, XPk + 1T Dä @YPlT, YPl + 1T D Õ 2.
Now we will compute the entire expression

‚
k=1

m-1

‚
l=1

n-1

‚
i, j=0

3

k,l,i, jHV L ‡
xk

xk+1

„ x ‡
yl

yl+1

xi  y j  pHx, yL „ y

as a linear function of the symbols vk,l ,  1 § k § m,  1 § l § n.  Note that for every
fixed  k  and  l,  the  third  summation  simply  gives  the  dot  product  between  the
vectors

Flatten@CoefficientList@Te@f, XmPkT, YmPlTD, 8x, y<DD
and Flatten@WMPk, lTD.

It  is  important  to  recognize  that  the  sum  of  these  dot  products  gives  the  exact
value of the integral

‡
-R

R
„ x ‡

-R

R
f Hx, yL pHx, yL „ y.

Unfortunately,  the  exact  values  of  the  integrals  stored  in  the  list  WM  are  quite
cumbersome:
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In[32]:= WMP5, 7, 3, 1T

Out[32]=

1

4 ‰116ê5 p
 erf

7 2

5
- erf

9 2

5

2
26 ‰242ê25

5
-

22 ‰338ê25

5
+ ‰116ê5 p erf

11 2

5
- erf

13 2

5

Since  working  with  such  expressions  becomes  prohibitively  slow,  we  convert
them  to  floating-point  numbers  (we  can,  of  course,  use  any  precision  that  we
wish). 
In[33]:= Timing@WMN = N@WM, 20D;D

Out[33]= 81.22097, Null<
Note that this last operation is the only source of errors in the integration of the
interpolating function f. 
Finally, we compute the integral

‡
-R

R
„ x ‡

-R

R
f Hx, yL pHx, yL „ y

in symbolic form, that is, as an explicit function of the symbols vk,l  that define the
interpolating function f~what we are going to compute are the actual numerical
values of the coefficients for the symbols vk,l  in the linear combination that repre-
sents this integral. Consequently, an expression in symbolic form for the integral
is  nothing  but  a  tensor  of  actual  numeric  values.  We  again  stress  that  the  only
loss  of  precision comes from the conversion of the exact numeric values for the
integrals stored in WM into the floating-point numbers stored in WMN.

Instead of calculating the object CoeffList  in the following, which contains the
actual  linear  combination  of  the  symbols  vi, j,  one  may  load  its  (precomputed)
value from the files CoeffList.mx or CoeffList.txt (if available): 

<< "C:êLocalHDlocationêCoeffList.mx"

or

<< "C:êLocalHDlocationêCoeffList.txt"

In[34]:= TimingACoeffList = TotalA
TableATotalAExpandACoefficientListATeI f , XmPiT, YmQ jUM, 9x, y=E

WMNQi, jUE, 2E, 8i, m - 1<, 9 j, n - 1=E, 2E;E
Out[34]= 898.8673, Null<
Now we extract the numeric values for the coefficients vk,l  and store those values
in the tensor W:
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In[35]:= TimingAW = TableACoefficientACoeffList, vk,lE, 8k, m<, 8l, n<E;E
Out[35]= 80.119846, Null<
Note that in order to produce the actual  cubature rule we need to compute the
tensor  W  only  once,  so  that  several  minutes  of  computing  time  is  quite  accept-
able.  Note also that W  (i.e.,  the cubature rule)  can be calculated with any preci-
sion. This means that if we approximate an integral of the form

‡
-R

R
„ x ‡

-R

R
uHx, yL pHx, yL „ y

with the dot product

Flatten@Table@uHXPiT, YPjTL, 8i, m<, 8j, n<DDÿFlatten@WD,

then  the  upper  estimate  for  the  error  in  this  approximation  can  be  made  arbi-
trarily close to the uniform distance between the function uH ÿ , ÿL and the interpo-
lating function created from the values that u takes on the grid multiplied by the
area of the integration domain, which is 4 R2.
Now we turn to some examples. First, consider the function

In[36]:= uAx_, y_E = x2 + y2;

and set

In[37]:= V = Table@u@XPkT, Y PlTD, 8k, m<, 8l, n<D;
Now we have

In[38]:= Flatten@V D.Flatten@WD
Out[38]= 1.9999999999999934

In[39]:= NIntegrateBuAx, yE *
1

2 p
* „-

x2+y2

2 , 8x, -R, R<, 9y, -R, R=F

Out[39]= 2.

In[40]:= Abs@% - %%D
Out[40]= 1.51149 µ 10-9

For the function

In[41]:= uAx_, y_E = ArcTanAx2 * „yE; V = Table@u@XPkT, Y PlTD, 8k, m<, 8l, n<D;
we get

In[42]:= AbsBFlatten@V D.Flatten@WD -

NIntegrateBuAx, yE *
1

2 p
* „-

x2+y2

2 , 8x, -R, R<, 9y, -R, R=FF

Out[42]= 0.0086428

One must be aware that NIntegrate  is a very efficient procedure and, generally,
replacing NIntegrate  with a “hand made” cubature rule of the type described in

of  standard functions,  or when a better control  of  the error is  needed, provided
that one can control the uniform distance between the integrand and the respec-
tive  interpolating function created  from the grid.  In  general,  such “hand made”
cubatures  become  useful  mostly  in  situations  where  one  has  to  compute  a  very
large number of  integrals  for similarly defined integrands~assuming,  of  course,
that the uniform error from the interpolation in all integrands can be controlled
(this  would  be  the  case,  for  example,  if  one  has  a  global  bound  on  a  sufficient
number of derivatives).
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One must be aware that NIntegrate  is a very efficient procedure and, generally,
NIntegrate

this section may be justified only when the integrand cannot be defined in terms
of  standard functions,  or when a better control  of  the error is  needed, provided
that one can control the uniform distance between the integrand and the respec-
tive  interpolating function created  from the grid.  In  general,  such “hand made”
cubatures  become  useful  mostly  in  situations  where  one  has  to  compute  a  very
large number of  integrals  for similarly defined integrands~assuming,  of  course,
that the uniform error from the interpolation in all integrands can be controlled
(this  would  be  the  case,  for  example,  if  one  has  a  global  bound  on  a  sufficient
number of derivatives).
Interpolation  quadrature  rules  for  single  integrals  can  be  obtained  in  much  the
same way. It must be noted that, in general, spline quadrature rules are consider-
ably  more  straightforward  than  spline  cubature  rules.  This  is  because  smooth
interpolation in 1 can be obtained without any additional information about the
derivatives  at  the  grid  points  and  this  is  not  the  case  in  spaces  of  dimension
greater  than or  equal  to 2.  For  example,  cubic  splines  in  1  are  uniquely  deter-
mined  by  the  values  at  the  grid  points  and  by  the  requirement  that  the  second
derivative vanishes at the first and last grid points (the so-called natural splines).
In  contrast,  smooth  interpolation  in  two  or  more  dimensions  depends  on  the
choice of the gradient and at least one mixed derivative at every grid point,  and
when  information  about  these  quantities  is  not  available~as  is  often  the  case~
one usually  resorts  to divided difference interpolation. In general,  the efficiency
of the interpolation may be increased by using a nonuniform grid and by placing
more grid  points  in  the  regions  where  the  functions that  are being interpolated
are more “warped.” We will  illustrate this approach in the last section. The use
of  nonsmooth  interpolation,  such  as  bilinear  interpolation  in  2,  for  example,
reduces considerably the computational complexity of the problem. In any case,
the  error  from  the  interpolation  must  be  controlled  in  one  way  or  another.
While the discussion of this issue is beyond the scope of this article, it should be
noted that rather powerful estimates for the interpolation error are well known.

‡ Some Examples of Bilinear Cubature Rules for Gaussian 
Integrals in 2

In general,  just  as  one would expect,  cubature rules  based on bilinear interpola-
tion  are  less  accurate  than  the  cubature  rules  described  in  the  previous  section
(assuming, of course, one uses the same grid and keeping in mind that this claim
is  made just  in  general).  However,  from a computational  point  of  view,  bilinear
cubature  rules  are  considerably  simpler  and  easier  to  implement,  especially  for
more general integrals of the form 

‡ f HfHxLL pHxL „ x

for  some  fixed  functions  x ö fHxL  and  x ö pHxL.  The  greater  computational
simplicity  actually  allows  one  to  use  a  denser  grid,  which,  in  many  cases,  is  a
reasonable  compensation  for  the  loss  in  smoothness.  The  dynamic  integration
procedures  in 2  that  are  discussed in  the  next  section are all  based on bilinear
cubature rules (in the case of 1 we will use cubic quadratures).
Here we will be working with the same interpolation grid XPkT, 1 § k § m, YPlT,
1 § l § n,  that  was  defined  in  the  previous  section  and,  just  as  before,  in  all
display  formulas  will  write  xk  instead  of  XPkT  and  yl  instead  of  YPlT.  Instead
of working with the interpolation objects of the form
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Here we will be working with the same interpolation grid XPkT, 1 § k § m, YPlT,
1 § l § n,  that  was  defined  in  the  previous  section  and,  just  as  before,  in  all
display  formulas  will  write  xk  instead  of  XPkT  and  yl  instead  of  YPlT.  Instead
of working with the interpolation objects of the form

ListInterpolation@
Table@88XPkT, YPlT<, 8vk,l<<, 8k, 1, m<, 8l, 1, n<DD,

we will  work  with bilinear  interpolation objects  that  we are going to “construct
from  scratch”  as  explicit  functions  of  the  variables  x  and  y  that  depend  on  the
respective grid points and tabulated values. This means that for

xk § x § xk+1   and   yl § y § yl+1,

the bilinear interpolation object can be expressed as

biHx, y, XPkT, XPk + 1T, YPlT, YPl + 1T, vk,l, vk,l+1, vk+1,l, vk+1,l+1L,

where the function bi is defined as

In[43]:= biAx_, y_, x1_, x2_, y1_, y2_, V11_, V12_, V21_, V22_E =

1 -
x - x1

x2 - x1
* 1 -

y - y1

y2 - y1
* V11 +

x - x1

x2 - x1
* 1 -

y - y1

y2 - y1
* V21 +

1 -
x - x1

x2 - x1
*
y - y1

y2 - y1
* V12 +

x - x1

x2 - x1
*
y - y1

y2 - y1
* V22;

It is clear from this definition that, treated as a function of the variables x and y,
the expression bi can be written as

A + B x + C y + D x y,

where the entire list 8A, B, C, D<  can be treated as a function of the grid points
Ixk, xk+1, yl , yl+1M and the tabulated values Ivk,l , vk,l+1, vk+1,l , vk+1,l+1M. In fact, this
function (that is, a list of functions) can be written as

In[44]:= cfbiAx1_, x2_, y1_, y2_, V11_, V12_, V21_, V22_E =

CoefficientListAbiAx, y, x1, x2, y1, y2, V11, V12, V21, V22E, 9x, y=E;
For every fixed k and l, the integral of the bilinear interpolating object taken over
the rectangle

xk § x § xk+1   and   yl § y § yl+1

is  simply  the  dot  product  between  the  list  8A, B, C, D<  and  the  list  of  integrals
(over the same rectangle) of the functions

Hx, yL ö pHx, yL, Hx, yL ö x pHx, yL,
Hx, yL ö y pHx, yL, and Hx, yL ö x y pHx, yL.

Now we will calculate~and store~all these lists (of integrals) of dimension 4 for
all choices for 1 § k § m and for 1 § l § n:
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In[45]:= ip00@a_, b_, c_, d_D =

AssumingAa Œ  && b Œ  && c Œ  && d Œ  && a < b&& c < d,
IntegrateApAx, yE, 8x, a, b<, 9y, c, d=EE

Out[45]=

1

4
erf

a

2
- erf

b

2
erf

c

2
- erf

d

2

In[46]:= ip10@a_, b_, c_, d_D =

AssumingAa Œ  && b Œ  && c Œ  && d Œ  && a < b&& c < d,
IntegrateAx * pAx, yE, 8x, a, b<, 9y, c, d=EE

Out[46]=

‰
-

a2

4
-

b2

4 erf c

2
- erf d

2
sinhJ 1

4
Ia2 - b2MN

2 p

In[47]:= ip01@a_, b_, c_, d_D =

AssumingAa Œ  && b Œ  && c Œ  && d Œ  && a < b&& c < d,
IntegrateAy * pAx, yE, 8x, a, b<, 9y, c, d=EE

Out[47]=

‰
-

c2

4
-

d2

4 erf a

2
- erf b

2
sinhJ 1

4
Ic2 - d2MN

2 p

In[48]:= ip11@a_, b_, c_, d_D =

AssumingAa Œ  && b Œ  && c Œ  && d Œ  && a < b&& c < d,
IntegrateAx * y * pAx, yE, 8x, a, b<, 9y, c, d=EE

Out[48]=

2 ‰
1
4
I-a2-b2-c2-d2M sinhJ 1

4
Ia2 - b2MN sinhJ 1

4
Ic2 - d2MN

p

In[49]:= TimingA
WM2 = TableA9ip00@XPkT, XPk + 1T, Y PlT, Y Pl + 1TD, ip01@XPkT, XP

k + 1T, Y PlT, Y Pl + 1TD, ip10@XPkT, XPk + 1T, Y PlT, Y Pl + 1TD,
ip11@XPkT, XPk + 1T, Y PlT, Y Pl + 1TD=, 8k, m - 1<, 8l, n - 1<E;E

Out[49]= 80.444583, Null<
In[50]:= Timing@WM2N = N@WM2, 20D;D

Out[50]= 80.028574, Null<
and then compute the sum of all dot products:

In[51]:= TimingA
loc = TotalATableAIFlattenAcfbiAXPkT, XPk + 1T, Y PlT, Y Pl + 1T, vk,l , vk,l+1,

vl+1,k, vk+1,l+1EE.WM2NPk, lTM êê
Simplify, 8k, m - 1<, 8l, n - 1<E, 2E;E

Out[51]= 80.488303, Null<
This  sum  is  a  linear  function  of  the  symbols  vk,l ,  and  this  linear  function
represents  the  integral  of  the  interpolating  function  f H ÿ L  over  the  entire  inter-
polation region (each dot product gives the integral of f H ÿ L in the respective sub-
region).  Finally,  we  must  extract  the  coefficients  for  the  symbols  nk,l  from  the
linear combination (of those symbols) that we just obtained.
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This  sum  is  a  linear  function  of  the  symbols  vk,l ,  and  this  linear  function
represents  the  integral  of  the  interpolating  function  f H ÿ L  over  the  entire  inter-
polation region (each dot product gives the integral of f H ÿ L in the respective sub-
region).  Finally,  we  must  extract  the  coefficients  for  the  symbols  nk,l  from  the
linear combination (of those symbols) that we just obtained.

In[52]:= TimingAQ = TableA∂vk,l HlocL, 8k, m<, 8l, n<E;E
Out[52]= 80.643791, Null<
Now we can use the tensor Q in the same way in which we used the tensor W in
the  previous  section:  although  Q  contains  concrete  numeric  values,  this  ten-
sor  still  has  the  meaning  of  “integral  of  f H ÿ L  in  symbolic  form.”  For  example,
if we set

In[53]:= uAx_, y_E = „0.1 x y;

then we obtain

In[54]:= Timing@V = Table@u@XPkT, Y PlTD, 8k, m<, 8l, n<D; Flatten@V D.Flatten@QDD
Out[54]= 80.001992, 1.0014<
which is reasonably close to

In[55]:= NIntegrateBuAx, yE *
1

2 p
* „-

x2+y2

2 , 8x, -R, R<, 9y, -R, R=F êê Timing

Out[55]= 80.045307, 1.00504<
In this case, the cubic cubature rule is considerably more accurate:

In[56]:= Timing@V = Table@u@XPkT, Y PlTD, 8k, m<, 8l, m<D; Flatten@V D.Flatten@WDD
Out[56]= 80.00184, 1.00503<
Here is another example.

In[57]:= uAx_, y_E = MaxAR - MinAx + R, y + RE, 0E;
This function is nonsmooth, as the following 3D plot shows.

In[58]:= Plot3DAuAx, yE, 8x, -R, R<, 9y, -R, R=,
PlotPoints Æ 150, Mesh Æ False, PlotRange Æ AllE

Out[58]=
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In[59]:= Timing@V = Table@u@XPkT, Y PlTD, 8k, m<, 8l, n<D; Flatten@V D.Flatten@QDD
Out[59]= 80.003845, 0.744238893601963570<

In[60]:= Timing@V = Table@u@XPkT, Y PlTD, 8k, m<, 8l, n<D; Flatten@V D.Flatten@WDD
Out[60]= 80.003853, 0.6874360084736024<

In[61]:= NIntegrateBuAx, yE *
1

2 p
* „-

x2+y2

2 , 8x, -R, R<, 9y, -R, R=F êê Timing

Out[61]= 80.151764, 0.681037<
In[62]:= Abs@8%P2T - %%P2T, %P2T - %%%P2T<D

Out[62]= 80.00639893, 0.0632018<
Finally,  we  remark that~at  least  in principle~the  procedures developed in this
and  in  the  previous  sections  may  be  used  with  any  other,  that  is,  nonGaussian,
probability density pH ÿ L, including nonsmooth densities. 

‡ Application to Optimal Stopping Problems and Option 
Pricing
The main objective in this section is to revisit the method of dynamic interpola-
tion and integration described in [1] and to present a considerably more efficient
implementation of this method, which takes advantage of the fact that the objects
that  are  being  integrated  sequentially  are  actually  interpolating functions.  More
importantly, we will show how to implement this method in the case of optimal
stopping  problems  for  certain  diffusions  in  2.  Essentially,  this  section  is  about
the  actual  implementation  in  Mathematica  of  the  method  encoded  in  the  space-
discretized version  of the time-discrete dynamic programming equation  (7). The solu-
tion is approximated in terms of dynamic cubature rules of the form (8) by using
the procedure encoded in equation (11). For the sake of simplicity, the examples
presented  in  this  section  will  be  confined  to  the  case  where  the  (diffusion type)
observation  process  HXtLt ¥ 0  is  computable,  in  the  sense  that  for  any  fixed  T ¥
t ¥ 0, the random variable XT  can be expressed as 

XT = yT-tHXt, WT - WtL
for some computable function yT-t : N äN # N  (note that the position of the
diffusion  process  at  time  t,  Xt,  is  independent  of  the  future  increment  of  the
Brownian  motion  WT - Wt).  In  other  words,  the  conditional  law  of  XT  given
the event 8XT = x<  can be identified with the distribution law of a random vari-
able of the form

yT-tKx, T - t GO,

where  G  is  a  standard  normal  N -valued  random  variable.  Of  course,  when
HXtLt ¥ 0 is computable in the sense that we just described, then there is no need to

HXtLt ¥ 0
the procedures described in this section can still be used, provided that the defini-
tion of the function yT-tH ÿ , ÿL is changed according to the recipe (6). 
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where  G  is  a  standard  normal  N -valued  random  variable.  Of  course,  when
Xt ¥  is computable in the sense that we just described, then there is no need to

use the approximation (6), and, if HXtLt ¥ 0  is not computable, in principle at least,
the procedures described in this section can still be used, provided that the defini-
tion of the function yT-tH ÿ , ÿL is changed according to the recipe (6). 

We note that the Mathematica code included in this section is independent of the
code included in all previous sections.

To begin with, define the following symmetric probability density function in 2.

In[63]:= pIx_, y_M =
1

2 p
* „-

x2+y2

2 ;

This is nothing but the probability density of a bivariate normal random variable
HX , Y L œ 2,  with  standard  normal  marginals  X  and  Y  and  with  correlation
E@X Y D = 0. Let Wt, t ¥ 0, and Bt, t ¥ 0, be two standard Brownian motions that
are  independent,  so  that  E@Wt  BtD = 0  for  any  t ¥ 0.  Next,  for  some fixed  s > 0
and  for  Hx, yL œ 2,  set  at

x = x ‰s Wt  and  bt
y = y ‰s Bt  for  any  t ¥ 0.  Note  that

the  joint  distribution  law  of  Iat
x, bt

yM  is  the  same  as  the  joint  distribution  law

of Jx ‰s t X , y ‰s t Y N. It is a trivial matter to check that

+ ú t ö Iat
x, bt

yM œ 2

is a diffusion process in 2 with generator

 =
s2

2
 Ix2 ∂x,x + y2 ∂ y, yM.

In  what  follows,  we  study  the  problem  for  optimal  stopping  of  the  process
Iat

x, bt
yMt ¥ 0  no  later  than  time T > 0,  for  a  given  termination  payoff  L : +

2 # .
For  the  sake  of  simplicity,  we  will  suppose  that  the  discount  rate  for  future
payoffs is 0. In the special case where LHx, yL = lHxL, x ¥ 0, for some “sufficiently
nice”  function  of  one  variable  l : + # ,  the  problem  comes  down  to  the
optimal stopping of the one-dimensional diffusion Iat

xMt ¥ 0. We analyze this one-
dimensional case first.

In[64]:= Hx_L =
1

2 p

 „-
x2

2 ;

In[65]:= s = 0.3;

The time step in the procedure, that is, the quantity T
v , is set to

In[66]:= t = .05;

Next, define the interpolation grid:
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In[67]:= X = Join@Table@x êê N , 8x, 2, 32, 2<D, Table@x êê N , 8x, 34, 42, 2<D,
Table@x êê N , 8x, 44, 80, 4<D, 890, 100<, Table@x êê N , 8x, 120, 200, 20<DD;

m = Length@XD; XX = JoinA9$MachineEpsilon=, X , 8300, 400<E;

Xm = TableB1

2
* HXXPkT + XXPk + 1TL, 8k, 1, m + 2<F;

Just  as  before,  in  all  display  equations  we  will  write  xk  instead  of  XPkT  and  xk
instead of XXPkT. The boundary conditions will be prescribed at the first and last
two abscissas  on the extended grid XX.  This  means that  the recursive procedure
will  update  only  the  values  on the  grid  X.  Thus,  the  procedure that  we develop
can  be  applied  only  to  situations  where  the  value  function  does  not  change  at
those  points  in  the  state-space  that  are  either  close  to  0  or  happen  to  be  very
large.

The next step is to define the list of tabulated symbols

In[68]:= vrsb = Array@bð1 &, 8m + 3<D;
and the associated (symbolic) InterpolatingFunction object

In[69]:= g = ListInterpolation@Table@8XXPkT, 8vrsbPkT<<, 8k, 1, m + 3<DD;
Next, extract the coefficients of the cubic polynomials that represent the object g
between the interpolation nodes.

In[70]:= te@ff_, x0_D := SumB 1

Hi !L * ffHiLHx0L * Hx - x0Li, 8i, 0, 3<F;

In[71]:= m0loc = TableACoefficientListAteAg, XmPkTE, 8x<E êê Simplify, 8k, m + 2<E;
For example,

In[72]:= m0locP1T êê Chop

Out[72]= 81. b1, -0.916667 b1 + 1.5 b2 - 0.75 b3 + 0.166667 b4,
0.25 b1 - 0.625 b2 + 0.5 b3 - 0.125 b4,
-0.0208333 b1 + 0.0625 b2 - 0.0625 b3 + 0.0208333 b4<

which means that for x1 § x § x2, the expression g[x] can be identified with the
polynomial

In[73]:= 91, x, x2, x3=.m0locP1T
Out[73]= I-0.0208333 b1 + 0.0625 b2 - 0.0625 b3 + 0.0208333 b4M x3 +

I0.25 b1 - 0.625 b2 + 0.5 b3 - 0.125 b4M x2 +

I-0.916667 b1 + 1.5 b2 - 0.75 b3 + 0.166667 b4M x + 1. b1 -

4.44089 µ 10-16 b2 + 1.11022 µ 10-16 b3 - 1.38778 µ 10-17 b4

Next, note that the relation

xk § xx ‰s t  x § xk+1
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is equivalent to

LHx, kL ª
1

s t
 log

xk

xx
§ x §

1

s t
 log

xk+1

xx
ª LHx, k + 1L.

For every fixed x = 1, … , m, we will compute all integrals

‡
LIx,kM

LIx,k+1M
‰ Hi-1L s t x HxL „ x,   1 § i § 4,   1 § k § m + 2,

and will store these integrals in the matrix (initially filled with zeros):

In[74]:= wl = Table@HTable@0, 8i, 0, 3<DL, 8k, 1, m + 2<D;
In particular, the integral

‡
LIx,kM

LIx,k+1M
gJxx  ‰s t  xNHxL „ x

can be replaced by

91, xx, xx
2, xx

3= ÿ Im0locQkU * wlQkUM,
and we remark that

m0locQkU * wlQkU ª ‚
i=1

4

m0locQk, iU * wlQk, iU.

The entire expression

‡
LHx,1L

LHx,m+3L
gJxx  ‰s t  xNHxL „ x = ‚

k=1

m+2

91, xx, xx
2, xx

3=.Im0locQkU * wlQkUM

then becomes a linear function of the symbols 8b1, … , bm+3<. This linear function
(i.e., vector of dimension m + 3) depends on the index x and represents a quadra-
ture  rule  for  the  integral  in  the  left  side  in  the  last  identity.  We  stress  that  we
need one such rule for every abscissa xx,  1 § x § m.  We will store all these rules
(i.e., vectors of dimension m + 3) in the tensor (initially filled with zeroes):
In[75]:= w = Table@Table@0, 8k, 1, m + 3<D, 8x, 1, m<D;
In[76]:= Clear@ll, ulD; locInt =

TableBIntegrateB„Hi-1L*s* t *x * HxL, 8x, ll, ul<F êê Simplify, 8i, 1, 4<F;
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In[77]:= DoB DoBDoB wlPk, iT = NB locIntPiT ê. :ll Æ
1

s * t
* LogB XXPkT

XPxT F, ul Æ

1

s * t
* LogB XXPk + 1T

XPxT F> F , 8i, 1, 4<F, 8k, m + 2<F;

lcls = SumAI91, XPxT, XPxT2, XPxT3=.Hm0locPkT * wlPkTL êê SimplifyM,
8k, m + 2<E;

wPxT = TableA∂bk HlclsL, 8k, m + 3<E; , 8x, m<F êê Timing

Out[77]= 80.90158, Null<
As  a  first  application,  we  compute  the  price  of  an  American  put  option  with
payoff: 
In[78]:= L@x_D = Max@40 - x, 0D

Out[78]= maxH0, 40 - xL
The first iteration will be done by using a direct numerical integration~not inter-
polation quadrature rules.

In[79]:= TimingB
V1 = TableB:MaxBL@XXPkTD, NIntegrateBLBXXPkT * „s* t *xF * HxL,

:x, -•,
1

s * t
 LogB 40

XXPkT F>, MaxRecursion Æ 10,

AccuracyGoal Æ 16, SingularityDepth Æ 10FF>, 8k, 1, m + 3<F;F
Out[79]= 81.02531, Null<
Now we will do 19 additional iterations by using interpolation quadratures. The
time step is  t = 0.05 years.  This  will  give  us  the  approximate price  of  an Amer-
ican put with strike price 40 and one year left to expiry. Note that the list wPkT
gives  the  integral  associated  with  the  abscissa  xk,  which  is  the  same  as  xk+1  for
1 § k § m.  The idea is to keep the value at the abscissa x1  fixed, throughout the
iterations,  equal  to  the  initial  value  40  and,  similarly,  keep  the  values  at  the
abscissas xm+2 and xm+3 forever fixed at the initial values 0 and 0.

In[80]:= K = V1; VL = K;

In[81]:= Timing@
Do@HDo@VLPk + 1T = 8Max@L@XXPk + 1TD, Flatten@KD.wPkTD<, 8k, m<D;

K = VLL, 819<D;D
Out[81]= 80.010863, Null<
Note  that  the  first  iteration  took  about  20  times  longer  to  compute  than  the
remaining  19.  Now  we  define  the  value  function  after  20  iterations~this  is
nothing but the option price with one year left to maturity treated as a function
defined on the entire range of observable stock prices.
In[82]:= f = ListInterpolation@Table@8XXPkT, KPkT<, 8k, 1, m + 3<DD;

We plot the value function f H ÿ L together with the termination payoff LH ÿ L.
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We plot the value function f H ÿ L together with the termination payoff LH ÿ L.
In[83]:= PlotA9 f @xD, L@xD=, 8x, 0, 120<, PlotRange Æ All,

PlotPoints Æ 150, PlotStyle Æ 8Hue@0.D, Hue@0.7D<E

Out[83]=

20 40 60 80 100 120

10

20

30

40

The  range  of  abscissas  at  which  the  value  function  and  the  termination  pay-
off coincide is precisely the price range where immediate exercise of the option is
optimal, assuming that there is exactly one year left to expiry.

Now  we  consider  the  same  optimal  stopping  problem  but  with  a  smooth  pay-
off function, namely

In[84]:= L@x_D =
1

100
 x2 *

1

40
 HMax@40 - x, 0DL2;

Essentially, this is an example of some sort of a generalized obstacle problem.

In[85]:= PlotAL@xD, 8x, 0, 60<, PlotRange Æ AllE

Out[85]=

10 20 30 40 50 60

10

20

30

40

In this case, there is no need to perform the first iteration by using direct numer-
ical integration.
In[86]:= Timing@V1 = Table@8L@XXPkTD<, 8k, 1, m + 3<D;D

Out[86]= 80.000257, Null<
Now we perform 60 iterations,  which will  give  us  the value function with three
years left to the termination deadline.
In[87]:= K = V1; VL = K;

In[88]:= Timing@
Do@HDo@VLPk + 1T = 8Max@L@XXPk + 1TD, Flatten@KD.wPkTD<, 8k, 1, m<D;

K = VLL, 860<D;D
Out[88]= 80.039661, Null<
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In[89]:= f = ListInterpolation@Table@8XXPkT, KPkT<, 8k, 1, m + 3<DD;
In[90]:= PlotA9 f @xD, L@xD=, 8x, 0, 120<,

PlotRange Æ All, PlotStyle Æ 8Hue@0.D, Hue@0.7D<E

Out[90]=

20 40 60 80 100 120
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40

The most common approach to dynamic programing problems of this type is to
use the free boundary problem formulation, followed by some suitable variation
of the finite difference scheme. However, such an approach is much less straight-
forward and usually takes much longer to compute~a fraction of a second would
be  very  hard  to  imagine  even  on  a  very  powerful  computer.  In  fact,  we  could
double  the  number  of  the  interpolation  nodes  and  cut  the  time  step  in  half,
which  would  roughly  quadruple  the  timing,  and  still  complete  the  calculation
within one second. 
It  is  important  to  point  out  that,  in  terms  of  the  previous  procedure,  there  is
nothing  special  about  the  standard  normal  density.  In  fact,  we  could  have  used
just  about  any  other  reasonably  behaved  probability  density  function  H ÿ L~as
long  as  the  associated  integrals  are  computable.  In  particular,  one  can  use  this
procedure  in  the  context  of  financial  models  in  which  the  pricing  process  is
driven  by  some  nonwhite  noise  process,  including  a  noise  process  with  jumps.
The only requirement is that we must be able to compute the integrals

‡
LIx,kM

LIx,k+1M
‰ Hi-1L s t x HxL „ x,   1 § i § 4,   1 § k § m + 2,

for any x = 1, … , m.

Finally,  we  consider  the  two-dimensional  case.  We use the same grid-points  on
both axes:
In[91]:= Y = X ; n = Length@Y D; YY = XX;

Although the lists Y and YY are the same as X and XX, in the notation that we use
we  will  pretend  that  these  lists  might  be  different  and  will  write  yk  instead
of YPkT, yk instead of YYPkT, and set

MHh, lL ª
1

s t
 log

yl

yh
.
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We will use bilinear cubature rules, which are easier to implement~we need one
such rule  for  every point  Ixx, yhM,  1 § x § m,  1 § h § n.  Thus,  we must  compute
all integrals

(14)‡
LIx,kM

LIx,k+1M
„ x ‡

MIh,lM

MIh,l+1M
‰ Hi-1L s t x + H j-1L s t y pHx, yL „ y

for  i, j = 1, 2,  for  1 § k § m + 2,  for  1 § l § n + 2,  for  1 § x § m,  and  for
x § h § n  (because  of  the symmetry in the density pH ÿ L,  it  is  enough to consider
only  the  case  h ¥ x).  Now  we  need  to  operate  with  substantially  larger  lists
of data and for that reason we need to organize the Mathematica code differently.

Assuming  that  Hx, yLö f Hx, yL  is  an  interpolating  function  constructed  by  way
of bilinear interpolation from the tabulated symbols

ak,l ª f Ixk, ylM,   1 § k § m + 3,   1 § l § n + 3,

we can express each of the integrals

‡
LIx,kM

LIx,k+1M
„ x ‡

MIh,lM

MIh,l+1M
f Jxx  ‰ s t x , yh ‰ s t yN pHx, yL „ y

in the form

91, xx=.Ax,h,k,l .91, yh=,
where Ax,h,k,l  is the 2 µ 2 matrix given by (here we use the definition of cfbi from
the previous section)

Ax,h,k,l = cfbiA xk, xk+1, yl , yl+1, ak,l , ak,l+1, ak+1,l , ak+1,l+1E * locIntegrals,

and locIntegrals  is the 2 µ 2 matrix of the integrals (14) indexed by 1 § i, j § 2
(i is the first index and j is the second). In fact, with our special choice for the bi-
variate density pHx, yL, all these integrals can be calculated in closed form:

In[92]:= ClearAs, t, x, y, lx, Lx, ly, LyE

In[93]:= i = 1; j = 1; IntegrateB„ Hi-1L s t x+ H j-1L s t y * pIx, yM, 8x, lx, Lx<, 9y, ly, Ly=F

Out[93]=

1

4
erf

lx

2
- erf

Lx

2
erf

ly

2
- erf

Ly

2

In[94]:= i = 2; j = 1; IntegrateB„ Hi-1L s t x+ H j-1L s t y * pIx, yM, 8x, lx, Lx<, 9y, ly, Ly=F

Out[94]=

1

4
‰

t s2

2 erf
ly

2
- erf

Ly

2
erf

lx - t s

2
- erf

Lx - t s

2
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In[95]:= i = 1; j = 2; IntegrateB„ Hi-1L s t x+ H j-1L s t y * pIx, yM, 8x, lx, Lx<, 9y, ly, Ly=F

Out[95]=

1

4
‰

t s2

2 erf
lx

2
- erf

Lx

2
erf

ly - t s

2
- erf

Ly - t s

2

In[96]:= i = 2; j = 2; IntegrateB„ Hi-1L s t x+ H j-1L s t y * pIx, yM, 8x, lx, Lx<, 9y, ly, Ly=F

Out[96]=

1

4
‰t s2 erf

lx - t s

2
- erf

Lx - t s

2
erf

ly - t s

2
- erf

Ly - t s

2

After fixing the values for the volatility s and the time step t

In[97]:= ClearAi, jE; s = 0.3; t = .05;

the integrals can be written as explicit functions of the integration limits:

In[98]:= cip11 = CompileB98lx, _Real<, 8Lx, _Real<, 9ly, _Real=, 9Ly, _Real==,

1

4
* erf

lx

2
- erf

Lx

2
* erf

ly

2
- erf

Ly

2
F;

In[99]:= cip21 =

CompileB98lx, _Real<, 8Lx, _Real<, 9ly, _Real=, 9Ly, _Real==, 1

4
* „

t s2

2 *

erf
ly

2
- erf

Ly

2
* erf

lx - t s

2
- erf

Lx - t s

2
F;

In[100]:= cip12 =

CompileB98lx, _Real<, 8Lx, _Real<, 9ly, _Real=, 9Ly, _Real==, 1

4
* „

t s2

2 *

erf
lx

2
- erf

Lx

2
* erf

ly - t s

2
- erf

Ly - t s

2
F;

In[101]:= cip22 = CompileB98lx, _Real<, 8Lx, _Real<, 9ly, _Real=, 9Ly, _Real==,

1

4
* „t s2

* erf
lx - t s

2
- erf

Lx - t s

2
*

erf
ly - t s

2
- erf

Ly - t s

2
F;

Our method depends in a crucial way on the fact that 81, XPxT<.Ax,h,k,l .81, YPhT<
is  actually  a  linear  function  of  the  symbols  9ak,l , ak,l+1, ak+1,l , ak+1,l+1=.  In  fact,
we can compute the coefficients in this linear combination explicitly, as we now
demonstrate.
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Our method depends in a crucial way on the fact that 81, XPxT<.Ax,h,k,l .81, YPhT<
is  actually  a  linear  function  of  the  symbols  9ak,l , ak,l+1, ak+1,l , ak+1,l+1=.  In  fact,
we can compute the coefficients in this linear combination explicitly, as we now
demonstrate.

In[102]:= Clear@a, b, c, dD
In[103]:= locIntegrals = 88C11, C12<, 8C21, C22<<

Out[103]=
C11 C12
C21 C22

The  next  two  definitions  are  taken  from  the  previous  section,  so  that  the  code
included in this section can be self-contained.

In[104]:= biAx_, y_, x1_, x2_, y1_, y2_, V11_, V12_, V21_, V22_E =

1 -
x - x1

x2 - x1
* 1 -

y - y1

y2 - y1
* V11 +

x - x1

x2 - x1
* 1 -

y - y1

y2 - y1
* V21 +

1 -
x - x1

x2 - x1
*
y - y1

y2 - y1
* V12 +

x - x1

x2 - x1
*
y - y1

y2 - y1
* V22;

In[105]:= cfbiAx1_, x2_, y1_, y2_, V11_, V12_, V21_, V22_E =

CoefficientListAbiAx, y, x1, x2, y1, y2, V11, V12, V21, V22E, 9x, y=E;
In[106]:= CoefficientA81, xx<.IcfbiA x1, x2, y1, y2, a, b, c, dE * locIntegralsM.91, yy=,

aE êê Simplify

Out[106]=

C11 x2 y2 - C21 xx y2 - C12 x2 yy + C22 xx yy

Hx1 - x2L Iy1 - y2M

In[107]:= CoefficientA81, xx<.IcfbiA x1, x2, y1, y2, a, b, c, dE * locIntegralsM.91, yy=,
bE êê Simplify

Out[107]=

-C11 x2 y1 + C21 xx y1 + C12 x2 yy - C22 xx yy

Hx1 - x2L Iy1 - y2M

In[108]:= CoefficientA81, xx<.IcfbiA x1, x2, y1, y2, a, b, c, dE * locIntegralsM.91, yy=, cE êê
Simplify

Out[108]=

-C11 x1 y2 + C21 xx y2 + C12 x1 yy - C22 xx yy

Hx1 - x2L Iy1 - y2M

In[109]:= CoefficientA81, xx<.IcfbiA x1, x2, y1, y2, a, b, c, dE * locIntegralsM.91, yy=,
dE êê Simplify

Out[109]=

C11 x1 y1 - C21 xx y1 - C12 x1 yy + C22 xx yy

Hx1 - x2L Iy1 - y2M
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Thus, the entire integral

(15)‡
LHx,1L

LHx,m+3L
„ x ‡

MHh,1L

MHh,n+3L
f JXPxT ‰ s t x , YPhT ‰ s t yN pHx, yL „ y

can be treated as a linear function of the symbols

9ak,l ; 1 § k § m + 3, 1 § l § n + 3=.
This linear function is nothing but a tensor of dimension Hm + 3Lä Hn + 3L and this
tensor  is  nothing  but  a  cubature  rule  for  the  integral  (15),  which,  obviously,
depends  on  the  indices  x  and  h.  Consequently,  we  have  one  such  cubature  rule
(tensor) for every choice of x = 1, … , m and every choice of h = x, … , n, and all
such rules will be stored in the tensor (initially filled with zeros):

In[110]:= X = Table@Table@0, 8k, m + 3<, 8l, n + 3<D, 8x, m<, 8h, x, n<D;
The  calculation  of  the  tensor  X  is  the  key  step  in  the  implementation  of  the
method  of  dynamic  interpolation  and  integration  in  dimension  2.  This  is  the
place where we must face the “curse of the dimension.” It is no longer efficient to
express the global integral (15) as the sum of local integrals of the form (14) and
then extract from the sum the coefficients for the symbols ak,l . It turns out to be
much faster if one updates the coefficients for the symbols ak,l  sequentially, as the
local integrals in (14) are calculated one by one. Just as one would expect, dealing
with  the  boundary  conditions in higher  dimensions is  also  trickier.  Throughout
the  dynamic  integration  procedure  we  will  be  updating  the  values  of  the  value
function  at  the  grid  points  Ixx, yhM,  1 § x § m,  1 § h § n,  or,  which  amounts  to
the same, the grid points Ixk, ylM, 2 § k § m + 1, 2 § h § n + 1. The values on the

remaining grid points Ixk, ylM  with k = 1, or k = m + 2, or k = m + 3, or l = 1, or
l = n + 2, or l = n + 3, will be kept unchanged, or, depending on the nature of the
problem, will be updated according to some other~one-dimensional,  perhaps~
dynamic quadrature rule.

Now we  turn  to  the  actual  computation  of  the  tensor  X.  On  a  single  “generic”
processor, this task takes about 1

2  hour (if more processors are available the task
can be distributed between several different Mathematica kernels in a trivial way).
The key point is  that this is  a calculation that we do once and for all.  As will be illus-
trated shortly,  once the tensor X  is  calculated,  a  whole slew of optimal stopping
problems can be solved within seconds. Of course, the “slew of optimal stopping
problems” is limited to the ones where the termination payoff and the value func-
tions obtained throughout the dynamic integration can be approximated reason-
ably  well  by  way  of  bilinear  interpolation  from  the  same  interpolation  grid.  In
general,  the  set  of  these  “quickly  solvable”  problems  can  be  increased  by
choosing a denser grid and/or a grid that covers a larger area. However, doing so
may  become  quite  expensive.  For  example,  if  we  were  to  double  the  number
of  grid  points  in  each  coordinate,  the  computing  time  for  the  tensor  X  would
increase roughly 16 times~again, everything is easily parallelizable.
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It  is  important  to  recognize  that  the  calculation  of  the  list  X  involves  only  the
evaluation  of  standard  functions  and  accessing  the  elements  of  a  fairly  large
tensor (X has a total of 1,245,621 entries). This is close to the “minimal number
of calculations” that one may expect to get away with: if  the number of discrete
data  from  which  the  value  function  can  be  restored  with  a  reasonable  degree
of  accuracy is  fairly  large,  then there  is  a  fairly  large number of  values  that  will
have  to  be  calculated  no  matter  what.  Furthermore,  the  evaluation  of  standard
functions  is  very  close  to  the  fastest  numerical  procedure that  one may hope to
get away with in this situation. From an algorithmic point of view, the efficiency
of this procedure can be improved in two ways: (1) find a new way to encrypt the
value  function  with  fewer  discrete  values;  and/or  (2)  represent  all  functions
involved in the procedure (i.e., all combinations of standard functions) in a form
that allows for an even faster evaluation. In terms of hardware,  the speed of the
procedure depends not only on the speed of the processor but also on the speed
and the organization of the memory. 

Instead of  calculating the list  X,  one may load its  (precomputed) value from the
files Xi.mx or Xi.txt (if available): 

<< "C:êLocalHDlocationêXi.mx"

or

<< "C:êLocalHDlocationêXi.txt"

In[111]:= TimingBDoBxx = XPxT; yy = Y PhT;

DoB lx =
1

s * t
* LogB XXPkT

XPxT F; Lx =
1

s * t
* LogB XXPk + 1T

XPxT F;

x1 = XXPkT; x2 = XXPk + 1T;

DoB ly =
1

s * t
* LogB YYPlT

Y PhT F; Ly =

1

s * t
* LogB YYPl + 1T

Y PhT F; y1 = YYPlT; y2 = YYPl + 1T;

C11 = cip11Alx, Lx, ly, LyE; C12 = cip12Alx, Lx, ly, LyE;
C21 = cip21Alx, Lx, ly, LyE; C22 = cip22Alx, Lx, ly, LyE;
XPx, h - x + 1, k, lT = XPx, h - x + 1, k, lT +

C11 x2 y2 - C21 xx y2 - C12 x2 yy + C22 xx yy

Hx1 - x2L Iy1 - y2M
;

XPx, h - x + 1, k, l + 1T = XPx, h - x + 1, k, l + 1T +

-C11 x2 y1 + C21 xx y1 + C12 x2 yy - C22 xx yy

Hx1 - x2L Iy1 - y2M
;

XPx, h - x + 1, k + 1, lT = XPx, h - x + 1, k + 1, lT +

-C11 x1 y2 + C21 xx y2 + C12 x1 yy - C22 xx yy

Hx1 - x2L Iy1 - y2M
;

= +

; ,
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In[111]:=

Hx1 - x2L Iy1 - y2M
;

XPx, h - x + 1, k + 1, l + 1T = XPx, h - x + 1, k + 1, l + 1T +

C11 x1 y1 - C21 xx y1 - C12 x1 yy + C22 xx yy

Hx1 - x2L Iy1 - y2M
; ,

8l, n + 2<F , 8k, m + 2<F; , 8x, 1, m<, 8h, x, n<F;F

Out[111]= 8391.51, Null<
Now we can turn to some concrete applications. First, we will consider an Amer-
ican  put  option  with  strike  price  40  on  the  choice  of  one  of  two  uncorrelated
assets (the owner of the option can choose one of the two assets when the option
is exercised). The termination payoff from this option is 

In[112]:= LAx_, y_E = MaxA40 - MinAx, yE, 0E;
In[113]:= Plot3DALAx, yE, 8x, 0, 120<, 9y, 0, 120=,

PlotPoints Æ 250, Mesh Æ False, PlotRange Æ AllE

Out[113]=

The  two  underlying  assets  are  uncorrelated  and  follow  the  processes  x0 ‰s Wt ,
t ¥ 0,  and  y0 ‰s Bt ,  t ¥ 0,  where  B  and  W  are  the  Brownian  motions  described
earlier in this section. Let Hx, yLö ftHx, yL be the value function with t  years left
to  expiry,  that  is,  if  the  time  left  to  expiry  is  t  years  and  the  prices  of  the  two
assets  are,  respectively,  x œ +  and  y œ +,  then  the  value  of  the  option  is
ftHx, yL œ +  and we remark that what is meant here as “the value of the option”
is  actually  a  function  defined  on  the  entire  range  of  prices,  that  is,  the  range
of  prices  covered  by  the  interpolation  grid.  Clearly,  we  must  have
ftHx, 0L = ftH0, yL = 40.  Furthermore,  when  one  of  the  assets  has  a  very  large
value,  then  the  option  is  very  close  to  a  canonical  American  put  option  on  the
other  asset.  Consequently,  the  values  at  the  grid  points  Ixk, ylM,  where  k = 1  or
l = 1, will  never be updated and will  remain forever fixed at the initial  value 40.
When  k  is  fixed  to  either  k = m + 2  or  k = m + 3,  the  values  at  the  grid  points
Ixk, ylM,  1 § l § n + 3,  will  be  updated exactly  as  we  did  earlier  in  the case of  an
American put on a single asset with a strike price 40. Similarly, when l  is fixed to
either l = n + 2 or l = m + 3, the values at the grid points Ixk, ylM,  1 § k § m + 3,
will be updated in the same way, that is, as if we were dealing with an American
put on a single asset with strike price 40. Of course, since the payoff is symmetric

pH ÿ , ÿL
Ixk, ylM for k = 1, … , m + 3 and l = k, … , n + 3.
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The  two  underlying  assets  are  uncorrelated  and  follow  the  processes  x0 ‰s Wt ,
t ¥ 0,  and  y0 ‰s Bt ,  t ¥ 0,  where  B  and  W  are  the  Brownian  motions  described
earlier in this section. Let Hx, yLö ftHx, yL be the value function with t  years left
to  expiry,  that  is,  if  the  time  left  to  expiry  is  t  years  and  the  prices  of  the  two
assets  are,  respectively,  x œ +  and  y œ +,  then  the  value  of  the  option  is
ftHx, yL œ +  and we remark that what is meant here as “the value of the option”
is  actually  a  function  defined  on  the  entire  range  of  prices,  that  is,  the  range
of  prices  covered  by  the  interpolation  grid.  Clearly,  we  must  have
ftHx, 0L = ftH0, yL = 40.  Furthermore,  when  one  of  the  assets  has  a  very  large
value,  then  the  option  is  very  close  to  a  canonical  American  put  option  on  the
other  asset.  Consequently,  the  values  at  the  grid  points  Ixk, ylM,  where  k = 1  or
l = 1, will  never be updated and will  remain forever fixed at the initial  value 40.
When  k  is  fixed  to  either  k = m + 2  or  k = m + 3,  the  values  at  the  grid  points
Ixk, ylM,  1 § l § n + 3,  will  be  updated exactly  as  we  did  earlier  in  the case of  an
American put on a single asset with a strike price 40. Similarly, when l  is fixed to
either l = n + 2 or l = m + 3, the values at the grid points Ixk, ylM,  1 § k § m + 3,
will be updated in the same way, that is, as if we were dealing with an American

and so is the density pH ÿ , ÿL, we only need to update the values at the grid points
Ixk, ylM for k = 1, … , m + 3 and l = k, … , n + 3.

Now we turn to the actual calculation. By using the method of dynamic integra-
tion  of  interpolating  functions,  we  will  compute~approximately~the  pricing
function  Hx, yLö f1Hx, yL  that  maps  the  prices  of  the  underlying  assets  in  the
range covered by the grid into the price of the option with one year left to matu-
rity.  With  time  step  t = 0.05,  we  need  to  perform 20  iterations  in  the  dynamic
integration  procedure.  Note  that  if  we  choose  to  perform  the  first  iteration  by
direct  numerical  integration  of  the  termination  payoff,  then  that  would  require
the calculation of 741 integrals.

We initialize the procedure by tabulating the termination payoff over the interpo-
lation grid.

In[114]:= Timing@V3 = Table@L@XXPkT, YYPlTD, 8k, 1, m + 3<, 8l, 1, n + 3<D;D
Out[114]= 80.0069, Null<

In[115]:= K = V3; VL = K;

Then we do 20 iterations~at each iteration we update the tensor VL:

In[116]:= Timing@
Do@HDo@HVLPx + 1, h + 1T = 8Max@L@XXPx + 1T, YYPh + 1TD, Flatten@

XPx, h - x + 1TD.Flatten@KDD<L, 8x, m<, 8h, x, n<D;
Do@VLPk + 1, n + 2T = 8Max@Max@40 - XXPk + 1T, 0D,

Flatten@KPAll, n + 2TD.wPkTD<, 8k, m<D;
Do@VLPk + 1, n + 3T = 8Max@Max@40 - XXPk + 1T, 0D,

Flatten@KPAll, n + 3TD.wPkTD<, 8k, m<D;
Do@HVLPx, hT = VLPh, xTL, 8x, 2, m + 3<, 8h, x - 1<D;
K = VLL, 820<D;D

Out[116]= 83.61598, Null<
Now we can produce the pricing map with one year left to maturity.

In[117]:= floc = ListInterpolation@
Table@8 8XXPkT, YYPlT<, 8VLPk, lT<<, 8k, 1, m + 3<, 8l, 1, n + 3<DD;

In[118]:= Plot3DAflocAx, yE, 8x, 0, 120<, 9y, 0, 120=,
PlotPoints Æ 250, Mesh Æ False, PlotRange Æ AllE

Out[118]=

Calculating  the  derivatives  of  the  value  function  (treated  as  functions,  too)  is
straightforward  as  we  now  illustrate,  and  before  we  do  we  remark  that  in  the
realm of finance, information about these derivatives (known as the deltas of the
option) is often more important than the pricing function itself.
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Calculating  the  derivatives  of  the  value  function  (treated  as  functions,  too)  is
straightforward  as  we  now  illustrate,  and  before  we  do  we  remark  that  in  the
realm of finance, information about these derivatives (known as the deltas of the
option) is often more important than the pricing function itself.

In[119]:= Plot3DAflocH1,0LIx, yM, 8x, 0, 80<, 9y, 0, 80=,
PlotPoints Æ 250, Mesh Æ False, PlotRange Æ AllE

Out[119]=

In our second example,  we consider an American put option on the more expen-
sive of two given underlying assets (in contrast, in our previous example we dealt
with an American put option on the less expensive of the two underlying assets).
In this case, the termination payoff function is given by

In[120]:= LAx_, y_E = MaxA40 - MaxAx, yE, 0E;
In[121]:= Plot3DALAx, yE, 8x, 0, 120<, 9y, 0, 120=,

PlotPoints Æ 250, Mesh Æ False, PlotRange Æ AllE

Out[121]=

This time the boundary conditions must take into account the fact that when one
of  the  assets  becomes  too  expensive,  the  option  becomes  worthless,  and  when
one of the assets is worthless, the option may be treated as a standard American
option  on  the  other  asset.  For  the  purpose  of  illustration  we  will  compute  the
value of the option with three years left to maturity.

In[122]:= Timing@V4 = Table@L@XXPkT, YYPlTD, 8k, 1, m + 3<, 8l, 1, n + 3<D;D
Out[122]= 80.007632, Null<

In[123]:= K = V4; VL = K;
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In[124]:= Timing@
Do@HDo@HVLPx + 1, h + 1T = 8Max@L@XXPx + 1T, YYPh + 1TD, Flatten@

XPx, h - x + 1TD.Flatten@KDD<L, 8x, m<, 8h, x, n<D;
Do@VLP1, k + 1T = 8Max@Max@40 - YYPk + 1T, 0D,

Flatten@KP1, AllTD.wPkTD<, 8k, m<D; Do@
VLPk + 1, n + 2T = 80<, 8k, m<D; Do@VLPk + 1, n + 3T = 80<, 8k, m<D;

Do@HVLPx, hT = VLPh, xTL, 8x, 2, m + 3<, 8h, x - 1<D; K = VLL, 860<D;D
Out[124]= 812.2292, Null<

In[125]:= floc = ListInterpolation@
Table@88XXPkT, YYPlT<, 8VLPk, lT<<, 8k, 1, m + 3<, 8l, 1, n + 3<DD;

In[126]:= Plot3DAflocAx, yE, 8x, 0, 120<, 9y, 0, 120=,
PlotPoints Æ 250, Mesh Æ False, PlotRange Æ AllE

Out[126]=

This  is  a  good example of a  value function which is  neither everywhere smooth
nor convex.

In  our  final  example  we  consider  optimal  stopping  of  the  same  diffusion  in  2

but with smooth termination payoff of the form

In[127]:= l@x_D =
1

100
 x2 *

1

40
 HMax@40 - x, 0DL2; LAx_, y_E =

1

40
 l@xD * lAyE;

In[128]:= Plot3DALAx, yE, 8x, 0, 120<, 9y, 0, 120=,
PlotPoints Æ 250, Mesh Æ False, PlotRange Æ AllE

Out[128]=

With this  termination payoff  the  boundary  conditions  must  reflect  the fact  that
the  option  is  worthless  when  one  of  the  assets  is  worthless  or  when  one  of  the

60
function with three years left to expiry.
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With this  termination payoff  the  boundary  conditions  must  reflect  the fact  that

assets is too expensive. We will execute 60 iterations, which will give us the value
function with three years left to expiry.

In[129]:= Timing@V5 = Table@L@XXPkT, YYPlTD, 8k, 1, m + 3<, 8l, 1, n + 3<D;D
Out[129]= 80.015148, Null<

In[130]:= K = V5; VL = K;

In[131]:= Timing@
Do@HDo@HVLPx + 1, h + 1T = 8Max@L@XXPx + 1T, YYPh + 1TD, Flatten@

XPx, h - x + 1TD.Flatten@KDD<L, 8x, m<, 8h, x, n<D;
Do@VLP1, k + 1T = 80<, 8k, m<D; Do@VLPk + 1, n + 2T = 80<, 8k, m<D;
Do@VLPk + 1, n + 3T = 80<, 8k, m<D;
Do@HVLPx, hT = VLPh, xTL, 8x, 2, m + 3<, 8h, x - 1<D; K = VLL, 860<D;D

Out[131]= 812.3947, Null<
In[132]:= floc = ListInterpolation@

Table@88XXPkT, YYPlT<, 8VLPk, lT<<, 8k, 1, m + 3<, 8l, 1, n + 3<DD;
In[133]:= Plot3DAflocAx, yE, 8x, 0, 120<, 9y, 0, 120=,

PlotPoints Æ 250, Mesh Æ False, PlotRange Æ AllE

Out[133]=

‡ Conclusions
Most man-made computing devices can operate only with finite lists of numbers
or  symbols.  Any use of such devices for modeling,  analysis,  and optimal control
of  stochastic  systems  inevitably  involves  the  encoding  of  inherently  complex
phenomena  in  terms  of  finite  lists  of  numbers  or  symbols.  Thus  one  can  think
of  two  general  directions  that  may  lead  to  expanding  the  realm  of  computable
models. First, one may try to construct computing devices that can handle larger
and  larger  lists,  faster  and  faster.  Second,  one  may  try  to  develop  “smarter”
procedures with which more complex objects can be encrypted with shorter lists
of numbers. With this general direction in mind, the methodology developed in
this article is entirely logical and natural. Indeed, the approximation of functions
with  splines  or  other  types  of  interpolating  functions  is  a  familiar,  well
developed,  and  entirely  natural  computing  tool.  The  use  of  special
quadrature/cubature  rules~as  opposed  to  general  methods  for  numerical
integration~in  the  context  of  dynamic  integration  of  interpolating  functions  is

which  one  can  implement  such  procedures  in  a  relatively  simple  and  straight-
forward  fashion  become  widely  available.  This  article  is  an  attempt  to
demonstrate how the advent of more sophisticated computing technologies may
lead  to  the  development  of  new  and  more  efficient  algorithms.  Curiously,  new
and more efficient algorithms often lead to the design of new and more efficient
computing  devices.  In  particular,  all  procedures  described  in  this  article  can  be
implemented on parallel processors or on computing grids in essentially a trivial
way.  There  is  a  strong  incentive  to  build  computing  devices  that  can  perform
simultaneously  several  numerical  integrations,  or  can  compute  dot  products
between very large lists of numbers very fast.
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Most man-made computing devices can operate only with finite lists of numbers
or  symbols.  Any use of such devices for modeling,  analysis,  and optimal control
of  stochastic  systems  inevitably  involves  the  encoding  of  inherently  complex
phenomena  in  terms  of  finite  lists  of  numbers  or  symbols.  Thus  one  can  think
of  two  general  directions  that  may  lead  to  expanding  the  realm  of  computable
models. First, one may try to construct computing devices that can handle larger
and  larger  lists,  faster  and  faster.  Second,  one  may  try  to  develop  “smarter”
procedures with which more complex objects can be encrypted with shorter lists
of numbers. With this general direction in mind, the methodology developed in
this article is entirely logical and natural. Indeed, the approximation of functions
with  splines  or  other  types  of  interpolating  functions  is  a  familiar,  well
developed,  and  entirely  natural  computing  tool.  The  use  of  special
quadrature/cubature  rules~as  opposed  to  general  methods  for  numerical

just  as  logical  and  natural.  However,  only  recently  have  computer  languages  in
which  one  can  implement  such  procedures  in  a  relatively  simple  and  straight-
forward  fashion  become  widely  available.  This  article  is  an  attempt  to
demonstrate how the advent of more sophisticated computing technologies may
lead  to  the  development  of  new  and  more  efficient  algorithms.  Curiously,  new
and more efficient algorithms often lead to the design of new and more efficient
computing  devices.  In  particular,  all  procedures  described  in  this  article  can  be
implemented on parallel processors or on computing grids in essentially a trivial
way.  There  is  a  strong  incentive  to  build  computing  devices  that  can  perform
simultaneously  several  numerical  integrations,  or  can  compute  dot  products
between very large lists of numbers very fast.

Finally, we must point out that most of the examples presented in the article are
only prototypes. They were meant to be executed on a generic (and slightly out
of  date)  laptop  computer  with  the  smallest  possible  number  of  complications.
Many  further  improvements  in  terms  of  higher  accuracy  and  overall  efficiency
can certainly be made. 
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