
The Mathematica® Journal

On Some Applications of the 
Fast Discrete Fourier 
Transform 
Alkiviadis G. Akritas
Jerry Uhl
Panagiotis S. Vigklas

Motivated by the excellent work of Bill Davis and Jerry Uhlʼs 
Differential Equations & Mathematica [1], we present in detail 
several little-known applications of the fast discrete Fourier 
transform (DFT), also known as FFT. Namely, we first examine 
the use of the FFT in multiplying univariate polynomials and 
integers and approximating polynomials with sines and cosines 
(also known as the fast Fourier fit or FFF). We then examine the 
use of the FFF in solving differential equations with Laplace 
transforms and rediscovering trigonometric identities. 

‡ Introduction
We begin with a review of the basic definitions needed.

Let R  be a ring, n œ Z,  n ¥ 1, and w œ R  be a primitive nth  root of unity; that is,  wn = 1
and wnêt - 1 is not a zero divisor (or, wnêt - 1 ¹≠ 0) for any prime divisor t of n. We repre-
sent the polynomial f = ⁄i=0

n-1 fi xi œ R@xD,  of degree less than n  by the coefficient list,  in
reverse order, 8 f0, … , fn-1< œ Rn.

Definition 1  (DFT).  The  R-linear  map  DFTw : RnØ Rn,  which  evaluates  a  polyno-
mial at the powers of w, that is, DFTw : 8 f0, … , fn-1<#

1

n
9 f H1L, f HwL, … , f Iwn-1M=, is

called the discrete Fourier transform (DFT).

In other words, the DFT is a special multipoint evaluation at the powers 1, w, … , wn-1 of
a primitive nth  root of unity w.  The fast  implementation of the DFT is known as the fast
DFT, or simply as FFT; it can be performed in time OHn log nL. Details can be found in the
literature [2]. Keeping it simple, we mention in passing that the inverse DFT is defined as
the problem of interpolation at the powers of w and is easily solved.
In  Mathematica  the  map  DFTw  and  its  inverse  are  implemented—for  the  complex  num-
bers—by the  functions  Fourier  and  InverseFourier.  The  FFT is  implemented  in
Fourier. So, for example, the definition is verified by 
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In  Mathematica  the  map  DFTw  and  its  inverse  are  implemented—for  the  complex  num-
bers—by the  functions  Fourier  and  InverseFourier.  The  FFT is  implemented  in
Fourier. So, for example, the definition is verified by 

f@x_D := x3 - 7 x + 7;
8Fourier@CoefficientList@f@xD, xDD< ã

:n = 4; w = ‰
I2 p ÂM

n ;
1

n
9f@1D, f@wD, fAw2E, fAw3E=>

True

Definition 2.  The  convolution  of  two  polynomials  f =⁄i=0
n-1 fi xi  and

g=⁄k=0
n-1 gk xk œ R@xD is the polynomial

h = f *n g = ‚
j=0

n-1

h j x j œ R@xD,

where

h j = ‚
i+kª jmod n

fi gk = ‚
i=0

n-1

fi g j-i,  for 0 § j < n,

and the arithmetic at the indices of g j-i (in the second summation) is done modulo n. If we
regard the polynomials as vectors in Rn, then what we have is the cyclic convolution of the
vectors f  and g. 

There  is  an  equivalence  between  convolution  and  polynomial  multiplication  in  the  ring
R@xD ê Xxn - 1\.  Please note for  the given polynomials  f ,  g  that  the jth  coefficient  of  their
product,  f g,  is  ⁄i+k= j fi gk;  whereas  the  corresponding  coefficient  of  their  convolution,
f *n g,  is  ⁄i+kª jmod n fi gk  and  hence  f *n g ª f g mod xn - 1.  Moreover,  if  degH f gL < n,
then f *n g = f g. We will exploit this equivalence to develop a fast polynomial multiplica-
tion algorithm. The following theorem holds.

Theorem. Let R be a ring, nœZ, n¥ 1, and let w œ R be a primitive root of unity of
order n. Then for the polynomials f , gœ R@xD of degree at most n- 1, we have

DFTw H f *n gL = DFTw H f L ÿDFTw HgL,

where · indicates “element-wise” vector multiplication. 

Proof. We know that f *n g = f g+ qHxn - 1L for some q œ R@xD. Then we have

H f *n gL IwiM = f IwiM g IwiM+ q IwiM Iwi n - 1M = f IwiM g IwiM

for 0 § i § n- 1. ·
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Example 1. Let  n = 4,  f = x3 - 7 x + 7  and  g = 3 x3 + 2 x2 + x + 1.  Then  the  cyclic
convolution  of  the  polynomials  f  and  g  (or  the  cyclic  convolution  of  the  vectors
87, -7, 0, 1< and 81, 1, 2, 3<) is the polynomial 

n = 4; fCoef = 87, -7, 0, 1<; gCoef = 81, 1, 2, 3<;
powersX = TableAxi, 8i, 0, n - 1<E;
powersX.ListConvolve@fCoef, gCoef, 81, 1<D

-13 + 2 x + 10 x2 + 8 x3

or  the  vector  ⁄i=0
n-1 fi gk-i,  0 § k § n- 1,  (where  arithmetic  at  the  indices  of  gk-i  is  done

mod n)

TableB‚
i=0

n-1

fCoef@@i + 1DD gCoef@@Mod@k - i, nD + 1DD, 8k, 0, 3<F

8-13, 2, 10, 8<

Therefore, we obtain the same result with these three methods.

1. Use Mathematica’s function ListConvolve.

2. ListConvolve@fCoef, gCoef, 81, 1<D

3. 8-13, 2, 10, 8<

4. Take successive inner products of the first row of the table with each one of the fol-
lowing rows. Note that we have reversed the order of g and appended its first 3: 

3 2 1 1 3 2 1
7 -7 0 1

7 -7 0 1
7 -7 0 1

7 -7 0 1

.

5. Use the formula f *n g ª f g mod xn - 1.

PolynomialMod@HfCoef.powersXL HgCoef.powersXL, xn - 1D

-13 + 2 x + 10 x2 + 8 x3
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‡ Fast Fourier Transform for Fast Polynomial and Integer 
Multiplication
We begin by discussing a topic that is well known and much talked about, but for which
there is little, if any at all, “hands-on” experience. 
It is well known that a polynomial of degree less than n  over an integral domain R,  such
as  the  integers  or  the  rationals,  can  be  represented  either  by  its  list  of  coefficients
8 f0, … , fn-1<,  taken  in  reverse  order  here,  or  by  a  list  of  its  values  at  n  distinct  points
u0, … , un-1 œ R,  where  for  0 § i < n  we  have  ui = wi;  w œ R  is  a  primitive  nth  root  of
unity.
The reason for considering the value representation is that multiplication in that representa-
tion is  easy.  To wit,  if  8 f Hu0L, … , f Hun-1L<  and 8gHu0L, … , gHun-1L<  are  the values of  two
polynomials f  and g, evaluated at n distinct points, with degH f L+ degHgL < n, then the val-
ues of the product f ÿ g  at those points are 8 f Hu0L ÿ gHu0L, … , f Hun-1L ÿ gHun-1L<.  Hence, the
cost  of  polynomial  multiplication  in  the  value  representation  is  linear  in  the  degree,
whereas in the list of coefficients representation we do not know how to multiply in linear
time.
Therefore, a fast way of doing multipoint evaluation and interpolation leads to a fast poly-
nomial  multiplication  algorithm.  Namely,  evaluate  the  two  input  polynomials,  multiply
the results pointwise, and interpolate to get the product polynomial.
The  multipoint  evaluation  is  performed  with  FFT  as  implemented  by  the  function
Fourier, whereas interpolation is performed with the inverse FFT, implemented by the
function InverseFourier.

Example 2.  Suppose  we  are  given  the  two  polynomials  f HxL = x3 - 7 x + 7  and
gHxL = 3 x2 - 7, whose product we want to compute.

f@x_D = x3 - 7 x + 7; g@x_D = 3 x2 - 7;

f@xD g@xD êê Expand

-49 + 49 x + 21 x2 - 28 x3 + 3 x5

This is of degree degH f L+ degHgL = 5. 

We will now compute this product using FFT. Keeping in mind that FFT works best for in-
puts which are powers of 2, we consider the degree of the product to be less than n = 8.
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Having  fixed  the  value  of  n,  we  then  form the  lists  of  coefficients  of  f  and  g—padding
them with zeros until their lengths equal 8. 

n = 8;
flist = CoefficientList@f@xD, xD;
flist = PadRight@flist, nD

87, -7, 0, 1, 0, 0, 0, 0<

glist = CoefficientList@g@xD, xD;
glist = PadRight@glist, nD

8-7, 0, 3, 0, 0, 0, 0, 0<

We next apply Fourier to these two lists and pointwise multiply the results. 

productValues = Fourier@flistD Fourier@glistD êê Chop

8-0.5, 0.415738 + 4.21599 Â, -8.75 + 10. Â, -12.6657 - 1.03401 Â,
-6.5, -12.6657 + 1.03401 Â, -8.75 - 10. Â, 0.415738 - 4.21599 Â<

Recall, from Definition 1 and the verification following it, that what we have done here is
equivalent,  within  a  scaling  factor,  to  evaluating  each  polynomial  at  the  points  ui = wi

(where w = ‰
2 p Â
n , n = 8) and pointwise multiplying the results. 

Interpolating the result with InverseFourier and taking care of the scaling factor, we
obtain the coefficients of the product polynomial.

productCoefficients =

n InverseFourier@productValuesD êê Chop êê Rationalize

8-49, 49, 21, -28, 0, 3, 0, 0<

This is exactly what we obtained with the classical multiplication.

These  ideas  can  be  incorporated  in  an  algorithm  to  do  just  polynomial  multiplication.
However, in order to avoid duplication of code—since integer FFT multiplication is very
similar—we  implement  the  function  generalFFTMultiply,  which  will  be  used  in
both cases. This function is written in such a way that it computes in reverse order either
the coefficients of the product of two polynomials with integer coefficients, or the integer
digits—to a certain base b—of the product of two integers. 
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generalFFTMultiply@f_, g_, b_D := ModuleB

8flist, glist, k = 1, m0, n, n0, productValues, var<,
If@Length@Variables@fDD ¹≠ 0,
H* THEN polynomial degree > 1 *L
var = First@Variables@fDD;
flist = CoefficientList@f, varD;
glist = CoefficientList@g, varD;
m0 = Exponent@f, xD;
n0 = Exponent@g, xD,
H* ELSE this case is reserved *L
H* for integer multiplication *L
flist = IntegerDigits@f, bD êê Reverse;
glist = IntegerDigits@g, bD êê Reverse;
m0 = Length@flistD;
n0 = Length@glistDD;

H* treat polys and integers the same *L

WhileA2k § m0 + n0, ++k E; n = 2k;
flist = PadRight@flist, nD;
glist = PadRight@glist, nD;
productValues = Fourier@flistD Fourier@glistD êê Chop;

n InverseFourier@productValuesD êê Chop êê Rationalize

F

So, to multiply the polynomials f HxL and gHxL we define the function

polyFFTMultiply@f_, g_D :=
ModuleA8list<, Hlist = generalFFTMultiply@f, g, bDL.

TableAxi, 8i, 0, Length@listD - 1<EE

and their product is

polyFFTMultiply@f@xD, g@xDD

-49 + 49 x + 21 x2 - 28 x3 + 3 x5

The cost of doing polynomial multiplication this way is OHn log nL operations, which is the
cost of computing the FFT and its inverse. This is a big improvement over the OIn2M cost
of the classical algorithm.
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Before we move on to integer multiplication it is worth mentioning that ListConvolve
also gives us, in reverse order, the coefficient list of the product f HxL gHxL.

Hlist = ListConvolve@CoefficientList@f@xD, xD,
CoefficientList@f'@xD, xD, 81, -1<, 0DL.

TableAxi, 8i, 0, Length@listD - 1<E

-49 + 49 x + 21 x2 - 28 x3 + 3 x5

We next present the integer multiplication algorithm using FFT. 

As we know, every integer can be represented as a “polynomial” in some base b,  that is,
for  an  integer  a  we  have  a = H-1Ls⁄0§i§n ai b i.  Therefore,  integer  multiplication  can  be
considered as polynomial multiplication, where in the final result we replace the variable
x by the base b. 
Adjusting polyFFTMultiply accordingly we obtain this function. 

integerFFTMultiply@f_Integer, g_Integer, b_ : 10D :=
ModuleA8list<,
Hlist = generalFFTMultiply@f, g, bDL.

TableAxi, 8i, 0, Length@listD - 1<E ê. x Ø bE

Then the product of the integers 123456789 and 987654321 is

integerFFTMultiply@123 456 789, 987 654 321D

121 932 631 112 635 269

‡ Fast Fourier Transform Is the Basis of Fast Fourier Fit
We next  turn our  attention to the problem of  FFF,  that  is,  the problem of  approximating
functions with sines and/or cosines.

Definition 3.  Periodic  functions f :R Ø C,  in  one real  variable  and with values  in
the complex plane, can be approximated (or fitted) by complex trigonometric polynomials
of the form 

f HtL = ‚
k=-n

n

ck ‰kw Â t =
a0

2
+‚
k=1

n

Hak cos Hk w tL+ bk sin Hk w tLL,
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where ck are the Fourier fit coefficients satisfying 

c0 =
a0

2
,  ck =

Hak - Â bkL

2
,  c-k =

Hak + Â bkL

2
and

a0 = 2 c0,  ak = ck + c-k,  bk = Â Hck - c-kL

for k = 1, … , n, and w = 2 p
L  with L> 0 [3].

The  FFF  problem  has  attracted  the  attention  of  some  of  the  best  scientific  minds  of  all
time.  Gauss  came up with  an  FFF algorithm in  1866.  The modern version of  the  FFF is
due to John Tukey and his cohorts at IBM and Princeton [4]. 
We will be using the function FastFourierFit taken from Bill Davis and Jerry Uhl’s
Differential Equations & Mathematica [1] to compute the approximating complex trigono-
metric polynomials mentioned in Definition 3.

jump@n_D := jump@nD =
1

2 n
;

Fvalues@F_, L_, n_D :=
N@Table@F@L tD, 8t, 0, 1 - jump@nD, jump@nD<DD;

numtab@n_D := numtab@nD = Table@k, 8k, 1, n<D;

FourierFitters@L_, n_, t_D :=

TableBE
2 p I k t

L , 8k, -n + 1, n - 1<F;

coeffs@n_, list_D :=
Join@Reverse@Part@Fourier@listD, numtab@nDDD,
Part@InverseFourier@listD, Drop@numtab@nD, 1DDD ê

N@Sqrt@Length@listDDD;

FastFourierFit@F_, L_, n_, t_D :=
Chop@FourierFitters@L, n, tD.coeffs@n, Fvalues@F, L, nDDD;

The  code  works  as  follows:  the  functions  jump  and  Fvalues  produce  a  list  of  2 n- 1
equally spaced data points off the plot of the function f HtL between t = 0 and t = L. Then,
the function numtab  creates a list of integers from 1 to n,  which is used by coeffs  to
concatenate two lists. The first of these lists is the Fourier transform (taken in reversed or-
der)  of  the  first  n  points,  while  the  second list  is  the  inverse  Fourier  transform (with  the
first element removed) of the same n points. The list generated by coeffs has a total of
2 n- 1 points.
Finally,  the  function  FastFourierFit  takes  the  dot  product  of  the  list
9‰H-n+1L 2 p Â têL, … , 1, … , ‰Hn-1L 2 p Â têL=  generated by FourierFitters  and the list  con-

catenated  by  coeffs.  (All  numbers  in  the  list  with  magnitude  less  than  10-10  are
rounded to 0.) 
FastFourierFit takes four arguments: the first one is the periodic function or, in gen-
eral, the list of data points which we want to fit; the second argument is the period L of the
function;  the  third  argument  is  the  number  n  for  the  equally  spaced  2 n- 1  data  points;
and the last argument is the variable we want to use. Note that FastFourierFit uses
the built-in functions Fourier and InverseFourier, with computational cost n log n.
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FastFourierFit takes four arguments: the first one is the periodic function or, in gen-
eral, the list of data points which we want to fit; the second argument is the period L of the
function;  the  third  argument  is  the  number  n  for  the  equally  spaced  2 n- 1  data  points;
and the last argument is the variable we want to use. Note that FastFourierFit uses
the built-in functions Fourier and InverseFourier, with computational cost n log n.

Example 3. To see how the function FastFourierFit is used, consider the peri-
odic function f HxL = cosH2 pxL sinH1- cosH3 pxLL with period L = 2. A plot is given in Fig-
ure 1.

f@x_D := Cos@2 p xD Sin@1 - Cos@3 p xDD;
L = 2;
cycles = 2;

PlotBf@xD, 8x, 0, cycles L<,

AxesLabel Ø 8x, HoldForm@f@xDD<,
PlotStyle Ø 88Thickness@0.007D, RGBColor@0, 0, 1D<<,
PlotLabel Ø TextCell@ToString@cyclesD ~~ " cycles",

CellFrame Ø 0D,
Epilog Ø

:8RGBColor@1, 0, 0D, Thickness@0.007D,

Line@880, 0<, 8L, 0<<D<,

:TextBTextCell@"One Period", CellFrame Ø 0D,

:
L

2
, -0.25>F>>F

1 2 3 4
x

-0.5

0.5

f HxL
2 cycles

One Period

Ú Figure 1. The periodic function f HxL = cosH2 pxL sinH1 - cosH3 pxLL.
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Approximating f HxL with n = 4 we obtain

L = 2; n = 4;
fApproximation@t_D = FastFourierFit@f, L, n, tD

-0.0967056 - 0.113662 ‰-Â p t - 0.113662 ‰Â p t + 0.32403 ‰-2 Â p t +

0.32403 ‰2 Â p t - 0.113662 ‰-3 Â p t - 0.113662 ‰3 Â p t

or its real (noncomplex) version

fApproximationReal@t_D =
Chop@ComplexExpand@fApproximation@tDDD

-0.0967056 - 0.227324 Cos@p tD +
0.64806 Cos@2 p tD - 0.227324 Cos@3 p tD

Note that the coefficients of fApproximation@tD and fApproximationReal@tD
satisfy  the  relations  mentioned  in  Definition  3.  Moreover,  f HxL  has  pure  cosine  fit.  This
was expected because the function f HxL = cosH2 p xL sinH1- cosH3 p xLL is even; that is, for
the  function  evenf@xD,  defined  on  the  extended  interval  0 § x § 2 L,  we  have
evenf@xD = f x,  0 § x § L,  and evenf@xD = f H2 L - xL,  L < x § 2 L.  See also its
plot in Figure 1. Later on we will meet odd functions as well; those have pure sine fits.
The functions f@xD  and fApproximationReal@tD  are plotted together in Figure 2.
As  we  see,  FastFourierFit  picks  2 n- 1  equally  spaced  data  points  off  the  plot  of
f HxL between x = 0 and x = L; it then tries to fit these points with a combination of com-
plex exponentials.

fplot = PlotBf@xD, 8x, 0, L<,

PlotStyle Ø 8Thickness@0.008D, RGBColor@0, 0, 1D<,

AspectRatio Ø
1

GoldenRatio
F;

fapproxPlot = PlotBfApproximationReal@tD, 8t, 0, L<,

PlotStyle Ø
88Thickness@0.008D, RGBColor@1, 0, 0D,

Dashing@80.03, 0.03<D<<, AspectRatio Ø
1

GoldenRatio
F;
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fdata = TableBN@8x, f@xD<D, :x, 0, L -
L

2 n - 1
,

L

2 n - 1
>F;

fdataplot = ListPlot@fdata, PlotStyle Ø PointSize@0.02DD;
Show@fplot, fapproxPlot, fdataplotD

0.5 1.0 1.5 2.0

-0.5

0.5

Ú Figure 2. The dashed red plot is that of the approximating function.

As  we  mentioned  before,  the  coefficients  ck  of  the  approximating  polynomial  in  Defini-
tion  3  are  computed  using  the  FFT—incorporated  in  the  function  FastFourierFit.
Another way of computing those coefficients is to use the integrals

ck =
1

L ‡
0

L
f HtL ‰-

Â k H2 pL t
L „ t,

which results in the integral Fourier fit.

This formula for the coefficients is obtained if we assume that for a fixed n,  the function
f HtL is being approximated by the function

complexApproximation HtL = ‚
k=-n

n

ck ‰
k H2 pL Â t

L ,

where L > 0, and we set 

f HtL = complexApproximation HtL.

Then, we will definitely have 

‡
0

L
complexApproximation HtL ‰-

j H2 pL Â t
L „ t = ‡

0

L
f HtL ‰-

j H2 pL Â t
L „ t.

But 

‡
0

L
complexApproximation HtL ‰-

j H2 pL Â t
L „ t = L c j

and, hence, the formula for the coefficients.

The  two  approximations  resulting  from  the  FFF  and  the  integral  Fourier  fit  are  fairly
close, and almost identical for large values of n. 
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The  two  approximations  resulting  from  the  FFF  and  the  integral  Fourier  fit  are  fairly
close, and almost identical for large values of n. 
The disadvantage of the integral Fourier fit is that the integrals that need to be computed
sometimes  are  very  hard  and  impracticable  even  for  numerical  integration.  Nonetheless,
the method is useful for hand computations, whereas doing FFF by hand is completely out
of the question. 
The advantage of the integral Fourier fit is that, in theoretical situations, it provides a spe-
cific formula to work with. However, after the theory is developed and calculations begin,
people switch to the FFF.
Recapping, note that FastFourierFit  is a “double” approximation. It first uses sines
and cosines to approximate a continuous periodic function and then uses discrete Fourier
transform  to  approximate  integrals  involving  these  trigonometric  polynomials—in  effect
replacing numerical integration by sampling.

‡ Fast Fourier Fit Meets Laplace Transform
We  recall  that  the  Laplace  transform  of  a  given  function  f HtL  is  another  function  FHsL
given  by  FHsL = Ÿ0

¶
‰-s t f HtL „ t.  The  functions  appropriate  for  the  Laplace  transform  are

all  functions  f HtL  with  the  property  that  ‰-s t f HtL Ø 0  as  t Ø ¶  for  large  positive  s.  The
functions sinHp tL, cosHp tL, ‰k t, logHtL, as well as any quotient of polynomials, are all appro-
priate candidates for the Laplace transform.
For instance, here is the Laplace transform of f HtL = t.

f@t_D := t;
F@s_D = LaplaceTransform@f@tD, t, sD

1

s2

Indeed:

AssumingB s > 0, ‡
0

¶

‰-s t f@tD „tF

1

s2
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This is Mathematica’s way of saying that if s is real and s > 0 then the Laplace transform
of f HtL is Ÿ0

¶
‰-s t f HtL „ t = 1

s2
. On the other hand, if Mathematica is given the Laplace trans-

form of f HtL, it can often recover the formula for f HtL:

InverseLaplaceTransform@F@sD, s, tD

t

Laplace  transforms  are  used  in  solving  differential  equations  by  algebraic  means.
Suppose,  for  example,  that  we  are  given  the  differential  equation
y²″HxL+ b y£HxL+ c yHxL = f HxL, with starting values yH0L and y£H0L:

Clear@y, t, f, b, c, s, YD;
diffeq = y''@tD + b y'@tD + c y@tD == f@tD

c y@tD + b y£@tD + y££@tD ã f@tD

The solution yHtL  of this differential equation can be found algebraically if we replace all
the  functions  involved  in  it  by  their  Laplace  transforms.  In  this  way,  we  obtain  the
equation

laplaced = diffeq ê.
8y@tD Ø LaplaceTransform@y@tD, t, sD,
y'@tD Ø LaplaceTransform@y'@tD, t, sD,
y''@tD Ø LaplaceTransform@y''@tD, t, sD,
f@tD Ø LaplaceTransform@f@tD, t, sD<

c LaplaceTransform@y@tD, t, sD +

s2 LaplaceTransform@y@tD, t, sD +
b Hs LaplaceTransform@y@tD, t, sD - y@0DL - s y@0D - y£@0D ã

LaplaceTransform@f@tD, t, sD

and solve it for the Laplace transform of yHtL to obtain the formula:

sol = Solve@laplaced, LaplaceTransform@y@tD, t, sDD

::LaplaceTransform@y@tD, t, sD Ø
1

c + b s + s2

HLaplaceTransform@f@tD, t, sD + b y@0D + s y@0D + y£@0DL>>

This tells us that if FHsL and YHsL are the Laplace transforms of the functions f HtL and yHtL,

respectively, then YHsL = FHsL+b y H0L+s y H0L+y£H0L
s2+ b s+c

. The solution of the differential equation yHtL
can  be  obtained  by  taking  the  inverse  Laplace  transform  of  YHsL—which  is  possible  in
many cases. 
In this section we combine FastFourierFit and Laplace transforms to come up with
good approximate formulas for periodically forced oscillators. To our knowledge, save for
the work by Bill Davis and Jerry Uhl [1], this topic is totally absent from textbooks on dif-
ferential equations! As a matter of fact, Fourier transforms, when discussed at all, appear
only when dealing with the heat and wave equations [5].
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In this section we combine FastFourierFit and Laplace transforms to come up with
good approximate formulas for periodically forced oscillators. To our knowledge, save for
the work by Bill Davis and Jerry Uhl [1], this topic is totally absent from textbooks on dif-
ferential equations! As a matter of fact, Fourier transforms, when discussed at all, appear
only when dealing with the heat and wave equations [5].
Recall that the differential equation of the form y²″HxL+ b y£HxL+ c yHxL = f HxL,  with given
starting values yH0L and y£H0L, and f HxL a periodic function, can be solved either by evaluat-
ing  a  convolution  integral  of  f HxL  or  by  taking  its  Laplace  transform.  However,  in  both
cases, it may happen that the integrals involving f HxL are too complicated and Mathemat-
ica (or any other similar computer algebra package) cannot handle them. 
What we want to do then is to first  find a good FFF of f HxL  (using sines and/or cosines)
and then to use any of the methods mentioned to get an approximate formula of the solu-
tion. That is, instead of solving y²″HxL+ b y£HxL+ c yHxL = f HxL we will be solving the differ-
ential  equation y££ t + b y£ t + c y t = fApproximationReal@tD  with  the  starting
values yH0L and y£H0L.

Example 4.  Let  us  say  that  we  have  to  solve  the  differential  equation
y²″HxL+ 2 y£HxL+ 20 yHxL = 1- ‰sinHp xL  with yH0L = 2 and y£H0L = -4. The periodic function
f HxL = 1- ‰sinHp xL can be seen in Figure 3.

f@x_D := 1 - ‰Sin@p xD;
L = 2;
cycles = 2;
Plot@f@xD, 8x, 0, cycles L<,
AxesLabel Ø 8x, HoldForm@f@xD = 1 - E^sin Hp xLD<,
PlotStyle Ø 88Thickness@0.007D, RGBColor@0, 0, 1D<<,
PlotLabel Ø TextCell@ToString@cyclesD ~~ " cycles",

CellFrame Ø 0D,
Epilog Ø
88RGBColor@1, 0, 0D, Thickness@0.007D,

Line@880, 0<, 8L, 0<<D<,
8Text@TextCell@"One Period", CellFrame Ø 0D,

8L ê 2, 0.1<D<<D
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1 2 3 4
x

-1.5

-1.0

-0.5

0.5

f HxL = 1 - ‰sin Hp xL
2 cycles

One Period

Ú Figure 3. The periodic function f HxL = 1 - ‰sinHp xL.

It  is  impossible  to  find an exact  solution of  y²″HxL+ 2 y£HxL+ 20 yHxL = 1- ‰sinHp xL.  Mathe-
matica’s built-in function DSolve bogs down because the integrals are too complicated.

DSolveA9y''@xD + 2 y'@xD + 20 y@xD == 1 - ESin@p xD, y@0D == 2,
y'@0D == -4=, y, xE êê AbsoluteTiming

:247.069239,

::y Ø FunctionB8x<, -
1

19
‰-x -38 CosB 19 xF + 19 CosB 19 xF

‡
1

0 ‰K@2D I-1 + ‰Sin@p K@2DDM SinB 19 K@2DF

19
„K@2D -

19 CosB 19 xF ‡
1

x ‰K@2D I-1 + ‰Sin@p K@2DDM SinB 19 K@2DF

19
„K@2D + 2 19 SinB 19 xF +

19 ‡
1

0
-
‰K@1D I-1 + ‰Sin@p K@1DDM CosB 19 K@1DF

19
„K@1D

SinB 19 xF -

19 ‡
1

x
-
‰K@1D I-1 + ‰Sin@p K@1DDM CosB 19 K@1DF

19
„K@1D

SinB 19 xF F>>>

As  mentioned  earlier,  what  we  do  in  such  cases  is  to  first  find  fApproximaÖ
tionReal@tD, a good FFF of f HxL = 1- ‰sinHp xL.
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As  mentioned  earlier,  what  we  do  in  such  cases  is  to  first  find  fApproximaÖ
tionReal@tD, a good FFF of f HxL = 1- ‰sinHp xL.

fApproximationReal@t_D =
Chop@ComplexExpand@FastFourierFit@f, L = 2, n = 4, tD DD

-0.266066 + 0.27154 Cos@2 p tD -
1.13032 Sin@p tD + 0.0448798 Sin@3 p tD

Then, we easily obtain LTyApproximation@sD, the Laplace transform of the approxi-
mate  formula  of  the  solution  of  y££ t + 2 y£ t + 20 y t = fApproximationÖ
Real@tD with yH0L = 2 and y£H0L = -4.

b = 2; c = 20;
ystarter = 2; yprimestarter = -4;
LTyApproximation@s_D =

1

s2 + b s + c
HLaplaceTransform@fApproximationReal@tD, t, sD +

2 ystarter + s ystarter + yprimestarterL

- 0.266066
s

+ 2 s - 3.55101
p2+s2

+ 0.27154 s
4 p2+s2

+ 0.422982
9 p2+s2

20 + 2 s + s2

Finally, the formula for the approximate solution yApproximation@tD is obtained us-
ing the inverse Laplace transform.

yApproximation@t_D = Chop@ComplexExpand@
InverseLaplaceTransform@LTyApproximation@sD, s, tD

DD

-0.0133033 + 0.0249889 Cos@3.14159 tD +

0.986668 ‰-1. t Cos@4.3589 tD - 0.00492179 Cos@6.28319 tD +
0.0249889 Cos@3.14159 tD Cos@6.28319 tD +

0.986668 ‰-1. t Cos@4.3589 tD Cos@8.7178 tD -
0.0000830617 Cos@9.42478 tD -
0.00492179 Cos@6.28319 tD Cos@12.5664 tD -
0.0000830617 Cos@9.42478 tD Cos@18.8496 tD -
0.0402897 Sin@3.14159 tD +
0.0402897 Cos@6.28319 tD Sin@3.14159 tD -

0.207358 ‰-1. t Sin@4.3589 tD +

0.207358 ‰-1. t Cos@8.7178 tD Sin@4.3589 tD +
0.00317526 Sin@6.28319 tD -
0.0402897 Cos@3.14159 tD Sin@6.28319 tD -
0.00317526 Cos@12.5664 tD Sin@6.28319 tD +
0.0249889 Sin@3.14159 tD Sin@6.28319 tD -

+
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0.207358 ‰-1. t Cos@4.3589 tD Sin@8.7178 tD +

0.986668 ‰-1. t Sin@4.3589 tD Sin@8.7178 tD -
0.000303288 Sin@9.42478 tD +
0.000303288 Cos@18.8496 tD Sin@9.42478 tD +
0.00317526 Cos@6.28319 tD Sin@12.5664 tD -
0.00492179 Sin@6.28319 tD Sin@12.5664 tD -
0.000303288 Cos@9.42478 tD Sin@18.8496 tD -
0.0000830617 Sin@9.42478 tD Sin@18.8496 tD +

Â I-0.0402897 Cos@3.14159 tD -

0.207358 ‰-1. t Cos@4.3589 tD + 0.00317526 Cos@6.28319 tD +

0.0402897 Cos@3.14159 tD Cos@6.28319 tD + 0.207358 ‰-1. t

Cos@4.3589 tD Cos@8.7178 tD - 0.000303288 Cos@9.42478 tD -
0.00317526 Cos@6.28319 tD Cos@12.5664 tD + 0.000303288
Cos@9.42478 tD Cos@18.8496 tD - 0.0249889 Sin@3.14159 tD -

0.0249889 Cos@6.28319 tD Sin@3.14159 tD - 0.986668 ‰-1. t

Sin@4.3589 tD - 0.986668 ‰-1. t Cos@8.7178 tD Sin@4.3589 tD +
0.00492179 Sin@6.28319 tD + 0.0249889 Cos@3.14159 tD
Sin@6.28319 tD + 0.00492179 Cos@12.5664 tD Sin@6.28319 tD +

0.0402897 Sin@3.14159 tD Sin@6.28319 tD +

0.986668 ‰-1. t Cos@4.3589 tD Sin@8.7178 tD +

0.207358 ‰-1. t Sin@4.3589 tD Sin@8.7178 tD +
0.0000830617 Sin@9.42478 tD + 0.0000830617 Cos@18.8496 tD
Sin@9.42478 tD - 0.00492179 Cos@6.28319 tD Sin@12.5664 tD -

0.00317526 Sin@6.28319 tD Sin@12.5664 tD -
0.0000830617 Cos@9.42478 tD Sin@18.8496 tD +

0.000303288 Sin@9.42478 tD Sin@18.8496 tDM

In Figure 4 we compare the plot  of  the “unknown” solution obtained by NDSolve  with
the  plot  of  the  approximate  formula  for  the  solution  (red,  thicker  dashed  line).  They  are
identical!

sol = NDSolve@8y''@xD + 2 y'@xD + 20 y@xD ã 1 - E^Sin@p xD,
y@0D ã 2, y'@0D ã -4<, y, 8x, 0, 5<D;

Plot@8y@tD ê. sol, yApproximation@tD<, 8t, 0, 5<,
PlotRange Ø All,
PlotStyle Ø 8Directive@Thickness@0.008D, RGBColor@0, 0, 1DD,

Directive@Thickness@0.014D, RGBColor@1, 0, 0D,
Dashing@80.05, 0.07<DD<, AxesLabel Ø 8t, y@tD<,

AspectRatio Ø 1 ê GoldenRatioD
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Ú Figure 4. The red dashed line is the approximate solution.

‡ Fast Fourier Fit for Discovering Trigonometric Identities
Another interesting application of FastFourierFit is in helping us “discover” trigono-
metric identities.  Again,  to our knowledge, this is  mentioned only in the exercises of the
work by Bill Davis and Jerry Uhl [1].
We know, for example, the trigonometric identity 2 sinHaL sinHbL = cosHa- bL- cosHa+ bL.
Suppose for the moment that this identity is unknown to us and that we are faced with the
expression sinH3 tL sinH7 tL. How can we simplify it? Of course we can use Mathematica’s
built-in function

TrigReduce@Sin@3 tD Sin@7 tDD

1

2
HCos@4 tD - Cos@10 tDL

but let us write our own trigIdentityFinder function using FFF.

Our  function  trigIdentityFinder  is  based  on  FastFourierFit,  which  is  used
to approximate sinH3 tL sinH7 tL  for various values of n,  until  the result  no longer changes.
The final result is then the desired identity. So we have

trigIdentityFinder@f_D :=
Module@8L = 2 p, old = 0, n = 2, new<,
new = Chop@ComplexExpand@FastFourierFit@f, L, n, tDDD;
While@! Chop@new - oldD === 0, old = new; ++n;
new = Chop@ComplexExpand@FastFourierFit@f, L, n, tDDDD;

Print@n - 1, " iterations and the identity is: ",
f@tD, " = "D; Factor@Rationalize@newDDD
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and the required identity for the problem at hand is found in 11 iterations.

f@t_D = Sin@3 tD Sin@7 tD;
trigIdentityFinder@fD

11 iterations and the identity is: Sin@3 tD Sin@7 tD =

1

2
HCos@4 tD - Cos@10 tDL

We end this subject with one more problem from [1], comparing our identity with the re-
sult obtained from Mathematica.

f@t_D = Sin@tD12; trigIdentityFinder@fD

13 iterations and the identity is: Sin@tD12 =

1

2048
H462 - 792 Cos@2 tD + 495 Cos@4 tD -

220 Cos@6 tD + 66 Cos@8 tD - 12 Cos@10 tD + Cos@12 tDL

TrigReduce@f@tDD

1

2048
H462 - 792 Cos@2 tD + 495 Cos@4 tD -

220 Cos@6 tD + 66 Cos@8 tD - 12 Cos@10 tD + Cos@12 tDL
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‡ Conclusions
Our goal has been to put together several difficult to access applications of the fast Fourier
transform (FFT) for use in the classroom. Hopefully, the programs provided here will be
of help for experimentation and further development. 
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