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Potential flow over an airfoil plays an important historical role in the 
theory of flight. The governing equation for potential flow is Laplaceʼs 
equation, a widely studied linear partial differential equation. One of 
Greenʼs identities can be used to write a solution to Laplaceʼs equation 
as a boundary integral. Numerical models based on this approach are 
known as panel methods in the aerodynamics community. This article 
introduces the availability of a collection of computational tools for 
constructing numerical models for potential flow over an airfoil based on 
panel methods. Use of the software is illustrated by implementing a 
specific model using vortex panels of linearly varying strength to 
compute the flow over a member of the NACA four-digit family of airfoils.

‡ Introduction
Fluid dynamics is a branch of mechanics concerned with the motion of a fluid continuum
under the action of applied forces. The motion and general behavior of a fluid is governed
by  the  fundamental  laws  of  classical  mechanics  and  thermodynamics  and  plays  an
important  role  in  such diverse  fields  as  biology,  meteorology,  chemical  engineering,  and
aerospace engineering.  An introductory text  on fluid mechanics,  such as  [1],  surveys the
basic  concepts  of  fluid  dynamics  and  the  various  mathematical  models  used  to  describe
fluid flow under  different  restrictive assumptions.  Advances in  computational  power and
in  modeling  algorithms  during  the  past  few  decades  have  enabled  industry  to  use
increasingly realistic models to solve problems of practical geometric complexity. Alterna-
tively,  these  advances  make  it  feasible  to  adapt  some  of  the  older,  simpler  models  to
inexpensive desktop computers. 
Aerodynamics  is  a  branch  of  fluid  dynamics  concerned  primarily  with  the  design  of
vehicles  moving  through  air.  In  the  not-so-distant  past,  a  collection  of  relatively  simple
numerical models, known as panel methods, was the primary computational tool for esti-
mating  some  of  the  aerodynamic  characteristics  of  airplanes  and  their  components  for
cruise  conditions.  For  example,  Hess  [2]  commented  in  1990  that  at  Douglas  Aircraft
Company, a major design calculation was performed using panel methods approximately
10 times per day.
Panel methods are numerical models based on simplifying assumptions about the physics
and properties of the flow of air  over an aircraft.  The viscosity of air  in the flow field is
neglected,  and  the  net  effect  of  viscosity  on  a  wing  is  summarized  by  requiring  that  the
flow  leaves  the  sharp  trailing  edge  of  the  wing  smoothly.  The  compressibility  of  air  is
neglected, and the curl of the velocity field is assumed to be zero (no vorticity in the flow
field). Under these assumptions, the vector velocity describing the flow field can be repre-

sented  as  the  gradient  of  a  scalar  velocity  potential,  Q = “f,  and  the  resulting  flow  is
referred to as potential flow. A statement of conservation of mass in the flow field leads to
Laplace’s  equation  as  the  governing  equation  for  the  velocity  potential,  “2f = 0.
Laplace’s equation is a widely studied linear partial differential equation and is discussed
in detail in classical books on applied mathematics such as [3]. It also plays an important
role  in  the  theoretical  development  of  several  fields,  including  electrostatics  and  elastic
membranes as well as fluid dynamics.
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referred to as potential flow. A statement of conservation of mass in the flow field leads to
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in detail in classical books on applied mathematics such as [3]. It also plays an important
role  in  the  theoretical  development  of  several  fields,  including  electrostatics  and  elastic
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To  solve  the  problem  of  potential  flow  over  a  solid  object,  Laplace’s  equation  must  be
solved subject to the boundary condition that there be no flow across the surface of the ob-
ject.  This is usually referred to as the tangent-flow boundary condition. Additionally, the
flow far from the object is required to be uniform. The results of solving Laplace’s equa-
tion subject to tangent-flow boundary conditions provide an approximation of cruise con-
ditions for an airplane.
Using  a  vector  identity,  the  solution  to  this  linear  partial  differential  equation  can  be
written in terms of an integral over the surface of the object. This boundary integral con-
tains  expressions  for  surface  distributions  of  basic  singular  solutions  to  Laplace’s
equation. A linear combination of relatively simple singular solutions is also a solution to
the  differential  equation.  This  superposition  of  simple  solutions  provides  the  complexity
needed  for  satisfying  boundary  conditions  for  flow  over  objects  of  complex  geometry.
Panel  methods  are  based  on  this  approach  and  are  described  in  detail  in  [4].  Commonly
used singular solutions for panel methods are referred to as source, vortex, and doublet dis-
tributions. Analogies can be made to other fields of study. The velocity field induced by a
point  source  is  analogous  to  the  electrostatic  field  induced  by  a  point  charge.  A  doublet
would be positive and negative charges of equal strength in close proximity. The velocity
induced by a line vortex is analogous to the magnetic field induced by a current-carrying
wire.
The basic solution procedure for panel methods consists of discretizing the surface of the
object with flat panels and selecting singularities to be distributed over the panels in a spec-
ified manner, but with unknown singularity-strength parameters. Since each singularity is
a  solution  to  Laplace’s  equation,  a  linear  combination  of  the  singular  solutions  is  also  a
solution.  The  tangent-flow  boundary  condition  is  required  to  be  satisfied  at  a  discrete
number of points called collocation points.  This process leads to a system of linear alge-
braic  equations  to  be  solved  for  the  unknown  singularity-strength  parameters.  Details  of
the procedure vary depending on the singularities used and other details of problem formu-
lation, but the end result is always a system of linear algebraic equations to be solved for
the unknown singularity-strength parameters.
Panel  methods are  applicable  to  two- and three-dimensional  flows.  For  flow over  a  two-
dimensional  object,  the  flat  panels  become  straight  lines,  but  can  be  thought  of  as
infinitely long rectangular  panels in the three-dimensional  interpretation.  For two-dimen-
sional potential flow, the powerful technique of conformal mapping can also be used as a
solution procedure. Conformal mapping provides exact solutions for certain airfoil shapes
and is useful for validating numerical models.
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Panel  methods are  applicable  to  two- and three-dimensional  flows.  For  flow over  a  two-
dimensional  object,  the  flat  panels  become  straight  lines,  but  can  be  thought  of  as
infinitely long rectangular  panels in the three-dimensional  interpretation.  For two-dimen-
sional potential flow, the powerful technique of conformal mapping can also be used as a
solution procedure. Conformal mapping provides exact solutions for certain airfoil shapes
and is useful for validating numerical models.
This  article  introduces  a  collection  of  three  packages  providing  computational  tools  for
the  formulation  and  solution  of  steady  potential  flow  over  an  airfoil.  In  addition  to  the
packages and associated online help for functions defined, examples of model implemen-
tation  and  use  are  included.  Each  package  is  discussed  briefly.  This  is  followed  by  an
example  of  step-by-step  implementation  of  a  particular  model  for  a  small  discretization
number with intermediate results displayed. Finally, the steps are assembled into a module
representing  a  particular  model,  and  the  lift  and  pressure  distribution  on  an  airfoil  are
computed.   The current  version of  the software collection is  available form the Wolfram
Library Archive as Aerodynamics 1.2.

‡ Load Required Packages
Set  your  working  directory  and  then  load  the  application  package  needed  for  this
notebook.

Get@"CartesianVectors`"D

Get@"AirfoilGeometry`"D

Get@"InfluenceCoefficients`"D

Get@"Graphics`"D

Test that packages are loaded.

? CartesianVectors

CartesianVectors is the name of a data type specifying
a collection of n-dimensional vectors in a rectangular
coordinate system. CartesianVectors is also the name of the
package defining the data type. For revision of TMJ notebook.

Airfoil Aerodynamics Using Panel Methods 3

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.



? AirfoilGeometry

AirfoilGeometry is a package providing functions to specify airfoil
shape, discretize the airfoil and compute geometric properties
of the discretizated airfoil. For revision of TMJ notebook.

? InfluenceCoefficients

InfluenceCoefficients is a package containing functions to
compute geometric influence coefficients for two-dimensional
potential-flow point and line singularities. Functions for velocity,
velocity-potential and stream-function influence coefficients
are defined for commonly used distributions of source,
doublet and vortex singularities. For revision of TMJ notebook.

? Graphics

Graphics is a package providing functions for plots where conventions
typicall used in the aerodynamics community differ from those
used in Mathematica. Also included are utility graphics used
in the Aerodynamics software. For revision of TMJ notebook. à

‡ Nomenclature and Basic Equations for Airfoil 
Aerodynamics
Much of the nomenclature associated with the theory of lift on an airfoil has made its way
into everyday vocabulary, but some terms may be unfamiliar or have more specific mean-
ings than occur in common usage. Also, there are some basic equations used in the exam-
ple problem that should be mentioned. An introductory book on aerodynamics such as [5]
or [6] presents the basic nomenclature and concepts associated with the theory of flight.
The term airfoil is used to denote the cross section, or profile, of a three-dimensional wing
(see  inset  in  Figure  2).  The  chord  line  of  an  airfoil  is  the  straight  line  from  the  leading
edge  of  the  airfoil  to  the  sharp  trailing  edge;  the  length  of  this  line  is  referred  to  as  the
chord of the airfoil and is denoted by c. The camber line of an airfoil is the locus of points
midway  between  the  upper  and  lower  surfaces  of  the  airfoil,  measured  perpendicular  to
the camber line. When describing an airfoil in dimensionless variables and in a local coor-
dinate system, the chord of the airfoil is the segment of the x axis from 0 to 1. The angle
of attack is the angle between the chord line of the airfoil and the uniform onset velocity,
and is denoted by a.
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In incompressible potential  flow, the pressure is  related to the fluid speed by Bernoulli’s
equation, 12 r Q2 + p = 1

2 r Q¶
2 + p¶, where r, Q , and p are the density, speed, and pres-

sure at a point in the flow field, and the subscript ¶ refers to conditions far from the air-
foil.  The  dimensionless  measure  of  pressure  is  the  pressure  coefficient,  defined  by
Cp =

p-p¶
1
2
rQ¶

2
.  Combining  Bernoulli’s  equation  and  the  definition  for  the  pressure  coeffi-

cient yields a simple equation for the pressure coefficient in terms of the local speed of the

fluid, Cp = 1- Q2

Q¶
2 .

Using  the  aerodynamic  sign  convention,  the  circulation  of  the  velocity  field  Q  around  a
closed  contour  C  is  defined  by  the  line  integral  G = -òC Q ÿ „ s”.  The  lift  force  per  unit
length  on  an  airfoil  can  be  related  to  the  circulation  around  the  airfoil  by  the  Kutta–
Joukowski lift  theorem { = r Q¶ G.  The aerodynamic sign convention used in the defini-
tion of circulation is chosen so that positive circulation leads to positive lift.  The dimen-
sionless measure for lift on an airfoil is the two-dimensional lift coefficient, c{ =

{
1
2
rQ¶

2 c
.

If  a  dimensionless  circulation  is  defined  by  G = G
c Q¶

,  then  the  lift  coefficient  is  simply

twice the dimensionless circulation. The Kutta condition summarizes the primary viscous
effect of the flow on the airfoil and establishes the circulation around the airfoil by the sim-
ple statement that the flow leaves the sharp trailing edge of the airfoil smoothly.

‡ Input Parameters
The example airfoil for illustrating the implementation of a panel method in this article is
a member of the NACA four-digit family of airfoils. Specify the identification number for
the airfoil and the angle of attack in degrees.

id = 4412; a = 10.0 Degree;

The first of the four digits in the identification number gives the maximum camber in per-
cent chord, the second digit gives the location of maximum camber in tenths of chord, and
the last two digits give the thickness in percent chord.
The  discretization  process  is  determined  by  a  discretization  number  and  one  of  three
layout  options  (ConstantSpacing,  CosineSpacing,  or  HalfCosineSpacing)
providing  two  alternatives  to  constant  spacing  of  discretization  points.  Specify  small  (to
illustrate a step-by-step implementation of the example) and large (for computing results)
discretization numbers, and a layout option.

ns = 3; nl = 100; spacing = HalfCosineSpacing;
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Finally, specify a small number used to ensure that collocation points are computed to be
outside of the discretization panels representing the airfoil.

e = 10.-6;

If you have installed the software discussed in this article, you can change the input param-
eters and rerun the notebook for additional results.

‡ Packages

· Data Type for Handling Collections of Vectors

The  package  CartesianVectors  defines  a  data  type  to  simplify  the  manipulation  of  large
collections of n-dimensional vectors while maintaining packed arrays for efficient compu-
tation using machine numbers. The data type CartesianVectors is represented in the
format  8vx vy vz<,  where  vx,  vy,  and  vz  are  simple  or  nested  lists  of  the  compo-
nents of the collection of vectors. The data type is designed to enable the manipulation of
collections of vectors with notation commonly used for a single vector or for lists. Using a
data type also simplifies pattern matching for valid input arguments for exported functions
developed in  other  packages.  The  properties  of  the  data  type  are  defined  by  overloading
existing Mathematica  functions whenever  possible.  The package contains  some exported
functions including several functions specific to two-dimensional vectors.
As an example of using the data type, specify two collections of two-dimensional vectors,
and compute the collection of displacement vectors from each vector in one group to ev-
ery vector  in  the other  group.  This  is  a  computation common to many n-body problems.
The constructor for the data type is MakeCartesianVectors.

rA = MakeCartesianVectors@8Array@xa, 3D, Array@za, 3D<D

8xa@1D, xa@2D, xa@3D< 8za@1D, za@2D, za@3D<

rB = MakeCartesianVectors@8Array@xb, 2D, Array@zb, 2D<D

8xb@1D, xb@2D< 8zb@1D, zb@2D<

Compute the displacement vectors from each point in rB to all points in rA.

HrAB = Outer@Plus, rA, -rBDL êê MatrixForm

xa@1D - xb@1D xa@1D - xb@2D
xa@2D - xb@1D xa@2D - xb@2D
xa@3D - xb@1D xa@3D - xb@2D

za@1D - zb@1D za@1D - zb@2D
za@2D - zb@1D za@2D - zb@2D
za@3D - zb@1D za@3D - zb@2D
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Count the number of vectors in the collection of displacement vectors.

NumberOfVectors@rABD

6

· Airfoil Geometry

The  package  AirfoilGeometry  provides  functions  to  compute  the  geometry  and  dis-
cretization of airfoils in support of the construction of numerical models for potential flow
over  an  airfoil.  A list  of  x  values  used for  discretization can be  specified  directly  by the
user  or  generated  by  the  function  NDiscretizeUnitSegment,  which  accepts  a  dis-
cretization number, n, as its input argument and divides the unit segment into n pieces. A
layout  option for  this  function allows constant  spacing (default),  cosine  spacing,  or  half-
cosine spacing.  Cosine spacing provides  finer  discretization near  the  leading and trailing
edges of the airfoil  compared to constant spacing,  and half-cosine spacing provides even
finer discretization near the leading edge, but coarser discretization near the trailing edge
compared  to  constant  spacing.  The  function  NACA4DigitAirfoil  computes  a  list  of
thickness  and  camber  properties  at  the  x  values,  and  the  function  AirfoilÖ
SurfacePoints  computes  the  collection  of  vectors  locating  points  on  the  surface  of
the airfoil from the list of thickness and camber properties. These points on the surface of
the  airfoil  serve  as  panel  end  points  for  the  discretized  airfoil.  Note  that  the  result  is
expressed  as  the  data  type  CartesianVectors  as  indicated  by  the  arrow  separating
the lists of components.

rPanels = AirfoilSurfacePoints@
NACA4DigitAirfoil@id,
NDiscretizeUnitSegment@ns, Layout Ø spacingDDD

80.999833, 0.498824, 0.140789, 0., 0.127161,
0.501176, 1.00017< 8-0.00124895, -0.0140383,
-0.0289205, 0., 0.0735357, 0.0918161, 0.00124895<

Compute  a  list  of  panel  lengths.  Note  the  use  of  Mathematica  functions  that  have  been
overloaded for use with the data type CartesianVectors. 

lengthPanels = PanelLengths@rPanelsD

80.501173, 0.358344, 0.143728, 0.146892, 0.374462, 0.507143<
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Count the number of panels describing the discretized airfoil.

nPanels = Length@lengthPanelsD

6

The functions PanelPoints and PanelNormals are used to locate collocation points
at  midpanel  and  outward  facing  unit  normals  to  the  panels.  Note  that  collocation  points
are displaced a small distance, proportional to the panel length, in the direction of the out-
ward  unit  normal  to  ensure  that  these  points  are  outside  the  discretized  airfoil.  This  is
done in preparation for applying the tangent-flow boundary condition at collocation points.

unPanels = PanelNormals@rPanelsD

80.0255188, 0.0415304, -0.201216, -0.50061,
-0.0488176, 0.178583< 8-0.999674, -0.999137,
-0.979547, 0.865673, 0.998808, 0.983925<

rCollocation = PanelPoints@rPanelsD +
e MultiplyByList@lengthPanels, unPanelsD

80.749329, 0.319806, 0.0703943, 0.0635802,
0.314168, 0.750671< 8-0.00764412, -0.0214798,
-0.0144604, 0.036768, 0.0826763, 0.046533<

Figure 1 shows the geometry of the discretized airfoil  and the numbering convention for
panels.  The  panels  are  straight-line  segments  joining  points  on  the  airfoil  contour,  and
panel normals are shown at panel midpoints with the panel number near the head of the ar-
row. For an airfoil with thickness, the number of panels describing the airfoil is twice the
discretization  number.  This  numbering  of  panels  is  referred  to  as  the  clockwise  conven-
tion. For a reference airfoil with no thickness (camber line), the number of panels is equal
to the discretization number, and the convention is to number panels from leading edge to
trailing edge. The airfoil shape is plotted in a local coordinate system with the origin at the
leading edge of the airfoil and the x axis coincident with the chord line. Lengths are nondi-
mensionalized using the chord of the airfoil, c.

8 Richard L. Fearn

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.



gPanels = PlotAirfoil@rPanelsD;
gNormals =

Graphics@Arrow@rCollocation,
rCollocation + 0.15 unPanelsDD;

Show@gPanels, gNormals,
Epilog Ø
8Table@Text@i, rCollocation@@iDD + 0.17 unPanels@@iDDD,

8i, NumberOfVectors@rCollocationD<D<,
PlotRange Ø 88-0.25, 1.2<, 8-0.25, 0.3<<D
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Ú Figure 1. Panels and panel normals for NACA 4412 airfoil discretized to six panels.

The online help for this package also includes examples of importing data files for individ-
ual airfoils. These are defined by specifying points on the airfoil contour and rearranging
the imported data for use with this software. The UIUC Airfoil  Data Site,  maintained by
Michael  Selig  of  the  University  of  Illinois  at  Urbana-Champaign,  contains  specifications
for over 1500 airfoils [7]. 

· Two-Dimensional Influence Coefficients

When  computing  the  velocity  field  induced  at  a  point  due  to  a  singularity  located  else-
where, the velocity can be written as the product of a geometric term (called an influence
coefficient) and a measure of the strength of the singularity. For example, consider the ve-
locity induced at  an arbitrary field point  r f  due to a point  source located at  the origin of
the coordinate system.

rf = 8x, z<

8x, z<

rs = 80, 0<

80, 0<

Compute the velocity, velocity-potential, and stream-function influence coefficients at the
field  point  due  to  the  singularity  using  the  package  functions  ICSourcePoint,
ICPhiSourcePoint, and ICPsiSourcePoint.
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Compute the velocity, velocity-potential, and stream-function influence coefficients at the
field  point  due  to  the  singularity  using  the  package  functions  ICSourcePoint,
ICPhiSourcePoint, and ICPsiSourcePoint.

8ic, icf, icy< = 8ICSourcePoint@rf, rsD,
ICPhiSourcePoint@rf, rsD, ICPsiSourcePoint@rf, rsD<

::
x

2 p Ix2 + z2M
,

z

2 p Ix2 + z2M
>,

LogAx2 + z2E

4 p
,
ArcTan@x, zD

2 p
>

The velocity,  velocity-potential,  or  stream-function at  r f  would be obtained by multiply-
ing  the  appropriate  influence  coefficient  by  the  strength  of  the  source.  Influence  coeffi-
cients  can  also  be  thought  of  as  the  velocity,  velocity-potential,  or  stream-function
induced by a singularity of unit strength.
The  package  InfluenceCoefficients  contains  over  thirty  functions  for  velocity,  velocity-
potential, and stream-function influence coefficients for source, vortex, and doublet singu-
larities  commonly  used  in  two-dimensional  panel  methods.  They  serve  as  a  tool  box  for
constructing numerical models for two-dimensional potential flow.

‡ Potential-Flow Model Using Vortex Panels of Linearly 
Varying Strength

· Step-by-Step Model Formulation Using Coarse Discretization

The  singularity  element  chosen  for  this  model  is  the  vortex  panel  of  linearly  varying
strength,  which  provides  a  circulation  density  along  the  ith  panel  of  the  form,
giHxiL = g0 i + si xi  in  local  coordinates,  where  xi  is  the  distance  from  the  “beginning”  of
the panel. Each singularity panel involves two unknown constants, g0 i and si.

The  boundary  condition  that  the  velocity  be  everywhere  tangent  to  the  airfoil  contour  is
discretized to require that the velocity component normal to each panel at the collocation
point be zero. Since each vortex panel introduces two unknown strength parameters, appli-
cation  of  the  tangent-flow  boundary  condition  provides  npanels  equations  and  2 npanels
unknowns,  where  npanels  is  the  number  of  panels  describing  the  geometry  of  the
discretized  airfoil.  Continuity  of  circulation  density  from  one  panel  to  the  next  and  the
Kutta condition provide npanels  additional equations to complete a system of 2 npanels  linear
algebraic  equations  and  2 npanels  unknowns.  The  system  of  equations  can  be  put  into
standard  form.  The  terms  involving  unknowns  are  collected  on  the  left-hand  side  of  the
system  of  equations  and  the  known  quantities  are  collected  on  the  right-hand  side.  The
result can be written in block-matrix form as
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K
a11 a12
a21 a22

O
g0
s

=
-Qn

0
.

The symbols g0  and s represent lists of the unknown constant and linear strength parame-
ters for the vortex panels: a11  represents the projection of the panel influence coefficients
associated with g0 on the unit normal vectors, a12 represents the projection of the panel in-
fluence coefficients associated with s  on the unit  normal vectors,  a21Math and a22  repre-
sent terms in the equations imposing continuity of circulation density between panels and
the Kutta condition, and Qn is the projection of the free-stream velocity on unit normals at
collocation points.
Use  the  block-matrix  form  to  write  the  system  of  equations  as  a11 g0 + a12 s = -Qn  and
a21 g0 + a22 s = 0.  Solve  the  latter  system  for  the  list  of  slope  strengths,  s = -a22

-1 a21 g0.
Substitute this into the former system of equations to eliminate the slope-strength parame-
ters.  The  resulting  system  of  equations  can  be  written  as  Ia11 - a12 a22

-1 a21M g0 = -Qn.
This system of equations can be solved for the list of strength parameters g0, and then the
transformation is  used to compute the list  of  slope parameters s.  All  variables in the fol-
lowing formulation and solution are dimensionless.
Compute  the  matrix  of  velocity  influence  coefficients  and  project  them  on  the  panel
normals.

8ic0, ics< = ICVortexLinear@rCollocation, rPanelsD;
a11 = ic0.unPanels;
a12 = ics.unPanels;

Write  the  equations  expressing  the  continuity  of  circulation  density  between  panels  and
the Kutta condition. The equation expressing the Kutta condition is written to accommo-
date the different numbering conventions for airfoils with thickness and reference airfoils
without thickness.

a21 = If@nPanels ã 2 ns,
Module@8d<, d = DiagonalMatrix@Table@1.0, 8nPanels<DD;
ReplacePart@-d + RotateLeft@d, 80, 1<D, 1., 81, 1<DD,

Module@8d<, d = DiagonalMatrix@Table@1.0, 8nPanels<DD;
ReplacePart@-d + RotateLeft@d, 80, 1<D, 0, 81, 1<DDD;

a22 = RotateRight@DiagonalMatrix@lengthPanelsDD;

Form the coefficient matrix for the system of linear algebraic equations to be solved for un-
known strength parameters.

a = ArrayFlatten@88a11, a12<, 8a21, a22<<D;
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Display the matrix in reduced precision to illustrate the coefficient matrix for the full sys-
tem of equations.

Chop@NumberForm@MatrixForm@aD, 83, 2<,
NumberPadding Ø 8"0", "0"<, NumberSigns Ø 8"-", "+"<,
SignPadding Ø TrueDD

+0.00 +0.14 +0.03 +0.03 +0.14 -0.08 +0.08 +0.02 +0.00 +0.00 +0.03 -0.08
-0.21 +0.00 +0.09 +0.09 +0.00 -0.20 -0.06 +0.06 +0.01 +0.01 -0.02 -0.04
-0.12 -0.28 +0.00 +0.16 -0.19 -0.12 -0.03 -0.07 +0.02 +0.00 -0.03 -0.03
+0.10 +0.16 -0.16 +0.00 +0.28 +0.11 +0.03 +0.03 -0.02 +0.02 +0.04 +0.02
+0.19 -0.00 -0.08 -0.09 +0.00 +0.21 +0.06 -0.02 -0.01 -0.01 +0.06 +0.04
+0.08 -0.13 -0.03 -0.03 -0.14 +0.00 -0.03 -0.02 -0.00 -0.00 -0.03 +0.08
+1.00 +0.00 +0.00 +0.00 +0.00 +1.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.51
+1.00 -1.00 +0.00 +0.00 +0.00 +0.00 +0.50 +0.00 +0.00 +0.00 +0.00 +0.00
+0.00 +1.00 -1.00 +0.00 +0.00 +0.00 +0.00 +0.36 +0.00 +0.00 +0.00 +0.00
+0.00 +0.00 +1.00 -1.00 +0.00 +0.00 +0.00 +0.00 +0.14 +0.00 +0.00 +0.00
+0.00 +0.00 +0.00 +1.00 -1.00 +0.00 +0.00 +0.00 +0.00 +0.15 +0.00 +0.00
+0.00 +0.00 +0.00 +0.00 +1.00 -1.00 +0.00 +0.00 +0.00 +0.00 +0.37 +0.00

The  upper  half  of  the  matrix  represents  normal-component  influence  coefficients.  The
first row of the lower half of the matrix represents terms in an equation implementing the
Kutta condition and sums the circulation density at the beginning of the first panel and the
circulation density at the end of the last panel. Setting this sum to zero imposes zero circu-
lation at the trailing edge of the airfoil. The remaining rows in the lower half of the matrix
are coefficients of terms in the equations requiring that  the circulation density at  the end
of  one  panel  be  equal  to  the  circulation  density  at  the  beginning  of  the  next  panel,
g0 j + d j s j = g0 j+1 , where d j denotes the length of the jth panel.

Define the transformation matrix to compute the list of slope parameters (s) from the list
of constant parameters (g0).

sFromg0 = -Inverse@a22D.a21;

Compute the free-stream velocity at collocation points.

qInf = UniformFlow@nPanels, aD;

Compute the components of the uniform flow normal to panels at collocation points.

qnInf = qInf.unPanels;

Solve the system of equations for the list of constant parameters.

g0 = LinearSolve@a11 + a12.sFromg0, -qnInfD

8-1.26787, -0.814616, -0.685836, 1.19696, 1.76145, 1.41828<
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Use the transformation matrix to compute the list of slope parameters.

s = sFromg0.g0

80.90439, 0.359375, 13.0997, 3.8429, -0.91643, -0.296589<

The lift coefficient for the airfoil can be computed using the Kutta–Joukowski theorem. Re-
call that the distribution of circulation on a panel in local panel coordinates can be written
as  giHxiL = g0 i + si xi,  where  xi  denotes  the  distance  from  the  leading  edge  of  the  panel.
The  contribution  of  each  panel  to  the  lift  is  computed  and  the  results  summed  over  all
panels.
In  terms  of  the  dimensionless  variables  used  in  this  example,  the  contribution  by  each
panel  to  the  lift  coefficient  is  just  twice  the  net  circulation  associated  with  the  panel,
which  is  obtained  by  integrating  the  linear  circulation  density  function,

Dcl i = 2 Ÿ0
digiHxiL „ xi = 2 g0 i di + si di2.  Compute  contributions  of  each  panel  to  the  airfoil

lift coefficient.

8DclC, DclL< = 92.0 g0 lengthPanels, s lengthPanels2=

88-1.27085, -0.583826, -0.197148,
0.351648, 1.31919, 1.43855<, 80.227159, 0.0461477,
0.270611, 0.0829194, -0.128503, -0.0762807<<

Sum the two terms for  each panel  to obtain the list  of  contributions of  each panel  to the
lift coefficient.

Dcl = DclC + DclL

8-1.04369, -0.537678, 0.0734631, 0.434568, 1.19069, 1.36226<

Sum the panel contributions to obtain the airfoil lift coefficient.

cl = Total@DclD

1.47962

The  computations  in  this  section  illustrate  the  process  of  model  implementation  using  a
coarse  discretization  so  that  intermediate  results  can  be  viewed;  however,  the  discretiza-
tion is too coarse to provide useful results.
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Remove  names  from  computer  memory,  except  those  with  values  needed  in  the  subse-
quent section, which presents an example computation of the pressure distribution and lift
coefficient for a specified airfoil using a larger discretization number.

Apply@Remove, Complement@Names@"Global`*"D,
8"id", "nl", "spacing", "a", "e"<DD

· Numerical Model for Fine Discretization

In the following expression, the individual steps for implementing the model in the previ-
ous section are collected into a module. Most names for variables have been shortened for
conciseness, but should be recognizable.

8g0, s< =

ModuleB8a, a11, a12, a21, a22, tsg, qInf, qnInf, g, d<,

rP = AirfoilSurfacePoints@
NACA4DigitAirfoil@id,
NDiscretizeUnitSegment@nl, Layout Ø spacingDDD;

d = Drop@rP - RotateRight@rPD, 1D; lp = d.d ;
np = Length@lpD; un = PanelNormals@rPD;
rC = PanelPoints@rPD + e MultiplyByList@lp, unD;
8ic0, ics< = ICVortexLinear@rC, rPD; a11 = ic0.un;
a12 = ics.un;
a21 = If@np ã 2 nl,

Module@8d<, d = DiagonalMatrix@Table@1.0, 8np<DD;
ReplacePart@-d + RotateLeft@d, 80, 1<D, 1., 81, 1<DD,

Module@8d<, d = DiagonalMatrix@Table@1.0, 8np<DD;
ReplacePart@-d + RotateLeft@d, 80, 1<D, 0, 81, 1<DDD;

a22 = RotateRight@DiagonalMatrix@lpDD;
tsg = -Inverse@a22D.a21; a = a11 + a12.tsg;
qInf = UniformFlow@np, aD; qnInf = qInf.un;

g = LinearSolve@a, -qnInfD; 8g, tsg.g<F;

The results of this computation are the singularity strength parameters for all panels.

This  model  implementation  has  been  validated  by  computing  the  results  for  a  van  de
Vooren airfoil for which an exact solution is known by the method of conformal mapping.
Also,  convergence  and  timing  studies  have  been  performed  and  are  available  as  online
help documents in the software collection.
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· Pressure and Lift Coefficients

Use previously computed influence coefficients to determine the pressure coefficient at col-
location points using Bernoulli’s equation.

cp = Module@8q, qInf<, qInf = UniformFlow@np, aD;
q = qInf + ic0.g0 + ics.s; 1 - q.qD;

Lift and pitching moments can be computed from the pressure distribution. For example,
the  lift  coefficient  is  computed  by  approximating  the  integral,  cl = -ò Cp ǹ ÿ {` „ s,  where
the integral is over the airfoil contour, Cp  is the pressure coefficient, ǹ is the outward unit

normal to the airfoil surface, and {`  is a unit vector perpendicular to the free-stream veloc-
ity in the direction of positive lift.  The integral  is  approximated by considering the pres-
sure coefficient constant over each panel, computing the contribution to lift of each panel,
and summing the results.

clFromCp = Module@8ul<,
ul = MakeCartesianVectors@

8-Table@Sin@aD, 8np<D, Table@Cos@aD, 8np<D<D;
DclP = -cp Hul.unL lp;
Total@DclPDD

1.70321

The lift can also be computed from the circulation distribution as described in the section
on step-by-step model formulation.

cl = ModuleA8Dcl, DclC, DclL<, DclC = 2.0 g0 lp; DclL = s lp2;

Dcl = DclC + DclL; Total@DclDE

1.71006

Figure 2 shows the surface pressure distribution on the airfoil in the conventional manner
for such plots.  Useful information from such plots include the locations of the stagnation
point and the point of minimum pressure, and the severity of the positive pressure gradient
on the upper surface.
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xC = Components@rCD@@1DD;
PlotSurfacePressureCoefficient@xC, cp,
Epilog Ø
Inset@PlotAirfoil@rP, Frame Ø False,

PlotRange Ø 880, 1<, Automatic<D, 80, 0<, 80, 0<, 1DD

0.0 0.2 0.4 0.6 0.8 1.0
1

0

-1

-2

-3

-4

-5

-6

x

Cp

Ú Figure 2. Pressure coefficient for a NACA 4412 airfoil, a = 10.0¶ discretization 200 panels with 
HalfCosineSpacing.

‡ Conclusions
A brief summary of some features of a collection of packages that provide computational
tools for formulating numerical models for two-dimensional potential flow over an airfoil
using panel methods is presented. An example of solving the problem of steady flow over
a specific airfoil is given using vortex panels of linearly varying strength and tangent-flow
boundary conditions. This example includes the computation of surface pressure distribu-
tion and lift coefficient.
Session time for a typical PC indicates the practicality of such computations on low-cost
computing  systems  and  suggests  the  feasibility  of  going  to  the  next  level  of  modeling.
This could include unsteady two-dimensional potential flow, steady three-dimensional po-
tential  flow,  or  including  an  integral  boundary-layer  method  with  the  steady  two-dimen-
sional potential flow model presented in this article.

16 Richard L. Fearn

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.



‡ References
[1] R. H. Sabersky, A. J. Acosta, E. G. Hauptmann, and E. M. Gates, Fluid Flow: A First Course

in Fluid Mechanics, 4th ed., Englewood Cliffs, NJ: Prentice Hall, 1998.

[2] J.  L.  Hess,  “Panel  Methods in  Computational  Fluid Dynamics,”  Annual  Review of  Fluid Me-
chanics, 22, 1990 pp. 255–274.

[3] P.  M.  Morse  and  H.  Feshbach,  Methods  of  Theoretical  Physics,  New  York:  McGraw-Hill,
1953.

[4] J.  Katz  and  A.  Plotkin,  Low-Speed  Aerodynamics,  Cambridge  Aerospace  Series  (No.  13),
2nd ed., New York: Cambridge University Press, 2001.

[5] J. D. Anderson, Introduction to Flight, 3rd ed., New York: McGraw-Hill, 1989.

[6] J. J. Bertin and M. L. Smith, Aerodynamics for Engineers, 3rd ed., Englewood Cliffs, NJ: Pren-
tice Hall, 1998.

[7] M. S. Selig, “UIUC Airfoil Data Site, Department of Aerospace Engineering.” Urbana, Illinois:
University of Illinois, (Jan 2007) www.ae.uiuc.edu/m-selig/ads.html.

R. L. Fearn, “Airfoil Aerodynamics Using Panel Methods,” The Mathematica Journal, 2011.
dx.doi.org/10.3888/tmj.10.4-6.

‡ Additional Material
Fearn.zip

Available at library.wolfram.com/infocenter/MathSource/7785/.
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