
The Mathematica” Journal

Dynamic Integration of
Interpolating Functions
and Some Concrete
Optimal Stopping
Problems
Andrew Lyasoff
This article describes a streamlined method for simultaneous integration
of an entire family of interpolating functions that uses one and the same
interpolation grid in one or more dimensions. A method for creating cus-
tomized quadrature/cubature rules that takes advantage of certain special
features of Mathematica’s InterpolatingFunction objects is presented.
The use of such rules leads to a new and more efficient implementation
of the method for optimal stopping of stochastic systems that was devel-
oped in [1]. In particular, this new implementation allows one to extend
the scope of the method to free boundary optimal stopping problems in
higher dimensions. Concrete applications to finance~mainly to American-
style financial derivatives~are presented. In particular, the price of an
American put option that can be exercised with any one of two uncorre-
lated underlying assets is calculated as a function of the observed prices.
This method is similar in nature to the well-known Longstaff|Schwartz
algorithm, but does not involve Monte|Carlo simulation of any kind.

‡ Preliminaries
The most common encounter with the concept of dynamic programming~
and here we will be concerned only with continuous time dynamic programm-
ing (CTDP)~occurs in the context of the optimal stopping of an observ-
able stochastic process with given termination payoff. This is a special case
of stochastic optimal control where the control consists of a simple on-off switch,
which, once turned off, cannot be turned on again. A generic example of an
optimal stopping problem can be described as this: the investor observes a contin-
uous Markov process HXtLt ¥ 0 with state-space  Œ N and with known stochastic

dynamics and, having observed at time t ¥ 0 the value X
`

t œ , where X
`

t denotes
the observed realization of the random variable Xt, the investor must decide

whether to terminate the process immediately and collect the payoff LHX` tL,
where L :  #  is some a priori determined (deterministic) payoff function, or
to wait until time t + D > t for the next opportunity to terminate the process (in
the context of CTDP, the time step D should be understood as an infinitesimally
small quantity). In addition, having observed the quantity X

`
t œ , the investor

must determine the value of the observable system (associated with that state) at
time t ¥ 0. In many situations, the stopping of the process cannot occur after
some finite deterministic time T > 0.

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

The most common encounter with the concept of dynamic programming~
and here we will be concerned only with continuous time dynamic programm-
ing (CTDP)~occurs in the context of the optimal stopping of an observ-
able stochastic process with given termination payoff. This is a special case
of stochastic optimal control where the control consists of a simple on-off switch,
which, once turned off, cannot be turned on again. A generic example of an
optimal stopping problem can be described as this: the investor observes a contin-
uous Markov process Xt ¥ with state-space  Œ N and with known stochastic

dynamics and, having observed at time t ¥ 0 the value X
`

t œ , where X
`

t denotes
the observed realization of the random variable Xt, the investor must decide

whether to terminate the process immediately and collect the payoff LHX` tL,
where L :  #  is some a priori determined (deterministic) payoff function, or
to wait until time t + D > t for the next opportunity to terminate the process (in
the context of CTDP, the time step D should be understood as an infinitesimally
small quantity). In addition, having observed the quantity X

`
t œ , the investor

must determine the value of the observable system (associated with that state) at
time t ¥ 0. In many situations, the stopping of the process cannot occur after
some finite deterministic time T > 0.
There is a vast literature that deals with both the theoretical and the com-
putational aspects of modeling, analysis, and optimal control of stochastic
systems. The works of Bensoussan and Lions [2] and Davis [3] are good examples
of classical treatments of this subject.

Many important problems from the realm of finance can be formulated~and
solved~as optimal stopping problems. For example, a particular business can be
established at the fixed cost of  dollars, but the actual market price of that busi-
ness follows some continuous stochastic process HXtLt ¥ 0, which is observable.

Having observed at time t the value X
`

t, an investor who owns the right to incor-
porate such a business must decide whether to exercise that right immediately, in
which case the investor would collect the payoff of X

`
t -  dollars, or to postpone

the investment decision until time t + D, with the hope that the business will
become more valuable. In addition, having observed the value X

`
t, the investor

may need to determine the market price of the guaranteed right (say, a patent) to
eventually incorporate this business~now, or at any time in the future.

Another classical problem from the realm of finance is the optimal exercise of a
stock option of American type, that is, an option that can be exercised at any time
prior to the expiration date. A stock option is a contract that guarantees the right
to buy (a call option) or to sell (a put option) a particular stock (the underlying) at
some fixed price (the strike price, stated explicitly in the option contract) at any
time prior to the expiration date T (the maturity date, also stated in the option
contract). Consider, for example, an American style put option which expires at
some future date T > 0. On date t < T , the holder of the option observes the
underlying price X

`
t and decides whether to exercise the option, that is, to sell the

stock at the guaranteed price K (and, consequently, collect an immediate pay-
off of K - X

`
t dollars) or to wait, hoping that at some future moment, but no later

than the expiration date T , the price will fall below the current level X
`

t. If the
option is not exercised before the expiration date, the option is lost if XT ¥ K or,
ignoring any transaction costs, is always exercised if XT < K ; that is, if the option
is not exercised prior to the expiration date T , on that date the owner of the
option collects the amount Max@K - XT , 0D. In general, stock options are traded
in the same way that stocks are traded and, therefore, have a market value deter-
mined by the laws of supply and demand. At the same time, the price of such
contracts, treated as a function of the observed stock price X

`
t, can be calculated

from general economic principles in conjunction with the principles of dynamic
programming.

662 Andrew Lyasoff

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

Another classical problem from the realm of finance is the optimal exercise of a
stock option of American type, that is, an option that can be exercised at any time
prior to the expiration date. A stock option is a contract that guarantees the right
to buy (a call option) or to sell (a put option) a particular stock (the underlying) at
some fixed price (the strike price, stated explicitly in the option contract) at any
time prior to the expiration date T (the maturity date, also stated in the option
contract). Consider, for example, an American style put option which expires at
some future date T > 0. On date t < T , the holder of the option observes the
underlying price X

`
t and decides whether to exercise the option, that is, to sell the

stock at the guaranteed price K (and, consequently, collect an immediate pay-
off of K - X

`
t dollars) or to wait, hoping that at some future moment, but no later

than the expiration date T , the price will fall below the current level X
`

t. If the
option is not exercised before the expiration date, the option is lost if XT ¥ K or,
ignoring any transaction costs, is always exercised if XT < K ; that is, if the option
is not exercised prior to the expiration date T , on that date the owner of the
option collects the amount Max@K - XT , 0D. In general, stock options are traded
in the same way that stocks are traded and, therefore, have a market value deter-

contracts, treated as a function of the observed stock price X
`

t, can be calculated
from general economic principles in conjunction with the principles of dynamic
programming.

In general, the solution to any optimal stopping problem has two components:
(1) for every moment in time, t, one must obtain a termination rule in the form
of a termination set t Œ  so that the process is terminated at the first moment t
at which the event 8Xt œ t< occurs; and (2) for every moment t, one must
determine the value function ft :  # , which measures how “valuable”
different possible observations are at time t. Clearly, if LH ÿ L denotes the
termination payoff function (e.g., in the case of an American style put option that
would be LHxL = Max@K - x, 0D, x œ +), then for every x œ t one must have
ftHxL = LHxL, while for every x – t one must have ftHxL > LHxL; that is, one would
choose to continue only when continuation is more valuable than immediate
termination. Consequently, the termination sets t, t ¥ 0, can be identified with
the sets 9x œ N ; ftHxL = LHxL=, and the associated optimal stopping time can be
described as

t = inf 8t œ @0, TD; ftHXtL = LHXtL<.
Thus, the entire solution to the optimal stopping problem can be expressed in
terms of the family of value functions 8 ftH ÿ L; t œ @0, TD<, which may be treated as
a single function of the form

@0, TDä ú Ht, xLö ftHxL œ .

It is important to recognize that the solution to the optimal stopping problem,
that is, the value function Ht, xL ö ftHxL, must be computed before the observa-
tion process has begun.
In most practical situations, an approximate solution to the optimal stopping
problem associated with some observable process HXtLt ¥ 0 and some fixed termina-
tion payoff L :  #  may be obtained as a finite sequence of approximate value
functions

X f \t
n :  # , t = T , T -

T

n
, T - 2

T

n
, … , 0,

where T > 0 is the termination date and n is some sufficiently large integer
number. This approximate solution can be calculated from the following recur-
sive rule, which is nothing but a special discrete version of what is known as the
dynamic programming equation: for t = T , we set X f \t

n H ÿ L ª LH ÿ L, that is, at time
t = T , the value function coincides with the termination payoff on the entire
state-space , and for t = T - T

n
, T - 2 T

n
, … , we set

(1)X f \t
n HxL := MaxBLHxL, ‰-rt Tën EQBX f \t+Tën

n IXt+TënN À Xt = xFF, x œ ,

where rt is the instantaneous discount rate at time t, and the probability measure
Q, with respect to which the conditional expectation is calculated, is the so-called
pricing measure (in general, the instantaneous discount rate rt ª rtHxL may depend

on the observed position x = X
`

t and the pricing measure may be different from

process HXtLt ¥ 0). Furthermore, for every t = T - T
n

, T - 2 T
n

, … , the approxi-
mate termination set is given by

Dynamic Integration of Interpolating Functions 663

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

where rt is the instantaneous discount rate at time t, and the probability measure
Q, with respect to which the conditional expectation is calculated, is the so-called
pricing measure (in general, the instantaneous discount rate rt ª rtHxL may depend

on the observed position x = X
`

 and the pricing measure may be different from
the probability measure that governs the actual stochastic dynamics of the
process HXtLt ¥ 0). Furthermore, for every t = T - T

n
, T - 2 T

n
, … , the approxi-

mate termination set is given by

X\t ª 9x œ N ; X f \t
n HxL = LHxL=.

If, given any t œ @0, TD, the limit

(2)ftH ÿ L ª limn â ¶ X f \ITënM en tëTu
n H ÿ L

(d ÿ t denotes the integer part of a real number) exists, in some appropriate
topology on the space of functions defined on the state-space , then one can
declare that the function

@0, TDäN ú Ht, xLö ftHxL œ 

gives the solution to the optimal stopping problem with observable process
HXtLt ¥ 0, payoff function LH ÿ L, and pricing measure Q.

It is common to assume that under the pricing probability measure Q the
stochastic dynamics of the observable process HXtLt ¥ 0 are given by some diffusion
equation of the form

(3)„ Xt = sHXtL „ Wt + bHXtL „ t

for some (sufficiently nice) matrix-valued function N ú x ö sHxL œ N⊗N ,
vector field N ú x öbHxL œ N , and some N -valued Brownian motion process
HWtLt ¥ 0, which is independent from the starting position X0 (note that HWtLt ¥ 0 is

Brownian motion with respect to the law Q). Given any x œ N , let AHxL denote
the matrix sHxL sHxLT and let  denote the second-order field in N given by

N ú x öx ª
1

2
 ‚
i, j=1

N

AHxLi, j
∂2

∂xi ∂x j

+‚
i=1

N

bHxLi
∂

∂xi

.

As is well known, under certain fairly general conditions for the coefficients sH ÿ L
and bH ÿ L, and the termination payoff L :  # , the value function

@0, TDä ú Ht, xLö ftHxL œ ,

that is, the solution to the associated optimal stopping problem, is known to
satisfy the following equation, which is nothing but a special case of the
Hamilton|Jacobi|Bellman (HJB) equation

(4)rtHxL ftHxL = MaxArtHxLLHxL, ∂t ftHxL + x ftHxLE, x œ N ,

with boundary condition fT HxL = LHxL, x œ N . This equation is a more or less
trivial consequence of equations (1) and (2), in conjunction with the Itô formula.
It is important to recognize that the dynamic programming equation (1) is
primary for the optimal stopping problem, while the HJB equation (4) is only
secondary, in that it is nothing more than a computational tool. Unfortunately,
equation (4) admits a closed form solution only for some rather special choices
of the payoff function LH ÿ L, the diffusion coefficients bH ÿ L and sH ÿ L, and the
discount rate rtH ÿ L. Thus, in most practical situations, the HJB equation (4)

numerical procedure that may allow one to compute the solution Ht, xLö ftHxL
approximately. Essentially, all known numerical methods for solving equation (4)
are some variations of the finite difference method. The most common approach
is to reformulate equation (4) as a free boundary value problem: one must find a
closed domain  Œ @0, T@ä with a piecewise differentiable boundary ∂ and
nonempty interior Î ª  \ ∂, plus a continuous function u :  # , which is
continuously differentiable with respect to the variable t œ D0, T @ and is twice
continuously differentiable with respect to the variables x œ Î, that satisfies the
following two relations everywhere inside Î

664 Andrew Lyasoff

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

with boundary condition fT HxL = LHxL, x œ N . This equation is a more or less
trivial consequence of equations (1) and (2), in conjunction with the Itô formula.
It is important to recognize that the dynamic programming equation (1) is
primary for the optimal stopping problem, while the HJB equation (4) is only
secondary, in that it is nothing more than a computational tool. Unfortunately,
equation (4) admits a closed form solution only for some rather special choices
of the payoff function LH ÿ L, the diffusion coefficients bH ÿ L and sH ÿ L, and the
discount rate r ÿ . Thus, in most practical situations, the HJB equation (4)
happens to be useful only to the extent to which this equation gives rise to some
numerical procedure that may allow one to compute the solution Ht, xLö ftHxL
approximately. Essentially, all known numerical methods for solving equation (4)
are some variations of the finite difference method. The most common approach
is to reformulate equation (4) as a free boundary value problem: one must find a
closed domain  Œ @0, T@ä with a piecewise differentiable boundary ∂ and
nonempty interior Î ª  \ ∂, plus a continuous function u :  # , which is
continuously differentiable with respect to the variable t œ D0, T @ and is twice
continuously differentiable with respect to the variables x œ Î, that satisfies the
following two relations everywhere inside Î

rtHxL uHt, xL = ∂t uHt, xL + x uHt, xL and uHt, xL > LHxL, Ht, xL œ Î,

and, finally, satisfies the following boundary conditions along the free (i.e.,
unknown) boundary ∂

uHt, xL = LHxL and
∂

∂xi

 uHt, xL =
∂

∂xi

 LHxL, 1 § i § n, Ht, xL œ ∂.

The last two conditions are known, respectively, as the value matching and the
smooth pasting conditions. It can be shown that under some rather general~but
still quite technical~assumptions, the free boundary value problem that was just
described has a unique solution (consisting of a function uH ÿ , ÿL and domain )
which then allows one to write the solution to the optimal stopping problem as
follows: for any t œ @0, TD and any x œ , one has

ftHxL =
uHt, xL , for Ht, xL œ ;
LHxL, for Ht, xL œ c ª H@0, TDäL \.

The drawbacks from formulating an optimal stopping problem as a free
boundary value problem for some parabolic partial differential equation (PDE),
which~in principle, at least~can be solved numerically by way of finite
differencing, are well known. First, the value matching and the smooth pasting
conditions are difficult to justify and this makes the very formulation of the
problem rather problematic in many situations. Second, just in general, for
purely technical reasons, it is virtually impossible to use finite differencing when
the dimension of the state-space is higher than 3 and, in fact, in the case of free
boundary value problems, even a state-space of dimension 2 is rather chal-
lenging. Third, with the exception of the explicit finite difference scheme, which
is guaranteed to be stable only under some rather restrictive conditions, the im-
plementation of most finite differencing procedures on parallel processors is
anything but trivial.

At the time of this writing, it is safe to say that finite differencing is no longer at
the center of attention in computational finance, where most problems are inher-
ently complex and multidimensional. Indeed, most of the research in computa-
tional finance in the last five years or so appears to be focused on developing new
simulation-based tools~see [4|8], for example (even a cursory review of the
existing literature from the last few years is certain to be very long and is beyond
the scope of this article). Among these methods, the Longstaff|Schwartz algo-
rithm [8] seems to be the most popular among practitioners.

The attempts to avoid the use of finite differencing are nothing new (there is a
section in the book Numerical Recipes in C entitled There Is More to Life than
Finite Differencing~see [9], p. 833). Indeed, Monte Carlo, finite element, and
several other computational tools have been in use for solving fixed boundary
value problems for PDEs for quite some time. Apparently, from the point of view
of stochastic optimal control, it is more efficient~and in some ways more
natural~to develop numerical procedures directly from the dynamic pro-
gramming equation (1) and skip the formulation of the HJB equation alto-
gether~at least this is the approach that most recent studies in computational
finance are taking.

Dynamic Integration of Interpolating Functions 665

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

The attempts to avoid the use of finite differencing are nothing new (there is a
section in the book Numerical Recipes in C entitled There Is More to Life than
Finite Differencing~see [9], p. 833). Indeed, Monte Carlo, finite element, and
several other computational tools have been in use for solving fixed boundary
value problems for PDEs for quite some time. Apparently, from the point of view
of stochastic optimal control, it is more efficient~and in some ways more
natural~to develop numerical procedures directly from the dynamic pro-
gramming equation (1) and skip the formulation of the HJB equation alto-
gether~at least this is the approach that most recent studies in computational
finance are taking.

Since the solution to an optimal stopping problem is given by an infinite family
of functions of the form ft :  # , t œ @0, TD, for some set  Œ N , from a
computational point of view the actual representation of any such object involves
two levels of discretization. First, one must discretize the state-space , that is,
functions defined on  must be replaced with finite lists of values attached to
some fixed set of distinct abscissas

9xk œ ; 1 § k § n=,
for some fixed n œ +. This means that for every list of values  œ n, one must
be able to construct a function S :  #  which “extends” the discrete assign-
ment xk ök, 1 § k § n, to some function defined on the entire state-space .
Second, one must discretize time, that is, replace the infinite family of functions
8 ftH ÿ L; t œ @0, TD< not just with the finite sequence of functions

X f \t
n :  # , t = T , T -

T

n
, T - 2

T

n
, … , 0,

determined by the discrete dynamic programming equation (1), but, rather, with
a finite sequence of lists

HtL œ n, t = T -
T

n
, T - 2

T

n
, … , 0,

computed from the following space-discretized analog of the time-discrete
dynamic programming equation (1): for t = T - T

v , we set

HtLk ª MaxALIxkM, ‰-rt ITënM EQALHXT L » Xt = xkEE, 1 § k § n,

and then define

(5)HtLk ª MaxBLIxkM, ‰-rtITënM EQBSIt+TënMIXt+TënN À Xt = xkFF, 1 § k § n,

consecutively, for t = T - 2 T
v , t = T - 3 T

v , … , where SIt+TënM :  #  is simply

the map that “extends” the discrete assignment xk öJt + T
v Nk.

Of course, in order to compute the conditional expectation in equation (5), the
distribution law of the random variable Xt+Tën relative to the pricing measure Q

and conditioned to the event 9Xt = xk= must be expressed in computable form.

sion coefficients sH ÿ L and bH ÿ L that govern the stochastic dynamics of the process
HXtLt ¥ 0 under the pricing measure Q. This imposes yet another~third~level
of approximation. The simplest such approximation is to replace Xt+Tën in equa-
tion (5) with the random quantity

666 Andrew Lyasoff

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

Of course, in order to compute the conditional expectation in equation (5), the
distribution law of the random variable Xt+Tën relative to the pricing measure Q

and conditioned to the event Xt = x must be expressed in computable form.
Unfortunately, this is possible only for some rather special choices for the diffu-
sion coefficients sH ÿ L and bH ÿ L that govern the stochastic dynamics of the process
HXtLt ¥ 0 under the pricing measure Q. This imposes yet another~third~level
of approximation. The simplest such approximation is to replace Xt+Tën in equa-
tion (5) with the random quantity

(6)yTënIxk, GM = xk + sIxkM
T

v
 G + bIxkM

T

v
,

where G is some standard normal N -valued random variable. As a result of this
approximation, expression (5) becomes

(7)
HtLk ª Max LIxkM, ‰-rt ITënM ‡

N
SIt+TënMIyTënIxk, xMN pN HxL „ x ,

1 § k § n,

where pN H ÿ L stands for the standard normal probability density function in N .
Another (somewhat more sophisticated) approximation scheme for the diffusion
process HXtLt ¥ 0 in the case N = 1 is discussed in [1]. Fortunately, in the most
widely used diffusion models in finance, the conditional law of Xt+Tën, given the

event 9Xt = xk=, coincides with the law of a random variable of the form yIxk, GM
for some function yIxk, ÿM that can be expressed in computable form, so that in
this special case the right side of equation (7) is exactly identical to the right side
of equation (5) and the approximation given in equation (6) is no longer
necessary.
One must be aware that, in general, the distribution law of the random variable
yIxk, GM is spread on both sides of the point xk and, even though for a reasonably

small time step T
v this law is concentrated almost exclusively in some small neigh-

borhood of the node xk, when this node happens to be very close to the border
of the interpolation region, the computation of the integral on the right side
of equation (7) inevitably requires information about the function SIt+TënMH ÿ L
outside the interpolation domain. However, strictly speaking, interpolating
functions are well defined only inside the convex hull of the abscissas used in the
interpolation. One way around this problem is to choose the interpolation
domain in such a way that along its border the solution to the optimal stopping
problem takes values that are very close to certain asymptotic values. For
example, if one is pricing an American put option with strike price of $1, one
may assume that the value of the option is practically 0 when the price of the
underlying asset is above $100, regardless of the time left to maturity (of course,
this assumption may be grossly inaccurate when the volatility is very large and/or
when the option matures in the very distant future). Consequently, for those
nodes xk that are close to the border of the interpolation domain, the respective
values HtLk will not depend on t and will not be updated according to the pre-
scription (7). At the same time, the remaining nodes xk must be chosen in such a
way that the probability mass of the random variable yIxk, GM is concentrated
almost exclusively inside the interpolation region.

Dynamic Integration of Interpolating Functions 667

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

One must be aware that, in general, the distribution law of the random variable
yIxk, GM is spread on both sides of the point xk and, even though for a reasonably

small time step T
v this law is concentrated almost exclusively in some small neigh-

borhood of the node xk, when this node happens to be very close to the border
of the interpolation region, the computation of the integral on the right side
of equation (7) inevitably requires information about the function SIt+TënMH ÿ L
outside the interpolation domain. However, strictly speaking, interpolating
functions are well defined only inside the convex hull of the abscissas used in the
interpolation. One way around this problem is to choose the interpolation
domain in such a way that along its border the solution to the optimal stopping
problem takes values that are very close to certain asymptotic values. For
example, if one is pricing an American put option with strike price of $1, one
may assume that the value of the option is practically 0 when the price of the
underlying asset is above $100, regardless of the time left to maturity (of course,
this assumption may be grossly inaccurate when the volatility is very large and/or
when the option matures in the very distant future). Consequently, for those
nodes xk that are close to the border of the interpolation domain, the respective
values HtLk will not depend on t and will not be updated according to the pre-
scription (7). At the same time, the remaining nodes x must be chosen in such a
way that the probability mass of the random variable yIxk, GM is concentrated
almost exclusively inside the interpolation region.

In general, numerical procedures for optimal stopping of stochastic systems
differ in the following: First, they differ in the space-discretization method, that
is, the method for choosing the abscissas xk and for “reconstructing” the function
SH ÿ L from the (finite) list of values  assigned to the abscissas xk. Second,
numerical procedures differ in the concrete quadrature rule used in the calcu-
lation of the conditional expectation in the discretized dynamic programming
equation (5). The method described in this article is essentially a refinement
of the method of dynamic interpolation and integration described in [1]. The
essence of this method is that the functions SH ÿ L are defined by way of spline
interpolation~or some other type of interpolation~from the list of values ,
while the integral in equation (7) is calculated by using some standard procedures
for numerical integration. As was illustrated in [1], the implementation of this
procedure in Mathematica is particularly straightforward, since NIntegrate
accepts as an input InterpolatingFunction objects, and, in fact, can handle
such objects rather efficiently.

The key point in the method developed in this article is a procedure for
computing a universal list of vectors Wk œ n, 1 § k § n, associated with the
abscissas xk, 1 § k § n, that depend only on the stochastic dynamics of HXtLt ¥ 0

and the time step T
v , so that one can write

(8)‡


SIt+TënMIyIxk, xMM pN HxL „ x = Wk ÿ  t +
T

v

for any t and for any k, where  stands for the convex hull of the interpolation
grid xk, that is, the domain of interpolation. Essentially, equation (8) is a varia-
tion of the well-known cubic spline quadrature rule~see §4.0 in [9] and §5.2,
p. 89, in [10]. It is also analogous to the “cubature formula,” which was devel-
oped in [11] with the help of a completely different computational tool
(following [14] and [11], we use the term cubature as a reference to some integra-
tion rule for multiple integrals and the term quadrature as a reference to some inte-
gration rule for single integrals). One of the principal differences between the
interpolation quadrature/cubature rules and the cubature formula obtained in
[11] is that the former allows for a greater freedom in the choice of the abscissas
xk. This means that, in practice, one can choose the evaluation points in a way
that takes into account the geometry of the payoff function LH ÿ L and not just the
geometry of the diffusion HXtLt ¥ 0. From a practical point of view, this feature is
quite important and, in fact, was the main reason for developing what is now
known as Gaussian quadratures.

An entirely different method for computing conditional averages of the form

EQBjIXt+TënN À Xt = xkF
was developed in [12] and [13]. In this method, quantities of this form are approx-
imated by finite products of linear operators acting on the function jH ÿ L. One

of smoothness for the integrand jH ÿ L, which, generally, InterpolatingÖ
Function objects may not have.

668 Andrew Lyasoff

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

was developed in [12] and [13]. In this method, quantities of this form are approx-
jH ÿ L

must be aware that the methods described in [11|13] require a certain degree
of smoothness for the integrand jH ÿ L, which, generally, InterpolatingÖ
Function objects may not have.

The method developed in this article bears some similarity also with the quantiza-
tion algorithm described in [4, 5]. The key feature in both methods is that one
can separate and compute~once and for all~certain quantities that depend on
the observable process but not on the payoff function. Essentially, this means
that one must solve, simultaneously, an entire family of boundary value problems
corresponding to different payoff functions. The two methods differ in the way
in which functions on the state-space are encoded in terms of finite lists of val-
ues. The advantages in using interpolating functions in general, or splines in
particular, are well known: one can “restore” the pricing maps from fewer evalua-
tion points and this feature is crucial for optimal stopping problems in higher
dimensions.

‡ Making Quadrature/Cubature Rules with Mathematica
In this section we show how to make quadrature/cubature rules for a fixed set
of abscissas that are similar to the well-known Gaussian rules or the cubic spline
rules. We consider quadrature rules on the real line  first. To begin with,
suppose that one must integrate some cubic spline x öSHxL that is defined from
the abscissas 8x1, … , xn< œ n, x1 <  < xn, and from some list of tabulated
values 8v1, … , vn< œ n. Since SH ÿ L is a cubic spline, for any fixed 1 § k § Hn - 1L
there are real numbers ak,0, ak,1, ak,2, and ak,3 for which we have

SHxL = ak,0 + ak,1 x + ak,2 x2 + ak,3 x3 for any x œ Axk, xk+1E.
As a result, one can write

(9)‡
x1

xn

SHxL „ x = ‚
k=1

n-1

‚
i=0

3 ak,i

i + 1
 Ixk+1

i+1 - xk
i+1M,

which reduces the computation of the integral Ÿx1

xn SHxL „ x to the computation
of the coefficients ak,i from the tabulated values vk and the abscissas xk.

Though not immediately obvious, it so happens that when all abscissas
x1 <  < xn are fixed, each coefficient ak,i~and, consequently, the entire expres-
sion on the right side of equation (9)~can be treated as a linear function of the
list 8v1, … , vn< œ n (in fact, each ak,i is a linear function only of a small portion
of that list). This property is instrumental for the quadrature/cubature rules that
will be developed in the next section. To see why one can make this claim, recall
that (e.g., see §3.3 in [9]) the cubic spline created from the discrete assignment
xk övk, 1 § k § n, is given by

Dynamic Integration of Interpolating Functions 669

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

(10)

SHxL ª ak,0 + ak,1 x + ak,2 x2 + ak,3 x3

= AkHxL vk + BkHxL vk+1 + CkHxL vk
″ + DkHxL vk+1

″ ,

xk § x § xk+1, 1 § k § n - 1,

where

AkHxL ª
xk+1 - x

xk+1 - xk
,

BkHxL ª 1 - AkHxL,

CkHxL ª
AkHxL3 - AkHxL

6
 Ixk+1 - xkM2,

DkHxL ª
BkHxL3 - BkHxL

6
 Ixk+1 - xkM2,

and vk
″ := S″IxkM, 1 § k § n (note that the definition implies SIxkM = vk, 1 § k § n).

Usually, one sets v1
″ = vn

″ = 0 (which gives the so-called natural splines) and deter-
mines the remaining values 8v2

″, … , vn-1
″ < from the requirement that the cubic

spline has a continuous first derivative on the entire interval D x1, xn@ (it is a trivial
matter to check that with this choice the second derivative of the function de-
fined in equation (10) is automatically continuous on D x1, xn @). Finally, recall
that this last requirement leads to a system of n - 2 linear equations with un-
knowns 8v1

″, … , vn
″< and that the right side of each of these equations is a linear

function of the list 8v1, … , vn<, while the coefficients in the left side are linear
functions of the abscissas 8x1, … , xn<~see equation (3.3.7) in [9], for example.
This means that each quantity in the list 8v2

″, … , vn-1
″ < can be treated as a linear

function of the list 8v1, … , vn<. Since the quantities AkHxL, BkHxL, CkHxL, and DkHxL
are all independent from the choice of 8v1, … , vn<, one can claim that the entire
expression in the right side of equation (10) is a linear function of the list
8v1, … , vn<. Thus, for every 1 § k § Hn - 1L and every x œ @xi, xi+1D, we can write

SHxL ª ak,0 + ak,1 x + ak,2 x2 + ak,3 x3 = ‚
k=1

n

hk,iHxL vk ,

where hk,iH ÿ L are polynomials of degree at most 3. More importantly, these poly-
nomials are universal in the sense that they depend on the abscissas xk but not on
the tabulated values vk. In fact, this representation holds for spline interpolation
objects of any degree, except that in the general case the degree of the polyno-
mials hk,iH ÿ L may be bigger than 3. An analogous representation is valid for other
(non-spline) interpolating functions SH ÿ L; in particular, such a representation is
valid for interpolating functions SH ÿ L defined by way of divided differences inter-
polation, which is the method used by ListInterpolation . For example, if SH ÿ L
denotes the usual interpolating polynomial of degree n - 1 defined from the
discrete assignment xk övk, 1 § k § n, then hk,iH ÿ L ª hkH ÿ L is simply the kth

Lagrange polynomial for the abscissas xk. Thus, when SH ÿ L is an interpolating
function object (defined by, say, splines, divided differences, or standard polyno-

xk övk 1 § k § n fH ÿ L
some (fixed) continuous and strictly monotone function and that pH ÿ L is some
(fixed) integrable function and, finally, assuming that the values zk œ ,
1 § k § n, are chosen so that fIzkM = xk, 1 § k § n, one can write

670 Andrew Lyasoff

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

where hk,iH ÿ L are polynomials of degree at most 3. More importantly, these poly-
nomials are universal in the sense that they depend on the abscissas xk but not on
the tabulated values vk. In fact, this representation holds for spline interpolation
objects of any degree, except that in the general case the degree of the polyno-
mials hk,iH ÿ L may be bigger than 3. An analogous representation is valid for other
(non-spline) interpolating functions SH ÿ L; in particular, such a representation is
valid for interpolating functions SH ÿ L defined by way of divided differences inter-
polation, which is the method used by ListInterpolation . For example, if SH ÿ L
denotes the usual interpolating polynomial of degree n - 1 defined from the
discrete assignment xk övk, 1 § k § n, then hk,iH ÿ L ª hkH ÿ L is simply the kth

Lagrange polynomial for the abscissas xk. Thus, when SH ÿ L is an interpolating

mial interpolation) from the assignment xk övk, 1 § k § n, assuming that fH ÿ L is
some (fixed) continuous and strictly monotone function and that pH ÿ L is some
(fixed) integrable function and, finally, assuming that the values zk œ ,
1 § k § n, are chosen so that fIzkM = xk, 1 § k § n, one can write

(11)‡
z1

zn

SHfHxLL pHxL „ x = 8w1 … , wn< ÿ 8v1, … , vn< ª ‚
k=1

n

wk vk,

where

wk ª ‚
i=1

N-1

‡
zi

zi+1

hk,iHfHxLL pHxL „ x, 1 § k § n.

Since the list 8w1, … , wn< œ n can be computed once and for all and indepen-
dently from the interpolated values vk, and since the calculation of the integral

Ÿz1

zn SHfHxLL pHxL „ x comes down to the calculation of the dot product 8w1 … ,
wn< ÿ 8v1, … , vn<, the computation of the list 8w1, … , wn< œ n may be viewed as
a simultaneous integration of all functions of the form x öSHfHxLL pHxL for all
interpolating functions SH ÿ L (of the same interpolation type) that are based on
one and the same (forever fixed) set of abscissas 8x1, … , xn<. Indeed, the knowl-
edge of the list 8w1, … , wn< turns the expression Ÿz1

zn SHfHxLL pHxL „ x into a trivial
function of the list 8v1, … , vn<, that is, a trivial function defined on the entire
class of interpolating functions SH ÿ L. In other words, in equation (11) we have made
a quadrature (or cubature) rule.

The preceding remarks contain nothing new or surprising in any way and we
only need to find a practical way for computing the weights wk. Fortunately,
Mathematica allows one to define InterpolatingFunction objects even if the
interpolated values vk are defined as symbols that do not have actual numerical
values assigned to them. Furthermore, such objects can be treated as ordinary
functions that can be evaluated, differentiated, and so on~all in symbolic form.
We illustrate this powerful feature next (recall that ListInterpolation has
default setting InterpolationOrderØ3).

In[1]:= V = Array@vð1 &, 810<D
Out[1]= 8v1, v2, v3, v4, v5, v6, v7, v8, v9, v10<

In[2]:= S = ListInterpolation@V D
Out[2]= InterpolatingFunction@H 1 10 L, <>D

In[3]:= ∂x,x SHxL ê. 8x Æ 3.5< êê Simplify

Out[3]= 0.5 v2 - 0.5 v3 - 0.5 v4 + 0.5 v5

Dynamic Integration of Interpolating Functions 671

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

In[4]:= ∂x,x SHxL ê. :x Æ
7

2
> êê Simplify

Out[4]=

1

2
Iv2 - v3 - v4 + v5M

Since, just by definition, the restriction of the function x Ø SHxL to the interval
@3, 4D coincides with a polynomial of degree 3, by Taylor’s theorem, for any fixed
x0 œ D 3, 4@, we have

SHxL = ‚
i=0

3 1

i !
 SHiLHx0L Hx - x0Li for any 3 § x § 4.

Thus, if we define

In[5]:= te@ff_, x0_D := SumB 1

i !
* ffHiLHx0L * Hx - x0Li, 8i, 0, 3<F;

then on the interval @3, 4D we can identify the function S with the dot product

In[6]:= x0 = 3.5; S34@x_D = CoefficientList@te@S, x0D, xD.91, x, x2, x3=; Clear@x0D
Mathematica can rearrange this expression as an ordinary polynomial:

In[7]:= CollectAS34HxL êê Simplify, xE
Out[7]= I-0.166667 v2 + 0.5 v3 - 0.5 v4 + 0.166667 v5M x3 +

I2. v2 - 5.5 v3 + 5. v4 - 1.5 v5M x2 +

I-7.83333 v2 + 19. v3 - 15.5 v4 + 4.33333 v5M x + 10. v2 - 20. v3 + 15. v4 - 4. v5

We can also do

In[8]:= x0 =
7

2
; SS34@x_D = CoefficientList@te@S, x0D, xD.91, x, x2, x3=; Clear@x0D

In[9]:= CollectASS34HxL êê Simplify, xE

Out[9]=

1

6
I-v2 + 3 v3 - 3 v4 + v5M x3 +

1

6
I12 v2 - 33 v3 + 30 v4 - 9 v5M x2 +

1

6
I-47 v2 + 114 v3 - 93 v4 + 26 v5M x +

1

6
I60 v2 - 120 v3 + 90 v4 - 24 v5M

Essentially, this is some sort of reverse engineering of the InterpolatingFuncÖ
tion object S, that is, a way to “coerce” Mathematica to reveal what polynomials
the object S is constructed of between the interpolation points.

There are other tricks that we can use in order to reverse engineer an InterpoÖ
latingFunction object. For example, with the definition of S, the entire
function @3, 4D ú x öSHxL œ  can be restored from the values 9SH3L, SI 10

3 M,
SI 11

3 M, SH4L=. To do the restoration we must solve a linear system for the four
unknown coefficients in some (unknown) cubic polynomial. This can be imple-

CoefficientList
The only drawback in this approach is that one must resort to Solve or LinearÖ
Solve, which, generally, are more time-consuming, especially in dimensions 2 or
higher. Of course, instead of using reverse engineering, one can simply imple-
ment the interpolation algorithm step-by-step, which, of course, involves a
certain amount of work.

672 Andrew Lyasoff

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

There are other tricks that we can use in order to reverse engineer an InterpoÖ
latingFunction object. For example, with the definition of S, the entire
function @3, 4D ú x öSHxL œ  can be restored from the values 9SH3L, SI 10

3 M,
SI 11

3 M, SH4L=. To do the restoration we must solve a linear system for the four

mented in Mathematica rather elegantly without the use of CoefficientList .
The only drawback in this approach is that one must resort to Solve or LinearÖ
Solve, which, generally, are more time-consuming, especially in dimensions 2 or
higher. Of course, instead of using reverse engineering, one can simply imple-
ment the interpolation algorithm step-by-step, which, of course, involves a
certain amount of work.
For example, we have

In[10]:= S34H3.7L - SH3.7L êê Simplify

Out[10]= 3.55271 µ 10-15 v2 - 1.42109 µ 10-14 v3 + 0. v4 - 7.10543 µ 10-15 v5

In[11]:= % êê Chop

Out[11]= 0

In[12]:= SS34
37

10
- S

37

10
êê Simplify

Out[12]= 0

In the definition of S34, the variable x0 can be given any numerical value inside
the interval D 3, 4@; the choice x0=3.5 was completely arbitrary.
In the same way, one can reverse engineer InterpolatingFunction objects that
depend on any number of independent abscissas. Here is an example.

In[13]:= VV = ArrayAvð1,ð2 &, 810, 10<E;
In[14]:= H = ListInterpolation@VVD

Out[14]= InterpolatingFunctionB 1 10
1 10

, <>F

In[15]:= ∂x,yHIx, yM ê. 9x Æ 3.2, y Æ 3.7= êê Simplify

Out[15]= -0.0186556 v2,2 + 0.178633 v2,3 - 0.147967 v2,4 - 0.0120111 v2,5 - 0.1022 v3,2 +

0.9786 v3,3 - 0.8106 v3,4 - 0.0658 v3,5 + 0.1387 v4,2 - 1.3281 v4,3 + 1.1001 v4,4 +

0.0893 v4,5 - 0.0178444 v5,2 + 0.170867 v5,3 - 0.141533 v5,4 - 0.0114889 v5,5

In[16]:= TeAff_, x0_, y0_E :=

SumB 1

Hi !L * I j !M
* ffHi, jLIx0, y0M * Hx - x0Li * Iy - y0M j, 8i, 0, 3<, 9 j, 0, 3=F;

In[17]:= x0 = 3.5; y0 = 4.5;
H3445Ax_, y_E = FlattenACoefficientListATeAH, x0, y0E, 9x, y=E êê SimplifyE.

FlattenATableAxi y j, 8i, 0, 3<, 9 j, 0, 3=EE; ClearAx0, y0E

Dynamic Integration of Interpolating Functions 673

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

In[18]:= H3445H3.2, 4.7L - HH3.2, 4.7L êê Simplify

Out[18]= 1.7053 µ 10-13 v2,3 + 0. v2,4 - 4.54747 µ 10-13 v2,5 +

1.13687 µ 10-13 v2,6 + 0. v3,3 - 7.27596 µ 10-12 v3,4 -

2.72848 µ 10-12 v3,5 - 1.81899 µ 10-12 v3,6 - 2.04636 µ 10-12 v4,3 +

2.27374 µ 10-13 v4,4 - 2.27374 µ 10-12 v4,5 + 1.53477 µ 10-12 v4,6 +

3.41061 µ 10-13 v5,3 + 0. v5,4 + 2.27374 µ 10-13 v5,5 - 1.7053 µ 10-13 v5,6

In[19]:= % êê Chop

Out[19]= 0

In this example, for 3 § x § 4 and for 4 § y § 5, the quantity H[x,y] can be
expressed as the following polynomial of the independent variables x and y.

In[20]:= H3445Ax, yE;
If one does not suppress the output from the last line (which would produce a
fairly long output), it becomes clear that all coefficients in the polynomial of the
variables x and y are linear functions of the array VV œ 10⊗10. Consequently,
if the variables x and y are integrated out, the expression will turn into a linear
combination of all the entries (symbols) in the array VV.

Now we turn to concrete applications of the features described in this section.
For the purpose of illustration, all time-consuming operations in this notebook
are executed within the Timing function. The CPU times reflect the speed on
Dual 2 GHz PowerPC processors with 2.5 GB of RAM. The Mathematica
version is 6.0.1. For all inputs with computing time longer than 1 minute, a file
that contains the returned value is made available.

‡ Some Examples of Cubic Cubature Rules for Gaussian
Integrals in 2

First, define the standard normal density in 2.

In[21]:= pAx_, y_E =
1

2 p
 „-

x2+y2

2 ;

In this section, we develop cubature rules for computing integrals of the form

‡
-¶

¶

„ x ‡
-¶

¶

f Hx, yL pHx, yL „ y

for certain functions f H ÿ L. We suppose that the last integral can be replaced by

(12)‡
-R

R
„ x ‡

-R

R
f Hx, yL pHx, yL „ y

without a significant loss of precision, where the value

674 Andrew Lyasoff

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

In[22]:= R =
84

10
;

is chosen so that

In[23]:=

1

2 p

 ‡
R

•

„-
u2

2 ‚u < $MachineEpsilon

Out[23]= True

The next step is to choose the abscissas XPkT, 1 § k § m, and YPlT, 1 § l § n:

In[24]:= X = TableBx, :x, -R, R,
4

5
>F; Y = X ;

In[25]:= m = Length@XD; n = Length@Y D;
For the sake of simplicity, in display equations we will write xk instead of XPkT
and yl instead of YPlT. Then we define the associated array of symbolic values
attached to the interpolation nodes Ixk, ylM
In[26]:= V = ArrayAvð1,ð2 &, 8m, n<E;
and produce the actual InterpolatingFunction object:

In[27]:= f = ListInterpolation@Table@8XPkT, Y PlT, 8VPk, lT<<, 8k, 1, m<, 8l, 1, n<DD

Out[27]= InterpolatingFunctionB
- 42

5
42
5

- 42
5

42
5

, <>F

Note that V was defined simply as an array of symbols and that, therefore, f can
be treated as a symbolic object, too. In any case, we have

‡
-R

R
„ x ‡

-R

R
f Hx, yL pHx, yL „ y

 = ‚
k=1

m-1

‚
l=1

n-1

‡
xk

xk+1

„ x ‡
yl

yl+1

f Hx, yL pHx, yL „ y.

Note that each double integral on the right side of the last identity is actually an
integral of some polynomial of the variables x and y multiplied by the standard
normal density in 2. Furthermore, as was pointed out earlier, every coefficient
in this polynomial is actually a linear function of the array V. Since the InterpoÖ
latingFunction object f was defined with InterpolationOrderØ3 (the default
setting for ListInterpolation), we can write

‡
xk

xk+1

„ x ‡
yl

yl+1

f Hx, yL pHx, yL „ y

 = ‚
i=0

3

‚
j=0

3

k,l,i, jHV L ‡
xk

xk+1

„ x ‡
yl

yl+1

xi y j pHx, yL „ y,

where k,l,i, jH ÿ L : m⊗n #  are linear functions of the tensor V that can be com-
puted once and for all by using the method described in the previous section. In
addition, the integrals in the right side of the last identity also can be computed
once and for all by using straightforward integration~this is the only place in
the procedure where actual integration takes place. Once these calculations are
completed, the integral (12) can be expressed as an explicit linear function of the
array V of the form

Dynamic Integration of Interpolating Functions 675

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

where k,l,i, jH ÿ L : m⊗n #  are linear functions of the tensor V that can be com-
puted once and for all by using the method described in the previous section. In
addition, the integrals in the right side of the last identity also can be computed
once and for all by using straightforward integration~this is the only place in
the procedure where actual integration takes place. Once these calculations are
completed, the integral (12) can be expressed as an explicit linear function of the
array V of the form

Flatten@WDÿFlatten@VD
for some fixed tensor W œ m⊗n. Of course, the actual calculation of the tensor W
is much more involved and time consuming than the direct numerical evaluation
of the integral (12) in those instances where f is not a symbolic object, that is,
when the symbols vk,l are given concrete numeric values. The point is that the
calculation of the tensor W is tantamount to writing the integral (12) as an
explicit function of the symbols that define f; that is, we evaluate simultaneously
the entire family of integrals for all possible choices of actual numeric values that
can be assigned to the symbols vk,l . Once the tensor W is calculated, we can write

(13)‡
-R

R
„ x ‡

-R

R
f Hx, yL pHx, yL „ y = Flatten@WDÿ Flatten@VD.

Note that this identity is exact if the abscissas Ixk, ylM are exact numbers. In other
words, by computing the tensor W we have made a cubature rule. Furthermore,
when FH ÿ L is some function defined in the rectangle @-R, RDä @-R, RD that has
already been defined and the symbol V is given the numeric values

Table@FHXPkT, YPlTL, 8k, 1, m<, 8l, 1, n<D,

then the right side of equation (13) differs from the left side by no more than
4 R2 times the uniform distance between the function FH ÿ L and the interpolating
function created from the assignment

Ixk, ylMö FIxk, ylM.
First, we compute~once and for all~all integrals of the form

‡
xk

xk+1

„ x ‡
yl

yl+1

xi y j pHx, yL „ y

for all choices of 1 § k § m, 1 § l § n, 0 § i § 3, and 0 § j § 3, and we represent
these integrals as explicit functions of the symbols 9xk, xk+1, yl , yl+1=.
Instead of calculating the tensor integrals, one may load its (precomputed)
value from the files integrals.mx or integrals.txt (if available):

<< "C:êLocalHDlocationêintegrals.mx"

or

<< "C:êLocalHDlocationêintegrals.txt"

676 Andrew Lyasoff

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

In[28]:= TimingA
integrals = TableAIntegrateAxi * y j * pAx, yE, 8x, Xk, Xk1<, 9y, Yl, Yl1=E,

8i, 0, 3<, 9 j, 0, 3=E;E
Out[28]= 840.43, Null<

Next, we replace the symbols 9xk, xk+1, yl , yl+1= with the actual numeric values
of the associated abscissas on the grid:

In[29]:= TimingAWM = TableAintegrals ê. 8Xk Æ XPkT, Xk1 Æ XPk + 1T,
Yl Æ Y PlT, Yl1 Æ Y Pl + 1T<, 8k, m - 1<, 8l, n - 1<E;E

Out[29]= 82.26533, Null<
In[30]:= Dimensions@WMD

Out[30]= 821, 21, 4, 4<
The next step is to create the lists of the midpoints between all neighboring
abscissas

In[31]:= Xm = TableB1

2
* HXPiT + XPi + 1TL, 8i, 1, m - 1<F;

Ym = TableB1

2
* HY PiT + Y Pi + 1TL, 8i, 1, n - 1<F;

which would allow us to produce the Taylor expansion of the InterpolatingÖ
Function object f at the points IXmQkU, YmQlUM œ 2, for any 1 § k § m - 1 and
any 1 § l § n - 1. As noted earlier, for every choice of k and l, the associated
expansion coincides with the object f everywhere in the rectangle

@XPkT, XPk + 1T Dä @YPlT, YPl + 1T D Õ 2.
Now we will compute the entire expression

‚
k=1

m-1

‚
l=1

n-1

‚
i, j=0

3

k,l,i, jHV L ‡
xk

xk+1

„ x ‡
yl

yl+1

xi y j pHx, yL „ y

as a linear function of the symbols vk,l , 1 § k § m, 1 § l § n. Note that for every
fixed k and l, the third summation simply gives the dot product between the
vectors

Flatten@CoefficientList@Te@f, XmPkT, YmPlTD, 8x, y<DD
and Flatten@WMPk, lTD.

It is important to recognize that the sum of these dot products gives the exact
value of the integral

‡
-R

R
„ x ‡

-R

R
f Hx, yL pHx, yL „ y.

Unfortunately, the exact values of the integrals stored in the list WM are quite
cumbersome:

Dynamic Integration of Interpolating Functions 677

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

In[32]:= WMP5, 7, 3, 1T

Out[32]=

1

4 ‰116ê5 p
 erf

7 2

5
- erf

9 2

5

2
26 ‰242ê25

5
-

22 ‰338ê25

5
+ ‰116ê5 p erf

11 2

5
- erf

13 2

5

Since working with such expressions becomes prohibitively slow, we convert
them to floating-point numbers (we can, of course, use any precision that we
wish).
In[33]:= Timing@WMN = N@WM, 20D;D

Out[33]= 81.22097, Null<
Note that this last operation is the only source of errors in the integration of the
interpolating function f.
Finally, we compute the integral

‡
-R

R
„ x ‡

-R

R
f Hx, yL pHx, yL „ y

in symbolic form, that is, as an explicit function of the symbols vk,l that define the
interpolating function f~what we are going to compute are the actual numerical
values of the coefficients for the symbols vk,l in the linear combination that repre-
sents this integral. Consequently, an expression in symbolic form for the integral
is nothing but a tensor of actual numeric values. We again stress that the only
loss of precision comes from the conversion of the exact numeric values for the
integrals stored in WM into the floating-point numbers stored in WMN.

Instead of calculating the object CoeffList in the following, which contains the
actual linear combination of the symbols vi, j, one may load its (precomputed)
value from the files CoeffList.mx or CoeffList.txt (if available):

<< "C:êLocalHDlocationêCoeffList.mx"

or

<< "C:êLocalHDlocationêCoeffList.txt"

In[34]:= TimingACoeffList = TotalA
TableATotalAExpandACoefficientListATeI f , XmPiT, YmQ jUM, 9x, y=E

WMNQi, jUE, 2E, 8i, m - 1<, 9 j, n - 1=E, 2E;E
Out[34]= 898.8673, Null<
Now we extract the numeric values for the coefficients vk,l and store those values
in the tensor W:

678 Andrew Lyasoff

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

In[35]:= TimingAW = TableACoefficientACoeffList, vk,lE, 8k, m<, 8l, n<E;E
Out[35]= 80.119846, Null<
Note that in order to produce the actual cubature rule we need to compute the
tensor W only once, so that several minutes of computing time is quite accept-
able. Note also that W (i.e., the cubature rule) can be calculated with any preci-
sion. This means that if we approximate an integral of the form

‡
-R

R
„ x ‡

-R

R
uHx, yL pHx, yL „ y

with the dot product

Flatten@Table@uHXPiT, YPjTL, 8i, m<, 8j, n<DDÿFlatten@WD,

then the upper estimate for the error in this approximation can be made arbi-
trarily close to the uniform distance between the function uH ÿ , ÿL and the interpo-
lating function created from the values that u takes on the grid multiplied by the
area of the integration domain, which is 4 R2.
Now we turn to some examples. First, consider the function

In[36]:= uAx_, y_E = x2 + y2;

and set

In[37]:= V = Table@u@XPkT, Y PlTD, 8k, m<, 8l, n<D;
Now we have

In[38]:= Flatten@V D.Flatten@WD
Out[38]= 1.9999999999999934

In[39]:= NIntegrateBuAx, yE *
1

2 p
* „-

x2+y2

2 , 8x, -R, R<, 9y, -R, R=F

Out[39]= 2.

In[40]:= Abs@% - %%D
Out[40]= 1.51149 µ 10-9

For the function

In[41]:= uAx_, y_E = ArcTanAx2 * „yE; V = Table@u@XPkT, Y PlTD, 8k, m<, 8l, n<D;
we get

In[42]:= AbsBFlatten@V D.Flatten@WD -

NIntegrateBuAx, yE *
1

2 p
* „-

x2+y2

2 , 8x, -R, R<, 9y, -R, R=FF

Out[42]= 0.0086428

One must be aware that NIntegrate is a very efficient procedure and, generally,
replacing NIntegrate with a “hand made” cubature rule of the type described in

of standard functions, or when a better control of the error is needed, provided
that one can control the uniform distance between the integrand and the respec-
tive interpolating function created from the grid. In general, such “hand made”
cubatures become useful mostly in situations where one has to compute a very
large number of integrals for similarly defined integrands~assuming, of course,
that the uniform error from the interpolation in all integrands can be controlled
(this would be the case, for example, if one has a global bound on a sufficient
number of derivatives).

Dynamic Integration of Interpolating Functions 679

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

One must be aware that NIntegrate is a very efficient procedure and, generally,
NIntegrate

this section may be justified only when the integrand cannot be defined in terms
of standard functions, or when a better control of the error is needed, provided
that one can control the uniform distance between the integrand and the respec-
tive interpolating function created from the grid. In general, such “hand made”
cubatures become useful mostly in situations where one has to compute a very
large number of integrals for similarly defined integrands~assuming, of course,
that the uniform error from the interpolation in all integrands can be controlled
(this would be the case, for example, if one has a global bound on a sufficient
number of derivatives).
Interpolation quadrature rules for single integrals can be obtained in much the
same way. It must be noted that, in general, spline quadrature rules are consider-
ably more straightforward than spline cubature rules. This is because smooth
interpolation in 1 can be obtained without any additional information about the
derivatives at the grid points and this is not the case in spaces of dimension
greater than or equal to 2. For example, cubic splines in 1 are uniquely deter-
mined by the values at the grid points and by the requirement that the second
derivative vanishes at the first and last grid points (the so-called natural splines).
In contrast, smooth interpolation in two or more dimensions depends on the
choice of the gradient and at least one mixed derivative at every grid point, and
when information about these quantities is not available~as is often the case~
one usually resorts to divided difference interpolation. In general, the efficiency
of the interpolation may be increased by using a nonuniform grid and by placing
more grid points in the regions where the functions that are being interpolated
are more “warped.” We will illustrate this approach in the last section. The use
of nonsmooth interpolation, such as bilinear interpolation in 2, for example,
reduces considerably the computational complexity of the problem. In any case,
the error from the interpolation must be controlled in one way or another.
While the discussion of this issue is beyond the scope of this article, it should be
noted that rather powerful estimates for the interpolation error are well known.

‡ Some Examples of Bilinear Cubature Rules for Gaussian
Integrals in 2

In general, just as one would expect, cubature rules based on bilinear interpola-
tion are less accurate than the cubature rules described in the previous section
(assuming, of course, one uses the same grid and keeping in mind that this claim
is made just in general). However, from a computational point of view, bilinear
cubature rules are considerably simpler and easier to implement, especially for
more general integrals of the form

‡ f HfHxLL pHxL „ x

for some fixed functions x ö fHxL and x ö pHxL. The greater computational
simplicity actually allows one to use a denser grid, which, in many cases, is a
reasonable compensation for the loss in smoothness. The dynamic integration
procedures in 2 that are discussed in the next section are all based on bilinear
cubature rules (in the case of 1 we will use cubic quadratures).
Here we will be working with the same interpolation grid XPkT, 1 § k § m, YPlT,
1 § l § n, that was defined in the previous section and, just as before, in all
display formulas will write xk instead of XPkT and yl instead of YPlT. Instead
of working with the interpolation objects of the form

680 Andrew Lyasoff

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

Here we will be working with the same interpolation grid XPkT, 1 § k § m, YPlT,
1 § l § n, that was defined in the previous section and, just as before, in all
display formulas will write xk instead of XPkT and yl instead of YPlT. Instead
of working with the interpolation objects of the form

ListInterpolation@
Table@88XPkT, YPlT<, 8vk,l<<, 8k, 1, m<, 8l, 1, n<DD,

we will work with bilinear interpolation objects that we are going to “construct
from scratch” as explicit functions of the variables x and y that depend on the
respective grid points and tabulated values. This means that for

xk § x § xk+1 and yl § y § yl+1,

the bilinear interpolation object can be expressed as

biHx, y, XPkT, XPk + 1T, YPlT, YPl + 1T, vk,l, vk,l+1, vk+1,l, vk+1,l+1L,

where the function bi is defined as

In[43]:= biAx_, y_, x1_, x2_, y1_, y2_, V11_, V12_, V21_, V22_E =

1 -
x - x1

x2 - x1
* 1 -

y - y1

y2 - y1
* V11 +

x - x1

x2 - x1
* 1 -

y - y1

y2 - y1
* V21 +

1 -
x - x1

x2 - x1
*
y - y1

y2 - y1
* V12 +

x - x1

x2 - x1
*
y - y1

y2 - y1
* V22;

It is clear from this definition that, treated as a function of the variables x and y,
the expression bi can be written as

A + B x + C y + D x y,

where the entire list 8A, B, C, D< can be treated as a function of the grid points
Ixk, xk+1, yl , yl+1M and the tabulated values Ivk,l , vk,l+1, vk+1,l , vk+1,l+1M. In fact, this
function (that is, a list of functions) can be written as

In[44]:= cfbiAx1_, x2_, y1_, y2_, V11_, V12_, V21_, V22_E =

CoefficientListAbiAx, y, x1, x2, y1, y2, V11, V12, V21, V22E, 9x, y=E;
For every fixed k and l, the integral of the bilinear interpolating object taken over
the rectangle

xk § x § xk+1 and yl § y § yl+1

is simply the dot product between the list 8A, B, C, D< and the list of integrals
(over the same rectangle) of the functions

Hx, yL ö pHx, yL, Hx, yL ö x pHx, yL,
Hx, yL ö y pHx, yL, and Hx, yL ö x y pHx, yL.

Now we will calculate~and store~all these lists (of integrals) of dimension 4 for
all choices for 1 § k § m and for 1 § l § n:

Dynamic Integration of Interpolating Functions 681

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

In[45]:= ip00@a_, b_, c_, d_D =

AssumingAa Œ  && b Œ  && c Œ  && d Œ  && a < b&& c < d,
IntegrateApAx, yE, 8x, a, b<, 9y, c, d=EE

Out[45]=

1

4
erf

a

2
- erf

b

2
erf

c

2
- erf

d

2

In[46]:= ip10@a_, b_, c_, d_D =

AssumingAa Œ  && b Œ  && c Œ  && d Œ  && a < b&& c < d,
IntegrateAx * pAx, yE, 8x, a, b<, 9y, c, d=EE

Out[46]=

‰
-

a2

4
-

b2

4 erf c

2
- erf d

2
sinhJ 1

4
Ia2 - b2MN

2 p

In[47]:= ip01@a_, b_, c_, d_D =

AssumingAa Œ  && b Œ  && c Œ  && d Œ  && a < b&& c < d,
IntegrateAy * pAx, yE, 8x, a, b<, 9y, c, d=EE

Out[47]=

‰
-

c2

4
-

d2

4 erf a

2
- erf b

2
sinhJ 1

4
Ic2 - d2MN

2 p

In[48]:= ip11@a_, b_, c_, d_D =

AssumingAa Œ  && b Œ  && c Œ  && d Œ  && a < b&& c < d,
IntegrateAx * y * pAx, yE, 8x, a, b<, 9y, c, d=EE

Out[48]=

2 ‰
1
4
I-a2-b2-c2-d2M sinhJ 1

4
Ia2 - b2MN sinhJ 1

4
Ic2 - d2MN

p

In[49]:= TimingA
WM2 = TableA9ip00@XPkT, XPk + 1T, Y PlT, Y Pl + 1TD, ip01@XPkT, XP

k + 1T, Y PlT, Y Pl + 1TD, ip10@XPkT, XPk + 1T, Y PlT, Y Pl + 1TD,
ip11@XPkT, XPk + 1T, Y PlT, Y Pl + 1TD=, 8k, m - 1<, 8l, n - 1<E;E

Out[49]= 80.444583, Null<
In[50]:= Timing@WM2N = N@WM2, 20D;D

Out[50]= 80.028574, Null<
and then compute the sum of all dot products:

In[51]:= TimingA
loc = TotalATableAIFlattenAcfbiAXPkT, XPk + 1T, Y PlT, Y Pl + 1T, vk,l , vk,l+1,

vl+1,k, vk+1,l+1EE.WM2NPk, lTM êê
Simplify, 8k, m - 1<, 8l, n - 1<E, 2E;E

Out[51]= 80.488303, Null<
This sum is a linear function of the symbols vk,l , and this linear function
represents the integral of the interpolating function f H ÿ L over the entire inter-
polation region (each dot product gives the integral of f H ÿ L in the respective sub-
region). Finally, we must extract the coefficients for the symbols nk,l from the
linear combination (of those symbols) that we just obtained.

682 Andrew Lyasoff

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

This sum is a linear function of the symbols vk,l , and this linear function
represents the integral of the interpolating function f H ÿ L over the entire inter-
polation region (each dot product gives the integral of f H ÿ L in the respective sub-
region). Finally, we must extract the coefficients for the symbols nk,l from the
linear combination (of those symbols) that we just obtained.

In[52]:= TimingAQ = TableA∂vk,l HlocL, 8k, m<, 8l, n<E;E
Out[52]= 80.643791, Null<
Now we can use the tensor Q in the same way in which we used the tensor W in
the previous section: although Q contains concrete numeric values, this ten-
sor still has the meaning of “integral of f H ÿ L in symbolic form.” For example,
if we set

In[53]:= uAx_, y_E = „0.1 x y;

then we obtain

In[54]:= Timing@V = Table@u@XPkT, Y PlTD, 8k, m<, 8l, n<D; Flatten@V D.Flatten@QDD
Out[54]= 80.001992, 1.0014<
which is reasonably close to

In[55]:= NIntegrateBuAx, yE *
1

2 p
* „-

x2+y2

2 , 8x, -R, R<, 9y, -R, R=F êê Timing

Out[55]= 80.045307, 1.00504<
In this case, the cubic cubature rule is considerably more accurate:

In[56]:= Timing@V = Table@u@XPkT, Y PlTD, 8k, m<, 8l, m<D; Flatten@V D.Flatten@WDD
Out[56]= 80.00184, 1.00503<
Here is another example.

In[57]:= uAx_, y_E = MaxAR - MinAx + R, y + RE, 0E;
This function is nonsmooth, as the following 3D plot shows.

In[58]:= Plot3DAuAx, yE, 8x, -R, R<, 9y, -R, R=,
PlotPoints Æ 150, Mesh Æ False, PlotRange Æ AllE

Out[58]=

Dynamic Integration of Interpolating Functions 683

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

In[59]:= Timing@V = Table@u@XPkT, Y PlTD, 8k, m<, 8l, n<D; Flatten@V D.Flatten@QDD
Out[59]= 80.003845, 0.744238893601963570<

In[60]:= Timing@V = Table@u@XPkT, Y PlTD, 8k, m<, 8l, n<D; Flatten@V D.Flatten@WDD
Out[60]= 80.003853, 0.6874360084736024<

In[61]:= NIntegrateBuAx, yE *
1

2 p
* „-

x2+y2

2 , 8x, -R, R<, 9y, -R, R=F êê Timing

Out[61]= 80.151764, 0.681037<
In[62]:= Abs@8%P2T - %%P2T, %P2T - %%%P2T<D

Out[62]= 80.00639893, 0.0632018<
Finally, we remark that~at least in principle~the procedures developed in this
and in the previous sections may be used with any other, that is, nonGaussian,
probability density pH ÿ L, including nonsmooth densities.

‡ Application to Optimal Stopping Problems and Option
Pricing
The main objective in this section is to revisit the method of dynamic interpola-
tion and integration described in [1] and to present a considerably more efficient
implementation of this method, which takes advantage of the fact that the objects
that are being integrated sequentially are actually interpolating functions. More
importantly, we will show how to implement this method in the case of optimal
stopping problems for certain diffusions in 2. Essentially, this section is about
the actual implementation in Mathematica of the method encoded in the space-
discretized version of the time-discrete dynamic programming equation (7). The solu-
tion is approximated in terms of dynamic cubature rules of the form (8) by using
the procedure encoded in equation (11). For the sake of simplicity, the examples
presented in this section will be confined to the case where the (diffusion type)
observation process HXtLt ¥ 0 is computable, in the sense that for any fixed T ¥
t ¥ 0, the random variable XT can be expressed as

XT = yT-tHXt, WT - WtL
for some computable function yT-t : N äN # N (note that the position of the
diffusion process at time t, Xt, is independent of the future increment of the
Brownian motion WT - Wt). In other words, the conditional law of XT given
the event 8XT = x< can be identified with the distribution law of a random vari-
able of the form

yT-tKx, T - t GO,

where G is a standard normal N -valued random variable. Of course, when
HXtLt ¥ 0 is computable in the sense that we just described, then there is no need to

HXtLt ¥ 0
the procedures described in this section can still be used, provided that the defini-
tion of the function yT-tH ÿ , ÿL is changed according to the recipe (6).

684 Andrew Lyasoff

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

where G is a standard normal N -valued random variable. Of course, when
Xt ¥ is computable in the sense that we just described, then there is no need to

use the approximation (6), and, if HXtLt ¥ 0 is not computable, in principle at least,
the procedures described in this section can still be used, provided that the defini-
tion of the function yT-tH ÿ , ÿL is changed according to the recipe (6).

We note that the Mathematica code included in this section is independent of the
code included in all previous sections.

To begin with, define the following symmetric probability density function in 2.

In[63]:= pIx_, y_M =
1

2 p
* „-

x2+y2

2 ;

This is nothing but the probability density of a bivariate normal random variable
HX , Y L œ 2, with standard normal marginals X and Y and with correlation
E@X Y D = 0. Let Wt, t ¥ 0, and Bt, t ¥ 0, be two standard Brownian motions that
are independent, so that E@Wt BtD = 0 for any t ¥ 0. Next, for some fixed s > 0
and for Hx, yL œ 2, set at

x = x ‰s Wt and bt
y = y ‰s Bt for any t ¥ 0. Note that

the joint distribution law of Iat
x, bt

yM is the same as the joint distribution law

of Jx ‰s t X , y ‰s t Y N. It is a trivial matter to check that

+ ú t ö Iat
x, bt

yM œ 2

is a diffusion process in 2 with generator

 =
s2

2
 Ix2 ∂x,x + y2 ∂ y, yM.

In what follows, we study the problem for optimal stopping of the process
Iat

x, bt
yMt ¥ 0 no later than time T > 0, for a given termination payoff L : +

2 # .
For the sake of simplicity, we will suppose that the discount rate for future
payoffs is 0. In the special case where LHx, yL = lHxL, x ¥ 0, for some “sufficiently
nice” function of one variable l : + # , the problem comes down to the
optimal stopping of the one-dimensional diffusion Iat

xMt ¥ 0. We analyze this one-
dimensional case first.

In[64]:= Hx_L =
1

2 p

 „-
x2

2 ;

In[65]:= s = 0.3;

The time step in the procedure, that is, the quantity T
v , is set to

In[66]:= t = .05;

Next, define the interpolation grid:

Dynamic Integration of Interpolating Functions 685

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

In[67]:= X = Join@Table@x êê N , 8x, 2, 32, 2<D, Table@x êê N , 8x, 34, 42, 2<D,
Table@x êê N , 8x, 44, 80, 4<D, 890, 100<, Table@x êê N , 8x, 120, 200, 20<DD;

m = Length@XD; XX = JoinA9$MachineEpsilon=, X , 8300, 400<E;

Xm = TableB1

2
* HXXPkT + XXPk + 1TL, 8k, 1, m + 2<F;

Just as before, in all display equations we will write xk instead of XPkT and xk
instead of XXPkT. The boundary conditions will be prescribed at the first and last
two abscissas on the extended grid XX. This means that the recursive procedure
will update only the values on the grid X. Thus, the procedure that we develop
can be applied only to situations where the value function does not change at
those points in the state-space that are either close to 0 or happen to be very
large.

The next step is to define the list of tabulated symbols

In[68]:= vrsb = Array@bð1 &, 8m + 3<D;
and the associated (symbolic) InterpolatingFunction object

In[69]:= g = ListInterpolation@Table@8XXPkT, 8vrsbPkT<<, 8k, 1, m + 3<DD;
Next, extract the coefficients of the cubic polynomials that represent the object g
between the interpolation nodes.

In[70]:= te@ff_, x0_D := SumB 1

Hi !L * ffHiLHx0L * Hx - x0Li, 8i, 0, 3<F;

In[71]:= m0loc = TableACoefficientListAteAg, XmPkTE, 8x<E êê Simplify, 8k, m + 2<E;
For example,

In[72]:= m0locP1T êê Chop

Out[72]= 81. b1, -0.916667 b1 + 1.5 b2 - 0.75 b3 + 0.166667 b4,
0.25 b1 - 0.625 b2 + 0.5 b3 - 0.125 b4,
-0.0208333 b1 + 0.0625 b2 - 0.0625 b3 + 0.0208333 b4<

which means that for x1 § x § x2, the expression g[x] can be identified with the
polynomial

In[73]:= 91, x, x2, x3=.m0locP1T
Out[73]= I-0.0208333 b1 + 0.0625 b2 - 0.0625 b3 + 0.0208333 b4M x3 +

I0.25 b1 - 0.625 b2 + 0.5 b3 - 0.125 b4M x2 +

I-0.916667 b1 + 1.5 b2 - 0.75 b3 + 0.166667 b4M x + 1. b1 -

4.44089 µ 10-16 b2 + 1.11022 µ 10-16 b3 - 1.38778 µ 10-17 b4

Next, note that the relation

xk § xx ‰s t x § xk+1

686 Andrew Lyasoff

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

is equivalent to

LHx, kL ª
1

s t
 log

xk

xx
§ x §

1

s t
 log

xk+1

xx
ª LHx, k + 1L.

For every fixed x = 1, … , m, we will compute all integrals

‡
LIx,kM

LIx,k+1M
‰ Hi-1L s t x HxL „ x, 1 § i § 4, 1 § k § m + 2,

and will store these integrals in the matrix (initially filled with zeros):

In[74]:= wl = Table@HTable@0, 8i, 0, 3<DL, 8k, 1, m + 2<D;
In particular, the integral

‡
LIx,kM

LIx,k+1M
gJxx ‰s t xNHxL „ x

can be replaced by

91, xx, xx
2, xx

3= ÿ Im0locQkU * wlQkUM,
and we remark that

m0locQkU * wlQkU ª ‚
i=1

4

m0locQk, iU * wlQk, iU.

The entire expression

‡
LHx,1L

LHx,m+3L
gJxx ‰s t xNHxL „ x = ‚

k=1

m+2

91, xx, xx
2, xx

3=.Im0locQkU * wlQkUM

then becomes a linear function of the symbols 8b1, … , bm+3<. This linear function
(i.e., vector of dimension m + 3) depends on the index x and represents a quadra-
ture rule for the integral in the left side in the last identity. We stress that we
need one such rule for every abscissa xx, 1 § x § m. We will store all these rules
(i.e., vectors of dimension m + 3) in the tensor (initially filled with zeroes):
In[75]:= w = Table@Table@0, 8k, 1, m + 3<D, 8x, 1, m<D;
In[76]:= Clear@ll, ulD; locInt =

TableBIntegrateB„Hi-1L*s* t *x * HxL, 8x, ll, ul<F êê Simplify, 8i, 1, 4<F;

Dynamic Integration of Interpolating Functions 687

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

In[77]:= DoB DoBDoB wlPk, iT = NB locIntPiT ê. :ll Æ
1

s * t
* LogB XXPkT

XPxT F, ul Æ

1

s * t
* LogB XXPk + 1T

XPxT F> F , 8i, 1, 4<F, 8k, m + 2<F;

lcls = SumAI91, XPxT, XPxT2, XPxT3=.Hm0locPkT * wlPkTL êê SimplifyM,
8k, m + 2<E;

wPxT = TableA∂bk HlclsL, 8k, m + 3<E; , 8x, m<F êê Timing

Out[77]= 80.90158, Null<
As a first application, we compute the price of an American put option with
payoff:
In[78]:= L@x_D = Max@40 - x, 0D

Out[78]= maxH0, 40 - xL
The first iteration will be done by using a direct numerical integration~not inter-
polation quadrature rules.

In[79]:= TimingB
V1 = TableB:MaxBL@XXPkTD, NIntegrateBLBXXPkT * „s* t *xF * HxL,

:x, -•,
1

s * t
 LogB 40

XXPkT F>, MaxRecursion Æ 10,

AccuracyGoal Æ 16, SingularityDepth Æ 10FF>, 8k, 1, m + 3<F;F
Out[79]= 81.02531, Null<
Now we will do 19 additional iterations by using interpolation quadratures. The
time step is t = 0.05 years. This will give us the approximate price of an Amer-
ican put with strike price 40 and one year left to expiry. Note that the list wPkT
gives the integral associated with the abscissa xk, which is the same as xk+1 for
1 § k § m. The idea is to keep the value at the abscissa x1 fixed, throughout the
iterations, equal to the initial value 40 and, similarly, keep the values at the
abscissas xm+2 and xm+3 forever fixed at the initial values 0 and 0.

In[80]:= K = V1; VL = K;

In[81]:= Timing@
Do@HDo@VLPk + 1T = 8Max@L@XXPk + 1TD, Flatten@KD.wPkTD<, 8k, m<D;

K = VLL, 819<D;D
Out[81]= 80.010863, Null<
Note that the first iteration took about 20 times longer to compute than the
remaining 19. Now we define the value function after 20 iterations~this is
nothing but the option price with one year left to maturity treated as a function
defined on the entire range of observable stock prices.
In[82]:= f = ListInterpolation@Table@8XXPkT, KPkT<, 8k, 1, m + 3<DD;

We plot the value function f H ÿ L together with the termination payoff LH ÿ L.

688 Andrew Lyasoff

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

We plot the value function f H ÿ L together with the termination payoff LH ÿ L.
In[83]:= PlotA9 f @xD, L@xD=, 8x, 0, 120<, PlotRange Æ All,

PlotPoints Æ 150, PlotStyle Æ 8Hue@0.D, Hue@0.7D<E

Out[83]=

20 40 60 80 100 120

10

20

30

40

The range of abscissas at which the value function and the termination pay-
off coincide is precisely the price range where immediate exercise of the option is
optimal, assuming that there is exactly one year left to expiry.

Now we consider the same optimal stopping problem but with a smooth pay-
off function, namely

In[84]:= L@x_D =
1

100
 x2 *

1

40
 HMax@40 - x, 0DL2;

Essentially, this is an example of some sort of a generalized obstacle problem.

In[85]:= PlotAL@xD, 8x, 0, 60<, PlotRange Æ AllE

Out[85]=

10 20 30 40 50 60

10

20

30

40

In this case, there is no need to perform the first iteration by using direct numer-
ical integration.
In[86]:= Timing@V1 = Table@8L@XXPkTD<, 8k, 1, m + 3<D;D

Out[86]= 80.000257, Null<
Now we perform 60 iterations, which will give us the value function with three
years left to the termination deadline.
In[87]:= K = V1; VL = K;

In[88]:= Timing@
Do@HDo@VLPk + 1T = 8Max@L@XXPk + 1TD, Flatten@KD.wPkTD<, 8k, 1, m<D;

K = VLL, 860<D;D
Out[88]= 80.039661, Null<

Dynamic Integration of Interpolating Functions 689

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

In[89]:= f = ListInterpolation@Table@8XXPkT, KPkT<, 8k, 1, m + 3<DD;
In[90]:= PlotA9 f @xD, L@xD=, 8x, 0, 120<,

PlotRange Æ All, PlotStyle Æ 8Hue@0.D, Hue@0.7D<E

Out[90]=

20 40 60 80 100 120

10

20

30

40

The most common approach to dynamic programing problems of this type is to
use the free boundary problem formulation, followed by some suitable variation
of the finite difference scheme. However, such an approach is much less straight-
forward and usually takes much longer to compute~a fraction of a second would
be very hard to imagine even on a very powerful computer. In fact, we could
double the number of the interpolation nodes and cut the time step in half,
which would roughly quadruple the timing, and still complete the calculation
within one second.
It is important to point out that, in terms of the previous procedure, there is
nothing special about the standard normal density. In fact, we could have used
just about any other reasonably behaved probability density function H ÿ L~as
long as the associated integrals are computable. In particular, one can use this
procedure in the context of financial models in which the pricing process is
driven by some nonwhite noise process, including a noise process with jumps.
The only requirement is that we must be able to compute the integrals

‡
LIx,kM

LIx,k+1M
‰ Hi-1L s t x HxL „ x, 1 § i § 4, 1 § k § m + 2,

for any x = 1, … , m.

Finally, we consider the two-dimensional case. We use the same grid-points on
both axes:
In[91]:= Y = X ; n = Length@Y D; YY = XX;

Although the lists Y and YY are the same as X and XX, in the notation that we use
we will pretend that these lists might be different and will write yk instead
of YPkT, yk instead of YYPkT, and set

MHh, lL ª
1

s t
 log

yl

yh
.

690 Andrew Lyasoff

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

We will use bilinear cubature rules, which are easier to implement~we need one
such rule for every point Ixx, yhM, 1 § x § m, 1 § h § n. Thus, we must compute
all integrals

(14)‡
LIx,kM

LIx,k+1M
„ x ‡

MIh,lM

MIh,l+1M
‰ Hi-1L s t x + H j-1L s t y pHx, yL „ y

for i, j = 1, 2, for 1 § k § m + 2, for 1 § l § n + 2, for 1 § x § m, and for
x § h § n (because of the symmetry in the density pH ÿ L, it is enough to consider
only the case h ¥ x). Now we need to operate with substantially larger lists
of data and for that reason we need to organize the Mathematica code differently.

Assuming that Hx, yLö f Hx, yL is an interpolating function constructed by way
of bilinear interpolation from the tabulated symbols

ak,l ª f Ixk, ylM, 1 § k § m + 3, 1 § l § n + 3,

we can express each of the integrals

‡
LIx,kM

LIx,k+1M
„ x ‡

MIh,lM

MIh,l+1M
f Jxx ‰ s t x , yh ‰ s t yN pHx, yL „ y

in the form

91, xx=.Ax,h,k,l .91, yh=,
where Ax,h,k,l is the 2 µ 2 matrix given by (here we use the definition of cfbi from
the previous section)

Ax,h,k,l = cfbiA xk, xk+1, yl , yl+1, ak,l , ak,l+1, ak+1,l , ak+1,l+1E * locIntegrals,

and locIntegrals is the 2 µ 2 matrix of the integrals (14) indexed by 1 § i, j § 2
(i is the first index and j is the second). In fact, with our special choice for the bi-
variate density pHx, yL, all these integrals can be calculated in closed form:

In[92]:= ClearAs, t, x, y, lx, Lx, ly, LyE

In[93]:= i = 1; j = 1; IntegrateB„ Hi-1L s t x+ H j-1L s t y * pIx, yM, 8x, lx, Lx<, 9y, ly, Ly=F

Out[93]=

1

4
erf

lx

2
- erf

Lx

2
erf

ly

2
- erf

Ly

2

In[94]:= i = 2; j = 1; IntegrateB„ Hi-1L s t x+ H j-1L s t y * pIx, yM, 8x, lx, Lx<, 9y, ly, Ly=F

Out[94]=

1

4
‰

t s2

2 erf
ly

2
- erf

Ly

2
erf

lx - t s

2
- erf

Lx - t s

2

Dynamic Integration of Interpolating Functions 691

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

In[95]:= i = 1; j = 2; IntegrateB„ Hi-1L s t x+ H j-1L s t y * pIx, yM, 8x, lx, Lx<, 9y, ly, Ly=F

Out[95]=

1

4
‰

t s2

2 erf
lx

2
- erf

Lx

2
erf

ly - t s

2
- erf

Ly - t s

2

In[96]:= i = 2; j = 2; IntegrateB„ Hi-1L s t x+ H j-1L s t y * pIx, yM, 8x, lx, Lx<, 9y, ly, Ly=F

Out[96]=

1

4
‰t s2 erf

lx - t s

2
- erf

Lx - t s

2
erf

ly - t s

2
- erf

Ly - t s

2

After fixing the values for the volatility s and the time step t

In[97]:= ClearAi, jE; s = 0.3; t = .05;

the integrals can be written as explicit functions of the integration limits:

In[98]:= cip11 = CompileB98lx, _Real<, 8Lx, _Real<, 9ly, _Real=, 9Ly, _Real==,

1

4
* erf

lx

2
- erf

Lx

2
* erf

ly

2
- erf

Ly

2
F;

In[99]:= cip21 =

CompileB98lx, _Real<, 8Lx, _Real<, 9ly, _Real=, 9Ly, _Real==, 1

4
* „

t s2

2 *

erf
ly

2
- erf

Ly

2
* erf

lx - t s

2
- erf

Lx - t s

2
F;

In[100]:= cip12 =

CompileB98lx, _Real<, 8Lx, _Real<, 9ly, _Real=, 9Ly, _Real==, 1

4
* „

t s2

2 *

erf
lx

2
- erf

Lx

2
* erf

ly - t s

2
- erf

Ly - t s

2
F;

In[101]:= cip22 = CompileB98lx, _Real<, 8Lx, _Real<, 9ly, _Real=, 9Ly, _Real==,

1

4
* „t s2

* erf
lx - t s

2
- erf

Lx - t s

2
*

erf
ly - t s

2
- erf

Ly - t s

2
F;

Our method depends in a crucial way on the fact that 81, XPxT<.Ax,h,k,l .81, YPhT<
is actually a linear function of the symbols 9ak,l , ak,l+1, ak+1,l , ak+1,l+1=. In fact,
we can compute the coefficients in this linear combination explicitly, as we now
demonstrate.

692 Andrew Lyasoff

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

Our method depends in a crucial way on the fact that 81, XPxT<.Ax,h,k,l .81, YPhT<
is actually a linear function of the symbols 9ak,l , ak,l+1, ak+1,l , ak+1,l+1=. In fact,
we can compute the coefficients in this linear combination explicitly, as we now
demonstrate.

In[102]:= Clear@a, b, c, dD
In[103]:= locIntegrals = 88C11, C12<, 8C21, C22<<

Out[103]=
C11 C12
C21 C22

The next two definitions are taken from the previous section, so that the code
included in this section can be self-contained.

In[104]:= biAx_, y_, x1_, x2_, y1_, y2_, V11_, V12_, V21_, V22_E =

1 -
x - x1

x2 - x1
* 1 -

y - y1

y2 - y1
* V11 +

x - x1

x2 - x1
* 1 -

y - y1

y2 - y1
* V21 +

1 -
x - x1

x2 - x1
*
y - y1

y2 - y1
* V12 +

x - x1

x2 - x1
*
y - y1

y2 - y1
* V22;

In[105]:= cfbiAx1_, x2_, y1_, y2_, V11_, V12_, V21_, V22_E =

CoefficientListAbiAx, y, x1, x2, y1, y2, V11, V12, V21, V22E, 9x, y=E;
In[106]:= CoefficientA81, xx<.IcfbiA x1, x2, y1, y2, a, b, c, dE * locIntegralsM.91, yy=,

aE êê Simplify

Out[106]=

C11 x2 y2 - C21 xx y2 - C12 x2 yy + C22 xx yy

Hx1 - x2L Iy1 - y2M

In[107]:= CoefficientA81, xx<.IcfbiA x1, x2, y1, y2, a, b, c, dE * locIntegralsM.91, yy=,
bE êê Simplify

Out[107]=

-C11 x2 y1 + C21 xx y1 + C12 x2 yy - C22 xx yy

Hx1 - x2L Iy1 - y2M

In[108]:= CoefficientA81, xx<.IcfbiA x1, x2, y1, y2, a, b, c, dE * locIntegralsM.91, yy=, cE êê
Simplify

Out[108]=

-C11 x1 y2 + C21 xx y2 + C12 x1 yy - C22 xx yy

Hx1 - x2L Iy1 - y2M

In[109]:= CoefficientA81, xx<.IcfbiA x1, x2, y1, y2, a, b, c, dE * locIntegralsM.91, yy=,
dE êê Simplify

Out[109]=

C11 x1 y1 - C21 xx y1 - C12 x1 yy + C22 xx yy

Hx1 - x2L Iy1 - y2M

Dynamic Integration of Interpolating Functions 693

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

Thus, the entire integral

(15)‡
LHx,1L

LHx,m+3L
„ x ‡

MHh,1L

MHh,n+3L
f JXPxT ‰ s t x , YPhT ‰ s t yN pHx, yL „ y

can be treated as a linear function of the symbols

9ak,l ; 1 § k § m + 3, 1 § l § n + 3=.
This linear function is nothing but a tensor of dimension Hm + 3Lä Hn + 3L and this
tensor is nothing but a cubature rule for the integral (15), which, obviously,
depends on the indices x and h. Consequently, we have one such cubature rule
(tensor) for every choice of x = 1, … , m and every choice of h = x, … , n, and all
such rules will be stored in the tensor (initially filled with zeros):

In[110]:= X = Table@Table@0, 8k, m + 3<, 8l, n + 3<D, 8x, m<, 8h, x, n<D;
The calculation of the tensor X is the key step in the implementation of the
method of dynamic interpolation and integration in dimension 2. This is the
place where we must face the “curse of the dimension.” It is no longer efficient to
express the global integral (15) as the sum of local integrals of the form (14) and
then extract from the sum the coefficients for the symbols ak,l . It turns out to be
much faster if one updates the coefficients for the symbols ak,l sequentially, as the
local integrals in (14) are calculated one by one. Just as one would expect, dealing
with the boundary conditions in higher dimensions is also trickier. Throughout
the dynamic integration procedure we will be updating the values of the value
function at the grid points Ixx, yhM, 1 § x § m, 1 § h § n, or, which amounts to
the same, the grid points Ixk, ylM, 2 § k § m + 1, 2 § h § n + 1. The values on the

remaining grid points Ixk, ylM with k = 1, or k = m + 2, or k = m + 3, or l = 1, or
l = n + 2, or l = n + 3, will be kept unchanged, or, depending on the nature of the
problem, will be updated according to some other~one-dimensional, perhaps~
dynamic quadrature rule.

Now we turn to the actual computation of the tensor X. On a single “generic”
processor, this task takes about 1

2 hour (if more processors are available the task
can be distributed between several different Mathematica kernels in a trivial way).
The key point is that this is a calculation that we do once and for all. As will be illus-
trated shortly, once the tensor X is calculated, a whole slew of optimal stopping
problems can be solved within seconds. Of course, the “slew of optimal stopping
problems” is limited to the ones where the termination payoff and the value func-
tions obtained throughout the dynamic integration can be approximated reason-
ably well by way of bilinear interpolation from the same interpolation grid. In
general, the set of these “quickly solvable” problems can be increased by
choosing a denser grid and/or a grid that covers a larger area. However, doing so
may become quite expensive. For example, if we were to double the number
of grid points in each coordinate, the computing time for the tensor X would
increase roughly 16 times~again, everything is easily parallelizable.

694 Andrew Lyasoff

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

It is important to recognize that the calculation of the list X involves only the
evaluation of standard functions and accessing the elements of a fairly large
tensor (X has a total of 1,245,621 entries). This is close to the “minimal number
of calculations” that one may expect to get away with: if the number of discrete
data from which the value function can be restored with a reasonable degree
of accuracy is fairly large, then there is a fairly large number of values that will
have to be calculated no matter what. Furthermore, the evaluation of standard
functions is very close to the fastest numerical procedure that one may hope to
get away with in this situation. From an algorithmic point of view, the efficiency
of this procedure can be improved in two ways: (1) find a new way to encrypt the
value function with fewer discrete values; and/or (2) represent all functions
involved in the procedure (i.e., all combinations of standard functions) in a form
that allows for an even faster evaluation. In terms of hardware, the speed of the
procedure depends not only on the speed of the processor but also on the speed
and the organization of the memory.

Instead of calculating the list X, one may load its (precomputed) value from the
files Xi.mx or Xi.txt (if available):

<< "C:êLocalHDlocationêXi.mx"

or

<< "C:êLocalHDlocationêXi.txt"

In[111]:= TimingBDoBxx = XPxT; yy = Y PhT;

DoB lx =
1

s * t
* LogB XXPkT

XPxT F; Lx =
1

s * t
* LogB XXPk + 1T

XPxT F;

x1 = XXPkT; x2 = XXPk + 1T;

DoB ly =
1

s * t
* LogB YYPlT

Y PhT F; Ly =

1

s * t
* LogB YYPl + 1T

Y PhT F; y1 = YYPlT; y2 = YYPl + 1T;

C11 = cip11Alx, Lx, ly, LyE; C12 = cip12Alx, Lx, ly, LyE;
C21 = cip21Alx, Lx, ly, LyE; C22 = cip22Alx, Lx, ly, LyE;
XPx, h - x + 1, k, lT = XPx, h - x + 1, k, lT +

C11 x2 y2 - C21 xx y2 - C12 x2 yy + C22 xx yy

Hx1 - x2L Iy1 - y2M
;

XPx, h - x + 1, k, l + 1T = XPx, h - x + 1, k, l + 1T +

-C11 x2 y1 + C21 xx y1 + C12 x2 yy - C22 xx yy

Hx1 - x2L Iy1 - y2M
;

XPx, h - x + 1, k + 1, lT = XPx, h - x + 1, k + 1, lT +

-C11 x1 y2 + C21 xx y2 + C12 x1 yy - C22 xx yy

Hx1 - x2L Iy1 - y2M
;

= +

; ,

Dynamic Integration of Interpolating Functions 695

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

In[111]:=

Hx1 - x2L Iy1 - y2M
;

XPx, h - x + 1, k + 1, l + 1T = XPx, h - x + 1, k + 1, l + 1T +

C11 x1 y1 - C21 xx y1 - C12 x1 yy + C22 xx yy

Hx1 - x2L Iy1 - y2M
; ,

8l, n + 2<F , 8k, m + 2<F; , 8x, 1, m<, 8h, x, n<F;F

Out[111]= 8391.51, Null<
Now we can turn to some concrete applications. First, we will consider an Amer-
ican put option with strike price 40 on the choice of one of two uncorrelated
assets (the owner of the option can choose one of the two assets when the option
is exercised). The termination payoff from this option is

In[112]:= LAx_, y_E = MaxA40 - MinAx, yE, 0E;
In[113]:= Plot3DALAx, yE, 8x, 0, 120<, 9y, 0, 120=,

PlotPoints Æ 250, Mesh Æ False, PlotRange Æ AllE

Out[113]=

The two underlying assets are uncorrelated and follow the processes x0 ‰s Wt ,
t ¥ 0, and y0 ‰s Bt , t ¥ 0, where B and W are the Brownian motions described
earlier in this section. Let Hx, yLö ftHx, yL be the value function with t years left
to expiry, that is, if the time left to expiry is t years and the prices of the two
assets are, respectively, x œ + and y œ +, then the value of the option is
ftHx, yL œ + and we remark that what is meant here as “the value of the option”
is actually a function defined on the entire range of prices, that is, the range
of prices covered by the interpolation grid. Clearly, we must have
ftHx, 0L = ftH0, yL = 40. Furthermore, when one of the assets has a very large
value, then the option is very close to a canonical American put option on the
other asset. Consequently, the values at the grid points Ixk, ylM, where k = 1 or
l = 1, will never be updated and will remain forever fixed at the initial value 40.
When k is fixed to either k = m + 2 or k = m + 3, the values at the grid points
Ixk, ylM, 1 § l § n + 3, will be updated exactly as we did earlier in the case of an
American put on a single asset with a strike price 40. Similarly, when l is fixed to
either l = n + 2 or l = m + 3, the values at the grid points Ixk, ylM, 1 § k § m + 3,
will be updated in the same way, that is, as if we were dealing with an American
put on a single asset with strike price 40. Of course, since the payoff is symmetric

pH ÿ , ÿL
Ixk, ylM for k = 1, … , m + 3 and l = k, … , n + 3.

696 Andrew Lyasoff

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

The two underlying assets are uncorrelated and follow the processes x0 ‰s Wt ,
t ¥ 0, and y0 ‰s Bt , t ¥ 0, where B and W are the Brownian motions described
earlier in this section. Let Hx, yLö ftHx, yL be the value function with t years left
to expiry, that is, if the time left to expiry is t years and the prices of the two
assets are, respectively, x œ + and y œ +, then the value of the option is
ftHx, yL œ + and we remark that what is meant here as “the value of the option”
is actually a function defined on the entire range of prices, that is, the range
of prices covered by the interpolation grid. Clearly, we must have
ftHx, 0L = ftH0, yL = 40. Furthermore, when one of the assets has a very large
value, then the option is very close to a canonical American put option on the
other asset. Consequently, the values at the grid points Ixk, ylM, where k = 1 or
l = 1, will never be updated and will remain forever fixed at the initial value 40.
When k is fixed to either k = m + 2 or k = m + 3, the values at the grid points
Ixk, ylM, 1 § l § n + 3, will be updated exactly as we did earlier in the case of an
American put on a single asset with a strike price 40. Similarly, when l is fixed to
either l = n + 2 or l = m + 3, the values at the grid points Ixk, ylM, 1 § k § m + 3,
will be updated in the same way, that is, as if we were dealing with an American

and so is the density pH ÿ , ÿL, we only need to update the values at the grid points
Ixk, ylM for k = 1, … , m + 3 and l = k, … , n + 3.

Now we turn to the actual calculation. By using the method of dynamic integra-
tion of interpolating functions, we will compute~approximately~the pricing
function Hx, yLö f1Hx, yL that maps the prices of the underlying assets in the
range covered by the grid into the price of the option with one year left to matu-
rity. With time step t = 0.05, we need to perform 20 iterations in the dynamic
integration procedure. Note that if we choose to perform the first iteration by
direct numerical integration of the termination payoff, then that would require
the calculation of 741 integrals.

We initialize the procedure by tabulating the termination payoff over the interpo-
lation grid.

In[114]:= Timing@V3 = Table@L@XXPkT, YYPlTD, 8k, 1, m + 3<, 8l, 1, n + 3<D;D
Out[114]= 80.0069, Null<

In[115]:= K = V3; VL = K;

Then we do 20 iterations~at each iteration we update the tensor VL:

In[116]:= Timing@
Do@HDo@HVLPx + 1, h + 1T = 8Max@L@XXPx + 1T, YYPh + 1TD, Flatten@

XPx, h - x + 1TD.Flatten@KDD<L, 8x, m<, 8h, x, n<D;
Do@VLPk + 1, n + 2T = 8Max@Max@40 - XXPk + 1T, 0D,

Flatten@KPAll, n + 2TD.wPkTD<, 8k, m<D;
Do@VLPk + 1, n + 3T = 8Max@Max@40 - XXPk + 1T, 0D,

Flatten@KPAll, n + 3TD.wPkTD<, 8k, m<D;
Do@HVLPx, hT = VLPh, xTL, 8x, 2, m + 3<, 8h, x - 1<D;
K = VLL, 820<D;D

Out[116]= 83.61598, Null<
Now we can produce the pricing map with one year left to maturity.

In[117]:= floc = ListInterpolation@
Table@8 8XXPkT, YYPlT<, 8VLPk, lT<<, 8k, 1, m + 3<, 8l, 1, n + 3<DD;

In[118]:= Plot3DAflocAx, yE, 8x, 0, 120<, 9y, 0, 120=,
PlotPoints Æ 250, Mesh Æ False, PlotRange Æ AllE

Out[118]=

Calculating the derivatives of the value function (treated as functions, too) is
straightforward as we now illustrate, and before we do we remark that in the
realm of finance, information about these derivatives (known as the deltas of the
option) is often more important than the pricing function itself.

Dynamic Integration of Interpolating Functions 697

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

Calculating the derivatives of the value function (treated as functions, too) is
straightforward as we now illustrate, and before we do we remark that in the
realm of finance, information about these derivatives (known as the deltas of the
option) is often more important than the pricing function itself.

In[119]:= Plot3DAflocH1,0LIx, yM, 8x, 0, 80<, 9y, 0, 80=,
PlotPoints Æ 250, Mesh Æ False, PlotRange Æ AllE

Out[119]=

In our second example, we consider an American put option on the more expen-
sive of two given underlying assets (in contrast, in our previous example we dealt
with an American put option on the less expensive of the two underlying assets).
In this case, the termination payoff function is given by

In[120]:= LAx_, y_E = MaxA40 - MaxAx, yE, 0E;
In[121]:= Plot3DALAx, yE, 8x, 0, 120<, 9y, 0, 120=,

PlotPoints Æ 250, Mesh Æ False, PlotRange Æ AllE

Out[121]=

This time the boundary conditions must take into account the fact that when one
of the assets becomes too expensive, the option becomes worthless, and when
one of the assets is worthless, the option may be treated as a standard American
option on the other asset. For the purpose of illustration we will compute the
value of the option with three years left to maturity.

In[122]:= Timing@V4 = Table@L@XXPkT, YYPlTD, 8k, 1, m + 3<, 8l, 1, n + 3<D;D
Out[122]= 80.007632, Null<

In[123]:= K = V4; VL = K;

698 Andrew Lyasoff

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

In[124]:= Timing@
Do@HDo@HVLPx + 1, h + 1T = 8Max@L@XXPx + 1T, YYPh + 1TD, Flatten@

XPx, h - x + 1TD.Flatten@KDD<L, 8x, m<, 8h, x, n<D;
Do@VLP1, k + 1T = 8Max@Max@40 - YYPk + 1T, 0D,

Flatten@KP1, AllTD.wPkTD<, 8k, m<D; Do@
VLPk + 1, n + 2T = 80<, 8k, m<D; Do@VLPk + 1, n + 3T = 80<, 8k, m<D;

Do@HVLPx, hT = VLPh, xTL, 8x, 2, m + 3<, 8h, x - 1<D; K = VLL, 860<D;D
Out[124]= 812.2292, Null<

In[125]:= floc = ListInterpolation@
Table@88XXPkT, YYPlT<, 8VLPk, lT<<, 8k, 1, m + 3<, 8l, 1, n + 3<DD;

In[126]:= Plot3DAflocAx, yE, 8x, 0, 120<, 9y, 0, 120=,
PlotPoints Æ 250, Mesh Æ False, PlotRange Æ AllE

Out[126]=

This is a good example of a value function which is neither everywhere smooth
nor convex.

In our final example we consider optimal stopping of the same diffusion in 2

but with smooth termination payoff of the form

In[127]:= l@x_D =
1

100
 x2 *

1

40
 HMax@40 - x, 0DL2; LAx_, y_E =

1

40
 l@xD * lAyE;

In[128]:= Plot3DALAx, yE, 8x, 0, 120<, 9y, 0, 120=,
PlotPoints Æ 250, Mesh Æ False, PlotRange Æ AllE

Out[128]=

With this termination payoff the boundary conditions must reflect the fact that
the option is worthless when one of the assets is worthless or when one of the

60
function with three years left to expiry.

Dynamic Integration of Interpolating Functions 699

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

With this termination payoff the boundary conditions must reflect the fact that

assets is too expensive. We will execute 60 iterations, which will give us the value
function with three years left to expiry.

In[129]:= Timing@V5 = Table@L@XXPkT, YYPlTD, 8k, 1, m + 3<, 8l, 1, n + 3<D;D
Out[129]= 80.015148, Null<

In[130]:= K = V5; VL = K;

In[131]:= Timing@
Do@HDo@HVLPx + 1, h + 1T = 8Max@L@XXPx + 1T, YYPh + 1TD, Flatten@

XPx, h - x + 1TD.Flatten@KDD<L, 8x, m<, 8h, x, n<D;
Do@VLP1, k + 1T = 80<, 8k, m<D; Do@VLPk + 1, n + 2T = 80<, 8k, m<D;
Do@VLPk + 1, n + 3T = 80<, 8k, m<D;
Do@HVLPx, hT = VLPh, xTL, 8x, 2, m + 3<, 8h, x - 1<D; K = VLL, 860<D;D

Out[131]= 812.3947, Null<
In[132]:= floc = ListInterpolation@

Table@88XXPkT, YYPlT<, 8VLPk, lT<<, 8k, 1, m + 3<, 8l, 1, n + 3<DD;
In[133]:= Plot3DAflocAx, yE, 8x, 0, 120<, 9y, 0, 120=,

PlotPoints Æ 250, Mesh Æ False, PlotRange Æ AllE

Out[133]=

‡ Conclusions
Most man-made computing devices can operate only with finite lists of numbers
or symbols. Any use of such devices for modeling, analysis, and optimal control
of stochastic systems inevitably involves the encoding of inherently complex
phenomena in terms of finite lists of numbers or symbols. Thus one can think
of two general directions that may lead to expanding the realm of computable
models. First, one may try to construct computing devices that can handle larger
and larger lists, faster and faster. Second, one may try to develop “smarter”
procedures with which more complex objects can be encrypted with shorter lists
of numbers. With this general direction in mind, the methodology developed in
this article is entirely logical and natural. Indeed, the approximation of functions
with splines or other types of interpolating functions is a familiar, well
developed, and entirely natural computing tool. The use of special
quadrature/cubature rules~as opposed to general methods for numerical
integration~in the context of dynamic integration of interpolating functions is

which one can implement such procedures in a relatively simple and straight-
forward fashion become widely available. This article is an attempt to
demonstrate how the advent of more sophisticated computing technologies may
lead to the development of new and more efficient algorithms. Curiously, new
and more efficient algorithms often lead to the design of new and more efficient
computing devices. In particular, all procedures described in this article can be
implemented on parallel processors or on computing grids in essentially a trivial
way. There is a strong incentive to build computing devices that can perform
simultaneously several numerical integrations, or can compute dot products
between very large lists of numbers very fast.

700 Andrew Lyasoff

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

Most man-made computing devices can operate only with finite lists of numbers
or symbols. Any use of such devices for modeling, analysis, and optimal control
of stochastic systems inevitably involves the encoding of inherently complex
phenomena in terms of finite lists of numbers or symbols. Thus one can think
of two general directions that may lead to expanding the realm of computable
models. First, one may try to construct computing devices that can handle larger
and larger lists, faster and faster. Second, one may try to develop “smarter”
procedures with which more complex objects can be encrypted with shorter lists
of numbers. With this general direction in mind, the methodology developed in
this article is entirely logical and natural. Indeed, the approximation of functions
with splines or other types of interpolating functions is a familiar, well
developed, and entirely natural computing tool. The use of special
quadrature/cubature rules~as opposed to general methods for numerical

just as logical and natural. However, only recently have computer languages in
which one can implement such procedures in a relatively simple and straight-
forward fashion become widely available. This article is an attempt to
demonstrate how the advent of more sophisticated computing technologies may
lead to the development of new and more efficient algorithms. Curiously, new
and more efficient algorithms often lead to the design of new and more efficient
computing devices. In particular, all procedures described in this article can be
implemented on parallel processors or on computing grids in essentially a trivial
way. There is a strong incentive to build computing devices that can perform
simultaneously several numerical integrations, or can compute dot products
between very large lists of numbers very fast.

Finally, we must point out that most of the examples presented in the article are
only prototypes. They were meant to be executed on a generic (and slightly out
of date) laptop computer with the smallest possible number of complications.
Many further improvements in terms of higher accuracy and overall efficiency
can certainly be made.

‡ Acknowledgments
The author thanks all three anonymous referees for their extremely helpful
comments and suggestions.

‡ References
[1] A. Lyasoff, “Path Integral Methods for Parabolic Partial Differential Equations with

Examples from Computational Finance,” The Mathematica Journal, 9(2), 2004
pp. 399|422.

[2] A. Bensoussan and J. L. Lions, Applications of the Variational Inequalities in Stochastic
Control, Amsterdam: North Holland, 1982.

[3] M. H. A. Davis, “Markov Models and Optimization,” Monographs on Statistics and
Applied Probability, Vol. 49, Chapman & Hall/CRC Press,1993.

[4] V. Bally and G. Pagès, “A Quantization Algorithm for Solving Discrete Time Multidimen-
sional Optimal Stopping Problems,” Bernoulli, 9(6), 2003 pp. 1003|1049.

[5] V. Bally and G. Pagès, “Error Analysis of the Quantization Algorithm for Obstacle
Problems,” Stochastic Processes and their Applications, 106(1), 2003 pp. 1|40.

[6] B. Bouchard, I. Ekeland, and N. Touzi, “On the Malliavin Approach to Monte Carlo
Approximation of Conditional Expectations,” Finance and Stochastics, 8(1), 2004
pp. 45|71.

[7] M. Broadie and P. Glasserman, “Pricing American-Style Securities Using Simulation,”
Journal of Economic Dynamics and Control, 21(8|9),1997 pp.1323|1352.

[8] F. A. Longstaff and R. S. Schwartz, “Valuing American Options By Simulation: A Simple
Least-Square Approach,” Review of Financial Studies, 14(1), 2001 pp. 113|147.

[9] W. H. Press, B. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C:
The Art of Scientific Computing, 2nd ed., Cambridge: Cambridge University Press, 1992.

[10] G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical
Computations, Englewood Cliffs, NJ: Prentice Hall, 1977.

[11] T. Lyons and N. Victoir, “Cubature on Wiener Space,” in Proceedings of the Royal Society
of London, Series A (Mathematical and Physical Sciences), 460(2041), 2004 pp. 169|198.

[12] S. Kusuoka, “Approximation of Expectation of Diffusion Process and Mathematical
Finance,” in Advanced Studies in Pure Mathematics, Proceedings of the Taniguchi
Conference on Mathematics (Nara 1998), (M. Maruyama and T. Sunada, eds.), 31, 2001
pp. 147|165.

Dynamic Integration of Interpolating Functions 701

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

S. Kusuoka, “Approximation of Expectation of Diffusion Process and Mathematical
Finance,” in Advanced Studies in Pure Mathematics, Proceedings of the Taniguchi
Conference on Mathematics (Nara 1998), (M. Maruyama and T. Sunada, eds.), 31, 2001
pp. 147|165.

[13] S. Kusuoka, “Approximation of Expectation of Diffusion Processes Based on Lie Algebra
and Malliavin Calculus,” Advances in Mathematical Economics, 6, 2004 pp. 69|83.

[14] A. H. Stroud, Approximate Calculation of Multiple Integrals, Englewood Cliffs, NJ:
Prentice-Hall, 1971.

‡ Additional Material
Lyasoff.zip contains:
integrals.mx
integrals.txt
CoeffList.mx
CoeffList.txt
Xi.mx
Xi.txt

About the Author
Andrew Lyasoff is director of the Graduate Program in Mathematical Finance at Boston
University. His research interests are mainly in the areas of Stochastic Analysis, Optimiza-
tion Theory, and Mathematical Finance and Economics.

Andrew Lyasoff
Boston University
Mathematical Finance Program
Boston, MA
alyasoff@bu.edu

702 Andrew Lyasoff

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

[12]

A. Lyasoff, “Dynamic Integration of Interpolating Functions and Some Concrete Optimal Stop-
ping Problems,” The Mathematica Journal, 2011. dx.doi.org/doi:10.3888/tmj.10.4–3.

Available at www.mathematica-journal.com/data/uploads/2011/12/Lyasoff.zip.

