
The Mathematica” Journal

Generating Self-Affine
Tiles and Their
Boundaries
Mark McClure

A self-affine tile is a two-dimensional set satisfying an expansion identity
that allows tiling images to be generated. In this article, we discuss the
generation of such images paying particular attention to the boundary
of the set, which frequently displays a fractal structure.

‡ Introduction

A tile is a bounded subset of the plane, copies of which may be used to cover
the whole plane without gaps or overlap. There are many sources (such as [1])
of beautiful images involving tiling, from medieval Islamic art, through Escher,
to more modern work. Perhaps the simplest example of a tile, though, is a solid
square, which may tile the plane in a familiar checkerboard pattern. The square
is also an example of an important subclass of tiles called the self-affine tiles. A tile
T is self-affine if there is an expanding matrix A and a collection of vectors �

(called the digit set) such that

(1)A ÿ HTL = T +� ª Ê
dœ�

HT + dL,

where the pieces in the union are assumed to intersect only in their boundaries.
Here A ÿ HTL is the image of T under multiplication by the matrix A. Note that
if T is a self-affine tile with respect to A and �, then A ÿ HTL is a self-affine tile
with respect to A and A ÿ H�L. Thus, iteration of equation (1) yields arbitrarily
large tiling images. The unit square is an example of a self-affine tile where

(2)A =
2 0
0 2

and � =
0
0

,
1
0

,
0
1

,
1
1

.

Iteration of equation (2) yields the checkerboard pattern.

As we will see, self-affine tiles of surprising intricacy may be generated using the
notion of an iterated function system (IFS) from fractal geometry. For example,
the image in Figure 1 is a self-affine four-tile (i.e., it consists of four parts) corre-
sponding to the matrix and digit set

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

(3)A =
1 - 3

3 1
and � =

0
0

,
1
0

,
-1 ê 2

3 ì 2
,

-1 ê 2

- 3 ì 2
.

This text is the heading of a closed group that sets up definitions.

In[25]:= Show�Graphics��pic1, pic2, pic3, pic4��,
AspectRatio � Automatic�

Out[25]=

Figure 1. A self-affine four-tile.

Constructing interesting images is greatly simplified by the existence of fairly
simple rules dictating possible choices for the matrix A and digit set �. Also
of interest is the boundary between the constituent parts. The boundary of a self-
affine tile frequently has a fractal structure and may be generated and analyzed
using a generalized notion of an IFS. The boundary of the four-tile, for example,
may be shown to have a fractal dimension of logH3L ê logH2L º 1.585.

‡ Self-Affine Sets and Tiling

Self-similarity and iterated function systems are, by now, fairly well-known
concepts. See, for example, [2, 3] for a general introduction or [4, 5], which
describe implementations using Mathematica. Here, we briefly define our terms
to establish notation and clarify important results.

Roughly speaking, a set is called self-similar if it is composed of two or more sets
geometrically similar to the whole. Self-similarity is more rigorously defined and
analyzed using an important tool called an iterated function system, or IFS. An IFS
is simply any finite collection 8 fi<i=1

m of contractive mappings of the plane. Associ-
ated with an IFS there is always a unique nonempty, closed, bounded set E
satisfying

(4)E =Ê
i=1

m

fiHEL.

Generating Self-Affine Tiles and Their Boundaries 5

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

The set E defined in equation (4) is called the invariant set or attractor of the IFS.
The functions in an IFS describe the exact relationship between the invariant set
and its constituent parts. If the IFS consists entirely of contractive similarities,
then E is called self-similar. If the IFS consists of affine functions, then E is called
self-affine.

Self-affine sets have played an important role in the development of fractal geom-
etry in part because they provide a dazzling class of images, even though affine
functions are very easy to describe and implement on a computer. Thus, it takes
a small amount of information to store very interesting images. In Mathematica
(in particular, in the packages described here), an affine function may be repre-
sented as {A,b}, where A is a two-dimensional matrix and b is a shift vector. The
following code represents an IFS for the unit square.

In[26]:= A �
1�2 0

0 1�2 ;

f1 � �A, �0, 0��;
f2 � �A, �1�2, 0��;
f3 � �A, �1�2, 1�2��;
f4 � �A, �0, 1�2��;
squareIFS � �f1, f2, f3, f4�;

In order to generate an image of the square, we use the ShowIFS command
defined in the IFS package. The implementation of the ShowIFS command is
similar to commands described in [4, 5].

In[32]:= Needs�"FractalGeometry`IFS "̀�;
In[33]:= ShowIFS�squareIFS, 9, Color � True,

Colors � �Maroon, Gray, Maroon, Gray��

Out[33]=

Figure 2. A square generated from an IFS.

In the ShowIFS command, the second argument (9 in this case) indicates the
depth of the approximation. Thus, the image consists of 49 = 262,144 points
distributed over the unit square. A large number of points is typically required, as
we want to fill a two-dimensional region. The Color option is nice when in-

6 Mark McClure

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

vestigating tiles to highlight the constituent parts. When Color is set to True,
the Colors option may be set to Automatic (the default), in which case the Hue
function is used to generate a spectrum of colors, or Colors may be set to a list
of colors.

Now, a self-affine tile is also a self-affine set. If a self-affine tile T satisfies equa-
tion (1), then after applying A-1 to both sides we see that

(5)T = Ê
dœ�

IA-1 T + A-1 dM.

In fact, this is the exact relationship between the description of the square as a
self-affine tile given by equations (2) and the IFS defined by squareIFS; it is easy
to pass from one description to the other. The major question now is how to
choose a matrix A and digit set � to generate interesting images. A beautiful
theorem, published by Christoph Bandt [6], provides an answer. This theorem is
also described in [7] at a more elementary level.

Theorem. Let A be a two-dimensional expansive matrix with integer entries
and let � form a residue system for A. Then, there is a unique self-affine tile T with
matrix A and digit set �. In fact, T is the invariant set of the IFS consisting of the
affine functions defined by 9A-1, A-1 d= for d œ �.

An expansive matrix is simply a matrix whose eigenvalues are all larger than one
in absolute value. The terminology residue system and digit set originates from
work by Gilbert [8] describing certain self-similar sets in terms of number repre-
sentation in the complex plane. By definition, a residue system for A is a complete
set of coset representatives for the quotient group �2 ë A�2. While this defini-
tion is abstract, it is fairly easy to describe how to construct a residue system.
Given the matrix A, denote its column vectors by v1 and v2. The simplest residue
system for A consists of those points with integer coordinates lying inside the
parallelogram determined by v1 and v2 and including only the two sides
containing the origin. For example, the following figure illustrates this simple
digit set for the matrix

2 2
-1 2

.

In[34]:= ShowBaseDigitSet�Transpose���2, �1�, �2, 2���
Out[34]= ShowBaseDigitSet���2, 2�, ��1, 2���

Generating Self-Affine Tiles and Their Boundaries 7

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

We may construct other residue systems from this simple one as follows: two
integer points are said to be equivalent if their difference is a linear combination
of v1 and v2. Any vector from our simple residue system may be replaced by
another from its equivalence class; that is, starting from our simplest residue
system, we may simply shift some of its members by some linear combination
of v1 and v2 to obtain another residue system. A digit set which forms a residue
system for A is called a standard digit set. Note that the shift of a standard digit set
by an integer vector is again a standard digit set; thus, we may suppose that the
zero vector is one of the digits. Some of our package functions use this simpli-
fying assumption, so it is best to use digit sets containing the origin.

Let us demonstrate how easy it is to generate interesting self-affine tiles using
this theorem. We first describe a simple modification of the square’s IFS. We use
the same matrix, a simple expansion by the factor 2, but we replace one of the
digits by a shift. In particular, we shift the digit H1, 1L by -Hv1 + v2L = H-2, -2L to
obtain H-1, -1L. We use the substitution operator to translate the digit set and
matrix into the modified IFS.

In[35]:= A �
2 0

0 2
;

� � ��0, 0�, �1, 0�, ��1, �1�, �0, 1��;
modifiedIFS � � �. �x�?NumericQ, y�� :�

�Inverse�A�, Inverse�A�.�x, y��;
In[38]:= ShowIFS	modifiedIFS, 8, Color � True,

Colors � �Gray, Maroon, Maroon, Maroon�,
Axes � True

Out[38]=

Figure 3. A “minor” modification of Figure 2.

8 Mark McClure

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

This simple modification is already interesting and the result is difficult even to
recognize as a tile. We can get an inkling of how it might tile by examining all
shifts of the set by the digit set.

In[39]:= Show�� �. �x�?NumericQ, y�?NumericQ� � �x, y� � � & �� �,

Axes � True�

Out[39]=

Our next example is called the “twin dragon” and is defined by the following
matrix.

In[40]:= A 	
1 1

1 1
;

Note that the determinant of this matrix is 2. In general, the absolute value
of the determinant indicates the number of pieces constituting the tile. This is
because the union on the right of equation (1) increases the area of T by the
factor Ò H�L, while the matrix on the left side of equation (1) increases the area
of T by the factor » detHAL ». Thus, in this case, our digit set will have two el-
ements. Using the column vectors, it is easy to determine the simplest digit set.

In[41]:= � 	 ��0, 0�, �1, 0��;
Now we translate this matrix and digit set to an IFS, as in the previous example.

In[42]:= twindragonIFS 	 � �. �x�?NumericQ, y�� :�

�Inverse	A
, Inverse	A
.�x, y��;

Generating Self-Affine Tiles and Their Boundaries 9

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

Here is the result.

In[43]:= twindragonPic � ShowIFS�twindragonIFS, 17,

Color � True,

Colors � �Maroon, Gray�,
Axes � True�

Out[43]=

Figure 4. The twin dragon.

The rotation induced by the matrix A, and therefore by A-1, makes it slightly
more difficult to see how equation (1) is satisfied. In Figure 5, we see the image
of Figure 4 under the mapping x Ø A x. The red part of the twin dragon has
clearly mapped onto the whole original twin dragon, while the gray part has
mapped onto the original shifted to the right one unit.

In[44]:= Show�twindragonPic �. �x�?NumericQ, y�?NumericQ� :� A.�x, y��

Out[44]=

Figure 5. The image of Figure 4 under the mapping x Ø A x.

10 Mark McClure

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

Digraph Iterated Function Systems

Before examining more examples, we turn to the question of how to highlight
the boundary between the parts. It turns out that the boundary of a self-affine
tile may be generated by a generalized type of IFS called a digraph iterated func-
tion system. To illustrate this concept, consider the two curves C1 and C2. The
curve C1 is composed of one copy of itself, scaled by the factor 1 ê 2, and two
copies of C2, rotated and scaled by the factor 1 ê 2. C2 is composed of one copy
of itself, scaled by the factor 1 ê 2, and one copy of C1, reflected and scaled by the
factor 1 ê 2.

This text is the heading of a closed group that sets up definitions.

In[62]:= Show�
GraphicsGrid���labeledA, labeledB�, �decomposedA, decomposedB���,
ImageSize � �288, Automatic�,
BaseStyle � �Background� GrayLevel�1��	

Out[62]=

C1

C2

C2 C2

C1
C2 C1

In general, digraph self-similarity is exhibited by a family of sets 8Ki<. Each set is
composed of parts which are scaled images of sets chosen from the collection. A
digraph IFS is a matrix M whose elements are lists of affine functions. The
elements in row i indicate how the set Ki is composed. Thus, the element Mi j in
row i and column j should be a list of affine functions mapping K j into Ki. The
analog of equation (4) for a digraph IFS is

(6)
Ki =Ê

j

Ê
f œMi j

f IK jM.

As with an IFS, the list of sets 8Ki< is uniquely determined by the digraph IFS.
The curves C1 and C2 may be generated using a digraph IFS, which is repre-
sented as follows.

Generating Self-Affine Tiles and Their Boundaries 11

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

In[48]:= a11 � ���1�2, 0�, �0, 1�2��, �1�4, 3 � 4��;
a12 � �1�2 RotationMatrix���3	, �0, 0��;
b12 � �1�2 RotationMatrix����3	, �3�4, 3 � 4��;
a21 � ���1�2, 0�, �0, �1�2��, �1�2, 0��;
a22 � ���1�2, 0�, �0, 1�2��, �0, 0��;
curvesDigraph �

�a11� �a12, b12�
�a21� �a22� ;

The RotationMatrix function is defined for all of the FractalGeometry packages.
The DigraphFractals package also defines the command ShowDigraphFractals ,
which may be used to generate the curves.

In[54]:= Needs
"FractalGeometry`DigraphFractals "̀�;
In[55]:= Column
ShowDigraphFractals
curvesDigraph, 9��

Out[55]:=

The terminology digraph fractal arises from a description of the combinatorics
involved using directed multigraphs. A directed multigraph consists of a finite set
of vertices and a finite set of directed edges between vertices. We use the termi-
nology multigraph because we allow more than one edge between any two
vertices. Figure 6 depicts the digraph for the curves C1 and C2. There are two
edges from node C1 to node C2 and one edge from node C1 to itself, since C1
consists of two copies of C2 with one copy of itself. Similarly, there is one edge
from node C2 to node C1 and one edge from C2 to itself, since C2 consists of one
copy of C1 together with one copy of itself.

This text is the heading of a closed group that sets up definitions.

In[87]:= x0y0Digraph

Out[87]=

a12

b12

a11

a21

a22

C2C1

Figure 6. The digraph for the curves C1 and C2.

12 Mark McClure

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

A path through a digraph is a finite sequence of edges such that the terminal
vertex of any edge is the initial vertex of the subsequent edge. The digraph is
called strongly connected if, for every pair of vertices u and v, there is a path from u
to v. The concept of strong connectivity is important to understand for the
following reason: as with a standard IFS, there are two common algorithms for
generating images using a digraph IFS; one algorithm is stochastic and the other
deterministic. The stochastic algorithm works only when the digraph is strongly
connected, while the deterministic algorithm works whether the digraph is
strongly connected or not. For the purposes of this article, the stochastic algo-
rithm typically works better but, as we will see, it is not always applicable.

The DigraphFractals package is fully described in [9] along with more complete
descriptions of the theory and implementation.

‡ The Boundary of a Tile

Now we wish to use the digraph IFS scheme to describe the boundary of a self-
affine tile. The following technique was published in [10]. Suppose that T is a
self-affine tile and there is a lattice G of points in the plane so that the translates
of T by the points of G form a tiling of the plane. The lattice should be invariant
under the action of A in the sense that AHGL Õ G. (Note that the lattice condition
is frequently, but not always, satisfied.) Given a œ G, define Ta = T › HT + aL.
The boundary of T is formed by the collection of sets Ta that are nonempty,
excluding the case a = 0. It turns out that these sets Ta are digraph self-affine;
that is, if we let � = 8a œ G : Ta � « anda � 0<, then the collection 8Ta : a œ � <
forms the invariant list of a digraph IFS. This can be demonstrated by examining
how the expansion matrix A affects each set Ta and then translating to a digraph
IFS by applying A-1:

(7)

AHTaL = AHTL › AHT + aL = Ê
dœ�

HT + dL › Ê
d£œ�

HT + d£ + A aL =

Ê
d,d£œ�

HHT + dL › HT + d£ + A aLL =

Ê
d,d£œ�

@HT › HT - d + d£ + A aLL + dD = Ê
d,d£œ�

IITA a-d+d£ M + dM.

We are only interested in the nonempty intersections, so, given a and b in � , let
MHa, bL denote the set of pairs of digits Hd, d£L so that b = A a - d + d£. Then,
applying A-1 to both sides of equation (7), we see that

(8)
Ta = Ê

bœ�

Ê
Id,d£MœMHa,bL

IA-1 Tb + A-1 dM.

Equation (8) defines a digraph IFS to generate the sets Ta. Given a and b in � ,
the functions mapping Tb into Ta are precisely those affine functions defined by
9A-1, A-1 d= for all digits d so that there is a digit d£ satisfying b = A a - d + d£.

Generating Self-Affine Tiles and Their Boundaries 13

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

We now implement these ideas to generate the boundary of the twin dragon. We
first define A and �.

In[88]:= A �
1 1

�1 1
;

� � ��0, 0�, �1, 0��;
We also need to know the set � . In general, it can be difficult to determine � .
Fortunately, [10] describes an algorithm to automate the procedure. The algo-
rithm is fairly difficult, however, and the technique seems rather far removed
from the other techniques described here. Thus, we refer the interested reader to
[10] and the code defining the NonEmptyShifts function in the SelfAffineTiles
package. Examining Figure 4, it is not too difficult to see that the correct set
of vectors � for the twin dragon is defined as follows.

In[90]:= � � ���1, �1�, �0, �1�, �1, 0�,
�1, 1�, �0, 1�, ��1, 0��;

The following code illustrates the six translates of the twin dragon and colors
them so that they are easy to distinguish.

In[91]:= points � Cases�twindragonPic, �Point, Infinity�;
points �

points �. �x�?NumericQ, y�?NumericQ� � �x, y� � � & �� �;

coloredPoints � Inner�Prepend, h �� points,

�Maroon, Gray, Maroon,

Gray, Maroon, Gray�, List� �. h 	 List;

coloredTranslates � Show�Graphics	coloredPoints
,
AspectRatio 	 Automatic, Axes 	 True,

Prolog 	 AbsolutePointSize	.4
�

Out[94]=

Figure 7. Translates of the twin dragon defining the boundary.

14 Mark McClure

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

The original twin dragon from Figure 4 is the central white region in Figure 7.
The six pieces of the boundary are the boundaries between the white region and
the six colored shifted regions.

Now, for each pair Ha, bL where a and b are chosen from � , we want MHa, bL to
denote the set of pairs of digits Hd, d£L so that b = A a - d + d£. This can be ac-
complished as follows.

In[95]:= pairs�l�List� :� �Flatten�Outer�h, l, l, 1�� �. h � List�;
M���, ��� :� Select�pairs���,

���1�� � ���2�� 	 � � A.� &�;
digitPairsMatrix � Outer�M, �, �, 1�;

In order to make sense of this, let us look at the length of each element of the
matrix.

In[98]:= Map�Length, digitPairsMatrix, �2	
 �� MatrixForm

Out[98]//MatrixForm=

0 0 0 0 0 1

2 1 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 2 1 0

0 0 0 0 1 0

This matrix is called the substitution matrix of the tile and tells us simply the
combinatorial information of how the pieces of the boundary fit together.
Reading the rows, for example, we see that the first piece is composed of one
copy of the last piece, the second piece is composed of one copy of itself and two
copies of the first, and so on. Note also that the order of the rows and columns is
dictated by the order of the set � . Thus, the first piece refers to the boundary
along the maroon image in the lower left of Figure 7, since H-1, -1L is the first
shift vector in the set � . The subsequent pieces are numbered counterclockwise
around the central tile, since that is the way that � is set up.

We can transform the digitPairsMatrix into a digraph IFS defining the
boundary by simply replacing each pair Hd, d£L with the affine function
IA-1, A-1 dM.
In[99]:= boundaryDigraphIFS � digitPairsMatrix �.

��, �x�?NumericQ, y��� :
 �Inverse�A�, Inverse�A�.�x, y��;
To see how it worked, we will use the function ShowDigraphFractalsSto�
chastic defined in the DigraphFractals package. This stochastic algorithm

frequently seems to work better for this particular task than the deterministic
version defined by ShowDigraphFractals . We will use color to distinguish the
constituent parts.

Generating Self-Affine Tiles and Their Boundaries 15

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

In[100]:= boundaryParts � ShowDigraphFractalsStochastic�boundaryDigraphIFS,
20 000, PlotRange � ���0.7`, 0.7`�, ��0.4`, 1.4`��,
Ticks � ���0.5`, 0.5`�, �1��, Color � True,

Axes � True, DisplayFunction� Identity�;
GraphicsGrid�Partition�boundaryParts, 3�,
ImageSize � �288, Automatic��

Out[101]=

-0.5 0.5

1

-0.5 0.5

1

-0.5 0.5

1

-0.5 0.5

1

-0.5 0.5

1

-0.5 0.5

1

We can collect all of the pieces to form the entire boundary.

In[102]:= boundary � Show�boundaryParts �. Hue��� � GrayLevel�0��

Out[102]=

16 Mark McClure

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

We can display the boundary with the original image of the twin dragon.

In[103]:= Show��twindragonPic, boundary��

Out[103]=

Note that we have outlined the boundary of the entire set. If we would like to
highlight the boundaries of the constituent parts, we need simply to feed the
boundary to the ShowIFS command using the boundaryPoints as an option to
Initiator.

In[104]:= boundaryPoints � Cases�boundary, �Point, Infinity�;
boundaries � ShowIFS�twindragonIFS, 1,

Initiator � boundaryPoints,

DisplayFunction � Identity�;
Show��twindragonPic, boundaries��

Out[106]=

Generating Self-Affine Tiles and Their Boundaries 17

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

More Examples

The algorithms described are encapsulated in the package SelfAffineTiles. We
load the package and use it to look at many more examples.

In[93]:= Needs�"FractalGeometry`SelfAffineTiles "̀�;
The main graphical command which ties all of the previous algorithms together
is the ShowTile command. ShowTile[A, depth] accepts the matrix A and gener-
ates an approximation to the corresponding self-affine tile to level depth. The
boundary is automatically generated and the parts are colored differently.

In[109]:= A � ��1, 2�, ��1, 1��;
ShowTile�A, 10�

Out[109]=

Figure 8. A self-affine three-tile.

The ShowTile command accepts the option DigitSet. When DigitSet is set to
the default of Automatic, ShowTile calls the BaseDigitSet function to com-
pute the simple digit set described previously. We can illustrate this simple digit
set using the command ShowBaseDigitSet.

In[110]:= ShowBaseDigitSet�A�

Out[110]=

18 Mark McClure

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

We can also look at the tiles generated by alternative digit sets using the DigitÖ

Set option. In the following, we subtract the first column vector of A,
1
-1

,

from the digit
2
0

 to obtain the shifted digit
1
1

.

In[111]:= � � ��0, 0�, �1, 0�, �1, 1��;
ShowTile�A, 10, DigitSet � ��

Out[112]=

Figure 9. A self-affine three-tile using an alternative digit set.

The tiles in Figures 8 and 9 consist of three pieces, since detHAL = 3. Three-tiles
are more diverse than two-tiles, as we have more flexibility in choosing the
matrix A and relative positions of the digits. Here is another three-tile using a
different matrix.

In[113]:= A � ��2, �1�, �1, 1��;
ShowTile�A, 10�

Out[114]=

Figure 10. Another self-affine three-tile.

Generating Self-Affine Tiles and Their Boundaries 19

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

The examples in this section so far have been self-affine but not self-similar.
Sometimes, such a set is affinely equivalent to a self-similar set. In this case, the
self-similar set will correspond to the same matrix and digit set expressed in
another basis. As explained in [7], if A has a pair of complex conjugate eigen-
values, then A is similar (i.e., conjugate) to a similarity matrix. In this case, we
may find the change of basis matrix B as follows. Suppose that the vector

v11 + Â v12

v21 + Â v22

is an eigenvector for A, and let B be the inverse of the matrix

v11 v12

v21 v22
.

Then, B A B-1 will be a similarity transformation. The self-affine tile shown in
Figure 10 falls into this case, as the following computation shows.

In[115]:= Eigenvalues�A�

Out[115]= �
1

2
�3 � � 3 �,

1

2
�3 � � 3 ��

We can now find one of the corresponding eigenvectors.

In[116]:= eigenvec � Eigenvectors�A���1�� �� Simplify

Out[116]= �
1

2
�1 � � 3 �, 1�

And we can use this to find the change of basis matrix B.

In[117]:= B � Inverse���Re�eigenvec��1���, Im�eigenvec��1����,
�Re�eigenvec��2���, Im�eigenvec��2������;

B �� MatrixForm

Out[118]//MatrixForm=

0 1
2

3
�

1

3

The matrix B should conjugate A to a similarity matrix.

In[119]:= B.A.Inverse�B� �� MatrixForm

Out[119]//MatrixForm=

3

2

3

2

�
3

2

3

2

We can see that B A B-1 does indeed induce a similarity transformation. In fact,
it is simply a clockwise rotation throughout the angle p ê 6 together with an expan-
sion of 3 .

20 Mark McClure

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

In[120]:= 3 RotationMatrix����6� �� MatrixForm

Out[120]//MatrixForm=

3

2

3

2

�
3

2

3

2

Now the point is that, while this last matrix does not have integer entries, so it
does not seem to fall into the scheme outlined by Bandt’s theorem, it may be
expressed as a matrix with integer entries with respect to the correct choice
of basis. In fact, if we choose our basis to be the column vectors of B, then this
similarity is expressed as the matrix A. The statement and proof of Bandt’s
theorem are essentially algebraic, so the choice of basis does not affect the result.
The ShowTile function accepts the option Basis, which assumes that the
matrix is expressed with respect to the given basis. If we rerender the tile defined
by A with respect to this new basis, we generate a self-similar set.

In[121]:= ShowTile�A, 10,

Basis � Transpose�B��

Out[121]=

When A is conjugate to a similarity, the fractal dimension of the boundary may

be calculated by the formula logl
log r

, where l is the spectral radius of the substitu-

tion matrix and r is the spectral radius of A. (The spectral radius is simply the
largest of the absolute values of the eigenvalues.) This formula is encoded in
the package function BoundaryDimension . For example, here is the dimension
of the boundary of the previous tile.

In[122]:= BoundaryDimension�A�
Out[122]= BoundaryDimension���2, �1�, �1, 1���

Generating Self-Affine Tiles and Their Boundaries 21

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

A change of basis can be useful even if the matrix A is already a similarity matrix.
For example, the self-similar tile of Figure 3 may be expressed in another basis to
yield the tile in Figure 11, which has three-fold rotational symmetry. Note that
the matrix and digit set have not changed; only the Basis option has been added.
Also notice that the ShowTile command accepts a Colors option, which is
similar to the Colors option for the ShowIFS command.

In[123]:= A � ��2, 0�, �0, 2��;
ShowTile�A, 8,

Colors � �Gray, Maroon, Maroon, Maroon�,
DigitSet � ��0, 0�, �1, 0�, ��1, �1�, �0, 1��,

Basis � ��� 3

2
, �

1

2
�, �0, 1��	

Out[124]=

Figure 11. A self-similar four-tile with three-fold rotational symmetry.

We will explain the warning message in the next section, although it does not
appear to have genuinely caused a problem in this case.

22 Mark McClure

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

As a final example, we generate Gosper’s famous snowflake.

In[125]:= A � ��1, �2�, �2, 3��;
� � ��0, 0�, �0, 1�, ��1, 1�,

��1, 0�, �0, �1�, �1, �1�, �1, 0��;
basis � ��1, 0�, �1�2, 3 � 2��;
ShowTile�A, 6,

DigitSet � �,

Basis � basis,

Colors � 	MidnightBlue,
Gold, IndianRed,

Gold, IndianRed,

Gold, IndianRed
�

Out[128]=

Note that Gosper’s flake was also generated using the change of basis technique,
as was the tile shown in Figure 1.

‡ Potential Problems and Tricks

There are subtle difficulties that may arise when generating images of self-affine
tiles, particularly when dealing with the boundary. In this section, we outline
some of the tricks that the SelfAffineTiles package provides to assist in dealing
with these potential problems.

First, it should be understood that many tiling pictures are simply not very attrac-
tive. In fact, a randomly chosen digit set is not likely to generate a nice image.
Those who play with the package are likely to find several such examples.

Even when the image is quite attractive, subtle issues can arise with the
boundary. One of the most important issues is that the digraph describing the

Generating Self-Affine Tiles and Their Boundaries 23

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

boundary may not be strongly connected. In this case, the stochastic algorithm to
generate the boundary might not be effective. This situation arises in the
simplest of examples, that of the unit square. Let us try to generate the unit
square as simply as possible. For example, the following command will lead
to trouble. (The cell is therefore given the setting Evaluatable Ø False.)

A � ��2, 0�, �0, 2��;
ShowTile�A, 9,

Colors � �
Maroon, Gray,

Gray, Maroon��; �� Timing

The ShowTile command recognizes that the boundary digraph IFS is not
strongly connected and suggests two possibilities. Let us follow the first
suggestion.

In[129]:= A � ��2, 0�, �0, 2��;
ShowTile�A, 9,

Colors � �Maroon, Gray, Gray, Maroon�,
Boundary � False� �� Timing

Out[130]=

In fact, it is frequently a good idea to set Boundary � False when experimenting
with ShowTile if you do not know what to expect.

24 Mark McClure

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

Next, we try the second suggestion.

In[131]:= A � ��2, 0�, �0, 2��;
ShowTile�A, 9,

Colors � �Maroon, Gray, Gray, Maroon�,
BoundaryAlgorithm � Deterministic,

BoundaryDepth � 6� �� Timing

Out[132]=

Now an approximation to the boundary has been generated, but this took consid-
erably longer than the previous command to yield a fairly poor image of the
boundary. In this case, an understanding of the boundary digraph IFS allows us
to refine it and improve the performance. The SelfAffineTiles package contains
several functions to assist us. First, we look at the substitution matrix of the tile.

In[133]:= subsMatrix � SubstitutionMatrix	A
;
subsMatrix �� MatrixForm

Out[134]//MatrixForm=

1 0 0 0 0 0 0 0

1 2 1 0 0 0 0 0

0 0 1 0 0 0 0 0

1 0 0 2 0 1 0 0

0 0 1 0 2 0 0 1

0 0 0 0 0 1 0 0

0 0 0 0 0 1 2 1

0 0 0 0 0 0 0 1

This tells us that the boundary consists of eight pieces. Note that the first and
last pieces each consist of one copy of themselves, while the third and fifth pieces
each consist of one copy of the other. Such simple parts of the digraph IFS will
generate single points and, in fact, these parts correspond to the vertices of the
square. We can verify this by examining the shift set � used by the program.

Generating Self-Affine Tiles and Their Boundaries 25

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

In[135]:= NonEmptyShifts�A�
Out[135]= ���1, �1�, ��1, 0�, ��1, 1�, �0, �1�, �0, 1�, �1, �1�, �1, 0�, �1, 1��

Indeed, the first portion of the boundary is simply T › HT - H1, 1LL, where T is
the unit square. Of course, this intersection is simply the vertex at the origin. We
may generate the entire boundary using only the shifts 81, 0<, 80, 1<, 8-1, 0<, and
80, -1<. This will make the boundary digraph IFS much smaller and speed up the
rendering of the boundary considerably. This approach can be implemented
using the Shifts option.

In[136]:= ShowTile�A, 9,

Colors � �Maroon, Gray, Gray, Maroon�,
BoundaryAlgorithm � Deterministic,

BoundaryDepth � 8,

Shifts � ��1, 0�, �0, 1�, ��1, 0�, �0, �1��	

 Timing

Out[136]=

Note how much faster this image was generated, even though the greater Depth
has rendered the boundary in much more detail. We can use the Substitution�
Matrix command to look at the new substitution matrix for the boundary.

In[137]:= SubstitutionMatrix�A,
Shifts � ��1, 0�, �0, 1�, ��1, 0�, �0, �1���

 MatrixForm

Out[137]//MatrixForm=

2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2

26 Mark McClure

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

It appears that the new boundary digraph IFS is not strongly connected either, so
we still could not use the stochastic algorithm for the boundary. We can use the
StronglyConnectedBoundaryQ command to verify this.

In[138]:= StronglyConnectedBoundaryQ�A,
Shifts � ��1, 0�, �0, 1�, ��1, 0�, �0, �1���

Out[138]= False

Finally, we outline a technique to generate the boundary of what appears to be
the most challenging type of situation (with the exception of tiles simply
consisting of a very large number of pieces). Lagarias and Wang [11, 12] carry
out a careful analysis of how self-affine tiles can tile the plane and prove that
every self-affine tile does indeed tile using translates chosen from some lattice.
However, that lattice need not be A invariant, meaning that the technique
of [10], which we have implemented here, might not work. The work of Lagarias
and Wang shows that frequently the lattice G can be chosen to be the lattice
generated by �‹ AH�L and, if so, that lattice will be A invariant. In fact, that is
exactly the lattice generated by the SelfAffineTiles package using the LatticeReÖ
duce command. They also outline a special case where this might not work and
call such an example a stretched tile (since its area is too large to tile by the usual
lattice). The basic example of a stretched tile is defined by the matrix A and digit
set � given here.

In[139]:= A �
2 1

0 2
; � � ��0, 0�, �3, 0�, �0, 1�, �3, 1��;

The lattice as described is the integer lattice in this example.

In[140]:= LatticeReduce�Join��, A.� & �� ���
Out[140]= ��1, 0�, �0, 1��

As we shall see by simply generating the tile, however, its area is too large to tile
via shifts by the integer lattice. In fact, the area of this tile is 3, while any set
which tiles via the integer lattice must have an area of only 1.

In[141]:= ShowTile�A, 8, DigitSet � �,

Colors � 	Maroon, Gray, MidnightBlue, Gold
,
Axes � True, BoundaryAlgorithm � Deterministic,

BoundaryDepth � 5�

Out[141]=

Note that the boundary is not complete. Of course, we did not really expect this
to work. We can, however, use the Shifts option to specify the set of all vectors

Generating Self-Affine Tiles and Their Boundaries 27

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

a from the integer lattice so that T › HT + aL is a portion of the boundary. We

may neglect single point intersections such as a =
2
1

.

In[142]:= ShowTile�A, 8, DigitSet � �, Axes � True,

Colors � �Maroon, Gray, MidnightBlue, Gold�,
BoundaryAlgorithm � Deterministic, BoundaryDepth � 5,

Shifts � ���1, �1�, �0, �1�, �2, �1�, �3, �1�, �3, 0�,
�1, 1�, �0, 1�, ��2, 1�, ��3, 1�, ��3, 0���

Out[142]=

Our technique essentially works, but the boundary is still not very well approxi-
mated. In the next section, we outline a technique to generate very high quality
images, which works quite well with this example.

‡ Polygonal Initiators

Many of the examples we have seen are tiles which are topological disks. When
this is the case, we might try to approximate the boundary with a polygon and
feed this result to the ShowIFS command. Let us illustrate this technique using
the stretched tile of the previous section. We choose to work with this tile for
three reasons: the previous techniques proved unsatisfactory; the structure of the
tile makes it easy to set up the polygonal approximation; and it is an important
theoretical example. We start by taking another look at the boundary.

In[143]:= A �
2 1

0 2
; � � ��0, 0�, �3, 0�, �0, 1�, �3, 1��;

pic � ShowTile�A, 8, DigitSet � �,

Colors � �Gray, Gray, Gray, Gray�,
OutlineParts � False,

BoundaryAlgorithm � Deterministic,

BoundaryDepth � 8�

Out[144]=

Once again, we are warned that there might be problems. But notice that the
defining points in the boundary have been generated. If we can get them in the
correct order, we could simply pass a line through them to generate the
boundary. Here is one way to do this. We first grab the points corresponding to

28 Mark McClure

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

the left half of the boundary, and then sort them according to the y coordinate.
The other half of the boundary is simply a reverse-order translate.

In[145]:= points � First �� Flatten�Cases�pic, ��Point�, Infinity��;
halfPoints � Select�points, ���1�� � .01 &� �� Union;

orderedHalf � Sort�halfPoints, �1��2�� � �2��2�� &�;
boundary � Join�orderedHalf,

Reverse�orderedHalf� �. 	x�, y�
 :� 	x 	 3, y
,
�First�orderedHalf���;

goodPic � Show�Graphics�Polygon�boundary��,
AspectRatio
 Automatic�

Out[149]=

Now let us feed the result to the ShowIFS command to see how the set de-
composes.

In[150]:= ifs � TileIFS�A, DigitSet
 ��;
init1 � Polygon�boundary�;
init2 � Line�boundary�;
Block�polys � ShowIFS�ifs, 1, Color
 True,

Colors
 	Maroon, Gray, MidnightBlue, Gold
,
Initiator
 init1�;

boundaries � ShowIFS�ifs, 1, Initiator
 init2��;
Show�	polys, boundaries
�

Out[154]=

This technique can be extended to many of the other tiles we have looked at in
this article. For example, this is how Figure 1 was generated. Unfortunately,
most situations require a careful refinement of the digraph IFS algorithms them-
selves, which is outside the scope of this paper. Furthermore, there is no way to
expect that the technique could work in general, since not all self-affine tiles are
even connected. Our final example illustrates exactly this point.

Generating Self-Affine Tiles and Their Boundaries 29

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

In[155]:= A � ��3, 0�, �0, 3��;
� � �

�0, 0�, �0, 1�, �0, 2�,
�1, 0�, �7, 1�, �1, 2�,
�2, 0�, �2, 1�, �2, 2�

�;
ShowTile�A, 5, DigitSet � �, PlotRange � All,

BoundaryAlgorithm � Deterministic, BoundaryDepth � 4,

Shifts � ���3, 0�, ��2, 0�, ��1, �1�, ��1, 0�, ��1, 1�,
�0, �1�, �0, 1�, �1, �1�, �1, 0�, �1, 1�, �2, 0�, �3, 0���

Out[157]=

‡ Additional Material

McClure.zip

Available at www.mathematica-journal.com/data/uploads/2009/01/McClure.zip.

‡ References

[1] B. Grünbaum and G. C. Shephard, Tilings and Patterns , New York: W. H. Freeman & Co.,
1986.

[2] M. F. Barnsley, Fractals Everywhere , 2nd ed., San Francisco, CA: Morgan Kaufmann Pubs,
2000.

[3] K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications, West
Sussex, England: John Wiley & Sons Ltd, 1990.

[4] J. M. Gutiérrez, A. Iglesias, M. A. Rodriguez, and V. J. Rodriguez, “Generating and
Rendering Fractal Images,” The Mathematica Journal, 7(1), 1997 pp. 6|13.

[5] S. Wagon, Mathematica in Action, 2nd ed., New York: Springer-Verlag, 1999.

[6] C. Bandt, “Self-Similar Sets 5. Integer Matrices and Fractal Tilings of �
n,” Proceedings

of the American Mathematical Society, 112(2), 1991 pp. 549 |562.

[7] R. Darst, J. Palagallo, and T. Price, “Fractal Tilings in the Plane,” Mathematics Magazine ,
71(1), 1998 pp. 12|23.

[8] W. J. Gilbert, “Fractal Geometry Derived from Complex Bases,” The Mathematical
Intelligencer, 4(2), 1982 pp. 78|86.

[9] M. McClure, “Directed-Graph Iterated Function Systems,” Mathematica in Education and
Research, 9(2), 2000 pp. 15|26.

[10] R. S. Strichartz and Y. Wang, “Geometry of Self-Affine Tiles I,” Indiana University
Mathematics Journal, 7(1), 1999 pp. 1|23.

30 Mark McClure

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

[11] J. C. Lagarias and Y. Wang, “Integral Self-Affine Tiles in �
n I: Standard and Nonstandard

Digit Sets,” Journal of the LondonMathematical Society, 54(2), 1996 pp. 161 |179.

[12] J. C. Lagarias and Y. Wang, “Integral Self-Affine Tiles in �
n II: Lattice Tilings,” The

Journal of Fourier Analysis and Applications, 3, 1997 pp. 84|102.

About the Author

Mark McClure, associate professor of mathematics at the University of North Carolina at
Asheville, was introduced to Mathematica in 1990 while teaching in the Calculus&Mathe-
matica program as a graduate student at Ohio State University. His primary research is in
fractal geometry, particularly as it arises in real analysis. The Mathematical Graphics
column grew out of his desire to make high-level mathematics accessible via the use of
computer graphics. In addition to mathematics, he enjoys hiking and biking in the
mountains of western North Carolina.

Generating Self-Affine Tiles and Their Boundaries 31

The Mathematica Journal 11:1 © 2008 Wolfram Media, Inc.

M. McClure, “Generating Self-Affine Tiles and Their Boundaries,” The Mathematica Journal,
2011. dx.doi.org/doi:10.3888/tmj.11.1–1.

