
The Mathematica” Journal

Generating Self-Affine
Tiles and Their
Boundaries
Mark McClure

A  self-affine  tile  is  a  two-dimensional  set  satisfying  an  expansion  identity
that  allows  tiling  images  to  be  generated.  In  this  article,  we  discuss  the
generation  of  such  images  paying  particular  attention  to  the  boundary
of the set, which frequently displays a fractal structure.

‡ Introduction

A tile  is  a  bounded  subset  of  the  plane,  copies  of  which  may  be  used  to  cover
the  whole  plane  without  gaps  or  overlap.  There  are  many  sources  (such  as  [1])
of  beautiful  images  involving  tiling,  from medieval  Islamic  art,  through Escher,
to more modern work. Perhaps the simplest example of a tile, though, is a solid
square, which may tile the plane in a familiar checkerboard pattern. The square
is also an example of an important subclass of tiles called the self-affine tiles. A tile
T  is  self-affine  if  there  is  an  expanding  matrix A  and  a  collection  of  vectors �

(called the digit set) such that

(1)A ÿ HTL = T +� ª Ê
dœ�

HT + dL,

where the pieces in the union are assumed to intersect only in their boundaries.
Here A ÿ HTL  is  the  image of T  under  multiplication by  the matrix A.  Note that
if T  is  a  self-affine tile  with respect  to A  and �,  then A ÿ HTL  is  a  self-affine tile
with  respect  to A  and A ÿ H�L.  Thus,  iteration  of  equation  (1)  yields  arbitrarily
large tiling images. The unit square is an example of a self-affine tile where

(2)A =
2 0
0 2

and � =
0
0

,
1
0

,
0
1

,
1
1

.

Iteration of equation (2) yields the checkerboard pattern.

As we will see, self-affine tiles of surprising intricacy may be generated using the
notion of an iterated function system (IFS) from fractal geometry. For example,
the image in Figure 1 is a self-affine four-tile (i.e., it consists of four parts) corre-
sponding to the matrix and digit set
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(3)A =
1 - 3

3 1
and � =

0
0

,
1
0

,
-1 ê 2

3 ì 2
,

-1 ê 2

- 3 ì 2
.

This text is the heading of a closed group that sets up definitions.

In[25]:= Show�Graphics��pic1, pic2, pic3, pic4��,
AspectRatio � Automatic�

Out[25]=

Figure 1. A self-affine four-tile.

Constructing  interesting  images  is  greatly  simplified  by  the  existence  of  fairly
simple  rules  dictating  possible  choices  for  the  matrix A  and  digit  set �.  Also
of interest is the boundary between the constituent parts. The boundary of a self-
affine  tile  frequently  has  a  fractal  structure  and  may  be  generated  and  analyzed
using a generalized notion of an IFS. The boundary of the four-tile, for example,
may be shown to have a fractal dimension of logH3L ê logH2L º 1.585.

‡ Self-Affine Sets and Tiling

Self-similarity  and  iterated  function  systems  are,  by  now,  fairly  well-known
concepts.  See,  for  example,  [2, 3]  for  a  general  introduction  or  [4, 5],  which
describe  implementations  using Mathematica.  Here,  we  briefly  define  our  terms
to establish notation and clarify important results.

Roughly speaking, a set is called self-similar  if it is composed of two or more sets
geometrically similar to the whole. Self-similarity is more rigorously defined and
analyzed using an important tool called an iterated function system, or IFS. An IFS
is simply any finite collection 8 fi<i=1

m  of contractive mappings of the plane. Associ-
ated  with  an  IFS  there  is  always  a  unique  nonempty,  closed,  bounded  set E
satisfying

(4)E =Ê
i=1

m

fiHEL.
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The set E defined in equation (4) is called the invariant set or attractor of the IFS.
The functions in an IFS describe the exact relationship between the invariant set
and  its  constituent  parts.  If  the  IFS  consists  entirely  of  contractive  similarities,
then E is called self-similar. If the IFS consists of affine functions, then E is called
self-affine.

Self-affine sets have played an important role in the development of fractal geom-
etry  in  part  because  they  provide  a  dazzling  class  of  images,  even though affine
functions are very easy to describe and implement on a computer. Thus, it takes
a  small  amount  of  information  to  store  very  interesting  images.  In Mathematica
(in  particular,  in  the  packages  described here),  an  affine  function may be repre-
sented as {A,b}, where A is a two-dimensional matrix and b is a shift vector. The
following code represents an IFS for the unit square.

In[26]:= A �
1�2 0

0 1�2 ;

f1 � �A, �0, 0��;
f2 � �A, �1�2, 0��;
f3 � �A, �1�2, 1�2��;
f4 � �A, �0, 1�2��;
squareIFS � �f1, f2, f3, f4�;

In  order  to  generate  an  image  of  the  square,  we  use  the ShowIFS  command
defined  in  the IFS  package.  The  implementation  of  the ShowIFS  command  is
similar to commands described in [4, 5].

In[32]:= Needs�"FractalGeometry`IFS "̀�;
In[33]:= ShowIFS�squareIFS, 9, Color � True,

Colors � �Maroon, Gray, Maroon, Gray��

Out[33]=

Figure 2. A square generated from an IFS.

In  the ShowIFS  command,  the  second  argument  (9  in  this  case)  indicates  the
depth  of  the  approximation.  Thus,  the  image  consists  of 49 = 262,144  points
distributed over the unit square. A large number of points is typically required, as
we  want  to  fill  a  two-dimensional  region.  The Color  option  is  nice  when  in-
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vestigating  tiles  to  highlight  the  constituent  parts.  When Color  is  set  to True,
the Colors  option may be set to Automatic  (the default), in which case the Hue
function is used to generate a spectrum of colors, or Colors  may be set to a list
of colors.

Now, a self-affine tile is also a self-affine set. If a self-affine tile T  satisfies equa-
tion (1), then after applying A-1 to both sides we see that

(5)T = Ê
dœ�

IA-1 T + A-1 dM.

In  fact,  this  is  the  exact  relationship  between  the  description  of  the  square  as  a
self-affine tile given by equations (2) and the IFS defined by squareIFS; it is easy
to  pass  from  one  description  to  the  other.  The  major  question  now  is  how  to
choose  a  matrix A  and  digit  set �  to  generate  interesting  images.  A  beautiful
theorem, published by Christoph Bandt [6], provides an answer. This theorem is
also described in [7] at a more elementary level.

Theorem. Let A  be  a  two-dimensional  expansive  matrix  with  integer  entries
and let �  form a residue  system for A.  Then,  there  is  a  unique  self-affine  tile T  with
matrix A  and  digit  set �.  In  fact, T  is  the  invariant  set  of  the  IFS  consisting  of  the
affine functions defined by 9A-1, A-1 d= for d œ �.

An expansive  matrix  is  simply a matrix whose eigenvalues are all  larger than one
in  absolute  value.  The terminology  residue system and digit  set  originates  from
work by Gilbert [8] describing certain self-similar sets in terms of number repre-
sentation in the complex plane. By definition, a residue system for A is a complete
set  of  coset  representatives  for  the  quotient  group �2 ë A�2.  While  this  defini-
tion  is  abstract,  it  is  fairly  easy  to  describe  how  to  construct  a  residue  system.
Given the matrix A, denote its column vectors by v1 and v2. The simplest residue
system  for A  consists  of  those  points  with  integer  coordinates  lying  inside  the
parallelogram  determined  by v1  and v2  and  including  only  the  two  sides
containing  the  origin.  For  example,  the  following  figure  illustrates  this  simple
digit set for the matrix

2 2
-1 2

.

In[34]:= ShowBaseDigitSet�Transpose���2, �1�, �2, 2���
Out[34]= ShowBaseDigitSet���2, 2�, ��1, 2���
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We  may  construct  other  residue  systems  from  this  simple  one  as  follows:  two
integer points are said to be equivalent if their difference is a linear combination
of v1  and v2.  Any  vector  from  our  simple  residue  system  may  be  replaced  by
another  from  its  equivalence  class;  that  is,  starting  from  our  simplest  residue
system,  we  may  simply  shift  some  of  its  members  by  some  linear  combination
of v1  and v2  to obtain another residue system. A digit set which forms a residue
system for A is called a standard digit set. Note that the shift of a standard digit set
by an integer vector is  again a standard digit set;  thus,  we may suppose that the
zero  vector  is  one  of  the  digits.  Some of  our  package  functions  use  this  simpli-
fying assumption, so it is best to use digit sets containing the origin.

Let  us  demonstrate  how  easy  it  is  to  generate  interesting  self-affine  tiles  using
this theorem. We first describe a simple modification of the square’s IFS. We use
the  same  matrix,  a  simple  expansion  by  the  factor  2,  but  we  replace  one  of  the
digits by a shift. In particular, we shift the digit H1, 1L by -Hv1 + v2L = H-2, -2L to
obtain H-1, -1L.  We use  the  substitution  operator  to  translate  the  digit  set  and
matrix into the modified IFS.

In[35]:= A �
2 0

0 2
;

� � ��0, 0�, �1, 0�, ��1, �1�, �0, 1��;
modifiedIFS � � �. �x�?NumericQ, y�� :�

�Inverse�A�, Inverse�A�.�x, y��;
In[38]:= ShowIFS	modifiedIFS, 8, Color � True,

Colors � �Gray, Maroon, Maroon, Maroon�,
Axes � True


Out[38]=

Figure 3. A “minor” modification of Figure 2.
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This simple modification is  already interesting and the result is  difficult even to
recognize as  a  tile.  We can get  an inkling of  how it  might  tile  by examining all
shifts of the set by the digit set.

In[39]:= Show�� �. �x�?NumericQ, y�?NumericQ� � �x, y� � � & �� �,

Axes � True�

Out[39]=

Our  next  example  is  called  the  “twin  dragon”  and  is  defined  by  the  following
matrix.

In[40]:= A 	
1 1


1 1
;

Note  that  the  determinant  of  this  matrix  is  2.  In  general,  the  absolute  value
of  the  determinant  indicates  the  number  of  pieces  constituting  the  tile.  This  is
because  the  union  on  the  right  of  equation  (1)  increases  the  area  of T  by  the
factor Ò H�L,  while  the matrix  on the left  side of  equation (1)  increases  the area
of T  by  the  factor » detHAL ».  Thus,  in  this  case,  our  digit  set  will  have  two  el-
ements. Using the column vectors, it is easy to determine the simplest digit set.

In[41]:= � 	 ��0, 0�, �1, 0��;
Now we translate this matrix and digit set to an IFS, as in the previous example.

In[42]:= twindragonIFS 	 � �. �x�?NumericQ, y�� :�

�Inverse	A
, Inverse	A
.�x, y��;
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Here is the result.

In[43]:= twindragonPic � ShowIFS�twindragonIFS, 17,

Color � True,

Colors � �Maroon, Gray�,
Axes � True�

Out[43]=

Figure 4. The twin dragon.

The  rotation  induced  by  the  matrix A,  and  therefore  by A-1,  makes  it  slightly
more difficult to see how equation (1) is satisfied. In Figure 5, we see the image
of  Figure 4  under  the  mapping x Ø A x.  The  red  part  of  the  twin  dragon  has
clearly  mapped  onto  the  whole  original  twin  dragon,  while  the  gray  part  has
mapped onto the original shifted to the right one unit.

In[44]:= Show�twindragonPic �. �x�?NumericQ, y�?NumericQ� :� A.�x, y��

Out[44]=

Figure 5. The image of Figure 4 under the mapping x Ø A x.
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Digraph Iterated Function Systems

Before  examining  more  examples,  we  turn  to  the  question  of  how  to  highlight
the  boundary  between  the  parts.  It  turns  out  that  the  boundary  of  a  self-affine
tile may be generated by a generalized type of IFS called a digraph iterated func-
tion  system.  To  illustrate  this  concept,  consider  the  two  curves C1  and C2.  The
curve C1  is  composed  of  one  copy  of  itself,  scaled  by  the  factor 1 ê 2,  and  two
copies  of C2,  rotated  and scaled by the factor 1 ê 2. C2  is  composed of  one copy
of itself, scaled by the factor 1 ê 2, and one copy of C1, reflected and scaled by the
factor 1 ê 2.

This text is the heading of a closed group that sets up definitions.

In[62]:= Show�
GraphicsGrid���labeledA, labeledB�, �decomposedA, decomposedB���,
ImageSize � �288, Automatic�,
BaseStyle � �Background� GrayLevel�1��	

Out[62]=

C1

C2

C2 C2

C1
C2 C1

In general, digraph self-similarity is exhibited by a family of sets 8Ki<. Each set is
composed of parts which are scaled images of sets chosen from the collection. A
digraph  IFS  is  a  matrix M  whose  elements  are  lists  of  affine  functions.  The
elements in row i indicate how the set Ki  is composed. Thus, the element Mi j  in
row i  and column j  should be a list of affine functions mapping K j  into Ki. The
analog of equation (4) for a digraph IFS is

(6)
Ki =Ê

j

Ê
f œMi j

f IK jM.

As  with  an  IFS,  the  list  of  sets 8Ki<  is  uniquely  determined  by  the  digraph  IFS.
The  curves C1  and C2  may  be  generated  using  a  digraph  IFS,  which  is  repre-
sented as follows.
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In[48]:= a11 � ���1�2, 0�, �0, 1�2��, �1�4, 3 � 4��;
a12 � �1�2 RotationMatrix���3	, �0, 0��;
b12 � �1�2 RotationMatrix����3	, �3�4, 3 � 4��;
a21 � ���1�2, 0�, �0, �1�2��, �1�2, 0��;
a22 � ���1�2, 0�, �0, 1�2��, �0, 0��;
curvesDigraph �

�a11� �a12, b12�
�a21� �a22� ;

The RotationMatrix  function is defined for all of the FractalGeometry packages.
The DigraphFractals  package  also  defines  the  command ShowDigraphFractals ,
which may be used to generate the curves.

In[54]:= Needs
"FractalGeometry`DigraphFractals "̀�;
In[55]:= Column
ShowDigraphFractals
curvesDigraph, 9��

Out[55]:=

The  terminology  digraph  fractal  arises  from  a  description  of  the  combinatorics
involved using directed multigraphs.  A directed multigraph  consists  of  a  finite set
of vertices and a finite set of directed edges between vertices. We use the termi-
nology  multigraph  because  we  allow  more  than  one  edge  between  any  two
vertices.  Figure 6  depicts  the  digraph  for  the  curves C1  and C2.  There  are  two
edges  from node C1  to  node C2  and  one  edge  from node C1  to  itself,  since C1
consists  of two copies of C2  with one copy of itself.  Similarly,  there is  one edge
from node C2 to node C1 and one edge from C2 to itself, since C2 consists of one
copy of C1 together with one copy of itself.

This text is the heading of a closed group that sets up definitions.

In[87]:= x0y0Digraph

Out[87]=

a12

b12

a11

a21

a22

C2C1

Figure 6. The digraph for the curves C1 and C2.
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A path  through  a  digraph  is  a  finite  sequence  of  edges  such  that  the  terminal
vertex  of  any  edge  is  the  initial  vertex  of  the  subsequent  edge.  The  digraph  is
called strongly connected if, for every pair of vertices u and v, there is a path from u
to v.  The  concept  of  strong  connectivity  is  important  to  understand  for  the
following reason:  as  with a  standard  IFS,  there  are  two common algorithms for
generating images using a digraph IFS; one algorithm is stochastic and the other
deterministic. The stochastic algorithm works only when the digraph is strongly
connected,  while  the  deterministic  algorithm  works  whether  the  digraph  is
strongly  connected  or  not.  For  the  purposes  of  this  article,  the  stochastic  algo-
rithm typically works better but, as we will see, it is not always applicable.

The DigraphFractals  package  is  fully  described  in  [9]  along with  more  complete
descriptions of the theory and implementation.

‡ The Boundary of a Tile

Now we wish to use the digraph IFS scheme to describe the boundary of a self-
affine  tile.  The  following  technique  was  published  in  [10].  Suppose  that T  is  a
self-affine tile and there is a lattice G of points in the plane so that the translates
of T  by the points of G form a tiling of the plane. The lattice should be invariant
under the action of A in the sense that AHGL Õ G. (Note that the lattice condition
is  frequently,  but  not  always,  satisfied.)  Given a œ G,  define Ta = T › HT + aL.
The  boundary  of T  is  formed  by  the  collection  of  sets Ta  that  are  nonempty,
excluding  the  case a = 0.  It  turns  out  that  these  sets Ta  are  digraph  self-affine;
that  is,  if  we  let � = 8a œ G : Ta � « anda � 0<,  then  the  collection 8Ta : a œ � <
forms the invariant list of a digraph IFS. This can be demonstrated by examining
how the expansion matrix A affects each set Ta  and then translating to a digraph
IFS by applying A-1:

(7)

AHTaL = AHTL › AHT + aL = Ê
dœ�

HT + dL › Ê
d£œ�

HT + d£ + A aL =

Ê
d,d£œ�

HHT + dL › HT + d£ + A aLL =

Ê
d,d£œ�

@HT › HT - d + d£ + A aLL + dD = Ê
d,d£œ�

IITA a-d+d£ M + dM.

We are only interested in the nonempty intersections, so, given a and b in � , let
MHa, bL  denote  the  set  of  pairs  of  digits Hd, d£L  so  that b = A a - d + d£.  Then,
applying A-1 to both sides of equation (7), we see that

(8)
Ta = Ê

bœ�

Ê
Id,d£MœMHa,bL

IA-1 Tb + A-1 dM.

Equation (8) defines a digraph IFS to generate the sets Ta. Given a and b in � ,
the functions mapping Tb  into Ta  are precisely those affine functions defined by
9A-1, A-1 d= for all digits d so that there is a digit d£ satisfying b = A a - d + d£.
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We now implement these ideas to generate the boundary of the twin dragon. We
first define A and �.

In[88]:= A �
1 1

�1 1
;

� � ��0, 0�, �1, 0��;
We also need to know the set � .  In general,  it  can be difficult to determine � .
Fortunately,  [10]  describes  an  algorithm  to  automate  the  procedure.  The  algo-
rithm  is  fairly  difficult,  however,  and  the  technique  seems  rather  far  removed
from the other techniques described here. Thus, we refer the interested reader to
[10]  and  the  code  defining  the NonEmptyShifts  function  in  the SelfAffineTiles
package.  Examining  Figure 4,  it  is  not  too  difficult  to  see  that  the  correct  set
of vectors �  for the twin dragon is defined as follows.

In[90]:= � � ���1, �1�, �0, �1�, �1, 0�,
�1, 1�, �0, 1�, ��1, 0��;

The  following  code  illustrates  the  six  translates  of  the  twin  dragon  and  colors
them so that they are easy to distinguish.

In[91]:= points � Cases�twindragonPic, �Point, Infinity�;
points �

points �. �x�?NumericQ, y�?NumericQ� � �x, y� � � & �� �;

coloredPoints � Inner�Prepend, h �� points,

�Maroon, Gray, Maroon,

Gray, Maroon, Gray�, List� �. h 	 List;

coloredTranslates � Show�Graphics	coloredPoints
,
AspectRatio 	 Automatic, Axes 	 True,

Prolog 	 AbsolutePointSize	.4
�

Out[94]=

Figure 7. Translates of the twin dragon defining the boundary.
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The original twin dragon from Figure 4 is  the central white region in Figure 7.
The six pieces of the boundary are the boundaries between the white region and
the six colored shifted regions.

Now, for each pair Ha, bL where a and b are chosen from � , we want MHa, bL to
denote  the  set  of  pairs  of  digits Hd, d£L  so  that b = A a - d + d£.  This  can  be  ac-
complished as follows.

In[95]:= pairs�l�List� :� �Flatten�Outer�h, l, l, 1�� �. h � List�;
M���, ��� :� Select�pairs���,

���1�� � ���2�� 	 � � A.� &�;
digitPairsMatrix � Outer�M, �, �, 1�;

In  order  to  make  sense  of  this,  let  us  look at  the  length of  each element  of  the
matrix.

In[98]:= Map�Length, digitPairsMatrix, �2	
 �� MatrixForm

Out[98]//MatrixForm=

0 0 0 0 0 1

2 1 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 2 1 0

0 0 0 0 1 0

This  matrix  is  called  the substitution  matrix  of  the  tile  and  tells  us  simply  the
combinatorial  information  of  how  the  pieces  of  the  boundary  fit  together.
Reading  the  rows,  for  example,  we  see  that  the  first  piece  is  composed  of  one
copy of the last piece, the second piece is composed of one copy of itself and two
copies of the first, and so on. Note also that the order of the rows and columns is
dictated  by  the  order  of  the  set � .  Thus,  the  first  piece  refers  to  the  boundary
along the maroon image in the lower left of Figure 7, since H-1, -1L  is  the first
shift vector in the set � .  The subsequent pieces are numbered counterclockwise
around the central tile, since that is the way that �  is set up.

We  can  transform  the digitPairsMatrix  into  a  digraph  IFS  defining  the
boundary  by  simply  replacing  each  pair Hd, d£L  with  the  affine  function
IA-1, A-1 dM.
In[99]:= boundaryDigraphIFS � digitPairsMatrix �.

��, �x�?NumericQ, y��� :
 �Inverse�A�, Inverse�A�.�x, y��;
To  see  how  it  worked,  we  will  use  the  function ShowDigraphFractalsSto�
chastic  defined  in  the DigraphFractals  package.  This  stochastic  algorithm

frequently  seems  to  work  better  for  this  particular  task  than  the  deterministic
version defined by ShowDigraphFractals .  We will  use color  to distinguish the
constituent parts.
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In[100]:= boundaryParts � ShowDigraphFractalsStochastic�boundaryDigraphIFS,
20 000, PlotRange � ���0.7`, 0.7`�, ��0.4`, 1.4`��,
Ticks � ���0.5`, 0.5`�, �1��, Color � True,

Axes � True, DisplayFunction� Identity�;
GraphicsGrid�Partition�boundaryParts, 3�,
ImageSize � �288, Automatic��

Out[101]=

-0.5 0.5

1

-0.5 0.5

1

-0.5 0.5

1

-0.5 0.5

1

-0.5 0.5

1

-0.5 0.5

1

We can collect all of the pieces to form the entire boundary.

In[102]:= boundary � Show�boundaryParts �. Hue��� � GrayLevel�0��

Out[102]=
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We can display the boundary with the original image of the twin dragon.

In[103]:= Show��twindragonPic, boundary��

Out[103]=

Note  that  we  have  outlined  the  boundary  of  the  entire  set.  If  we  would  like  to
highlight  the  boundaries  of  the  constituent  parts,  we  need  simply  to  feed  the
boundary to  the ShowIFS  command using  the boundaryPoints  as  an  option to
Initiator.

In[104]:= boundaryPoints � Cases�boundary, �Point, Infinity�;
boundaries � ShowIFS�twindragonIFS, 1,

Initiator � boundaryPoints,

DisplayFunction � Identity�;
Show��twindragonPic, boundaries��

Out[106]=
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More Examples

The  algorithms  described  are  encapsulated  in  the  package SelfAffineTiles.  We
load the package and use it to look at many more examples.

In[93]:= Needs�"FractalGeometry`SelfAffineTiles "̀�;
The main graphical command which ties all of the previous algorithms together
is the ShowTile  command. ShowTile[A, depth] accepts the matrix A and gener-
ates  an  approximation  to  the  corresponding  self-affine  tile  to  level depth.  The
boundary is automatically generated and the parts are colored differently.

In[109]:= A � ��1, 2�, ��1, 1��;
ShowTile�A, 10�

Out[109]=

Figure 8. A self-affine three-tile.

The ShowTile command accepts the option DigitSet. When DigitSet is set to
the  default  of Automatic, ShowTile  calls  the BaseDigitSet  function  to  com-
pute the simple digit set described previously. We can illustrate this simple digit
set using the command ShowBaseDigitSet.

In[110]:= ShowBaseDigitSet�A�

Out[110]=
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We can also look at the tiles generated by alternative digit sets using the DigitÖ

Set  option.  In  the  following,  we  subtract  the  first  column  vector  of A,
1
-1

,

from the digit
2
0

 to obtain the shifted digit
1
1

.

In[111]:= � � ��0, 0�, �1, 0�, �1, 1��;
ShowTile�A, 10, DigitSet � ��

Out[112]=

Figure 9. A self-affine three-tile using an alternative digit set.

The tiles in Figures 8 and 9 consist of three pieces, since detHAL = 3. Three-tiles
are  more  diverse  than  two-tiles,  as  we  have  more  flexibility  in  choosing  the
matrix A  and  relative  positions  of  the  digits.  Here  is  another  three-tile  using  a
different matrix.

In[113]:= A � ��2, �1�, �1, 1��;
ShowTile�A, 10�

Out[114]=

Figure 10. Another self-affine three-tile.
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The  examples  in  this  section  so  far  have  been  self-affine  but  not  self-similar.
Sometimes, such a set is affinely equivalent to a self-similar set. In this case, the
self-similar  set  will  correspond  to  the  same  matrix  and  digit  set  expressed  in
another  basis.  As  explained  in  [7],  if A  has  a  pair  of  complex  conjugate  eigen-
values,  then A  is  similar  (i.e.,  conjugate)  to  a  similarity  matrix.  In  this  case,  we
may find the change of basis matrix B as follows. Suppose that the vector

v11 + Â v12

v21 + Â v22

is an eigenvector for A, and let B be the inverse of the matrix

v11 v12

v21 v22
.

Then, B A B-1  will  be  a  similarity  transformation.  The  self-affine  tile  shown  in
Figure 10 falls into this case, as the following computation shows.

In[115]:= Eigenvalues�A�

Out[115]= �
1

2
�3 � � 3 �,

1

2
�3 � � 3 ��

We can now find one of the corresponding eigenvectors.

In[116]:= eigenvec � Eigenvectors�A���1�� �� Simplify

Out[116]= �
1

2
�1 � � 3 �, 1�

And we can use this to find the change of basis matrix B.

In[117]:= B � Inverse���Re�eigenvec��1���, Im�eigenvec��1����,
�Re�eigenvec��2���, Im�eigenvec��2������;

B �� MatrixForm

Out[118]//MatrixForm=

0 1
2

3
�

1

3

The matrix B should conjugate A to a similarity matrix.

In[119]:= B.A.Inverse�B� �� MatrixForm

Out[119]//MatrixForm=

3

2

3

2

�
3

2

3

2

We can see that B A B-1  does indeed induce a similarity transformation. In fact,
it is simply a clockwise rotation throughout the angle p ê 6 together with an expan-
sion of 3 .
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In[120]:= 3 RotationMatrix����6� �� MatrixForm

Out[120]//MatrixForm=

3

2

3

2

�
3

2

3

2

Now the point  is  that,  while  this  last  matrix  does  not  have integer entries,  so it
does  not  seem  to  fall  into  the  scheme  outlined  by  Bandt’s  theorem,  it  may  be
expressed  as  a  matrix  with  integer  entries  with  respect  to  the  correct  choice
of basis.  In fact,  if  we choose our basis  to be the column vectors of B,  then this
similarity  is  expressed  as  the  matrix A.  The  statement  and  proof  of  Bandt’s
theorem are essentially algebraic, so the choice of basis does not affect the result.
The ShowTile  function  accepts  the  option Basis,  which  assumes  that  the
matrix is expressed with respect to the given basis. If we rerender the tile defined
by A with respect to this new basis, we generate a self-similar set.

In[121]:= ShowTile�A, 10,

Basis � Transpose�B��

Out[121]=

When A  is  conjugate to a similarity, the fractal dimension of the boundary may

be calculated by the formula logl
log r

,  where l  is  the spectral radius of the substitu-

tion  matrix  and r  is  the  spectral  radius  of A.  (The  spectral  radius  is  simply  the
largest  of  the  absolute  values  of  the  eigenvalues.)  This  formula  is  encoded  in
the  package  function BoundaryDimension .  For  example,  here  is  the  dimension
of the boundary of the previous tile.

In[122]:= BoundaryDimension�A�
Out[122]= BoundaryDimension���2, �1�, �1, 1���
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A change of basis can be useful even if the matrix A is already a similarity matrix.
For example, the self-similar tile of Figure 3 may be expressed in another basis to
yield the tile in Figure 11,  which has three-fold rotational  symmetry.  Note that
the matrix and digit set have not changed; only the Basis option has been added.
Also  notice  that  the ShowTile  command  accepts  a Colors  option,  which  is
similar to the Colors option for the ShowIFS command.

In[123]:= A � ��2, 0�, �0, 2��;
ShowTile�A, 8,

Colors � �Gray, Maroon, Maroon, Maroon�,
DigitSet � ��0, 0�, �1, 0�, ��1, �1�, �0, 1��,

Basis � ��� 3

2
, �

1

2
�, �0, 1��	

Out[124]=

Figure 11. A self-similar four-tile with three-fold rotational symmetry.

We  will  explain  the  warning  message  in  the  next  section,  although  it  does  not
appear to have genuinely caused a problem in this case.
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As a final example, we generate Gosper’s famous snowflake.

In[125]:= A � ��1, �2�, �2, 3��;
� � ��0, 0�, �0, 1�, ��1, 1�,

��1, 0�, �0, �1�, �1, �1�, �1, 0��;
basis � ��1, 0�, �1�2, 3 � 2��;
ShowTile�A, 6,

DigitSet � �,

Basis � basis,

Colors � 	MidnightBlue,
Gold, IndianRed,

Gold, IndianRed,

Gold, IndianRed
�

Out[128]=

Note that Gosper’s flake was also generated using the change of basis technique,
as was the tile shown in Figure 1.

‡ Potential Problems and Tricks

There are subtle difficulties that may arise when generating images of self-affine
tiles,  particularly  when  dealing  with  the  boundary.  In  this  section,  we  outline
some  of  the  tricks  that  the SelfAffineTiles  package  provides  to  assist  in  dealing
with these potential problems.

First, it should be understood that many tiling pictures are simply not very attrac-
tive.  In  fact,  a  randomly  chosen  digit  set  is  not  likely  to  generate  a  nice  image.
Those who play with the package are likely to find several such examples.

Even  when  the  image  is  quite  attractive,  subtle  issues  can  arise  with  the
boundary.  One  of  the  most  important  issues  is  that  the  digraph  describing  the
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boundary may not be strongly connected. In this case, the stochastic algorithm to
generate  the  boundary  might  not  be  effective.  This  situation  arises  in  the
simplest  of  examples,  that  of  the  unit  square.  Let  us  try  to  generate  the  unit
square  as  simply  as  possible.  For  example,  the  following  command  will  lead
to trouble. (The cell is therefore given the setting Evaluatable Ø False.)

A � ��2, 0�, �0, 2��;
ShowTile�A, 9,

Colors � �
Maroon, Gray,

Gray, Maroon��; �� Timing

The ShowTile  command  recognizes  that  the  boundary  digraph  IFS  is  not
strongly  connected  and  suggests  two  possibilities.  Let  us  follow  the  first
suggestion.

In[129]:= A � ��2, 0�, �0, 2��;
ShowTile�A, 9,

Colors � �Maroon, Gray, Gray, Maroon�,
Boundary � False� �� Timing

Out[130]=

In fact, it is frequently a good idea to set Boundary � False when experimenting
with ShowTile if you do not know what to expect.
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Next, we try the second suggestion.

In[131]:= A � ��2, 0�, �0, 2��;
ShowTile�A, 9,

Colors � �Maroon, Gray, Gray, Maroon�,
BoundaryAlgorithm � Deterministic,

BoundaryDepth � 6� �� Timing

Out[132]=

Now an approximation to the boundary has been generated, but this took consid-
erably  longer  than  the  previous  command  to  yield  a  fairly  poor  image  of  the
boundary.  In this  case,  an understanding of the boundary digraph IFS allows us
to  refine  it  and  improve  the  performance.  The SelfAffineTiles  package  contains
several functions to assist us. First, we look at the substitution matrix of the tile.

In[133]:= subsMatrix � SubstitutionMatrix	A
;
subsMatrix �� MatrixForm

Out[134]//MatrixForm=

1 0 0 0 0 0 0 0

1 2 1 0 0 0 0 0

0 0 1 0 0 0 0 0

1 0 0 2 0 1 0 0

0 0 1 0 2 0 0 1

0 0 0 0 0 1 0 0

0 0 0 0 0 1 2 1

0 0 0 0 0 0 0 1

This  tells  us  that  the  boundary  consists  of  eight  pieces.  Note  that  the  first  and
last pieces each consist of one copy of themselves, while the third and fifth pieces
each consist of one copy of the other. Such simple parts of the digraph IFS will
generate  single  points  and,  in  fact,  these  parts  correspond to  the  vertices  of  the
square. We can verify this by examining the shift set �  used by the program.
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In[135]:= NonEmptyShifts�A�
Out[135]= ���1, �1�, ��1, 0�, ��1, 1�, �0, �1�, �0, 1�, �1, �1�, �1, 0�, �1, 1��

Indeed,  the  first  portion of  the boundary is  simply T › HT - H1, 1LL,  where T  is
the unit square. Of course, this intersection is simply the vertex at the origin. We
may generate the entire boundary using only the shifts 81, 0<, 80, 1<, 8-1, 0<, and
80, -1<. This will make the boundary digraph IFS much smaller and speed up the
rendering  of  the  boundary  considerably.  This  approach  can  be  implemented
using the Shifts option.

In[136]:= ShowTile�A, 9,

Colors � �Maroon, Gray, Gray, Maroon�,
BoundaryAlgorithm � Deterministic,

BoundaryDepth � 8,

Shifts � ��1, 0�, �0, 1�, ��1, 0�, �0, �1��	 

 Timing

Out[136]=

Note how much faster this image was generated, even though the greater Depth
has rendered the boundary in much more detail. We can use the Substitution�
Matrix command to look at the new substitution matrix for the boundary.

In[137]:= SubstitutionMatrix�A,
Shifts � ��1, 0�, �0, 1�, ��1, 0�, �0, �1��� 

 MatrixForm

Out[137]//MatrixForm=

2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2
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It appears that the new boundary digraph IFS is not strongly connected either, so
we still could not use the stochastic algorithm for the boundary. We can use the
StronglyConnectedBoundaryQ command to verify this.

In[138]:= StronglyConnectedBoundaryQ�A,
Shifts � ��1, 0�, �0, 1�, ��1, 0�, �0, �1���

Out[138]= False

Finally,  we  outline  a  technique to  generate  the  boundary  of  what  appears  to  be
the  most  challenging  type  of  situation  (with  the  exception  of  tiles  simply
consisting  of  a  very  large  number  of  pieces).  Lagarias  and  Wang  [11, 12]  carry
out  a  careful  analysis  of  how  self-affine  tiles  can  tile  the  plane  and  prove  that
every  self-affine  tile  does  indeed  tile  using  translates  chosen  from  some  lattice.
However,  that  lattice  need  not  be A  invariant,  meaning  that  the  technique
of [10], which we have implemented here, might not work. The work of Lagarias
and  Wang  shows  that  frequently  the  lattice G  can  be  chosen  to  be  the  lattice
generated by �‹ AH�L and, if so, that lattice will be A invariant. In fact, that is
exactly the lattice generated by the SelfAffineTiles  package using the LatticeReÖ
duce  command. They also outline a special case where this might not work and
call such an example a stretched tile  (since its area is too large to tile by the usual
lattice). The basic example of a stretched tile is defined by the matrix A and digit
set � given here.

In[139]:= A �
2 1

0 2
; � � ��0, 0�, �3, 0�, �0, 1�, �3, 1��;

The lattice as described is the integer lattice in this example.

In[140]:= LatticeReduce�Join��, A.� & �� ���
Out[140]= ��1, 0�, �0, 1��

As we shall see by simply generating the tile, however, its area is too large to tile
via  shifts  by  the  integer  lattice.  In  fact,  the  area  of  this  tile  is  3,  while  any  set
which tiles via the integer lattice must have an area of only 1.

In[141]:= ShowTile�A, 8, DigitSet � �,

Colors � 	Maroon, Gray, MidnightBlue, Gold
,
Axes � True, BoundaryAlgorithm � Deterministic,

BoundaryDepth � 5�

Out[141]=

Note that the boundary is not complete. Of course, we did not really expect this
to work. We can, however, use the Shifts option to specify the set of all vectors
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a  from the integer lattice so that T › HT + aL  is  a  portion of the boundary.  We

may neglect single point intersections such as a =
2
1

.

In[142]:= ShowTile�A, 8, DigitSet � �, Axes � True,

Colors � �Maroon, Gray, MidnightBlue, Gold�,
BoundaryAlgorithm � Deterministic, BoundaryDepth � 5,

Shifts � ���1, �1�, �0, �1�, �2, �1�, �3, �1�, �3, 0�,
�1, 1�, �0, 1�, ��2, 1�, ��3, 1�, ��3, 0���

Out[142]=

Our technique essentially works, but the boundary is still  not very well approxi-
mated. In the next section, we outline a technique to generate very high quality
images, which works quite well with this example.

‡ Polygonal Initiators

Many of the examples we have seen are tiles which are topological disks.  When
this  is  the  case,  we  might  try  to  approximate  the  boundary  with  a  polygon  and
feed  this  result  to  the ShowIFS  command.  Let  us  illustrate  this  technique  using
the  stretched  tile  of  the  previous  section.  We  choose  to  work  with  this  tile  for
three reasons: the previous techniques proved unsatisfactory; the structure of the
tile  makes  it  easy  to  set  up the  polygonal  approximation;  and it  is  an  important
theoretical example. We start by taking another look at the boundary.

In[143]:= A �
2 1

0 2
; � � ��0, 0�, �3, 0�, �0, 1�, �3, 1��;

pic � ShowTile�A, 8, DigitSet � �,

Colors � �Gray, Gray, Gray, Gray�,
OutlineParts � False,

BoundaryAlgorithm � Deterministic,

BoundaryDepth � 8�

Out[144]=

Once  again,  we  are  warned  that  there  might  be  problems.  But  notice  that  the
defining points in the boundary have been generated. If  we can get them in the
correct  order,  we  could  simply  pass  a  line  through  them  to  generate  the
boundary. Here is one way to do this. We first grab the points corresponding to
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the left half of the boundary, and then sort them according to the y  coordinate.
The other half of the boundary is simply a reverse-order translate.

In[145]:= points � First �� Flatten�Cases�pic, ��Point�, Infinity��;
halfPoints � Select�points, ���1�� � .01 &� �� Union;

orderedHalf � Sort�halfPoints, �1��2�� � �2��2�� &�;
boundary � Join�orderedHalf,

Reverse�orderedHalf� �. 	x�, y�
 :� 	x 	 3, y
,
�First�orderedHalf���;

goodPic � Show�Graphics�Polygon�boundary��,
AspectRatio 
 Automatic�

Out[149]=

Now  let  us  feed  the  result  to  the ShowIFS  command  to  see  how  the  set  de-
composes.

In[150]:= ifs � TileIFS�A, DigitSet 
 ��;
init1 � Polygon�boundary�;
init2 � Line�boundary�;
Block�polys � ShowIFS�ifs, 1, Color 
 True,

Colors 
 	Maroon, Gray, MidnightBlue, Gold
,
Initiator 
 init1�;

boundaries � ShowIFS�ifs, 1, Initiator 
 init2��;
Show�	polys, boundaries
�

Out[154]=

This technique can be extended to many of the other tiles we have looked at in
this  article.  For  example,  this  is  how  Figure 1  was  generated.  Unfortunately,
most situations require a careful refinement of the digraph IFS algorithms them-
selves, which is outside the scope of this paper. Furthermore, there is no way to
expect that the technique could work in general, since not all self-affine tiles are
even connected. Our final example illustrates exactly this point.
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In[155]:= A � ��3, 0�, �0, 3��;
� � �

�0, 0�, �0, 1�, �0, 2�,
�1, 0�, �7, 1�, �1, 2�,
�2, 0�, �2, 1�, �2, 2�

�;
ShowTile�A, 5, DigitSet � �, PlotRange � All,

BoundaryAlgorithm � Deterministic, BoundaryDepth � 4,

Shifts � ���3, 0�, ��2, 0�, ��1, �1�, ��1, 0�, ��1, 1�,
�0, �1�, �0, 1�, �1, �1�, �1, 0�, �1, 1�, �2, 0�, �3, 0���

Out[157]=

‡ Additional Material

McClure.zip

Available at www.mathematica-journal.com/data/uploads/2009/01/McClure.zip.
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