
The Mathematica® Journal

On Some Applications of the
Fast Discrete Fourier
Transform
Alkiviadis G. Akritas
Jerry Uhl
Panagiotis S. Vigklas

Motivated by the excellent work of Bill Davis and Jerry Uhlʼs
Differential Equations & Mathematica [1], we present in detail
several little-known applications of the fast discrete Fourier
transform (DFT), also known as FFT. Namely, we first examine
the use of the FFT in multiplying univariate polynomials and
integers and approximating polynomials with sines and cosines
(also known as the fast Fourier fit or FFF). We then examine the
use of the FFF in solving differential equations with Laplace
transforms and rediscovering trigonometric identities.

‡ Introduction
We begin with a review of the basic definitions needed.

Let R be a ring, n œ Z, n ¥ 1, and w œ R be a primitive nth root of unity; that is, wn = 1
and wnêt - 1 is not a zero divisor (or, wnêt - 1 ¹≠ 0) for any prime divisor t of n. We repre-
sent the polynomial f = ⁄i=0

n-1 fi xi œ R@xD, of degree less than n by the coefficient list, in
reverse order, 8 f0, … , fn-1< œ Rn.

Definition 1 (DFT). The R-linear map DFTw : RnØ Rn, which evaluates a polyno-
mial at the powers of w, that is, DFTw : 8 f0, … , fn-1<#

1

n
9 f H1L, f HwL, … , f Iwn-1M=, is

called the discrete Fourier transform (DFT).

In other words, the DFT is a special multipoint evaluation at the powers 1, w, … , wn-1 of
a primitive nth root of unity w. The fast implementation of the DFT is known as the fast
DFT, or simply as FFT; it can be performed in time OHn log nL. Details can be found in the
literature [2]. Keeping it simple, we mention in passing that the inverse DFT is defined as
the problem of interpolation at the powers of w and is easily solved.
In Mathematica the map DFTw and its inverse are implemented—for the complex num-
bers—by the functions Fourier and InverseFourier. The FFT is implemented in
Fourier. So, for example, the definition is verified by

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

In Mathematica the map DFTw and its inverse are implemented—for the complex num-
bers—by the functions Fourier and InverseFourier. The FFT is implemented in
Fourier. So, for example, the definition is verified by

f@x_D := x3 - 7 x + 7;
8Fourier@CoefficientList@f@xD, xDD< ã

:n = 4; w = ‰
I2 p ÂM

n ;
1

n
9f@1D, f@wD, fAw2E, fAw3E=>

True

Definition 2. The convolution of two polynomials f =⁄i=0
n-1 fi xi and

g=⁄k=0
n-1 gk xk œ R@xD is the polynomial

h = f *n g = ‚
j=0

n-1

h j x j œ R@xD,

where

h j = ‚
i+kª jmod n

fi gk = ‚
i=0

n-1

fi g j-i, for 0 § j < n,

and the arithmetic at the indices of g j-i (in the second summation) is done modulo n. If we
regard the polynomials as vectors in Rn, then what we have is the cyclic convolution of the
vectors f and g.

There is an equivalence between convolution and polynomial multiplication in the ring
R@xD ê Xxn - 1\. Please note for the given polynomials f , g that the jth coefficient of their
product, f g, is ⁄i+k= j fi gk; whereas the corresponding coefficient of their convolution,
f *n g, is ⁄i+kª jmod n fi gk and hence f *n g ª f g mod xn - 1. Moreover, if degH f gL < n,
then f *n g = f g. We will exploit this equivalence to develop a fast polynomial multiplica-
tion algorithm. The following theorem holds.

Theorem. Let R be a ring, nœZ, n¥ 1, and let w œ R be a primitive root of unity of
order n. Then for the polynomials f , gœ R@xD of degree at most n- 1, we have

DFTw H f *n gL = DFTw H f L ÿDFTw HgL,

where · indicates “element-wise” vector multiplication.

Proof. We know that f *n g = f g+ qHxn - 1L for some q œ R@xD. Then we have

H f *n gL IwiM = f IwiM g IwiM+ q IwiM Iwi n - 1M = f IwiM g IwiM

for 0 § i § n- 1. ·

2 Alkiviadis G. Akritas, Jerry Uhl, and Panagiotis S. Vigklas

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

Example 1. Let n = 4, f = x3 - 7 x + 7 and g = 3 x3 + 2 x2 + x + 1. Then the cyclic
convolution of the polynomials f and g (or the cyclic convolution of the vectors
87, -7, 0, 1< and 81, 1, 2, 3<) is the polynomial

n = 4; fCoef = 87, -7, 0, 1<; gCoef = 81, 1, 2, 3<;
powersX = TableAxi, 8i, 0, n - 1<E;
powersX.ListConvolve@fCoef, gCoef, 81, 1<D

-13 + 2 x + 10 x2 + 8 x3

or the vector ⁄i=0
n-1 fi gk-i, 0 § k § n- 1, (where arithmetic at the indices of gk-i is done

mod n)

TableB‚
i=0

n-1

fCoef@@i + 1DD gCoef@@Mod@k - i, nD + 1DD, 8k, 0, 3<F

8-13, 2, 10, 8<

Therefore, we obtain the same result with these three methods.

1. Use Mathematica’s function ListConvolve.

2. ListConvolve@fCoef, gCoef, 81, 1<D

3. 8-13, 2, 10, 8<

4. Take successive inner products of the first row of the table with each one of the fol-
lowing rows. Note that we have reversed the order of g and appended its first 3:

3 2 1 1 3 2 1
7 -7 0 1

7 -7 0 1
7 -7 0 1

7 -7 0 1

.

5. Use the formula f *n g ª f g mod xn - 1.

PolynomialMod@HfCoef.powersXL HgCoef.powersXL, xn - 1D

-13 + 2 x + 10 x2 + 8 x3

On Some Applications of the Fast Discrete Fourier Transform 3

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

‡ Fast Fourier Transform for Fast Polynomial and Integer
Multiplication
We begin by discussing a topic that is well known and much talked about, but for which
there is little, if any at all, “hands-on” experience.
It is well known that a polynomial of degree less than n over an integral domain R, such
as the integers or the rationals, can be represented either by its list of coefficients
8 f0, … , fn-1<, taken in reverse order here, or by a list of its values at n distinct points
u0, … , un-1 œ R, where for 0 § i < n we have ui = wi; w œ R is a primitive nth root of
unity.
The reason for considering the value representation is that multiplication in that representa-
tion is easy. To wit, if 8 f Hu0L, … , f Hun-1L< and 8gHu0L, … , gHun-1L< are the values of two
polynomials f and g, evaluated at n distinct points, with degH f L+ degHgL < n, then the val-
ues of the product f ÿ g at those points are 8 f Hu0L ÿ gHu0L, … , f Hun-1L ÿ gHun-1L<. Hence, the
cost of polynomial multiplication in the value representation is linear in the degree,
whereas in the list of coefficients representation we do not know how to multiply in linear
time.
Therefore, a fast way of doing multipoint evaluation and interpolation leads to a fast poly-
nomial multiplication algorithm. Namely, evaluate the two input polynomials, multiply
the results pointwise, and interpolate to get the product polynomial.
The multipoint evaluation is performed with FFT as implemented by the function
Fourier, whereas interpolation is performed with the inverse FFT, implemented by the
function InverseFourier.

Example 2. Suppose we are given the two polynomials f HxL = x3 - 7 x + 7 and
gHxL = 3 x2 - 7, whose product we want to compute.

f@x_D = x3 - 7 x + 7; g@x_D = 3 x2 - 7;

f@xD g@xD êê Expand

-49 + 49 x + 21 x2 - 28 x3 + 3 x5

This is of degree degH f L+ degHgL = 5.

We will now compute this product using FFT. Keeping in mind that FFT works best for in-
puts which are powers of 2, we consider the degree of the product to be less than n = 8.

4 Alkiviadis G. Akritas, Jerry Uhl, and Panagiotis S. Vigklas

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

Having fixed the value of n, we then form the lists of coefficients of f and g—padding
them with zeros until their lengths equal 8.

n = 8;
flist = CoefficientList@f@xD, xD;
flist = PadRight@flist, nD

87, -7, 0, 1, 0, 0, 0, 0<

glist = CoefficientList@g@xD, xD;
glist = PadRight@glist, nD

8-7, 0, 3, 0, 0, 0, 0, 0<

We next apply Fourier to these two lists and pointwise multiply the results.

productValues = Fourier@flistD Fourier@glistD êê Chop

8-0.5, 0.415738 + 4.21599 Â, -8.75 + 10. Â, -12.6657 - 1.03401 Â,
-6.5, -12.6657 + 1.03401 Â, -8.75 - 10. Â, 0.415738 - 4.21599 Â<

Recall, from Definition 1 and the verification following it, that what we have done here is
equivalent, within a scaling factor, to evaluating each polynomial at the points ui = wi

(where w = ‰
2 p Â
n , n = 8) and pointwise multiplying the results.

Interpolating the result with InverseFourier and taking care of the scaling factor, we
obtain the coefficients of the product polynomial.

productCoefficients =

n InverseFourier@productValuesD êê Chop êê Rationalize

8-49, 49, 21, -28, 0, 3, 0, 0<

This is exactly what we obtained with the classical multiplication.

These ideas can be incorporated in an algorithm to do just polynomial multiplication.
However, in order to avoid duplication of code—since integer FFT multiplication is very
similar—we implement the function generalFFTMultiply, which will be used in
both cases. This function is written in such a way that it computes in reverse order either
the coefficients of the product of two polynomials with integer coefficients, or the integer
digits—to a certain base b—of the product of two integers.

On Some Applications of the Fast Discrete Fourier Transform 5

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

generalFFTMultiply@f_, g_, b_D := ModuleB

8flist, glist, k = 1, m0, n, n0, productValues, var<,
If@Length@Variables@fDD ¹≠ 0,
H* THEN polynomial degree > 1 *L
var = First@Variables@fDD;
flist = CoefficientList@f, varD;
glist = CoefficientList@g, varD;
m0 = Exponent@f, xD;
n0 = Exponent@g, xD,
H* ELSE this case is reserved *L
H* for integer multiplication *L
flist = IntegerDigits@f, bD êê Reverse;
glist = IntegerDigits@g, bD êê Reverse;
m0 = Length@flistD;
n0 = Length@glistDD;

H* treat polys and integers the same *L

WhileA2k § m0 + n0, ++k E; n = 2k;
flist = PadRight@flist, nD;
glist = PadRight@glist, nD;
productValues = Fourier@flistD Fourier@glistD êê Chop;

n InverseFourier@productValuesD êê Chop êê Rationalize

F

So, to multiply the polynomials f HxL and gHxL we define the function

polyFFTMultiply@f_, g_D :=
ModuleA8list<, Hlist = generalFFTMultiply@f, g, bDL.

TableAxi, 8i, 0, Length@listD - 1<EE

and their product is

polyFFTMultiply@f@xD, g@xDD

-49 + 49 x + 21 x2 - 28 x3 + 3 x5

The cost of doing polynomial multiplication this way is OHn log nL operations, which is the
cost of computing the FFT and its inverse. This is a big improvement over the OIn2M cost
of the classical algorithm.

6 Alkiviadis G. Akritas, Jerry Uhl, and Panagiotis S. Vigklas

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

Before we move on to integer multiplication it is worth mentioning that ListConvolve
also gives us, in reverse order, the coefficient list of the product f HxL gHxL.

Hlist = ListConvolve@CoefficientList@f@xD, xD,
CoefficientList@f'@xD, xD, 81, -1<, 0DL.

TableAxi, 8i, 0, Length@listD - 1<E

-49 + 49 x + 21 x2 - 28 x3 + 3 x5

We next present the integer multiplication algorithm using FFT.

As we know, every integer can be represented as a “polynomial” in some base b, that is,
for an integer a we have a = H-1Ls⁄0§i§n ai b i. Therefore, integer multiplication can be
considered as polynomial multiplication, where in the final result we replace the variable
x by the base b.
Adjusting polyFFTMultiply accordingly we obtain this function.

integerFFTMultiply@f_Integer, g_Integer, b_ : 10D :=
ModuleA8list<,
Hlist = generalFFTMultiply@f, g, bDL.

TableAxi, 8i, 0, Length@listD - 1<E ê. x Ø bE

Then the product of the integers 123456789 and 987654321 is

integerFFTMultiply@123 456 789, 987 654 321D

121 932 631 112 635 269

‡ Fast Fourier Transform Is the Basis of Fast Fourier Fit
We next turn our attention to the problem of FFF, that is, the problem of approximating
functions with sines and/or cosines.

Definition 3. Periodic functions f :R Ø C, in one real variable and with values in
the complex plane, can be approximated (or fitted) by complex trigonometric polynomials
of the form

f HtL = ‚
k=-n

n

ck ‰kw Â t =
a0

2
+‚
k=1

n

Hak cos Hk w tL+ bk sin Hk w tLL,

On Some Applications of the Fast Discrete Fourier Transform 7

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

where ck are the Fourier fit coefficients satisfying

c0 =
a0

2
, ck =

Hak - Â bkL

2
, c-k =

Hak + Â bkL

2
and

a0 = 2 c0, ak = ck + c-k, bk = Â Hck - c-kL

for k = 1, … , n, and w = 2 p
L with L> 0 [3].

The FFF problem has attracted the attention of some of the best scientific minds of all
time. Gauss came up with an FFF algorithm in 1866. The modern version of the FFF is
due to John Tukey and his cohorts at IBM and Princeton [4].
We will be using the function FastFourierFit taken from Bill Davis and Jerry Uhl’s
Differential Equations & Mathematica [1] to compute the approximating complex trigono-
metric polynomials mentioned in Definition 3.

jump@n_D := jump@nD =
1

2 n
;

Fvalues@F_, L_, n_D :=
N@Table@F@L tD, 8t, 0, 1 - jump@nD, jump@nD<DD;

numtab@n_D := numtab@nD = Table@k, 8k, 1, n<D;

FourierFitters@L_, n_, t_D :=

TableBE
2 p I k t

L , 8k, -n + 1, n - 1<F;

coeffs@n_, list_D :=
Join@Reverse@Part@Fourier@listD, numtab@nDDD,
Part@InverseFourier@listD, Drop@numtab@nD, 1DDD ê

N@Sqrt@Length@listDDD;

FastFourierFit@F_, L_, n_, t_D :=
Chop@FourierFitters@L, n, tD.coeffs@n, Fvalues@F, L, nDDD;

The code works as follows: the functions jump and Fvalues produce a list of 2 n- 1
equally spaced data points off the plot of the function f HtL between t = 0 and t = L. Then,
the function numtab creates a list of integers from 1 to n, which is used by coeffs to
concatenate two lists. The first of these lists is the Fourier transform (taken in reversed or-
der) of the first n points, while the second list is the inverse Fourier transform (with the
first element removed) of the same n points. The list generated by coeffs has a total of
2 n- 1 points.
Finally, the function FastFourierFit takes the dot product of the list
9‰H-n+1L 2 p Â têL, … , 1, … , ‰Hn-1L 2 p Â têL= generated by FourierFitters and the list con-

catenated by coeffs. (All numbers in the list with magnitude less than 10-10 are
rounded to 0.)
FastFourierFit takes four arguments: the first one is the periodic function or, in gen-
eral, the list of data points which we want to fit; the second argument is the period L of the
function; the third argument is the number n for the equally spaced 2 n- 1 data points;
and the last argument is the variable we want to use. Note that FastFourierFit uses
the built-in functions Fourier and InverseFourier, with computational cost n log n.

8 Alkiviadis G. Akritas, Jerry Uhl, and Panagiotis S. Vigklas

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

FastFourierFit takes four arguments: the first one is the periodic function or, in gen-
eral, the list of data points which we want to fit; the second argument is the period L of the
function; the third argument is the number n for the equally spaced 2 n- 1 data points;
and the last argument is the variable we want to use. Note that FastFourierFit uses
the built-in functions Fourier and InverseFourier, with computational cost n log n.

Example 3. To see how the function FastFourierFit is used, consider the peri-
odic function f HxL = cosH2 pxL sinH1- cosH3 pxLL with period L = 2. A plot is given in Fig-
ure 1.

f@x_D := Cos@2 p xD Sin@1 - Cos@3 p xDD;
L = 2;
cycles = 2;

PlotBf@xD, 8x, 0, cycles L<,

AxesLabel Ø 8x, HoldForm@f@xDD<,
PlotStyle Ø 88Thickness@0.007D, RGBColor@0, 0, 1D<<,
PlotLabel Ø TextCell@ToString@cyclesD ~~ " cycles",

CellFrame Ø 0D,
Epilog Ø

:8RGBColor@1, 0, 0D, Thickness@0.007D,

Line@880, 0<, 8L, 0<<D<,

:TextBTextCell@"One Period", CellFrame Ø 0D,

:
L

2
, -0.25>F>>F

1 2 3 4
x

-0.5

0.5

f HxL
2 cycles

One Period

Ú Figure 1. The periodic function f HxL = cosH2 pxL sinH1 - cosH3 pxLL.

On Some Applications of the Fast Discrete Fourier Transform 9

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

Approximating f HxL with n = 4 we obtain

L = 2; n = 4;
fApproximation@t_D = FastFourierFit@f, L, n, tD

-0.0967056 - 0.113662 ‰-Â p t - 0.113662 ‰Â p t + 0.32403 ‰-2 Â p t +

0.32403 ‰2 Â p t - 0.113662 ‰-3 Â p t - 0.113662 ‰3 Â p t

or its real (noncomplex) version

fApproximationReal@t_D =
Chop@ComplexExpand@fApproximation@tDDD

-0.0967056 - 0.227324 Cos@p tD +
0.64806 Cos@2 p tD - 0.227324 Cos@3 p tD

Note that the coefficients of fApproximation@tD and fApproximationReal@tD
satisfy the relations mentioned in Definition 3. Moreover, f HxL has pure cosine fit. This
was expected because the function f HxL = cosH2 p xL sinH1- cosH3 p xLL is even; that is, for
the function evenf@xD, defined on the extended interval 0 § x § 2 L, we have
evenf@xD = f x, 0 § x § L, and evenf@xD = f H2 L - xL, L < x § 2 L. See also its
plot in Figure 1. Later on we will meet odd functions as well; those have pure sine fits.
The functions f@xD and fApproximationReal@tD are plotted together in Figure 2.
As we see, FastFourierFit picks 2 n- 1 equally spaced data points off the plot of
f HxL between x = 0 and x = L; it then tries to fit these points with a combination of com-
plex exponentials.

fplot = PlotBf@xD, 8x, 0, L<,

PlotStyle Ø 8Thickness@0.008D, RGBColor@0, 0, 1D<,

AspectRatio Ø
1

GoldenRatio
F;

fapproxPlot = PlotBfApproximationReal@tD, 8t, 0, L<,

PlotStyle Ø
88Thickness@0.008D, RGBColor@1, 0, 0D,

Dashing@80.03, 0.03<D<<, AspectRatio Ø
1

GoldenRatio
F;

10 Alkiviadis G. Akritas, Jerry Uhl, and Panagiotis S. Vigklas

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

fdata = TableBN@8x, f@xD<D, :x, 0, L -
L

2 n - 1
,

L

2 n - 1
>F;

fdataplot = ListPlot@fdata, PlotStyle Ø PointSize@0.02DD;
Show@fplot, fapproxPlot, fdataplotD

0.5 1.0 1.5 2.0

-0.5

0.5

Ú Figure 2. The dashed red plot is that of the approximating function.

As we mentioned before, the coefficients ck of the approximating polynomial in Defini-
tion 3 are computed using the FFT—incorporated in the function FastFourierFit.
Another way of computing those coefficients is to use the integrals

ck =
1

L ‡
0

L
f HtL ‰-

Â k H2 pL t
L „ t,

which results in the integral Fourier fit.

This formula for the coefficients is obtained if we assume that for a fixed n, the function
f HtL is being approximated by the function

complexApproximation HtL = ‚
k=-n

n

ck ‰
k H2 pL Â t

L ,

where L > 0, and we set

f HtL = complexApproximation HtL.

Then, we will definitely have

‡
0

L
complexApproximation HtL ‰-

j H2 pL Â t
L „ t = ‡

0

L
f HtL ‰-

j H2 pL Â t
L „ t.

But

‡
0

L
complexApproximation HtL ‰-

j H2 pL Â t
L „ t = L c j

and, hence, the formula for the coefficients.

The two approximations resulting from the FFF and the integral Fourier fit are fairly
close, and almost identical for large values of n.

On Some Applications of the Fast Discrete Fourier Transform 11

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

The two approximations resulting from the FFF and the integral Fourier fit are fairly
close, and almost identical for large values of n.
The disadvantage of the integral Fourier fit is that the integrals that need to be computed
sometimes are very hard and impracticable even for numerical integration. Nonetheless,
the method is useful for hand computations, whereas doing FFF by hand is completely out
of the question.
The advantage of the integral Fourier fit is that, in theoretical situations, it provides a spe-
cific formula to work with. However, after the theory is developed and calculations begin,
people switch to the FFF.
Recapping, note that FastFourierFit is a “double” approximation. It first uses sines
and cosines to approximate a continuous periodic function and then uses discrete Fourier
transform to approximate integrals involving these trigonometric polynomials—in effect
replacing numerical integration by sampling.

‡ Fast Fourier Fit Meets Laplace Transform
We recall that the Laplace transform of a given function f HtL is another function FHsL
given by FHsL = Ÿ0

¶
‰-s t f HtL „ t. The functions appropriate for the Laplace transform are

all functions f HtL with the property that ‰-s t f HtL Ø 0 as t Ø ¶ for large positive s. The
functions sinHp tL, cosHp tL, ‰k t, logHtL, as well as any quotient of polynomials, are all appro-
priate candidates for the Laplace transform.
For instance, here is the Laplace transform of f HtL = t.

f@t_D := t;
F@s_D = LaplaceTransform@f@tD, t, sD

1

s2

Indeed:

AssumingB s > 0, ‡
0

¶

‰-s t f@tD „tF

1

s2

12 Alkiviadis G. Akritas, Jerry Uhl, and Panagiotis S. Vigklas

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

This is Mathematica’s way of saying that if s is real and s > 0 then the Laplace transform
of f HtL is Ÿ0

¶
‰-s t f HtL „ t = 1

s2
. On the other hand, if Mathematica is given the Laplace trans-

form of f HtL, it can often recover the formula for f HtL:

InverseLaplaceTransform@F@sD, s, tD

t

Laplace transforms are used in solving differential equations by algebraic means.
Suppose, for example, that we are given the differential equation
y²″HxL+ b y£HxL+ c yHxL = f HxL, with starting values yH0L and y£H0L:

Clear@y, t, f, b, c, s, YD;
diffeq = y''@tD + b y'@tD + c y@tD == f@tD

c y@tD + b y£@tD + y££@tD ã f@tD

The solution yHtL of this differential equation can be found algebraically if we replace all
the functions involved in it by their Laplace transforms. In this way, we obtain the
equation

laplaced = diffeq ê.
8y@tD Ø LaplaceTransform@y@tD, t, sD,
y'@tD Ø LaplaceTransform@y'@tD, t, sD,
y''@tD Ø LaplaceTransform@y''@tD, t, sD,
f@tD Ø LaplaceTransform@f@tD, t, sD<

c LaplaceTransform@y@tD, t, sD +

s2 LaplaceTransform@y@tD, t, sD +
b Hs LaplaceTransform@y@tD, t, sD - y@0DL - s y@0D - y£@0D ã

LaplaceTransform@f@tD, t, sD

and solve it for the Laplace transform of yHtL to obtain the formula:

sol = Solve@laplaced, LaplaceTransform@y@tD, t, sDD

::LaplaceTransform@y@tD, t, sD Ø
1

c + b s + s2

HLaplaceTransform@f@tD, t, sD + b y@0D + s y@0D + y£@0DL>>

This tells us that if FHsL and YHsL are the Laplace transforms of the functions f HtL and yHtL,

respectively, then YHsL = FHsL+b y H0L+s y H0L+y£H0L
s2+ b s+c

. The solution of the differential equation yHtL
can be obtained by taking the inverse Laplace transform of YHsL—which is possible in
many cases.
In this section we combine FastFourierFit and Laplace transforms to come up with
good approximate formulas for periodically forced oscillators. To our knowledge, save for
the work by Bill Davis and Jerry Uhl [1], this topic is totally absent from textbooks on dif-
ferential equations! As a matter of fact, Fourier transforms, when discussed at all, appear
only when dealing with the heat and wave equations [5].

On Some Applications of the Fast Discrete Fourier Transform 13

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

In this section we combine FastFourierFit and Laplace transforms to come up with
good approximate formulas for periodically forced oscillators. To our knowledge, save for
the work by Bill Davis and Jerry Uhl [1], this topic is totally absent from textbooks on dif-
ferential equations! As a matter of fact, Fourier transforms, when discussed at all, appear
only when dealing with the heat and wave equations [5].
Recall that the differential equation of the form y²″HxL+ b y£HxL+ c yHxL = f HxL, with given
starting values yH0L and y£H0L, and f HxL a periodic function, can be solved either by evaluat-
ing a convolution integral of f HxL or by taking its Laplace transform. However, in both
cases, it may happen that the integrals involving f HxL are too complicated and Mathemat-
ica (or any other similar computer algebra package) cannot handle them.
What we want to do then is to first find a good FFF of f HxL (using sines and/or cosines)
and then to use any of the methods mentioned to get an approximate formula of the solu-
tion. That is, instead of solving y²″HxL+ b y£HxL+ c yHxL = f HxL we will be solving the differ-
ential equation y££ t + b y£ t + c y t = fApproximationReal@tD with the starting
values yH0L and y£H0L.

Example 4. Let us say that we have to solve the differential equation
y²″HxL+ 2 y£HxL+ 20 yHxL = 1- ‰sinHp xL with yH0L = 2 and y£H0L = -4. The periodic function
f HxL = 1- ‰sinHp xL can be seen in Figure 3.

f@x_D := 1 - ‰Sin@p xD;
L = 2;
cycles = 2;
Plot@f@xD, 8x, 0, cycles L<,
AxesLabel Ø 8x, HoldForm@f@xD = 1 - E^sin Hp xLD<,
PlotStyle Ø 88Thickness@0.007D, RGBColor@0, 0, 1D<<,
PlotLabel Ø TextCell@ToString@cyclesD ~~ " cycles",

CellFrame Ø 0D,
Epilog Ø
88RGBColor@1, 0, 0D, Thickness@0.007D,

Line@880, 0<, 8L, 0<<D<,
8Text@TextCell@"One Period", CellFrame Ø 0D,

8L ê 2, 0.1<D<<D

14 Alkiviadis G. Akritas, Jerry Uhl, and Panagiotis S. Vigklas

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

1 2 3 4
x

-1.5

-1.0

-0.5

0.5

f HxL = 1 - ‰sin Hp xL
2 cycles

One Period

Ú Figure 3. The periodic function f HxL = 1 - ‰sinHp xL.

It is impossible to find an exact solution of y²″HxL+ 2 y£HxL+ 20 yHxL = 1- ‰sinHp xL. Mathe-
matica’s built-in function DSolve bogs down because the integrals are too complicated.

DSolveA9y''@xD + 2 y'@xD + 20 y@xD == 1 - ESin@p xD, y@0D == 2,
y'@0D == -4=, y, xE êê AbsoluteTiming

:247.069239,

::y Ø FunctionB8x<, -
1

19
‰-x -38 CosB 19 xF + 19 CosB 19 xF

‡
1

0 ‰K@2D I-1 + ‰Sin@p K@2DDM SinB 19 K@2DF

19
„K@2D -

19 CosB 19 xF ‡
1

x ‰K@2D I-1 + ‰Sin@p K@2DDM SinB 19 K@2DF

19
„K@2D + 2 19 SinB 19 xF +

19 ‡
1

0
-
‰K@1D I-1 + ‰Sin@p K@1DDM CosB 19 K@1DF

19
„K@1D

SinB 19 xF -

19 ‡
1

x
-
‰K@1D I-1 + ‰Sin@p K@1DDM CosB 19 K@1DF

19
„K@1D

SinB 19 xF F>>>

As mentioned earlier, what we do in such cases is to first find fApproximaÖ
tionReal@tD, a good FFF of f HxL = 1- ‰sinHp xL.

On Some Applications of the Fast Discrete Fourier Transform 15

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

As mentioned earlier, what we do in such cases is to first find fApproximaÖ
tionReal@tD, a good FFF of f HxL = 1- ‰sinHp xL.

fApproximationReal@t_D =
Chop@ComplexExpand@FastFourierFit@f, L = 2, n = 4, tD DD

-0.266066 + 0.27154 Cos@2 p tD -
1.13032 Sin@p tD + 0.0448798 Sin@3 p tD

Then, we easily obtain LTyApproximation@sD, the Laplace transform of the approxi-
mate formula of the solution of y££ t + 2 y£ t + 20 y t = fApproximationÖ
Real@tD with yH0L = 2 and y£H0L = -4.

b = 2; c = 20;
ystarter = 2; yprimestarter = -4;
LTyApproximation@s_D =

1

s2 + b s + c
HLaplaceTransform@fApproximationReal@tD, t, sD +

2 ystarter + s ystarter + yprimestarterL

- 0.266066
s

+ 2 s - 3.55101
p2+s2

+ 0.27154 s
4 p2+s2

+ 0.422982
9 p2+s2

20 + 2 s + s2

Finally, the formula for the approximate solution yApproximation@tD is obtained us-
ing the inverse Laplace transform.

yApproximation@t_D = Chop@ComplexExpand@
InverseLaplaceTransform@LTyApproximation@sD, s, tD

DD

-0.0133033 + 0.0249889 Cos@3.14159 tD +

0.986668 ‰-1. t Cos@4.3589 tD - 0.00492179 Cos@6.28319 tD +
0.0249889 Cos@3.14159 tD Cos@6.28319 tD +

0.986668 ‰-1. t Cos@4.3589 tD Cos@8.7178 tD -
0.0000830617 Cos@9.42478 tD -
0.00492179 Cos@6.28319 tD Cos@12.5664 tD -
0.0000830617 Cos@9.42478 tD Cos@18.8496 tD -
0.0402897 Sin@3.14159 tD +
0.0402897 Cos@6.28319 tD Sin@3.14159 tD -

0.207358 ‰-1. t Sin@4.3589 tD +

0.207358 ‰-1. t Cos@8.7178 tD Sin@4.3589 tD +
0.00317526 Sin@6.28319 tD -
0.0402897 Cos@3.14159 tD Sin@6.28319 tD -
0.00317526 Cos@12.5664 tD Sin@6.28319 tD +
0.0249889 Sin@3.14159 tD Sin@6.28319 tD -

+

16 Alkiviadis G. Akritas, Jerry Uhl, and Panagiotis S. Vigklas

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

0.207358 ‰-1. t Cos@4.3589 tD Sin@8.7178 tD +

0.986668 ‰-1. t Sin@4.3589 tD Sin@8.7178 tD -
0.000303288 Sin@9.42478 tD +
0.000303288 Cos@18.8496 tD Sin@9.42478 tD +
0.00317526 Cos@6.28319 tD Sin@12.5664 tD -
0.00492179 Sin@6.28319 tD Sin@12.5664 tD -
0.000303288 Cos@9.42478 tD Sin@18.8496 tD -
0.0000830617 Sin@9.42478 tD Sin@18.8496 tD +

Â I-0.0402897 Cos@3.14159 tD -

0.207358 ‰-1. t Cos@4.3589 tD + 0.00317526 Cos@6.28319 tD +

0.0402897 Cos@3.14159 tD Cos@6.28319 tD + 0.207358 ‰-1. t

Cos@4.3589 tD Cos@8.7178 tD - 0.000303288 Cos@9.42478 tD -
0.00317526 Cos@6.28319 tD Cos@12.5664 tD + 0.000303288
Cos@9.42478 tD Cos@18.8496 tD - 0.0249889 Sin@3.14159 tD -

0.0249889 Cos@6.28319 tD Sin@3.14159 tD - 0.986668 ‰-1. t

Sin@4.3589 tD - 0.986668 ‰-1. t Cos@8.7178 tD Sin@4.3589 tD +
0.00492179 Sin@6.28319 tD + 0.0249889 Cos@3.14159 tD
Sin@6.28319 tD + 0.00492179 Cos@12.5664 tD Sin@6.28319 tD +

0.0402897 Sin@3.14159 tD Sin@6.28319 tD +

0.986668 ‰-1. t Cos@4.3589 tD Sin@8.7178 tD +

0.207358 ‰-1. t Sin@4.3589 tD Sin@8.7178 tD +
0.0000830617 Sin@9.42478 tD + 0.0000830617 Cos@18.8496 tD
Sin@9.42478 tD - 0.00492179 Cos@6.28319 tD Sin@12.5664 tD -

0.00317526 Sin@6.28319 tD Sin@12.5664 tD -
0.0000830617 Cos@9.42478 tD Sin@18.8496 tD +

0.000303288 Sin@9.42478 tD Sin@18.8496 tDM

In Figure 4 we compare the plot of the “unknown” solution obtained by NDSolve with
the plot of the approximate formula for the solution (red, thicker dashed line). They are
identical!

sol = NDSolve@8y''@xD + 2 y'@xD + 20 y@xD ã 1 - E^Sin@p xD,
y@0D ã 2, y'@0D ã -4<, y, 8x, 0, 5<D;

Plot@8y@tD ê. sol, yApproximation@tD<, 8t, 0, 5<,
PlotRange Ø All,
PlotStyle Ø 8Directive@Thickness@0.008D, RGBColor@0, 0, 1DD,

Directive@Thickness@0.014D, RGBColor@1, 0, 0D,
Dashing@80.05, 0.07<DD<, AxesLabel Ø 8t, y@tD<,

AspectRatio Ø 1 ê GoldenRatioD

On Some Applications of the Fast Discrete Fourier Transform 17

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

1 2 3 4 5
t

-1.0

-0.5

0.5

1.0

1.5

2.0

yHtL

Ú Figure 4. The red dashed line is the approximate solution.

‡ Fast Fourier Fit for Discovering Trigonometric Identities
Another interesting application of FastFourierFit is in helping us “discover” trigono-
metric identities. Again, to our knowledge, this is mentioned only in the exercises of the
work by Bill Davis and Jerry Uhl [1].
We know, for example, the trigonometric identity 2 sinHaL sinHbL = cosHa- bL- cosHa+ bL.
Suppose for the moment that this identity is unknown to us and that we are faced with the
expression sinH3 tL sinH7 tL. How can we simplify it? Of course we can use Mathematica’s
built-in function

TrigReduce@Sin@3 tD Sin@7 tDD

1

2
HCos@4 tD - Cos@10 tDL

but let us write our own trigIdentityFinder function using FFF.

Our function trigIdentityFinder is based on FastFourierFit, which is used
to approximate sinH3 tL sinH7 tL for various values of n, until the result no longer changes.
The final result is then the desired identity. So we have

trigIdentityFinder@f_D :=
Module@8L = 2 p, old = 0, n = 2, new<,
new = Chop@ComplexExpand@FastFourierFit@f, L, n, tDDD;
While@! Chop@new - oldD === 0, old = new; ++n;
new = Chop@ComplexExpand@FastFourierFit@f, L, n, tDDDD;

Print@n - 1, " iterations and the identity is: ",
f@tD, " = "D; Factor@Rationalize@newDDD

18 Alkiviadis G. Akritas, Jerry Uhl, and Panagiotis S. Vigklas

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

and the required identity for the problem at hand is found in 11 iterations.

f@t_D = Sin@3 tD Sin@7 tD;
trigIdentityFinder@fD

11 iterations and the identity is: Sin@3 tD Sin@7 tD =

1

2
HCos@4 tD - Cos@10 tDL

We end this subject with one more problem from [1], comparing our identity with the re-
sult obtained from Mathematica.

f@t_D = Sin@tD12; trigIdentityFinder@fD

13 iterations and the identity is: Sin@tD12 =

1

2048
H462 - 792 Cos@2 tD + 495 Cos@4 tD -

220 Cos@6 tD + 66 Cos@8 tD - 12 Cos@10 tD + Cos@12 tDL

TrigReduce@f@tDD

1

2048
H462 - 792 Cos@2 tD + 495 Cos@4 tD -

220 Cos@6 tD + 66 Cos@8 tD - 12 Cos@10 tD + Cos@12 tDL

On Some Applications of the Fast Discrete Fourier Transform 19

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

‡ Conclusions
Our goal has been to put together several difficult to access applications of the fast Fourier
transform (FFT) for use in the classroom. Hopefully, the programs provided here will be
of help for experimentation and further development.

‡ Acknowledgments
We would like to thank two unknown referees for their most helpful comments which im-
proved our presentation.

‡ References
[1] B. Davis and J. Uhl, Differential Equations & Mathematica, Gahanna, OH: Math Everywhere,

Inc., 1999. Part of the Calculus & Mathematica series of books.

[2] H. J. Weaver, Applications of Discrete and Continuous Fourier Analysis, New York: John Wi-
ley & Sons, 1983.

[3] W. Strampp, V. G. Ganzha, and E. Vorozhtsov, Höhere Mathematik mit Mathematica, Band
4: Funktionentheorie, Fouriertransformationen and Laplacetransformationen, Braun-
schweig/Wiesbaden: Vieweg Lehrbuch Computeralgebra, 1997.

[4] D. K. Kahaner, C. Moler, and S. Nash, Numerical Methods and Software, Englewood Cliffs,
NJ: Prentice Hall, 1989.

[5] W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary Value Prob-
lems, 6th ed., New York: John Wiley & Sons, 1997.

A. G. Akritas, J. Uhl, and P. S. Vigklas, “On Some Applications of the Fast Discrete Fourier Transform,” The
Mathematica Journal, 2011. dx.doi.org/10.3888/tmj.11.1-2.

About the Authors

Alkiviadis G. Akritas taught at the University of Kansas for twenty years before he moved
to Greece, where he has been teaching and doing research in the Department of Computer
and Communication Engineering at the University of Thessaly, in Volos, since 1998. His
research interests are in the field of symbolic and algebraic computations (a field in which
he has published extensively) and in using computer algebra systems to improve the teach-
ing of mathematics. Based on Vincent’s theorem of 1836, Akritas has developed the two
fastest methods for isolating the real roots of polynomial equations; these methods have
been incorporated, respectively, in the computer algebra systems Maple and Mathematica.
Jerry Uhl is a professor of mathematics at the University of Illinois at Urbana-Champaign.
He is the author or coauthor of a number of research papers. During the 1980s, Uhl served
as real analysis editor of the research journal Proceedings of the American Mathematical
Society. He also served one term as managing editor of the same journal, as well as one
term on the Council of the American Mathematical Society. Since 1988, Uhl has devoted
nearly all his energies to Calculus&Mathematica. In 1998, he received an award for distin-
guished teaching from the Mathematical Association of America.
Panagiotis S. Vigklas is a Ph.D student in the Department of Computer and Communica-
tion Engineering at the University of Thessaly, in Volos. He is currently working on his
dissertation under the supervision of A. G. Akritas.

20 Alkiviadis G. Akritas, Jerry Uhl, and Panagiotis S. Vigklas

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

Panagiotis S. Vigklas is a Ph.D student in the Department of Computer and Communica-
tion Engineering at the University of Thessaly, in Volos. He is currently working on his
dissertation under the supervision of A. G. Akritas.
Alkiviadis G. Akritas
University of Thessaly
Department of Computer and Communication Engineering
37 Glavani & 28th October
GR-38221, Volos
Greece
akritas@uth.gr
inf-server.inf.uth.gr/~akritas/index.html
Jerry Uhl
University of Illinois at Urbana-Champaign
Department of Mathematics
273 Altgeld Hall (mc 382)
1409 W. Green
Urbana, IL 61801
USA
juhl@cm.math.uiuc.edu
Panagiotis S. Vigklas
University of Thessaly
Department of Computer and Communication Engineering
37 Glavani & 28th October
GR-38221, Volos
Greece
pviglas@uth.gr

On Some Applications of the Fast Discrete Fourier Transform 21

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

