
The Mathematica® Journal

Buckets and Jumping Pets
Jaime Rangel-Mondragón

In this article we examine three well-known problems from the 
recreational mathematics literature dealing with goal-oriented 
strategies set on a discrete state space. We use the backtrack 
paradigm to implement an exhaustive search and deduce some 
theoretical results, which in some cases allows us to provide an 
explicit description of their solutions. 

‡ The Problem of the Buckets
Jack and Jill went up the hill,
To fetch a pail of water;
Jack fell down and broke his crown,
and Jill came tumbling after.
Nursery Rhyme
J. W. Elliot, 1765

Consider the following question. Given two unmarked buckets of capacities 3 and 5 liters,
how can we obtain exactly 1 liter  of water from an inexhaustible well? The answer is  to
fill the 3-liter bucket first and empty it into the other bucket. Then, refill the 3-liter bucket
from the well and use it  to completely fill  the other one, leaving the 1 liter desired. This
problem is one of a famous category of “decanting” problems that have always appealed
to a wide audience,  including recreational mathematicians and computer scientists.  Simi-
lar problems have found valuable applications in the analysis and teaching of algorithmic
techniques, typifying many of the difficulties involved in the design of goal-oriented strate-
gies. In the problem of the buckets, it is easy to show that if we have buckets of capacities
a and b liters, and we start with both empty, the problem is solvable if and only if a and b
are coprime. If this is the case, we have several ways to proceed. Each of them can be de-
scribed by a sequence of ordered pairs accounting for the states through which we pass at
each  step  towards  our  goal.  Consider  for  instance,  one  of  the  shortest  sequences  that
solves the problem for capacities 2 and 5: {{0, 0}, {0, 5}, {2, 3}, {0, 3}, {2, 1}}.
In solving this problem we notice that any proper move we can make at each step is one
of three types:

Ë Fill an empty bucket from the well. We do not fill a partially filled bucket because
that wastes the moves that made it partially full.

Ë Empty a full bucket into the well.

The Mathematica Journal 11:1  © 2008 Wolfram Media, Inc.



Ë Pour one bucket into another, in such a way that we completely empty the first or
fill the second. 

The  general  ideas  in  solving  these  types  of  problems  are  as  follows.  There  is  a  starting
state  and one or  more final  states  that  we aim to reach.  If  we are able to  do so,  we then
want to have a description of the actual paths taken from the start to each one of the final
states;  moreover,  we  want  those  paths  of  minimal  length.  In  order  to  direct  a  current
partial path towards the goal, we follow guidelines that help to avoid entering blind alleys
or  performing  wasteful  moves.  For  instance,  we  should  avoid  reaching  a  previously
visited state. In general, an explicit list describing all the traversed states to the goal would
suffice,  upgrading  an  upper  bound  on  the  length  of  future  solution  paths  to  alleviate  the
phenomenon of  combinatorial  explosion that  this  approach entails.  A “Markovian” point
of view is often adopted; the choice of the next state only depending on the current one,
and not on the history of all or any previous ones. We can thus encapsulate the process of
a single change of state by using the following list  of  productions.  Note the conditionals
appearing in the last two productions; without them we might, in certain cases, stay in the
same current state. 

pour := 880, j_< Ø 8a, j<, 8i_, 0< Ø 8i, b<, 8a, j_< Ø 80, j<,
8i_, b< Ø 8i, 0<,
8i_, j_ ê; j ¹≠ b< Ø If@b < i + j, 8i + j - b, b<, 80, i + j<D,
8i_ ê; i ¹≠ a, j_< Ø If@a < i + j, 8a, i + j - a<, 8i + j, 0<D<

We use the function ReplaceList to gather all possible next states.

nextStates@state : 8_Integer, _Integer<D :=
Union@ReplaceList@state, pourDD

For example, if we have managed to get to state 82, 3< in our first example, the states we
can then access are computed as:

8a, b< = 82, 5<;
nextStates@82, 3<D

880, 3<, 80, 5<<

That is, we could empty the first bucket by either pouring its content into the well or into
the other bucket. Note that this list of candidates is returned in lexicographic order.
From the computational point of view, a good approach to solving this kind of problem is
to use the backtrack technique. Backtrack is a basic method in the computer scientist reper-
toire, often used in problems in which it is required to find all solutions satisfying a given
property.  The  general  framework  is  that  of  a  selection  of  all  finite  paths  traversing  a
(possibly  infinite)  discrete  state  space.  By  its  exhaustive  nature,  backtrack  is  often
modified  in  order  to  overcome  large  time  constraints  that  are  typically  exponential  in
nature (not so its space restrictions, which are always relatively affordable) [1]. However,
its popularity arises mainly due to its straightforward quality and simplicity in solving an
extensive class of computational problems. Often the main reason for choosing backtrack
is  simply the fact  that,  for  many important  problems,  there  is  no other  feasible  approach
discovered  so  far.  It  is  our  aim in  this  article  to  illustrate  an  interesting  instance  of  such
problems and, in the process, to show how the general backtrack method can be modified
in an ad-hoc way,  leading to  a  significant  improvement  in  execution time.  This  tailoring
can  arise  from  some  theoretical  insight  or  from  a  study  of  the  computational  burden
imposed by its  particular  use.  In  general,  the  backtrack method is  sufficiently  flexible  to
give  the  programmer  considerable  scope  in  exercising  skills  for  solving  important  com-
binatorial problems in an effective way.

2 Jaime Rangel-Mondragón

The Mathematica Journal 11:1  © 2008 Wolfram Media, Inc.



From the computational point of view, a good approach to solving this kind of problem is
to use the backtrack technique. Backtrack is a basic method in the computer scientist reper-
toire, often used in problems in which it is required to find all solutions satisfying a given
property.  The  general  framework  is  that  of  a  selection  of  all  finite  paths  traversing  a
(possibly  infinite)  discrete  state  space.  By  its  exhaustive  nature,  backtrack  is  often
modified  in  order  to  overcome  large  time  constraints  that  are  typically  exponential  in
nature (not so its space restrictions, which are always relatively affordable) [1]. However,
its popularity arises mainly due to its straightforward quality and simplicity in solving an

is  simply the fact  that,  for  many important  problems,  there is  no other  feasible  approach
discovered so  far.  It  is  our  aim in  this  article  to  illustrate  an  interesting  instance  of  such
problems and, in the process, to show how the general backtrack method can be modified
in an ad-hoc way,  leading to  a  significant  improvement  in  execution time.  This  tailoring
can  arise  from  some  theoretical  insight  or  from  a  study  of  the  computational  burden
imposed by its  particular  use.  In  general,  the  backtrack method is  sufficiently  flexible  to
give  the  programmer  considerable  scope  in  exercising  skills  for  solving  important  com-
binatorial problems in an effective way.
Although there  have been efforts  in  providing general  backtrack routines—notably those
included in Skiena’s excellent books [2, 3], the value of backtrack lies not in its generality
per  se  but  in  its  capacity  of  adaptation.  Because  of  drawbacks  in  the  languages
implementing it,  its  role has been largely overlooked.  In fact,  there was a time when the
recursive  style  of  programming was  discouraged  on  the  grounds  that  it  was  “unnatural.”
The  truth  was  that  what  was  unnatural  were  the  features  of  the  primitive  programming
languages available. 
In  its  more  general  setup,  the  backtrack  mechanism grows  a  currently  acceptable  partial
result r by choosing from a set of candidates S, gathered by a function such as the function
nextStates. Each element of S is successively appended to r and the process is recur-
sively  iterated  with  each  of  these  new  partial  results.  This  growing  either  leads  to  the
finding  of  a  solution  or  to  a  stage  in  which  S  is  void,  in  which  case  we  backtrack  to
consider another candidate instead of the last one appended. By repeating this process we
arrive  at  fully  spanning  the  whole  state  space  in  a  goal-oriented  and  efficient  way;
however,  as  we  mentioned  before,  on  occasion  this  is  not  enough  to  counterbalance  a
potential combinatorial explosion. The following pseudocode implements this idea.

backtrack[r]
If r is a solution Print[r] and stop
Compute S
Map[backtrack[Append[r,#]]&, S]

So  our  query  for  a  solution  would  be  backtrack@initial stateD.  We  can  easily
modify this  scheme to  search for  all  possible  solutions,  thus  attempting to  find the “best
one”  in  an  exhaustive  manner.  By  its  very  nature,  backtrack  allows  us  to  prune  the
branches of the tree spanned by this traversal in a systematic way, thus cutting unfeasible
branches as soon as possible, which, in a full searching of the global state space results is
vital. 
The following function buckets@a, b, dD computes the solution list corresponding to
the problem of obtaining 1 liter with buckets of capacities a  and b  liters, limiting the ex-
haustive search to a depth d. When gcdHa, bL ¹≠ 1, it returns the empty list.

Buckets and Jumping Pets 3

The Mathematica Journal 11:1  © 2008 Wolfram Media, Inc.



buckets@a_, b_, d_D :=
Module@8back, pour, nextStates, lim = d, ans = 8<, i, j<,

back@x_D := 1 ê; Length@xD > lim;
back@x : 8___, 8___, 1, ___<<D :=
HAppendTo@ans, xD; lim = Min@lim, Length@xDDL;

back@feasible : 88_Integer, _Integer< ..<D :=
Module@8candidates<,
candidates = Select@nextStates@Last@feasibleDD,

Not@MemberQ@feasible, ÒDD &D;
Map@back@Join@feasible, 8Ò<DD &, candidatesDD;

pour := 880, j_< Ø 8a, j<, 8i_, 0< Ø 8i, b<, 8a, j_< Ø 80, j<,
8i_, b< Ø 8i, 0<,
8i_, j_ ê; j ¹≠ b< Ø If@b < i + j, 8i + j - b, b<, 80, i + j<D,
8i_ ê; i ¹≠ a, j_< Ø If@a < i + j, 8a, i + j - a<, 8i + j, 0<D<;

nextStates@state : 8_Integer, _Integer<D :=
Union@ReplaceList@state, pourDD;

back@880, 0<<D;
If@ans == 8<, 8<, Last@ansDDD

We verify our original example.

buckets@2, 5, 5D

880, 0<, 80, 5<, 82, 3<, 80, 3<, 82, 1<<

The following is a table of the length of the solutions corresponding to all possible combi-
nations of the values a and b of at most size 21. Note that we still do not have a bound on
the  number  of  steps  taken,  so  we use  d = 50 for  all  cases;  as  the  matrix  B  is  symmetric
with zeroes on the main diagonal, the computing time can be shortened.

B = Table@0, 821<, 821<D;
Do@

If@GCD@a, bD == 1,
BPa,bT = BPb,aT = Length@buckets@a, b, 50DD - 1D, 8a, 21<,

8b, a + 1, 21<D;
MatrixForm@BD

4 Jaime Rangel-Mondragón

The Mathematica Journal 11:1  © 2008 Wolfram Media, Inc.



0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 2 0 4 0 6 0 8 0 10 0 12 0 14 0 16 0 18 0 20
1 2 0 2 4 0 4 6 0 6 8 0 8 10 0 10 12 0 12 14 0
1 0 2 0 2 0 4 0 4 0 6 0 6 0 8 0 8 0 10 0 10
1 4 4 2 0 2 8 8 4 0 4 12 12 6 0 6 16 16 8 0 8
1 0 0 0 2 0 2 0 0 0 4 0 4 0 0 0 6 0 6 0 0
1 6 4 4 8 2 0 2 12 8 8 14 4 0 4 18 12 12 20 6 0
1 0 6 0 8 0 2 0 2 0 12 0 14 0 4 0 4 0 18 0 20
1 8 0 4 4 0 12 2 0 2 16 0 8 8 0 20 4 0 4 24 0
1 0 6 0 0 0 8 0 2 0 2 0 12 0 0 0 14 0 4 0 4
1 10 8 6 4 4 8 12 16 2 0 2 20 16 12 8 8 14 20 26 4
1 0 0 0 12 0 14 0 0 0 2 0 2 0 0 0 22 0 24 0 0
1 12 8 6 12 4 4 14 8 12 20 2 0 2 24 16 12 22 8 8 24
1 0 10 0 6 0 0 0 8 0 16 0 2 0 2 0 20 0 12 0 0
1 14 0 8 0 0 4 4 0 0 12 0 24 2 0 2 28 0 16 0 0
1 0 10 0 6 0 18 0 20 0 8 0 16 0 2 0 2 0 20 0 12
1 16 12 8 16 6 12 4 4 14 8 22 12 20 28 2 0 2 32 24 16
1 0 0 0 16 0 12 0 0 0 14 0 22 0 0 0 2 0 2 0 0
1 18 12 10 8 6 20 18 4 4 20 24 8 12 16 20 32 2 0 2 36
1 0 14 0 0 0 6 0 24 0 26 0 8 0 0 0 24 0 2 0 2
1 20 0 10 8 0 0 20 0 4 4 0 24 0 0 12 16 0 36 2 0

Enlarging the possible size of the buckets and assigning a cherry tone to the length of the
solutions leads to the following picture.

n = 50; B = Table@0, 8n<, 8n<D;
Do@
If@GCD@a, bD == 1, BPa,bT = BPb,aT = Length@buckets@a, b, nDD - 1D,
8a, n - 1<, 8b, a + 1, n<D;

ArrayPlot@B, ColorFunction Ø "CherryTones"D

Buckets and Jumping Pets 5

The Mathematica Journal 11:1  © 2008 Wolfram Media, Inc.



Note that the values on the first row and columns account for the solutions 880, 0<, 80, 1<<
and 880, 0<, 81, 0<<. The bands of 2s above and below the main diagonal establish the solu-
tions 880, 0<, 80, b<, 8a, 1<< and 880, 0<, 8a, 0<, 81, b<<. 

Perhaps the reader will find it interesting to prove that, if n = b+1
a  is an integer and a < b,

then BPa,bT = n. What strategy does this result imply? What happens in the case when b-1a
is an integer?
Note that the longest entry in the previous matrix corresponds to the case a = 19, b = 21
(or vice versa) of length 36.

buckets@19, 21, 50D

880, 0<, 819, 0<, 80, 19<, 819, 19<, 817, 21<, 817, 0<,
80, 17<, 819, 17<, 815, 21<, 815, 0<, 80, 15<, 819, 15<,
813, 21<, 813, 0<, 80, 13<, 819, 13<, 811, 21<, 811, 0<,
80, 11<, 819, 11<, 89, 21<, 89, 0<, 80, 9<, 819, 9<,
87, 21<, 87, 0<, 80, 7<, 819, 7<, 85, 21<, 85, 0<, 80, 5<,
819, 5<, 83, 21<, 83, 0<, 80, 3<, 819, 3<, 81, 21<<

Inspection  of  this  list  suggests  an  easy  procedure  to  solve  the  case  where  a  is  odd  and
b = a+ 2  (they  will  always  be  coprime  because  a  linear  combination  of  them,  namely
aHHb- 1L ê 2L- bHHa- 1L ê 2L, equals 1). The length in this case will be equal to 2 Ha- 1L.
The next function helps to visualize the entire state space involved in solving the problem
of the buckets. We associate a labeled disk with each state 8a , b< and place them at the ver-
tices  of  a  regular  polygon.  We  draw  an  arrow  from  state  i  to  state  j  if  state  j  can  be
reached from state i. The following function sG computes the resulting graphic object. 

sG@a_, b_D :=

ModuleB8ind, pour, nextStates, n = Ha + 1L Hb + 1L, t, c,

i, j, k, s<,

ind@k_D := WithB:i =
k - 1

b + 1
>, 8i, k - Hb + 1L i - 1<F;

pour := 880, j_< Ø 8a, j<, 8i_, 0< Ø 8i, b<, 8a, j_< Ø 80, j<,
8i_, b< Ø 8i, 0<,
8i_, j_ ê; j ¹≠ b< Ø If@b < i + j, 8i + j - b, b<, 80, i + j<D,
8i_ ê; i ¹≠ a, j_< Ø If@a < i + j, 8a, i + j - a<, 8i + j, 0<D<;

nextStates@state_D := Union@ReplaceList@state, pourDD;

t =
2. p

n
;

c = Table@8Cos@k tD, Sin@k tD<, 8k, 0, n - 1<D;
;

6 Jaime Rangel-Mondragón

The Mathematica Journal 11:1  © 2008 Wolfram Media, Inc.



m = Table@0, 8n<, 8n<D;
Do@
s = Map@HHb + 1L First@ÒD + Last@ÒD + 1L &,

nextStates@ind@kDDD;
Map@HmPk, ÒT = 1L &, sD, 8k, n<D;

TableA

IfAmPi,jT == 1, 9ArrowA9cPiT, 0.96 cPjT + 0.04 cPiT=E,

9White, Disk@cPiT, 0.1D, DiskAcPjT, 0.1E, Black,

Circle@cPiT, 0.1D, CircleAcPjT, 0.1E=,

9Text@ind@iD ê. 8x_, y_< ß ToString@xD <> ToString@yD,
cPiTD,

TextAind@jD ê. 8x_, y_< ß ToString@xD <> ToString@yD,

cPjTE==, 8<E, 8i, n<, 8j, n<EF

Here is the graph for buckets of capacities 2 and 5. Can the reader follow the path describ-
ing our previous solution? Note also that some states, like 11, are inaccessible.

8a, b< = 82, 5<;
Graphics@sG@a, bDD

000000

05

00

20

010101

10

01

21

020202

20

02

22

030303

21

03

23

040404

22

04

24

05

00

05

23

05

25

10

01

101010

15

11 0211

20

12

03

12

21

13

04

13

22

14

05

14

23

15

10

15 24

20

00

20

02

20

25

21

01

21

03

22

02

22

04

23

03

23

05

24

04

2415

25

05

25

20

Buckets and Jumping Pets 7

The Mathematica Journal 11:1  © 2008 Wolfram Media, Inc.



In  the  case  a = 2,  b = 4,  the  following  graph  shows  that  the  goal  states  are  inaccessible
from 00. In fact this graph is the superposition of two graphs formed by those states reach-
able and unreachable from 00.

8a, b< = 82, 4<;
Graphics@sG@a, bDD

000000

04

00

20

010101

10

01

21

020202

20

02

22

030303

21

03

23

04

00

04

22

04

24

10

01

101010

14

11

02

11

20

12

03

12

21

13

04

13

22

14

10

14

23
20

00

20

02

20

24

21

01

21

03

22

02

22

04

23

03

23

14

24

04

24

20

· A Bouquet of Buckets

The  following  code  generalizes  our  problem to  that  of  obtaining  1  liter  from handling  a
number of buckets of given capacities.

buckets@b : 8_Integer ..<, depth_D :=
Module@8back, pour, getCandidates, ans = 8<, lim = depth<,

back@x_D := 1 ê; Length@xD > lim;
back@x : 8___, 8___, 1, ___<<D :=
HAppendTo@ans, xD; lim = Min@lim, Length@xDDL;

back@feasible : 88_Integer ..< ..<D := Module@8candidates<,
candidates = Select@getCandidates@Last@feasibleDD,

Not@MemberQ@feasible, ÒDD &D;
Map@back@Join@feasible, 8Ò<DD &, candidatesDD;

pour := 88x___, 8_, bi_<, y___< Ø 8x, 80, bi<, y<,
8x___, 8_, bi_<, y___< Ø 8x, 8bi, bi<, y<,
8x___, 8i_, bi_<, y___, 8j_, bj_<, z___< Ø

8 Jaime Rangel-Mondragón

The Mathematica Journal 11:1  © 2008 Wolfram Media, Inc.



If@bj < i + j, 8x, 8i + j - bj, bi<, y, 8bj, bj<, z<,
8x, 80, bi<, y, 8i + j, bj<, z<D,

8x___, 8i_, bi_<, y___, 8j_, bj_<, z___< Ø
If@bi < i + j, 8x, 8bi, bi<, y, 8i + j - bi, bj<, z<,
8x, 8i + j, bi<, y, 80, bj<, z<D<;

getCandidates@state : 8_Integer ..<D :=
Union@HFirst êü ÒL & êü

ReplaceList@Thread@List@state, bDD, pourDD;

back@8Table@0, 8Length@bD<D<D;
If@ans == 8<, 8<, Last@ansDDD

For instance, with three buckets of capacities 3, 11, and 20, the steps necessary to obtain 1
liter are as follows.

buckets@83, 11, 20<, 15D

880, 0, 0<, 83, 0, 0<, 83, 0, 20<,
83, 11, 9<, 83, 0, 9<, 83, 9, 0<, 81, 11, 0<<

Some problems are more time-consuming than others.

Timing@buckets@83, 3, 11, 20<, 7DD

824.944, 880, 0, 0, 0<, 83, 0, 0, 0<, 83, 0, 0, 20<,
83, 0, 11, 9<, 83, 0, 0, 9<, 83, 0, 9, 0<, 81, 0, 11, 0<<<

The capacity of the extra buckets can substantially affect this timing.

Timing@buckets@83, 11, 11, 20<, 7DD

83.77556, 880, 0, 0, 0<, 83, 0, 0, 0<, 83, 0, 0, 20<,
83, 11, 0, 9<, 83, 11, 9, 0<, 81, 11, 11, 0<<<

Having an extra bucket might not be useful in shortening the solution.

buckets@82, 7<, 8D
buckets@82, 7, 9<, 8D

880, 0<, 80, 7<, 82, 5<, 80, 5<, 82, 3<, 80, 3<, 82, 1<<

880, 0, 0<, 80, 7, 0<, 82, 5, 0<,
80, 5, 2<, 82, 3, 2<, 80, 3, 4<, 82, 1, 4<<

Buckets and Jumping Pets 9

The Mathematica Journal 11:1  © 2008 Wolfram Media, Inc.



But sometimes it does.

buckets@82, 4, 7<, 7D

880, 0, 0<, 80, 0, 7<, 82, 0, 5<, 82, 4, 1<<

A better choice would be the following.

buckets@82, 3, 7<, 10D

880, 0, 0<, 80, 3, 0<, 82, 1, 0<<

So,  given  a  set  of  buckets,  what  would  be  the  best  choice  if  we  are  allowed  to  add  one
new bucket to the set? Our aim would be to obtain the shortest solution possible. Note that
there is a maximum capacity for this new bucket beyond which we cannot shorten the solu-
tion  any  further.  For  example,  if  we  start  with  buckets  of  capacities  2  and  7,  adding  a
bucket of capacity 3 provides the shortest solution (the other two solutions are buckets of
capacities 6 or 8); choosing a capacity greater than 17 is equivalent to using only the two
original buckets. Our previous longest case a = 19, b = 21 would greatly benefit from the
addition of an extra bucket of capacity 18. In general, looking at the previous matrix B we
conclude that the addition of a bucket of capacity a- 2 substantially speeds up the process
that starts with two buckets of capacities a, b Ha § bL.
There are many fascinating variants of the problem of the buckets and we recommend ref-
erences [4, 5]. They address problems like the following: we are given a filled vessel of ca-
pacity 12 and two empty vessels of capacities 9 and 5. How can we divide the liquid into
two equal portions? By traversing paths in a network of equilateral triangles, a solution (or
its absence) is found for the case of three jugs.

‡ The Problem of the Toads and the Frogs
The clever men at Oxford
Know all that is to be knowed.
But none of them knows half as much
As intelligent Mr. Toad!
The Wind in the Willows
Kenneth Grahame, 1908

The  Problem  of  the  Buckets  introduced  in  the  previous  section  deals  with  traversing  a
state space and solving the problem of finding the shortest route connecting two particular
nodes  in  this  space.  The  problem here  considers  the  same  traversal,  but  with  a  different
goal,  providing an interesting new background from which to deduce properties  that  this
time allows us to explicitly describe an optimal strategy.
Consider the Problem of the Toads and the Frogs: n toads and m frogs are placed in a lin-
ear grid of n+m+ 1 squares. The toads are arranged in the first n squares and the frogs in
the last m squares, each pet facing each other with a single vacancy in between as depicted
in Figure 1. From this initial configuration our problem is to transfer all toads to where the
frogs are and vice versa by means of two kinds of movements performed sequentially by a
single pet at a time; moreover, we want the fastest way of achieving this. Any pet can only
move to the empty space if it happens to be next to it; if this is not the case, it can jump in
the  direction  it  is  facing  over  an  adjacent  pet  regardless  of  its  type,  provided  that  the
empty space is at the square it  lands on. At all times the process is performed within the
limits of the squares. The movements resemble those in the game of checkers, but without
any piece removal. Denoting a toad by T, a frog by F, and the empty space by an under-
score _, we can describe a solution to the problem in Figure 1 by the following sequence
of states, where an arrow indicates a transition to the next state:

10 Jaime Rangel-Mondragón

The Mathematica Journal 11:1  © 2008 Wolfram Media, Inc.



Consider the Problem of the Toads and the Frogs: n toads and m frogs are placed in a lin-
+ +

the last m squares, each pet facing each other with a single vacancy in between as depicted
in Figure 1. From this initial configuration our problem is to transfer all toads to where the
frogs are and vice versa by means of two kinds of movements performed sequentially by a
single pet at a time; moreover, we want the fastest way of achieving this. Any pet can only
move to the empty space if it happens to be next to it; if this is not the case, it can jump in
the  direction  it  is  facing  over  an  adjacent  pet  regardless  of  its  type,  provided  that  the
empty space is at the square it  lands on. At all times the process is performed within the
limits of the squares. The movements resemble those in the game of checkers, but without
any piece removal. Denoting a toad by T, a frog by F, and the empty space by an under-
score _, we can describe a solution to the problem in Figure 1 by the following sequence
of states, where an arrow indicates a transition to the next state:
TT_FF Ø T_TFF Ø TFT_F Ø TFTF_ Ø TF_FT Ø_FTFT Ø F_TFT Ø FFT_T Ø FF_TT.

Ú Figure 1. The Problem of the Toads and the Frogs for the case n = m = 2.

In  order  to  describe  a  solution,  we  can  regard  each  stage  as  a  movement  of  the  vacant
square; this allows us to unambiguously recover the positions of all the pets at each stage
and focus on the essential  characteristics  of  the problem. Let  us denote jumps to the left
and right and moves to the left and right performed by the empty square by the digits 1, 2,
3,  and  4,  respectively  (see  Figure  2).  Then  the  solution  previously  given  for  the  case
n = m = 2  can  be  described  more  concisely  by  the  word  32411423,  or  equivalently  as
32412 423, where we use powers to denote repetitions of the same sequence. We will also

denote this process as TT_FF
32412 423

FF_TT.

Ú Figure 2. The movements of the toads and frogs can be interpreted as movements of the empty 
cell according to this code.

Let us make the following observations.

Ë If w is a solution, then w ê. 81 Ø 2, 2 Ø 1, 3 Ø 4, 4 Ø 3< is also a solution.

Buckets and Jumping Pets 11

The Mathematica Journal 11:1  © 2008 Wolfram Media, Inc.



Ë In any minimum-length solution, the symbols 1 and 2 and the symbols 3 and 4 can-
not  appear  together.  This  condition  is,  however,  not  sufficient.  The  solution
1423142323132  for  the  case  n = m = 2  complies  with  it  even  though  it  is  not  of
minimal length. 

Ë Despite appearances, 14 ¹≠ 3, that is, performing movement 1 and then movement
4 is not equivalent to performing movement 3. Similarly, 23 ¹≠ 4. If we denote by
¶ε  the empty word (equivalent to “do nothing”), we have 332 ¹≠ ¶ε,  12 = ¶ε,  34 = ¶ε,
323 = 414, and H332L2 = ¶ε.

Ë Any solution can be  made to  contain  only  the  digits  2  and 3  or  only  the  digits  1
and 4. This comes from the identities

1 = 33 233, 2 = 44 144, 3 = 14 414, 4 = 23 323,
but their presence helps in the shortening of solutions. 

We consider  now the  following  productions  corresponding  to  each  of  the  movements  of
the empty space.

moves := 88x___, a_, b_, "_", y___< Ø 88x, "_", b, a, y<, 1<,
8x___, "_", a_, b_, y___< Ø 88x, b, a, "_", y<, 2<,
8x___, a_, "_", y___< Ø 88x, "_", a, y<, 3<,
8x___, "_", a_, y___< Ø 88x, a, "_", y<, 4<<;

Function toadsAndFrogs takes a string describing a starting state and attempts to find
a solution to the problem of swapping the positions of the frogs and toads. As in the Prob-
lem  of  the  Buckets,  it  makes  use  of  backtrack  to  traverse  the  state  space  up  to  a  given
depth.

a =.; b =.;
toadsQ@8"T" ..<D := True
toadsQ@_D := False
frogsQ@8"F" ..<D := True
frogsQ@_D := False

toadsAndFrogs@TF_String, depth_D :=
Module@8back, moves, getCandidates, ans = 8<, lim = depth<,

back@x_D := 1 ê; Length@xD > lim;
back@x : 8___, 88F___, "_", T___<, _<<D :=
HAppendTo@ans, xD; lim = Min@lim, Length@xDDL ê;
frogsQ@8F<D && toadsQ@8T<D;

back@feasible : 888_String ..<, _Integer< ..<D :=
Module@8candidates<,
candidates = Select@getCandidates@Last@feasibleDD,

Not@MemberQ@First êü feasible, First@ÒDDD &D;
Map@back@Join@feasible, 8Ò<DD &, candidatesDD;

moves :=
88x___, a_, b_, "_", y___< Ø 88x, "_", b, a, y<, 1<,
8x___, "_", a_, b_, y___< Ø 88x, b, a, "_", y<, 2<,
8x___, a_, "_", y___< Ø 88x, "_", a, y<, 3<,
8x___, "_", a_, y___< Ø 88x, a, "_", y<, 4<<;

12 Jaime Rangel-Mondragón

The Mathematica Journal 11:1  © 2008 Wolfram Media, Inc.



8x___, "_", a_, y___< Ø 88x, a, "_", y<, 4<<;

getCandidates@state : 88_String ..<, _Integer<D :=
ReplaceList@First@stateD, movesD;

back@88Characters@TFD, 0<<D;
8StringJoin@First@ÒDD, Last@ÒD< & êü Last@ansDD

For instance, for the problem depicted in Figure 1 we obtain the actual sequence with the
coding of the movements of the empty space involved as follows.

toadsAndFrogs@"TT_FF", 20D

88TT_FF, 0<, 8TTF_F, 4<, 8T_FTF, 1<, 8_TFTF, 3<, 8FT_TF, 2<,
8FTFT_, 2<, 8FTF_T, 3<, 8F_FTT, 1<, 8FF_TT, 4<<

We can compute a table comprising all solutions for each one of the members of the state
space.

space = StringJoin êü Permutations@Characters@"TT_FF"DD;
Partition@

Map@8Ò, u = toadsAndFrogs@Ò, 10D; FromDigits@Last êü uD< & ,
spaceD, 6D êê MatrixForm

TT_FF
41322314

TTF_F
1322314

TTFF_
31322314

T_TFF
2411423

T_FTF
322314

T_FFT
41423

TFT_F
411423

TFTF_
11423

TF_TF
4411423

TF_FT
1423

TFFT_
331423

TFF_T
31423

_TTFF
42411423

_TFTF
22314

_TFFT
2414

_FTTF
442314

_FTFT
423

_FFTT
2

FTT_F
41414

FTTF_
1414

FT_TF
2314

FT_FT
414

FTFT_
314

FTF_T
14

F_TTF
42314

F_TFT
23

F_FTT
4

FFTT_
1

FFT_T
3

FF_TT
0

· Amphibia in Theory

Unlike  the  space  of  buckets,  the  Problem of  the  Toads  and  Frogs  has  an  extensive  state
space  including  Hn+m+1L!n!m!  states,  in  which  any  state  can  be  reached  from  any  other  one.
Specifically,  let  TFnm  be  the  set  of  all  possible  configurations  of  n  toads  and  m  frogs.
Then the following property applies.

Theorem 1. For all A, Bœ TFnm, there exists a word w such that AØ
w

B.

Buckets and Jumping Pets 13

The Mathematica Journal 11:1  © 2008 Wolfram Media, Inc.



Proof. Because of the nature of the transitions, the proof relies in being able to find a

word h such that _Tn F Ø
h

_FTn. Such a transformation is given by:

h =
2Hn+1Lê2 3 H14Ln-1 3 n odd
2nê2 4 H14Ln 3 n even

. ·

(We use the symbol · to indicate end of proof.)

Note that this proof does not provide a way to obtain the shortest sequence we seek. 

We  need  to  apply  words  describing  moves  to  configurations  of  toads  and  frogs.  These
words are juxtapositions of powers of symbols taken from the set {1, 2, 3, 4}, the powers
being used as a shorthand to indicate repetitions of their respective base. Words will be de-
scribed by a list of pairs similarly as those expressing the canonical factorization of a posi-
tive integer number. Because these words grow quite rapidly, we will work with them fac-
torized,  their  type  being  88_String .., _Integer< ..<.  For  example,  if  n = 11,
the  transformation  mentioned  in  the  previous  proof  will  be  structured  as
h = 88"2", 6<, 8"3", 1<, 8"14", 10<, 8"3", 1<<.  States  will  have  the  type
8_String ..<,  where each of their  members will  be one of “T”, “F”, or “_” and only
one occurrence of the underscore is allowed and required. Their action by a word will be
computed  by  the  function  action.  In  order  to  display  patterns  and  words  more  con-
cisely, we use predicates showPattern and showWord (for an alternative way regard-
ing the design of the latter, see [6]).

action@pattern_, word_D := Module@8w, step<,

step@8x___, a_, b_, "_", y___<, "1"D := 8x, "_", b, a, y<;
step@8x___, "_", a_, b_, y___<, "2"D := 8x, b, a, "_", y<;
step@8x___, a_, "_", y___<, "3"D := 8x, "_", a, y<;
step@8x___, "_", a_, y___<, "4"D := 8x, a, "_", y<;

w = Flatten@Map@Table@Characters@First@ÒDD, 8Last@ÒD<D &,
wordDD;

Fold@step, Characters@patternD, wDD

showPattern@p_D := StringJoin@pD

showWord@w_D :=
DisplayForm@
RowBox@
Map@
SuperscriptBox@First@ÒD, If@Last@ÒD ã 1, "", Last@ÒDDD &,
wDDD

14 Jaime Rangel-Mondragón

The Mathematica Journal 11:1  © 2008 Wolfram Media, Inc.



To verify our previous assertion we proceed as:

action@"_TTTTTTTTTTTF",
88"2", 6<, 8"3", 1<, 8"14", 10<, 8"3", 1<<D êê

showPattern

_FTTTTTTTTTTT

Definition 1. Let wn be the following sequence

w0 = ¶ε

wn =
wn-1 41n n even
wn-1 32n n odd

the family wn is readily coded as:

w0 := 88"", 1<<
wn_?EvenQ := Join@wn-1, 88"4", 1<, 8"1", n<<D
wn_ := Join@wn-1, 88"3", 1<, 8"2", n<<D

The first six members of this sequence are:

Table@showWord@wnD, 8n, 6<D

9 3 2 , 3 2 4 12, 3 2 4 12 3 23, 3 2 4 12 3 23 4 14,

3 2 4 12 3 23 4 14 3 25, 3 2 4 12 3 23 4 14 3 25 4 16=

The word wn is used on our problem as follows.

Theorem 2. Tn _Fn
wn _ HFTLn n even

HFTLn _ n odd
.

Proof. (induction on n) For n = 1, we have T1 _F1
w1=32 FT_ .

Let  us  assume  the  result  is  true  for  the  index  n.  If  n  is  even,

Tn+1 _Fn+1 = TTn _Fn F
wn+1=wn 32n+1 X,  where  X  is  such  that  T_ HFTLn F

32n+1
X,  that  is,

X = HFTL n+1 _. 

The case n odd is handled similarly.  ·

For example, the action of sequence w5 on the case n = m = 5 is: 

showPattern@action@"TTTTT_FFFFF", w5DD

FTFTFTFTFT_

Buckets and Jumping Pets 15

The Mathematica Journal 11:1  © 2008 Wolfram Media, Inc.



Denoting the reverse of w by wR, we have the following result.

Theorem 3. 
HTFLn _ n even
_ HTFLn n odd

wnR Fn _Tn.

Proof. According to the definition: 

w0
R = ¶ε

wn
R =

2n 3 wn
R n even

1n 4 wn
R n odd

.

(induction on n) For n = 1, we have _ HTFL1 = _TF
w1R=23 F_T. 

Assuming the result is true for index n, we have two cases.

n even:

HTFLn+1 _
1n+1

_ HFTL n+1 Ø
4

F_ HTFL n T
wnR FFn _Tn T

n odd:

_ HTFLn+1
2n+1

HFTL n+1 _ Ø
3

FHTFL n _T
wnR FFn _Tn T. ·

This result is used to recover from the effect of wn. For example:

showPattern@action@"TFTFTFTF_", Reverse@w4DDD

FFFF_TTTT

Unifying Theorems 2 and 3, we can explicitly solve our problem for the case of an equal
number of pets.

Theorem 4. Tn _Fn
wn S wn-1R

Fn _Tn where S =
4 n even
3 n odd

.

Proof. As

_ HFTLn Ø
4

F_ HTFLn-1 T

HFTLn _ Ø
3

F HTFLn-1 _T

it suffices to show that 

HTFLn-1
wn-1R

Fn-1 if n is even

HTFLn-1 _
wn-1R

Fn-1 _Tn-1 if n is odd
. ·

16 Jaime Rangel-Mondragón

The Mathematica Journal 11:1  © 2008 Wolfram Media, Inc.



Testing this result for the case n = m = 8, we obtain:

showPattern@action@"TTTTTTTT_FFFFFFFF",
Join@w8, 88"4", 1<<, Reverse@w7DDDD

FFFFFFFF_TTTTTTTT

The case where we have an unbalanced number of pets is more involved. First, we deduce
the following result from Theorem 4.

Corollary 1. Let k = Min@n, mD. Then

Tn _Fm
wk

n § m
_ HFTLn Fm-n n even
HFTLn _Fm-n n odd

m < n
Tn-m _ HFTL m m even
Tn-m HFTLm _ m odd

Definition 2. Let xn, m be the word defined as:

xn, 0 = ¶ε

xn,m =
42n xn,m-1 m even
41n xn,m-1 m odd

.

Let xn, m stand for the word xn, m acted upon by the transposition

barX = 8"1" Ø "2", "2" Ø "1"<;

Similarly,  let  wn  stand  for  the  previously  introduced  word  wn  after  applying  the
transposition

barW = 8"1" Ø "2", "2" Ø "1", "3" Ø "4", "4" Ø "3"<;

The family xn, m can be readily coded as:

xn_,0 := 88"", 1<<
xn_,m_?EvenQ := Join@88"4", 1<, 8"2", n<<, xn,m-1D
xn_,m_ := Join@88"4", 1<, 8"1", n<<, xn,m-1D

For example, the first six members of xn, 3 are:

Table@showWord@xn,3D, 8n, 6<D

94 1 4 2 4 1 , 4 12 4 22 4 12 , 4 13 4 23 4 13 ,

4 14 4 24 4 14 , 4 15 4 25 4 15 , 4 16 4 26 4 16 =

Buckets and Jumping Pets 17

The Mathematica Journal 11:1  © 2008 Wolfram Media, Inc.



and the first six members of the family wn are:

Table@showWord@wn ê. barWD, 8n, 6<D

9 4 1 , 4 1 3 22, 4 1 3 22 4 13, 4 1 3 22 4 13 3 24,

4 1 3 22 4 13 3 24 4 15, 4 1 3 22 4 13 3 24 4 15 3 26=

We state Theorems 5 through 7 without their proofs, which are somewhat laborious. They
progressively allow us to obtain an explicit word solving our general problem.

Theorem 5. 
_ HTFL n n even
HTFL n _ n odd

>
wn
R

Fn _Tn.

For example, for the case n = 5 we have:

showPattern@action@"TFTFTFTFTF_", Reverse@w5D ê. barWDD

FFFFF_TTTTT

Theorem 6. Let 0< n§ m. Then

Tn _ Fm
wn x n,m-n Fm-n _ HFTLn m even

Tn _ Fm
wn x n,m-n Fm-n HFTLn _ m odd.

This case involves the action of families w and x together. Consider, for example, the fol-
lowing two cases.

showPattern@action@"TTT_FFFFFFFF", Join@w3, x3,5DDD

FFFFF_FTFTFT

showPattern@action@"TT_FFFFFFF", Join@w2, x2,5 ê. barXD DD

FFFFFFTFT_

Now we only need to consider word A as given in the following theorem.

Theorem 7. Let 0< n§ m. Then Tn _ Fm wn A Fm _Tn, where

A =

xn,m-n 4 wn-1
R n even, m even

xn,m-n 3 wn-1
R n even, m odd

xn,m-n 4 wn-1
R n odd, m even

xn,m-n 3 wn-1
R n odd, m odd

.

18 Jaime Rangel-Mondragón

The Mathematica Journal 11:1  © 2008 Wolfram Media, Inc.



Examples covering each one of these four cases follow.

showPattern@action@"TTTT_FFFFFF",
Join@w4, x4,2, 88"4", 1<<, Reverse@w3DDDD

FFFFFF_TTTT

showPattern@action@"TT_FFFFFFFFF",
Join@w2, x2,7 ê. barX, 88"3", 1<<, Reverse@w1D ê. barWDDD

FFFFFFFFF_TT

showPattern@action@"TTT_FFFF",
Join@w3, x3,1, 88"4", 1<<, Reverse@w2D ê. barWDDD

FFFF_TTT

showPattern@action@"TTTTT_FFFFFFFFFFF",
Join@w5, x5,6 ê. barX, 88"3", 1<<, Reverse@w4DDDD

FFFFFFFFFFF_TTTTT

We finally arrive at our main result.

Corollary 2.  We  can  solve  the  n-Toads  and  m-Frogs  problem  using  nHn+mL2  jumps
and n+ m moves. 
Our  results  provide  the  word  3241423  to  solve  T_FFF  and  the  word  32411423  to  solve
TT_FF, which we previously attacked exhaustively with the help of backtrack.
Using a different approach to reach a different aim, Berlekamp et al. [7] apply the theory
of surreal numbers to analyze the Problem of Toads and Frogs.

‡ The Problem of the Rabbits
Oh dear! Oh dear!
I shall be too late!
The white rabbit in Alice in Wonderland
Lewis Carroll, 1865

Consider the following interesting variation of the Problem of the Toads and Frogs in the
previous  section.  There  are  n  rabbits  confined  in  a  grid  of  size  n+ 1.  All  rabbits  are  la-
beled sequentially and are initially arranged as shown in Figure 3, leaving only a left-most
empty  space  labeled  0.  They  can  jump  and  move  as  in  the  Problem  of  the  Toads  and
Frogs.  The  Problem  of  the  Rabbits  consists  of  orchestrating  the  series  of  state  changes
needed  to  take  the  rabbits  from  positions  01 234 … n  to  positions  0 nHn- 1L … 21  in  the
shortest number of moves.

Buckets and Jumping Pets 19

The Mathematica Journal 11:1  © 2008 Wolfram Media, Inc.



Ú Figure 3. The problem of the rabbits for the case n = 4. Although they are displayed here looking 
to the left, they are free to turn and jump about within the confines of their world.

Any state is reachable from any other and the search space grows rapidly with n, which ren-
ders a  trial-and-error  approach impractical.  The following function rabbits  adapts  our
backtrack  paradigm  to  this  problem.  Given  the  number  n  of  rabbits  and  the  depth  of
search, it  exhaustively looks for a solution. The coding that we follow is the same as the
one adopted to describe the empty space in the previous section as depicted in Figure 2.

rabbits@n_Integer, depth_D :=
Module@8goal, back, move, getCandidates, ans = 8<,

lim = depth<,

back@x_D := 1 ê; Length@xD > lim;
back@x : 8___, 8g_, _<<D :=
HAppendTo@ans, xD; lim = Min@lim, Length@xDDL ê;
g == goal;

back@feasible : 888_String ..<, _Integer< ..<D :=
Module@8candidates<,
candidates = Select@getCandidates@Last@feasibleDD,

Not@MemberQ@First êü feasible, First@ÒDDD &D;
Map@back@Join@feasible, 8Ò<DD &, candidatesDD;

move := 88x___, a_, b_, "0", y___< Ø 88x, "0", b, a, y<, 1<,
8x___, "0", a_, b_, y___< Ø 88x, b, a, "0", y<, 2<,
8x___, a_, "0", y___< Ø 88x, "0", a, y<, 3<,
8x___, "0", a_, y___< Ø 88x, a, "0", y<, 4<<;

getCandidates@state : 88_String ..<, _Integer<D :=
ReplaceList@First@stateD, moveD;

goal = Join@8"0"<, ToString êü Range@n, 1, -1DD;
back@88ToString êü Range@0, nD, 0<<D;
If@ans == 8<, 8<, Last@ansDDD

For example, if there are two rabbits we obtain:

u = rabbits@2, 10D;
Map@8StringJoin@First@ÒDD, Last@ÒD< &, uD

88012, 0<, 8102, 4<, 8120, 4<, 8021, 1<<

20 Jaime Rangel-Mondragón

The Mathematica Journal 11:1  © 2008 Wolfram Media, Inc.



With three rabbits, the solution sequence grows as:

u = rabbits@3, 10D;
Map@8StringJoin@First@ÒDD, Last@ÒD< &, uD

880123, 0<, 82103, 2<, 82130, 4<,
82031, 1<, 82301, 4<, 80321, 1<<

Compiling a table of solutions for the cases of up to five rabbits, we obtain:

Table@u = rabbits@n, 18D; 8n, FromDigits@Last êü uD<,
8n, 2, 5<D êê MatrixForm

2 441
3 24 141
4 4 241 142 411
5 2 441 322 311 422 311

To get some insight into the problem, consider the following results. 

Definition 3. Let Xn be the word defined as: X1 = 4, X2 = 2 and

Xn =
2nê2 3 H14Ln-2 2Hnê2L-1 4 H14Ln-2 Xn-2 n even
2Hn-1Lê2 4 H14Ln-1 2Hn-3Lê2 4 H14Ln-3 Xn-2 n odd

.

Theorem 8. 0123 … n
Xn 3n 0 n Hn- 1L Hn- 2L … 21.

Proof. For n even:

012 … n
2nê2

214 365 … n Hn- 1L 0

Ø
3

214 365 … n 0 Hn- 1L
H14Ln-2

n 0 214 365 … Hn- 2L Hn- 3L Hn- 1L
2Hnê2L-1

n 123 … Hn- 2L 0 Hn- 1L

Ø
4

n 123 … Hn- 2L Hn- 1L 0
H14L n-2

n Hn- 1L 0123 … Hn- 2L

the case n odd is handled similarly. ·

Although  useful,  this  result  gives  a  large  upper  bound  for  the  solution.  For  instance,  in-
stead of the 21 movements required to get from 0123456 to 0654321, we need 43 by using
Theorem 8. Just to appreciate the subtleties involved, let us consider the steps used in ap-
plying one of the shortest solutions 222311322231132223113:

0 123 456
222

2 143 650
311

2 041 635
322

4 261 035
231

4 260 513
132

6 402 513
223

6 452 301
113

0 654 321.

If instead of describing the movement of the 0 marker, we explicitly mention the label of
the rabbit that has to move/jump, we have the following result.

Buckets and Jumping Pets 21

The Mathematica Journal 11:1  © 2008 Wolfram Media, Inc.



If instead of describing the movement of the 0 marker, we explicitly mention the label of
the rabbit that has to move/jump, we have the following result.

Theorem 9. Let e be the increasing sequence of  even labels 0246  … and o the de-
creasing sequence of odd labels … 531 of the n rabbits involved in the rabbits problem. 
Then the following holds:

0123 … n
He oLn+1

0123 … n

0123 … n
He oLnê2 e

0 n Hn- 1L … 321 n even

0123 … n
He oLHn+1Lê2 e

nHn- 1L … 210 n odd.

This provides sequence H246 531L3 246 as a 21-step solution for the case n = 6. In general,
it provides a sequence significantly smaller than the one given by Theorem 8.
Once the training of our rabbits is over, they can be put in a circular board connecting the
last square to the first one to study their reactions to a more difficult setup. This new ar-
rangement is reflected in the following list of transformations that gives rise to the follow-
ing function Crabbits (circular rabbits).

moves := 88"0", x___, a_, b_< Ø 88"0", b, a, x<, 1<,
8"0", a_, b_, x___< Ø 88"0", x, b, a<, 2<,
8"0", x___, a_< Ø 88"0", a, x<, 3<,
8"0", a_, x___< Ø 88"0", x, a<, 4<<;

Crabbits@n_Integer, depth_D :=
Module@8goal, back, moves, getCandidates, ans = 8<,

lim = depth<,

back@x_D := 1 ê; Length@xD > lim;
back@x : 8___, 8g_, _<<D :=
HAppendTo@ans, xD; lim = Min@lim, Length@xDDL ê;
g == goal;

back@feasible : 888_String ..<, _Integer< ..<D :=
Module@8candidates<,
candidates = Select@getCandidates@Last@feasibleDD,

Not@MemberQ@First êü feasible, First@ÒDDD &D;
Map@back@Join@feasible, 8Ò<DD &, candidatesDD;

moves := 88"0", x___, a_, b_< Ø 88"0", b, a, x<, 1<,
8"0", a_, b_, x___< Ø 88"0", x, b, a<, 2<,
8"0", x___, a_< Ø 88"0", a, x<, 3<,
8"0", a_, x___< Ø 88"0", x, a<, 4<<;

getCandidates@state : 88_String ..<, _Integer<D :=
ReplaceList@First@stateD, movesD;

goal = Join@8"0"<, ToString êü Range@n, 1, -1DD;
;

22 Jaime Rangel-Mondragón

The Mathematica Journal 11:1  © 2008 Wolfram Media, Inc.



back@88ToString êü Range@0, nD, 0<<D;
If@ans == 8<, 8<, Last@ansDDD

The results for up to six rabbits are:

Table@u = Crabbits@n, 15D;
8n, FromDigits@Last êü uD<, 8n, 2, 6<D êê MatrixForm

2 4
3 2
4 4422
5 422 232
6 44 422 322 322

Let us note that the symbol “0” in the previous transformation move  is not really neces-
sary. In looking at the resulting 0-less transformations for the first time, who would real-
ize that these strange transformations correspond to movements performed by rabbits in a
circular one-dimensional board!

‡ Acknowledgments
This  work  was  completed  while  the  author  was  a  visiting  scholar  at  Wolfram Research,
Inc.,  whose  assistance  and  enthusiastic  support  is  gratefully  acknowledged.  I  would  also
like to thank the University of Queretaro in Mexico for their continued support.

‡ References
[1] D.  E.  Knuth,  “Estimating  the  Efficiency  of  Backtrack  Programs”  in  Selected  Papers  on  the

Analysis of Algorithms, Stanford, CA: CSLI Publications, 2000, pp. 55–75.

[2] S. S. Skiena, The Algorithm Design Manual, New York: Springer-Verlag, 1997.

[3] S. S. Skiena, Implementing Discrete Mathematics: Combinatorics and Graph Theory in Math-
ematica, Reading, MA: Addison-Wesley, 1990.

[4] H. S. M. Coxeter and S. L. Greitzer, Geometry Revisited,  Washington, DC: The Mathemati-
cal Association of America, 1967.

[5] T.  H.  OʼBeirne,  “Jug and Bottle  Department,”  in  Puzzles and Paradoxes,  New York:  Oxford
University Press, 1965 pp. 49–75.

[6] P. Abbott, ed., “Tricks of the Trade,” The Mathematica Journal, 6(4), Fall 1996, pp. 17–26.

[7] E. R. Berlekamp, J.  H. Conway, and R. Guy, Winning Ways: For Your Mathematical  Plays,
Vol. 2, London: Academic Press, 1982.

J. Rangel-Mondragón, “Buckets and Jumping Pets,” The Mathematica Journal, 2011.
dx.doi.org/10.3888/tmj.11.1-3.

Buckets and Jumping Pets 23

The Mathematica Journal 11:1  © 2008 Wolfram Media, Inc.



About the Author

Jaime Rangel-Mondragón received M.Sc.  and Ph.D.  degrees  in  applied  mathematics  and
computation from the University College of  North Wales in Bangor,  UK. He has been a
visiting scholar at Wolfram Research, Inc. and held research positions in the Faculty of In-
formatics at UCNW, the College of Mexico, the Center of Research and Advanced Stud-
ies, the Monterrey Institute of Technology, the Queretaro Institute of Technology, and the
University of Queretaro in Mexico, where he is presently a member of the Faculty of Infor-
matics.  A  prolific  contributor  to  MathSource,  he  currently  writes  the  column  Geometric
Themes for the Mathematica in Education and Research journal. His research interests in-
clude recreational mathematics, combinatorics, the theory of computing, computational ge-
ometry, and functional languages.
Jaime Rangel-Mondragón
Universidad Autónoma de Querétaro
Mexico
jrangelmondragon@gmail.com

24 Jaime Rangel-Mondragón

The Mathematica Journal 11:1  © 2008 Wolfram Media, Inc.


