
The Mathematica®Journal

An Algorithmic Approach to 
Manifolds
An Analytical Approach to Form Modeling As an Introduction to 
Computational Morphology

Rémi Barrère
An algorithmic approach to manifolds is presented, based on an object ap-
proach  to  the  parametric  plotting  commands.  The  initial  purpose  was  to
blend geometric and symbolic aspects, so as to equip computer-assisted de-
sign  (CAD)  with  symbolic  capabilities.  Nevertheless,  this  investigation
aims more generally at providing a uniform treatment of analytic geometry
and field analysis, in view of applications to physics, system modeling, and
morphology. 

After  presenting  the  data  structure,  the  core  of  this  article  describes  a
range  of  operators  for  manipulating  manifolds.  It  stresses  their  potential
use in shape design and scene description, in particular their ability to su-
persede  several  graphics  packages.  As  such,  the  data  type  constitutes  the
foundation  of  a  computational  morphology.  Then,  various  extensions  are
discussed:  fields,  mesh  generation  for  finite  element  software,  and  the
prospect  of  extending  the  vector  analysis  package,  with  emphasis  on  ten-
sors and differential forms. 

‡ Introduction
Computer  algebra  and  symbolic  programming  have  introduced  analytical  capa-
bilities into many areas of scientific computing, such as discrete systems, algebra
and  summation,  calculus,  and  differential  equations.  Nevertheless,  little  benefit
has  been  gained  in  shape  design.  Research  in  that  domain  has  stimulated  the
evolution  of  computer-assisted  design  (CAD),  but,  so  far,  these  tools  have
included  little  or  no  symbolic  capabilities,  and  most  CAD  software  is  still
developed with procedural languages and numerical methods. Besides, geometric
problems  have  been  tackled  so  far  mainly  by  means  of  algebraic  or  theorem
proving methods [1], thus leading to an underdevelopment of analytical methods.

Yet  the  analytical  approach  to  geometry  constitutes  the  foundation  of  many
physical questions, especially those linked to space or spacetime analysis by means
of field theory. Hence, we attempt to introduce analytical capabilities into com-
puter-assisted  geometry,  initially  in  view  of  applications  to  shape  description,
then  with  the  purpose  of  laying  the  foundation  of  further  uses  in  differential
geometry  and  field  analysis.  Although geometry  is  commonly  thought  of  as  the
unifying  mathematical  abstraction  underlying  those  questions,  morphology
appears  as  an  encompassing  common  denominator  that  is  able  to  take  into
account  questions  outside  the  field  of  geometry,  such  as  scene  description,
linkage design, or finite element analysis.
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· Morphology As a Transverse Concept

Although shape and form are more or less considered equivalent in common lan-
guage,  shape  pertains  to  external  geometric  aspects,  whereas  form  pertains  to
more general internal structuring aspects (geometric or not).  
For instance,  curves,  surfaces,  and volumes as  such are shapes,  while  considered
with  some  other  characteristics,  such  as  a  field,  they  tend  to  be  thought  of  as
forms. So a form description is a piece of information about the way in which an
object occupies and structures space. In practice, it is inherent to the way the ob-
ject (or its form) is generated and can be transformed or combined with others.  
Moreover, as a result of our cognitive capabilities, we tend to understand objects
in contrast to a background and also to perceive them as structured in a container
(wrapping  structure)  with  content  (internal  structure) [2].  On  the  contrary,
modern  ideas  about  space  (or  spacetime)  tend  to  identify  it  with  its  structuring
content,  space  being  constituted  by  the  relationships  between  objects.  To  some
extent,  these  opposing  ideas  can  be  made  compatible  by  blending  continuous
aspects (figures as expansions) and discrete ones (figures as objects),

· Mathematical and Algorithmic Requirements 

Many form descriptions have been developed so far, in view of more or less spe-
cific  applications  such  as  drawing  software,  geometric  reasoning,  CAD,  fractal
image  generation,  and  data  visualization.  There  is  probably  no  universal  form
description,  for  those  methods  always  need,  to  some  extent,  to  be  optimized  to
best  serve  some  specific  problems.  However,  the  trend  to  develop  ad  hoc  opti-
mized  solutions  for  practical  needs  yields  “a  widely  scattered  conglomeration
of  disparate  and,  at  first  sight,  unrelated  methods” [3].  This  subsequently  tends
to severely decrease so-called orthogonality, that is, the capability to cross-fertil-
ize  disciplines  by  information  exchange  and  object  combinations  thanks  to
generic types. 

By quoting Lord and Wilson [3], we may even stress the need for a mathematical
foundation for a science of morphology unifying various approaches, a need that
has  not  been  fully  recognized  yet.  Today,  the  requirement  that  the  proposed
method should lend itself well to an algorithmic treatment must be taken into ac-
count. It should also have a broader scope than so-called mathematical morphol-
ogy, which is more or less restricted to the “pixel level” methods used for image
processing. In the following, we focus on form synthesis rather than form analy-
sis. The solution put forward derives from a common mathematical tool, slightly
adapted to an algorithmic purpose, that is, a new glance at a classical theory [4]. 
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· Manifolds As a Unifying Approach to Morphology

We focus on manifolds because of their sound analytical foundation, their strong
geometric flavor, and their adaptability to algorithmic treatment, especially using
computer  algebra  and  symbolic  programming.  In  particular,  a  manifold  deter-
mines a codomain as a subset of some (often Euclidean) space. By regarding the
codomain as the object and the surrounding space as the background, the mani-
fold actually determines a shape. Various structuring elements, such as a coordi-
nate  system  (domain)  or  a  field  over  the  manifold,  determine  as  many  forms.
Moreover, the boundary of a manifold constitutes an element of a container|con-
tent approach. More generally, other structuring tools, such as atlases that enable
scene descriptions, will be described later.

Because of its visual aspects, shape design is in a natural relationship with the un-
derlying graphics capabilities [5, 6]. In Mathematica, these rely upon a few graph-
ics  primitives  (e.g.,  Line,  Polygon)  and  a  range  of  standard  plotting  commands
(e.g., Plot,  ParametricPlot), plus a variety of complementary commands, such
as  RevolutionPlot3D  (Version  6)  or  those  in  Graphics`Shapes`  (legacy  stan-
dard  packages).  This  leads  to  a  functional  approach  where  shapes  are  produced
by  plotting  commands  that  build  them by  assembling  low-level  graphics  primi-
tives, thus excluding higher-level objects. 

On the contrary, resorting to manifolds leads to a reification of shape: following
philosophers,  we  call  reification  the  mental  act  of  regarding  an  action  as  an
object. Then, manifolds and other geometric entities like fields can be defined as
quite  compact  symbolic  objects,  rather  than  huge  assemblies  of  raw  graphics
primitives  resulting  from  plotting  commands.  This  facilitates  the  introduction
of both higher-level entities, able to describe objects as wholes, and higher-level
symbolic  functions  able  to  manipulate  and  combine  these  entities.  This  also
enables  the  consistent  gathering  of  graphics  tools  scattered  around  various
commands or  packages and their  extension not  only to shape design but  also to
field analysis. 

· Previous Work

Beyond the classical  literature about manifolds [7],  Oprea [8]  and Gray [9]  tack-
led the question from the computational  viewpoint,  the former with Maple,  the
latter  with  Mathematica.  More  specifically,  Tazawa [10,  11]  focuses  on  differen-
tial geometry. However, these authors do not introduce any data type for mani-
folds.  Further,  a  wealth  of  literature  is  devoted  to  surface  or  solid  modeling  in
view of  CAD applications  [12],  or  applications  in  computational  geometry  [13].
In  most  cases,  shapes  are  represented  or  approximated  by  splines,  Bézier’s
patches  or  nonuniform  rational  B-splines  (NURBS)  [14],  which  have  become  a
de facto standard in commercial modeling systems because of their power to rep-
resent  both  free-form  shapes  and  common  analytical  shapes.  Despite  its  title,
[15] only introduces a variant of splines.

An experimental set of packages was developed to investigate the ideas presented
in this article. Morphology`Master` is simply intended to load the whole direc-
tory. 
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In[1]:= Needs"Morphology`Master`"

‡ An Algorithmic Approach to Manifolds
Although a manifold is usually defined as a collection (called an atlas) of patches,
that  is,  homeomorphisms  from  an  open  subset  of  n  onto  an  open  subset  of  a
topological  space   [9],  the  algorithmic  approach  will  rather  focus  on  n  as  a
curvilinear  coordinate  system  on  ,  which  in  most  cases  will  be  some  subset
of p.  Indeed,  the notion of  a  manifold is  deeply rooted in analytical  geometry,
that is, in the practical need to describe curves, surfaces, and volumes, or their n-
dimensional generalizations, both from analytical and geometrical points of view.

· The Data Structure

As a reflection of this origin, the algorithmic approach aims at blending the ana-
lytical and geometric aspects, especially their graphic counterpart. The type Man
ifold  introduced  hereafter  denotes  a  patch  with  a  specific  coordinate  system;
then an atlas is simply a collection of manifolds, without any continuity or differ-
entiability requirement; so we slightly depart from the usual mathematical defini-
tions. 
The  type  Manifold  consists  of  two  entities:  a  set  of  expressions  that  should  be
thought  of  as  a  list  of  parametric  equations  with  a  domain  specification  for  the
variables that are the local coordinates on the manifold. The type being the head
of  the  expression  leads  to  the  informal  expression  template:  Manifold[list
of  expressions,  domain  specification].  The  domain  specification  follows  the  syntax
of continuous domains in plotting commands: a triple or a sequence of triples {c,
cmin, cmax}  denotes a  coordinate symbol with a minimum value and a maximum
value.  This  design  is  adapted  from  a  first  attempt  by  Gray [16],  who  actually
adopted a more general viewpoint by considering mappings. Here is an example
of a segment of a ring with the symbolic parameter r.

In[2]:= m  Manifold Cos,  Sin, , 1, r, , 0, 3 2;
In that case, the codomain is a subset of 2 and the expressions in the first list are
usually  interpreted  as  the  parametric  representation  (equations)  of  a  geometric
domain. Nevertheless, manifolds describe in principle abstract entities that entail
no assumption about their nature, except that they are elements of a topological
space. In particular, the parametrized objects need not be points nor vectors. Any
parametrized  family  of  entities  can  be  described  as  a  manifold,  provided  it  has
some  differentiability  or  at  least  continuity  properties.  For  instance,  a  param-
etrized  family  of  matrices  or  a  parametrized  family  of  functions  can  be  investi-
gated  as  manifolds.  However,  there  is  no  standard  visualization  procedure  for
such  manifolds,  and  their  graphic  representation  may  require  assumptions  or
tricks.
When the codomain is a subset of p, it need not be Euclidean; manifold theory
is a relativistic theory of abstract spaces. Nevertheless, in many applications, man-
ifolds  are  interpreted from an absolute  point  of  view:  the codomain is  supposed
to be some subset of a Euclidean space with an orthogonal Cartesian coordinate

representations are considered. 
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When the codomain is a subset of p

system  and  the  domain  is  viewed  as  a  curvilinear  coordinate  system  for  the
codomain.  Such  an  absolute  interpretation  is  almost  unavoidable  when  graphic
representations are considered.  
However, this assumption is not mandatory, and manifolds may have other inter-
pretations:  for  instance,  in  another  context,  the  codomain  may  be  a  subset  of  a
Euclidean space with a curvilinear coordinate system or even a subset of a space
with no metric property. The data type Manifold is flexible insofar as there is no
strong assumption regarding the absolute or relative interpretation attached to it.
In  particular,  a  command  like  Embed  is  introduced  that  facilitates  switching
between the absolute and relative interpretations. 
Although it  may  be  required  in  some contexts,  the  distinction  between open or
closed intervals is useless in this algorithmic context; hence, the use of lists for do-
mains.  These  algorithmic  versions  of  manifolds  need  not  be  differentiable,  that
is,  they describe varieties  as  well  (e.g.,  fractal  varieties).  Finally,  a  manifold with
no domain  is  a  point.  Its  syntax  is  Manifold[list  of  expressions].  Taking  into  ac-
count  this  limiting  case  is  useful  in  some  generic  applications.  When  working
with manifolds, there is no longer any notion of point, curve, surface, or volume
as  types  since  all  are  manifolds.  The  number  of  coordinates  gives  the  nature
of  the  figure,  with  the  dimension  of  the  codomain  specifying  the  embedding
space. 

· The Selectors

The  selectors  extract  the  various  arguments  of  a  typed  expression [17].  They
were initially introduced in computer science to isolate the interface specification
from the internal representation. When the representation is stable, argument ex-
traction  can  be  done  directly  with  patterns  in  the  left-hand  sides  of  trans-
formation  rules.  Nevertheless,  some  generic  programs  are  more  easily  designed
by resorting to selectors. 

By  thinking  of  applications  to  geometry  or  field  analysis,  we  use  Coordinates
for the variables,  Domain  for the coordinate ranges,  and Codomain  for the para-
metric expressions (thus identifying the functions and their values). 

In[3]:= ColumnThroughCoordinates, Domain, Codomainm

Out[3]=

, 
, 1, r, , 0,

3 
2


 Cos,  Sin
There might be an ambiguity between domain and codomain, which in this con-
text  are  the  domain  and  codomain  of  the  associated  mapping,  while  the
codomain can also be thought of as a domain in a geometric sense. We neverthe-
less maintain domain and codomain because of their common use in mathemat-
ics as well as computer science, and we will resort to patch or region to denote a
geometric domain. 
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· Variants
Atlases and Geometric Scenes
In the frame of this algorithmic approach, an atlas is simply a list of manifolds; so
we depart from the mathematical approach where a differentiable (or at least con-
tinuous)  overlapping  is  required.  Here,  an  atlas  is  a  piecewise  manifold;  it  is
slightly more general for it enables the accumulation of manifolds with different
dimensions. The manifolds of an atlas must nonetheless have codomains with the
same dimensions. 

In[4]:= DrawAtlas
ManifoldCylindricalr, , h,
r, 12, 1, , 0, 3 2, h, 1, 1,

ManifoldCylindrical32, , h, , 0, 2 , h, 1, 0,
ManifoldCylindrical32, t, t6, t, 0, 6 

, Mesh  1, 12, 5, None, Automatic

Out[4]=

Combined  with  Draw,  an  Atlas  can  be  viewed  as  an  adaptation  to  manifolds
of  the  command  StackGraphics  from  the  former  package  Graphics`Graph
ics3D` (legacy standard packages) that directly applies to graphics objects. 

Atlases  are  especially  useful  for  manipulating  sets  of  manifolds  as  wholes.  They
constitute a natural data structure for compound shapes or geometric scenes, the
atlas then being thought of as a set of figures. Manifolds then appear as the nat-
ural primitives for scene description, in association with the type Atlas as a com-
position tool. As such, they enable combining continuous and discrete aspects.
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Many-Valued Manifolds
A many-valued manifold differs from an atlas in the sense that there is a common
domain for a list of parametrizations; nevertheless, it can possibly be rewritten as
an atlas of manifolds. The multiple parametrizations cannot only be arranged in
lists  but  also  in  matrices  or  higher-dimensional  tables.  Roughly,  many-valued
manifolds  implement  coverings.  These  are  mainly  used  to  parametrize  figures
with  several  branches  (e.g.,  a  hyperbola),  in  particular  in  the  case  of  manifolds
computed as inverse mappings. Many-valued manifolds also allow an application
to fractals (see the section Manifolds and Fractals).

In[5]:= Solvex^2  y^4 1, y
Out[5]= y  1  x214, y   1  x214,

y   1  x214, y  1  x214

In[6]:= DrawManifoldx, y . Drop, 2, 3, x, 1, 1,
ManifoldCosh, Sinh, Cosh, Sinh, , 3, 3

Out[6]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-10 -5 5 10

-10

-5

5

10

Coordinate Systems and Manifolds
In view of a generic treatment of fields, coordinate systems should be regarded as
particular cases of coordinate systems on manifolds. This is achieved by focusing
on  the  transformations  associated  with  the  coordinate  systems;  for  example,
Polar[{r, }] refers to the polar coordinate system. There is nonetheless no de-
fault symbol for coordinates: freely chosen by the user, these are specified where
needed. 

In[7]:= Polarr, 
Out[7]= r Cos, r Sin
The associated rewrite rules must be given for every common coordinate system.
A  symbol  like  Polar  may  express  either  a  change  of  coordinates  (relative  view-
point) when processed as a function, or a coordinate system (absolute viewpoint)
when processed as  a  type (symbol  wrapping a  list  of  coordinates).  For  that  pur-
pose, the argument of CoordinateSystem is held with the appropriate attribute.  

In[8]:= Polarr,   CoordinateSystem
Out[8]= CoordinateSystemPolarr, 
Although  it  might  seem  counterintuitive  at  first  sight,  the  relative  viewpoint
turns out to be more practical and more meaningful, too: the idea of an absolute
coordinate  system has  no  serious  foundation  and  is  conventional  in  the  end.  In
particular,  Manifold[Polar[{r,  }]]  yields  Manifold[{r  Cos[],  r
Sin[]}],  that  is,  the  Cartesian  coordinates  of  the  point.  So  it  is  equivalent  to
the command CoordinatesToCartesian of the vector analysis package, the ana-
log of CoordinatesFromCartesian being obtained by introducing reciprocal co-
ordinate  systems  (respectively,  coordinate  changes),  for  example,  InversePo
lar[{u, v}].
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Although  it  might  seem  counterintuitive  at  first  sight,  the  relative  viewpoint
turns out to be more practical and more meaningful, too: the idea of an absolute
coordinate  system has  no  serious  foundation  and  is  conventional  in  the  end.  In
particular,  Manifold[Polar[{r,  }]]  yields  Manifold[{r  Cos[],  r
Sin[]}],  that  is,  the  Cartesian  coordinates  of  the  point.  So  it  is  equivalent  to
the command CoordinatesToCartesian of the vector analysis package, the ana-
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In[9]:= InverseFunctionPolar, InversePolaru, v

Out[9]= InversePolar,  u2  v2 , ArcTanu, v
With  these  conventions,  the  expression  Manifold[Polar[{f[r,  ],  g[r,
]}], {r, rmin, rmax}, {, min, max}] describes a sector of a ring and Mani
fold[Polar[{f[t], g[t]}], {t, tmin, tmax}] describes a curve with paramet-
ric expressions f[t] and g[t] in polar coordinates. Curves and surfaces in three-
dimensional  coordinate  systems  can  be  given  similarly.  Although  it  is  uncom-
mon, this use of parametric representations in some coordinate system turns out
to be a concise and convenient way to describe manifolds.

Manifolds with Interpolating Functions
If need be, a manifold can be defined in terms of interpolating functions. Conve-
nient when solving differential equations (NDSolve), such manifolds are occasion-
ally useful for building more or less intricate shapes. Splines, Bézier manifolds, or
NURBS could also be used [18].

In[10]:= theStar  InterpolationTablet, 1  Cos5 t2 Cost,
t, 0., 2 , 5, InterpolationOrder  1,

InterpolationTablet, 1  Cos5 t2 Sint,
t, 0., 2 , 5, InterpolationOrder  1

Out[10]= InterpolatingFunction0., 6.28319, ,
InterpolatingFunction0., 6.28319, 

In[11]:= vanDerPolt_  yt, zt .
FirstNDSolvey't  zt, z't  1  yt^2 zt  yt,

y0  0.1, z0  0.1, y, z, t, 0, 15
Out[11]= InterpolatingFunction0., 15., t,

InterpolatingFunction0., 15., t
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In[12]:= DrawManifoldThroughtheStart, t, 0, 2 ,
ManifoldvanDerPolt, t, 0, 15, AspectRatio  Automatic

Out[12]=
-1.0 -0.5 0.5 1.0 1.5
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-0.5

0.5

1.0
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-1

1

2

· Mappings

Mappings constitute a powerful tool that implement not only geometric transfor-
mations but also changes of coordinates. In our algorithmic context of typed enti-
ties,  there  are  two  levels:  vector  functions  that  apply  to  n-tuples  (lists)  and
mappings that apply to manifolds. Vector functions are defined according to the
informal  scheme   someTransform[{s1 _,  s2 _,  …}]  :=  {expressions  of  the
si}. For instance:

In[13]:= nonLinearx_, y_ : x  3 y, y  x^2
In  the  following,  we  will  have  to  manipulate  such  vector  functions  or  even  lists
of vector functions; hence, the usefulness of a construct for pure vector functions.

Pure Vector Functions and Function Systems
A  pure  vector  function  is  a  variant  of  pure  functions  with  a  single  argument,
which is a list plus a means to refer to the list elements individually in the defini-
tion. Then, such a vector function can be used in place of a definition like non
Linear. In the case of nested vector functions, unique symbols are introduced.

In[14]:= VectorFunctionx, y, x  3 y, y  x^2
Out[14]= 11  3 12, 112  12 &

In[15]:= nonLinearu, v  u, v
Out[15]= True

By  using  Through,  the  construct  FunctionSystem  distributes  the  functions  (or
vector functions) of a list over the argument(s).
In[16]:= FunctionSystemArcTan, 12  1 &u, v

Out[16]= ArcTanu, v, 1  u v

In[17]:= FunctionSystem
nonLinear, VectorFunctionx, y, x  y, x yu, v

Out[17]= u  3 v, u2  v, u  v, u v
Modularity  prevents  the  use  of  such  vector  functions  in  the  case  of  manifolds.
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Modularity  prevents  the  use  of  such  vector  functions  in  the  case  of  manifolds.
Moreover,  these do not allow the useful  notion of  parametrized transformation;
hence, the introduction of mappings. 

Mappings and Parametrized Mappings
Mappings  constitute  one  of  the  most  fundamental  operations  on  manifolds.
Many others can be defined in terms of mappings. A mapping is a parametrized
transformation (i.e., a continuous set of transformations) with a domain specifica-
tion  for  each  parameter  that  applies  to  manifolds  and  yields  a  manifold.  When
there  is  no  parameter,  mappings  amount  to  ordinary  manifold  transformations;
otherwise,  they  implement  extrusions  as  shown  in  the  section  Operations  on
Manifolds.  Mappings  are  defined  as  subvalues.  Their  syntax  is  similar  to  that
of manifolds, except that the first term is a vector function or a list of vector func-
tions in the case of multiple mappings: Mapping[transformation, domain].

In[18]:= Mappingtr, c, 0, Pi
Manifoldfu, v, gu, v, u, 0, 1, v, a, b

Out[18]= Manifoldtrfu, v, gu, v, u, 0, 1, v, a, b, c, 0, 
Although they are similar, mappings differ from vector functions: the latter apply
to vectors, that is, lists, while the former apply to manifolds. A mapping is a con-
struct that applies transformations to manifolds. In the following, the rotation op-
erator applies only to lists. The wrapper Mapping enables its application to mani-
folds  and  the  introduction  of  parameters.  This  approach  enables  modularity
since transformations need no longer be explicitly defined for manifolds.

In[19]:= Rotation2 3x, y

Out[19]= x
2


3 y

2
,

3 x

2

y

2


In[20]:= Rotation2 3Manifoldx, y, x, y

Out[20]= Rotation2 
3

Manifoldx, y, x, y

In[21]:= MappingRotation2 3Manifoldx, y, x, y

Out[21]= Manifoldx
2


3 y

2
,

3 x

2

y

2
, x, y

In[22]:= MappingRotationa, a, 0, Manifoldt, 0, t, 0, 1
Out[22]= Manifoldt Cosa, t Sina, t, 0, 1, a, 0, 
Like a pure function, a mapping is an inert object that becomes active when ap-
plied to a manifold. The relationship between manifolds and mappings is similar
to  that  between  expressions  and  functions.  A  manifold  can  always  be  thought
of  as  some  mapping  applied  to  a  generic  Cartesian  manifold.  Here  is  another
standard decomposition with a parametrized mapping applied to the origin. 
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In[23]:= Manifoldtrx, y, z, d  MappingtrManifoldx, y, z, d,
Manifoldux, vy, d 
Mappingux, vy   &, dManifold0, 0

Out[23]= True, True

Multiple Mappings and Sheaves
Multiple  mappings  are  intended  to  apply  systems  of  functions  to  manifolds.  A
multiple mapping generates a many-valued manifold according to the scheme
In[24]:= Mappingtr1, tr2, c, 0, Pi

Manifoldfu, v, gu, v, w, 0, 1, v, a, b
Out[24]= Manifoldtr1fu, v, gu, v, tr2fu, v, gu, v,

w, 0, 1, v, a, b, c, 0, 
Multiple mappings are useful for duplicating manifolds or implementing iterated
function systems in terms of  manifolds  (see the section Manifolds  and Fractals).
They  are  nonetheless  restricted  to  the  case  when  the  transformations  share  the
same parameter domain (or have no parameter). In the general case, multiple map-
pings  require  a  specific  construct:  sheaves.  Sheaves  are  collections  of  mappings.
Like  multiple  mappings,  they  are  intended  to  apply  function  systems  to  mani-
folds. A sheaf generates an atlas according to the scheme 

In[25]:= SheafMappingtr1, d1, Mappingtr2, d2Manifoldpr, coord
Out[25]= Atlas

Manifoldtr1pr, coord, d1, Manifoldtr2pr, coord, d2

‡ Visualization of Manifolds
The  visualization  of  manifolds  mainly  relies  upon  the  ParametricPlot  and
ParametricPlot3D  commands,  plus  the  novel  function  SolidParametric
Plot3D  developed  for  three-dimensional  shapes.  A  generic  command  is  intro-
duced in the form of polymorphic transformation rules.

· The Command Draw

Since  both  the  functions  to  be  plotted  and  the  domains  are  part  of  the  data
structure,  manifolds  require  a  single  graphic  command  with  a  single  argument
plus possible options; let us call it Draw. Only manifolds with a codomain that has
a  geometric  interpretation  in  a  two-  or  three-dimensional  space  are  drawn;  the
length  of  the  first  argument  determines  the  dimension  of  the  representation
space. Then the number of coordinates determines the nature of the represented
object:  point,  curve,  surface,  volume,  or  higher-dimensional  object.  Moreover,
the  codomain  is  supposed  to  be  a  subset  of  a  Euclidean  affine  space  equipped
with  a  canonical  orthogonal  Cartesian  coordinate  system,  which  has  conse-
quently  the  status  of  an  “absolute”  reference  space.  Then  the  domain  is  that
of the curvilinear coordinate system of the manifold.
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Most drawings are “subcontracted” to standard parametric plotting commands.

n HdomainL p HcodomainL Plotting Function
0 2 Graphics

0 3 Graphics3D

1 2 ParametricPlot

1 3 ParametricPlot3D

2 2 ParametricPlot

2 3 ParametricPlot3D

3 3 SolidParametricPlot3D

Table 1. A summary of the various combinations.

An extension of  the ParametricPlot  family  is  required for  the 3×3 case.  It  has
been  temporarily  called  SolidParametricPlot3D,  although  polymorphism
should  allow  processing  it  as  a  specific  case  of  ParametricPlot3D.  Solid
ParametricPlot3D  draws  the  boundary,  which  is  valid  only  when  the  Jacobian
of the parametric equations does not vanish. The case p = 1 is not processed by
Draw  because  of  its  weak visual  interest.  Nevertheless,  thanks  to  a  lifting,  it  can
be rearranged into a two-dimensional or three-dimensional manifold so as to be
visualized the same way functions are visualized with Plot or Plot3D. 

In[26]:= LiftManifoldht, t, 1, 1
Out[26]= Manifoldt, ht, t, 1, 1

· Higher-Dimensional Manifolds

A higher-dimensional manifold is processed by means of the two-dimensional or
three-dimensional projection of its boundary. Here is an example of the four-di-
mensional unit hypercube [19].

In[27]:= unitHyperCube4D  UnitHyperCubea, b, c, d
Out[27]= Manifolda, b, c, d, a, 0, 1, b, 0, 1, c, 0, 1, d, 0, 1
In the following, a three-dimensional projection of the four-dimensional unit hy-
percube is drawn. The transparency effects of Version 6 are appreciated. Analog
applications to complex-valued functions are also possible [20].

In[28]:= polarRiemannSurface4Dfz_,
r_, rmin_, rmax_, _, min_, max_ : Manifold
r Cos, r Sin, ComplexExpandRefz . z  r Exp ,
ComplexExpandImfz . z  r Exp ,

r, rmin, rmax, , min, max
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In[29]:= sqrtPolarRiemannSurface4D 
MapAtPowerExpand, polarRiemannSurface4Dz^12,

r, 0, 3, , 0, 4  . ArgExp  r  , 1

Out[29]= Manifoldr Cos, r Sin, r Cos
2
, r Sin

2
,

r, 0, 3, , 0, 4 

In[30]:= DrawSides
MappingShadowing1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1,

1, 2, 1, 2unitHyperCube4D, 2,
MappingShadowing1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 12, 12,

1, 1, 1, 1AtlasManifold
1.5, 0, 0, 0, 0, 1.5, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 t,
t, 0, 4, sqrtPolarRiemannSurface4D

, Axes  None, Boxed  False, PlotPoints  2, 2, 5, 40,
Mesh  None, None, 3, 35,
PlotStyle  Opacity0.3, Thickness0.01, ,
ViewPoint  0.9, 2.5, 2.1, 1.9, 1.9, 1.9

Out[30]=

The remainder of this article describes a variety of tools that extend the game by
enabling numerous manifold manipulations.  

‡ Shapes as Manifolds
Thanks to their graphic representations, manifolds can be used for shape descrip-
tion and visualization. As such, they constitute a means for introducing symbolic
aspects  in  shape  design.  This  relies  upon  a  number  of  primitive  manifolds  and
shapes,  such as cylinder,  sphere, or torus,  as well  as manifold and shape genera-
tors that compute boundaries, embeddings, extrusions, and so on, or that operate
by combining or transforming them.  
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· Primitive Manifolds and Shapes

A manifold is  obtained by combining a vector function (a  shape function) and a
domain specification in the form of the construct Manifold[vector expression, do-
main].  So  modularity  is  simply  obtained by  defining  (hence,  naming)  a  number
of  vector  functions  that  can  then  be  combined  at  will  with  all  kinds  of  domain
specifications to produce as many manifolds. 
The  most  common  shape  functions  are  related  to  the  usual  coordinate  systems
(e.g.,  Polar,  Cylindrical,  and  Spherical)  that  describe  objects  with  polar,
cylindrical,  or  spherical  symmetries.  These  are  the  ingredients  for  building  cir-
cles,  disks,  rings,  cylinders,  and  spheres.  Other  shape  functions  are  drawn  from
classical  parametric  equations  that  define  tori,  Lissajous  curves,  families  of  cy-
cloids,  quadrics,  and so forth.  These two families  of  shape functions are respec-
tively  introduced  in  the  packages  Morphology`Coordinates`  (automatic-
ally loaded by Morphology`Manifolds`) and Morphology`Shapes`. 

When these shape functions are parametrized, subvalues are used for their defini-
tions. For instance, in the following definition of a parallelogram, u and v denote
two vectors  while    and    denote  the  coordinates,  that  is,  the  shape  function  is
Oblique[{u1, u2, v1, v2}].

In[31]:= Obliqueu1, u2, v1, v2, 
Out[31]=  u1   u2,  v1   v2

In[32]:= ManifoldOblique1, 12, 0, 2, , , 0, 1, , 0, 1

Out[32]= Manifold 


2
, 2 , , 0, 1, , 0, 1

This  way  of  substituting  shape  functions  for  explicit  primitive  manifolds  avoids
possible  conflicts  with  the  standard  graphics  primitives  and  fits  the  polysemy
of  the  language  of  geometry,  the  same  words  (e.g.,  ellipse,  cylinder,  or  cone)
denoting both lines and surfaces (respectively, surfaces and volumes). Indeed, the
domain  configuration  determines  the  dimension  whatever  the  shape  function:  a
single  list  denotes  a  curve  (single  coordinate),  two  lists  a  surface  (two  coordi-
nates), and three lists a volume.

In[33]:= m  ManifoldCylindricalr0,  h , h, h, 0, 1,
ManifoldCylindricalr0, , h, , 0, , h, 0, 1,
ManifoldCylindricalr, , h,
r, 12, 1, , 0, , h, 0, 1;

In[34]:= Drawm . r0  1, Ticks  None, Axes  None,

Mesh  Automatic, 12, 3, 1, 12, 3

Out[34]=

The same cylindrical shape function generates many other figures, such as a heli-
coid, a cone, or more exotic figures.
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The same cylindrical shape function generates many other figures, such as a heli-
coid, a cone, or more exotic figures. 

In[35]:= m  Manifold
Cylindricalr, , 2 , r, 12, 1, , 0, 5 ,

ManifoldCylindricalr, , r, r, 1, 1, , 0, 2 ,
Manifold
Cylindrical1, , h  Sin4 2, , 0, 2 , h, 1, 1;

In[36]:= Drawm, Ticks  None, Axes  None, BoxRatios  1, 1, 1,
BoundaryStyle  Automatic, Mesh  1, 35, 5, 15, 25, 3

Out[36]=

This  approach  is  especially  useful  for  embedding  figures  in  higher-dimensional
spaces  without  resorting  to  the  embedding  operator.  Here  are  the  embeddings
of a circle, a ring, and half a disk.

In[37]:= m  ManifoldCylindrical1, , 0, , 0, 2 ,
ManifoldRotateLeftCylindricalr, , 0,
r, 12, 1, , 0, 3 2,

ManifoldSphericalr, 4, phi,
r, 0, 1, phi, 2, 2;

In[38]:= Drawm, Axes  None, BoundaryStyle  Automatic,

Mesh  Automatic, 0, 12, 3, 12,
PlotRange  1, 1, 1, 1, 1, 1

Out[38]=

Then,  if  need  be,  the  shapes  can  be  moved  or  deformed  by  means  of  affine  or
more general transformations that are introduced next.  

· A Small Gallery of Manifolds

With the drawing command and the novel  capacities  of  Version 6,  these primi-
tive  manifolds  supersede  the  former  Shapes`  package,  including  wireframes:
here are a  few examples  drawn from the package.  Other examples  can be found
in the literature, for example, [9] or [21].
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In[39]:= Draw
ManifoldAnnular3, , , , 0, 1, , 0, 2 , , 0, 2 ,
ManifoldAnnular3, , , , 1, 2,
, 0, 3 2, , 3 4, 4,

ManifoldAnnular31, , , , 0, 2 , , 0, 2 ,
Mesh  0, 15, 10, PlotRange  4, 3, 4, 4, 1, 1,

ViewPoint  2., 1.5, 1.7, Mesh  0, 15, 5,
Mesh  15, 10, ColorFunction  White &, Axes  None

Out[39]=

In[40]:= Draw ManifoldMoebius3, , , 1, 1, , 0, 2 ,
ManifoldCylindricalr, , r, r, 1, 1, , 0, 2 ,
ManifoldMoebius3r, , h,
r, 1, 1, , 0, 2 , h, 1, 1

, Axes  None, BoundaryStyle  Automatic,

ColorFunction  Automatic, White &, Automatic,
PlotPoints  2, 22, 2, 14, 2, 22, 2,
Mesh  0, 20, 0, 12, 0, 20, 0

Out[40]=

‡ Manifolds and Fractals
· Manifolds and Fractal Functions

Fractal  functions  generalize  the  process  by  which  the  Weierstrass  function  is
built.  Fractal  curves  (or,  more generally,  fractal  varieties)  can be built  by  means
of fractal functions, obtained by summing scale transformed versions of an initial
function, typically a trigonometric function [22]. 

In[41]:= ScaleTransformw, , kSint, t
Out[41]= wk  Sint wk
The command FractalFunction computes the nth approximation. 
FractalFunction[_,_,n_][e_,t_]:=

Sum[ScaleTransform[,,k][e,t],{k,0,n}]

Fractal  functions  can  be  used  to  generate  parametric  approximations  to  fractal
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Fractal  functions  can  be  used  to  generate  parametric  approximations  to  fractal
manifolds. Even when not useful for scientific purposes, they may have aestheti-
cally pleasing properties. 
In[42]:= Draw

Manifoldt, FractalFunction3, 0.5, 7Sint, t, t, , ,
ManifoldFractalFunction3, 4, 0.3, 0.5, 5

Cost9, Cost25, t, t, 0, 2 , AspectRatio  0.6

Out[42]=
-3 -2 -1 1 2 3

-1.5
-1.0
-0.5

0.5
1.0
1.5

0.5 1.0 1.5 2.0 2.5 3.0

1.2
1.4
1.6
1.8

· Manifolds and Iterated Function Systems

Iterated  function  systems  (IFS)  constitute  another  well-known  way  to  generate
fractals [23]. Briefly, an IFS is a set of contracting affine transformations that are
iteratively applied to any initial figure. Multiple mappings directly implement the
iteration [24] rather than its variant, “chaos game” [24, 25]: they compute the nth

approximation of an IFS, from any initial manifold, in the form of a many-valued
manifold.
In[43]:= MappingIFS"Cantor"Manifoldt, 0, t, 0, 1

Out[43]= Manifold1
3

t

3
,

1

3
, 1

3

t

3
, 

1

3
, t, 0, 1

A  few  common  IFSs  are  defined  in  the  package  Morphology`Fractals`,  ex-
pressed in the form IFS["Name"] that yields a function system. 
In[44]:= IFS"Cantor"

Out[44]= FunctionSystem1
3


1

3
&,

1

3

1

3
&

Here is an example of a Sierpinski sponge. 
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In[45]:= DrawNestMappingIFS"RectangularSierpinski3D", Manifold
u, 1  u v, 1  u 1  v w, u, 0, 1, v, 0, 1, w, 0, 1, 3,

PlotPoints  2, Mesh  None, Axes  None,

ViewPoint  2.4, 1.4, 0.2

Out[45]=

Giving a  low value to  PlotPoints  is  necessary  to  avoid a  lengthy computation.
The  process  appears  to  be  a  quite  general  one  that  builds  a  variety  where  even
continuity properties are abandoned.
In  association  with  a  convenient  initial  manifold,  an  IFS  can  also  produce  a
branching  figure.  Such  figures  are  commonly  generated  with  L-systems.
Weighted  function  systems  are  also  possible,  which  allow  visualizing  invariant
measures on fractals by means of the chaos game. Here is an example of a Sierpin- 
ski triangle with weights 1 ê 2, 1 ê 4, and 1 ê 4.
In[46]:= branch1v_ : v2

branch2v_ : v2  0, 12
branch3v_ : RotationPi6, 0v3  0, 13
branch4v_ : RotationPi6, 0v3  2 0, 13

In[50]:= NestMappingArraybranch, 4, Manifold0, t, t, 0, 1, 1
Out[50]= Manifold

0, t

2
, 0, 1

2

t

2
, t

6
,

1

3


t

2 3
, t

6
,

2

3


t

2 3
, t, 0, 1
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In[51]:= Draw
NestMappingArraybranch, 4,
Manifold0., 1. t, t, 0, 1, 4,

ManifoldPlayChaosGameWeightedFunctionSystem
IFS"EquilateralSierpinski2D",
0.5, 0.25, 0.25, 0., 0., 2500

, Axes  None, PlotPoints  2, PlotStyle  PointSize0.005,
AspectRatio  1.1, Automatic

Out[51]=

‡ Operations on Manifolds
Beyond  the  aforementioned  primitives,  new  manifolds  or  shapes  are  generated
by combining or transforming them. 

· Sides and Boundary

In the two-dimensional case, the first-order sides are edges while the second-or-
der  ones  are  vertices.  In  the  three-dimensional  case,  the  first-order  sides  are
faces,  second-order  ones  are  edges,  and  third-order  ones  are  vertices,  and  so
forth. The first-order sides constitute the boundary from the domain viewpoint:
in  some  pathological  cases,  the  first-order  sides  are  not  necessarily  the  same  as
the geometrical boundary, as, for example, when the codomain overlaps itself. 
In[52]:= b0  Manifoldr Cost, r Sint, h,

r, 1, 2, t, 0, Pi2, h, 1, 1;
b1  Sidesb0; b2  Sidesb0, 2; b3  Sidesb0, 3; Shortb2, 1

Out[53]//Short= AtlasManifold1, 0, h, h, 1, 1,
10, Manifold0, r, 1, r, 1, 2

In[54]:= Drawb1, b2, b3, Mesh  None, Ticks  None,

Axes  None, PlotStyle  PointSize0.05

Out[54]=
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· Left Compositions

Most  operations  are  based  on  various  combinations  of  manifolds  and  mappings
or parametrized mappings. According to their order, we get the left compositions
and  their  variants  that  implement  transformations,  extrusions,  and  duplications
(following sections), or the right compositions and their variants that implement
embeddings,  connections,  changes  of  coordinates,  and  reshapings  (subsequent
sections).

Transformations
In  a  geometrical  context  where  manifolds  are  intended  to  describe  figures  or
shapes, transformations constitute a useful manifold generator. Let us recall that
these are defined as vector functions or pure vector functions that apply to n-tu-
ples (lists) of coordinates; then the Mapping construct enables their application to
manifolds.

In[55]:= deformx_, y_ : x  y 5, y  x^2
MappingdeformManifoldu, v, u, 0, 1, v, 0, 1

Out[56]= Manifoldu  v

5
, u2  v, u, 0, 1, v, 0, 1

Applying a transformation to a rectangle or a parallelepiped shows how the trans-
formation operates. The construct also applies to atlases and many-valued mani-
folds (the one in the example implementing a fractal variety).

In[57]:= Draw
MappingdeformNestMappingIFS"RectangularSierpinski2D",

Manifoldu, 1  u v, u, 0, 1, v, 0, 1, 5,
PlotPoints  2, Mesh  None, ColorFunction  ColorData11 &,
BoundaryStyle  None

Out[57]=

This  general  scheme  is  supplemented  by  a  set  of  common  transformations  in
view of applications to geometry, shape design, CAD, or engineering. 
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A Collection of Transformations
In order to facilitate a later symbolic treatment of transformations (composition
and other  operations),  we focus  on transformations  as  typed objects  that  can be
combined according to algebraic or heuristic rules, that is, an object approach to
transformations. So there are at least three levels: typed symbolic objects imple-
menting  transformations,  their  definitions  as  vector  functions,  plus  their  associ-
ated matrices in the case of affine transformations. Once they are defined as vec-
tor  functions,  the  transformations  also  apply  to  manifolds  thanks  to  the  scheme
Mapping[transformation][manifold] or Mapping[transformation]@manifold.
Since  transformations  are  implemented  as  typed  objects,  for  example,  Trans
lation[v] with v a list, rewrite rules can be given for various combinations. 

In[58]:= CompositionTranslation, 0, 0, Translation0, 1, 
Out[58]= Translation, 1, 
Then in view of their use as vector functions, transformations have an associated
subvalue,  according  to  the  informal  scheme  SomeTransform[params_][v_]:=
expression.  A  complementary  command  defines  the  associated  matrix  in  the
case  of  affine  transformations.  For  each  affine  transformation,  there  is  a  linear
case  and  a  strict  affine  case  which  is  thought  of  as  the  linear  version  applied
“about” some point.  For instance,  here is  the case of  a  similarity,  where k  is  ei-
ther a scalar or a list (stretching). 
Similarity[k_,pt_:0][p_List]:= k*(p-pt)+pt

In[59]:= MappingSimilaritya, b, 1, 1
Manifoldu, v, u, 0, 1, v, 0, 1

Out[59]= Manifold1  a 1  u, 1  b 1  v, u, 0, 1, v, 0, 1
In the three-dimensional case, there are different ways to specify a rotation: Eu-
ler angles, nautical angles, and axis and angle (or matrix exponential). These rota-
tions  can  themselves  be  decomposed  into  precession,  pitching,  and  spinning.
That is why we introduce typed entities, so Precession[] denotes a precession
of angle j or Euler[, , ] denotes a rotation with the specified Euler angles.
The type Rotation is restricted to the two-dimensional case.

The  spinning  direction  can  be  given  either  by  a  vector  or  by  two  spherical  an-
gles.  Precession  and  winding  are  one  and  the  same  thing;  so  are  nutation  and
rolling.  Here  is  the  rotation  matrix  associated  with  the  given  spinning  parame-
ters, followed by the matrix of an embedding.  

In[60]:= RowMapMatrixFormMatrix &, Spinning0, 1, 0, ,
Embedding0, 1, 1, 1, 1, 0, Spacer50

Out[60]=

Cos 0 Sin
0 1 0

Sin 0 Cos

0 1

1 1

1 0

These  additional  definitions  supersede  and  extend  those  formerly  found  in  the
standard  package  Geometry`Rotations`.  Projections,  shadows,  and  reflections
are  defined in  a  similar  way.  Common affine transformations  are  defined in  the
context  Morphology`Transformations`,  common  transformations  associated
with  coordinate  systems  are  defined  in  Morphology`Coordinates`,  and  trans-
formations  defining  classical  curves  or  surfaces  are  defined  in  Morpholo
gy`Shapes`. 
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These  additional  definitions  supersede  and  extend  those  formerly  found  in  the
standard  package  Geometry`Rotations`.  Projections,  shadows,  and  reflections
are  defined in  a  similar  way.  Common affine transformations  are  defined in  the
context  Morphology`Transformations`,  common  transformations  associated
with  coordinate  systems  are  defined  in  Morphology`Coordinates`,  and  trans-
formations  defining  classical  curves  or  surfaces  are  defined  in  Morpholo
gy`Shapes`. 

In[61]:= MappingScaling &, Log10,  &
Manifoldu, v, u, 0, 1, v, 1, 10^3

Out[61]= Manifoldu, Logv
Log10, u, 0, 1, v, 1, 1000

In[62]:= MappingLissajous2, 3, 5Manifoldt, t, 0, 2 
Out[62]= ManifoldSin2 t, Sin3 t, Sin5 t, t, 0, 2 

In[63]:= Draw, , Frame  False, Axes  None, PlotPoints  3, Automatic,
Mesh  5, None, AspectRatio  0.75, 1

Out[63]=

Applications to Manifolds and Shapes
Applying various transformations to standard manifolds constitutes a way to gen-
erate  all  kinds  of  shapes  by  deformation.  In  particular,  Flattening  (projection)
is  more  or  less  equivalent  to  Project  from  the  former  package  Graph
ics`Graphics3D`, defined in the case of three-dimensional graphics and projec-
tions  onto  coordinate  planes.  Here  is  a  triple  mapping  that  concisely  expresses
these three projections.

In[64]:= lifting  LiftManifoldt^2, t^3, t, 1, 1
Out[64]= Manifoldt, t2, t3, t, 1, 1
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In[65]:= Drawlifting, Mapping
Flattening1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1,
Flattening0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0,
Flattening0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0

lifting, Axes  None

Out[65]=

Applying  a  nonlinear  transformation  to  a  rectilinear  object  generally  yields  a
curved object. This would not be directly possible with graphics primitives. With
their  analytical  representations,  manifolds  constitute  the  natural  primitives  for
nonlinear  operations,  while  built-in  graphics  primitives  are  more  or  less  re-
stricted to affine operations.

Applications to Higher-Dimensional Manifolds
There  is  an  interesting  use  of  transformations  for  the  two-dimensional  or  per-
spective  3D visualization  of  higher-dimensional  manifolds.  As  an  example,  here
is a two-dimensional shadow of the sides of a four-dimensional hypercube.

In[66]:= DrawMappingShadowing1.2, 1, 0.7, 0, 0, 1.2, 1, 0.7,
1, 0, 0.7, 1.2, 1, 0.7, 0, 1.2

SidesUnitHyperCubea, b, c, d, 2, PlotPoints  2,

Mesh  None, Axes  None, Frame  False, AspectRatio  0.7

Out[66]=

One can also compute a three-dimensional projection that is then displayed with
the Mathematica  internal projection engine (see the section Higher-Dimensional
Manifolds). 
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Extrusions
Extrusion  is  a  feature  commonly  encountered  in  drawing  or  CAD  applications.
The analytical approach to manifolds lends itself  well  to extending the common
extrusion  process  by  means  of  parametrized  transformations.  This  is  one  of  the
major  applications  of  parametrized  mappings,  which  reveals  a  relationship  be-
tween the theoretical notion of a continuous set of transformations and the tech-
nical idea of extrusion. 
In[67]:= MappingsomeTransformation, someParameters

Manifoldparametric, someDomain
Out[67]= ManifoldsomeTransformationparametric,

someDomain, someParameters
The ordinary extrusion is no more and no less than a single parameter mapping
in the case of a translation. An embedding may be necessary to initiate the pro-
cess,  in  which  case  the  undocumented  function  Compose  conveniently  ex-
presses  the  composition  of  mappings.  Many-valued  manifolds  as  well  as  atlases
can also be extruded.

In[68]:= Draw
ComposeMappingTranslation0, 0, h, h, 0, 15,
MappingEmbedding1, 0, 0, 0, 1, 0,
NestMappingIFS"RectangularSierpinski2D",
Manifoldu, 1  u v, u, 0, 1, v, 0, 1, 3,

ComposeMappingSpinning0, 0, 1, , , 0, 3 2,
Manifoldx, 0, z 2  Sinx, x, 0, 2 , z, 0, 1,

PlotPoints  2, 10, 3, 25, Mesh  0, 7, 1, 20,
Axes  None, BoundaryStyle  Automatic

Out[68]=

Ruled surfaces, cylindrical shapes, objects of revolution, conic objects, and others
are obtained by specific extrusions. Rotational extrusions more or less supersede
RevolutionPlot3D  (formerly  SurfaceOfRevolution),  especially  when  used
with the spinning transformation, whose first parameter corresponds to the revo-
lution axis, and they naturally extend to solids of revolution. 

As  a  final  example,  the  function  TwistedTube  introduced  by  Edwards in  [26]  is
rewritten here in terms of manifolds by means of an extrusion combining a rota-
tion,  a  translation,  an  embedding,  and  a  spinning  transformation  with  vertical
axis. 
TwistedTube[m:Manifold[{_,_}, ___], deltaTheta:{theta_, min_:0, max_:(2 
Pi)}, r_, twist_]:=
  Mapping[Composition[

Spinning[{0,0,1}, theta], Embedding[{{1,0,0}, {0,0,1}}], 
Translation[{r,0}], Rotation[twist theta]],
  deltaTheta][m]
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TwistedTube[m:Manifold[{_,_}, ___], deltaTheta:{theta_, min_:0, max_:(2 
Pi)}, r_, twist_]:=
  Mapping[Composition[

Spinning[{0,0,1}, theta], Embedding[{{1,0,0}, {0,0,1}}], 
Translation[{r,0}], Rotation[twist theta]],
  deltaTheta][m]

In[69]:= theTube  TwistedTubeManifold
Cosu2, 1  Sinu2, u, 0, 2 Pi, , 0, 4 , 3, 32;

In[70]:= DrawtheTube, Mesh  10, 70,
ViewPoint  1.9, 1.9, 2.0, Axes  None

Out[70]=

Duplications
A  duplication  is  an  accumulation  of  transformed  manifolds  that  can  also  be
viewed  as  the  effect  of  a  multiple  mapping.  By  default,  many-valued  manifolds
are generated. The IFS branch was defined earlier.

In[71]:= Draw
MappingTableTranslation, Abs, , 13, 0, 12
NestMappingArraybranch, 4,
Manifold0., 1. t, t, 0, 1, 3,

MappingTablePrecession, , 0, 3 2, 2Manifold
1  u Absv  u, v, 3 1  v^2, u, 0, 1, v, 1, 1,

PlotPoints  2, 2, 21, Mesh  0, 0, 20, Axes  None,
BoundaryStyle  None, Automatic,
ColorFunction  ColorData11 &, Automatic,
AspectRatio  0.8, Automatic

Out[71]=

Possible  applications to the geometry of  vaults  or  more general  problems in ar-
chitectural design are mentioned by Cerny in [27]; see also [28].
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· Right Compositions

Right  compositions  and  their  variants  implement  embeddings,  connections,
changes of coordinates, and reshapings. Here, we call a connection of two mani-
folds the identification of the coordinate system of the former with the codomain
of the latter. In most cases, this determines a connection on the embedded mani-
fold as  soon as a  connection is  given for the carrier manifold.  A connection can
be used to  define  a  manifold  (as  a  figure)  on some other  carrier  manifold.  Two
manifolds  can  be  connected  provided  the  domain  of  the  former  and  the
codomain of the latter have the same dimension. If the latter has a lower dimen-
sion,  it  can  nonetheless  be  connected  to  some  submanifold  of  the  former,  in
which  case  the  connection  is  rather  an  embedding.  So  connections  and  embed-
dings  are  two  variants  of  the  single  operation  that  we  call  Embed,  used  in  the
form  Embed[carrier,  embedded]  or  the  variant  Embed[carrier,  mapping,  embed-
ded], where mapping is typically an embedding. 

Connections
When the domain of the first manifold has the same dimension as the codomain
of the second, the embedding boils down to a connection. Thanks to the connec-
tion  of  a  many-valued  manifold,  a  Sierpinski  triangle  can  be  pasted  onto  a
cylinder.
In[72]:= cylindricalSierpinski 

EmbedManifoldCylindrical0.5, 2   2, h, , h,
NestMappingIFS"RectangularSierpinski2D",
Manifoldu, 1  u v, u, 0, 1, v, 0, 1, 5;
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In[73]:= DrawcylindricalSierpinski, Axes  None, PlotPoints  2,

Mesh  None, ColorFunction  ColorData11 &,
BoundaryStyle  None, ViewPoint  2., 1.9, 1.7

Out[73]=

Changes of Coordinates and Reshapings
When the dimensions are the same, an embedding is no more and no less than a
change  of  coordinates  associated  with  a  change  of  boundary,  so  it  can  also  be
viewed as the reshaping of the second argument or else as its clipping on the first
one.  Goetz  and  Wagon used  such  changes  of  coordinates  in  [29]  as  a  means  to
carry  out  adaptive  surface  plotting.  The  second  example  is  adapted  from  Kuz-
niarek [30].

In[74]:= m1  Manifoldx, y, x y x^2  y^2, x, 1, 1, y, 1, 1;
m2  MapAtSimplify, Embedm1,

Manifoldr Cos, r Sin, r, 0, 1, , 0, 2 , 1
Out[75]= Manifoldr Cos, r Sin, Cos Sin, r, 0, 1, , 0, 2 
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In[76]:= Drawm1, MapAt .     Sin4 10 &, m2, 1, Axes  None,

BoundaryStyle  Automatic, Mesh  12, 12, 5, 30

Out[76]=

In[77]:= m1  Manifoldx, y, Cotx  Siny, x, , , y, 2 , 2 ;
m2  Embedm1, Manifoldu  Sinv, v, u, , , v, 2 , 2 

Out[77]= Manifoldu  Sinv, v, Cotu, u, , , v, 2 , 2 

In[78]:= Drawm1, m2, Axes  None,

PlotRange  , , 2 , 2 , 3, 3

Out[78]=

Strict Embeddings
We sometimes  need  to  embed  a  manifold,  a  many-valued  manifold,  or  an  atlas
into a higher-dimensional manifold. Such a strict embedding is determined by a
point where the origin of the embedded manifold is posted and the specification
of  its  orientation (typically  with  the  Embedding  transformation)  or  more  gener-
ally by a submanifold that carries the embedded one. 

In[79]:= EmbedManifoldPolar, , , ,
MappingEmbedding1, 2, 1, 0, Manifoldt, t, 0, Pi

Out[79]= Manifold1  t Cos2 t, 1  t Sin2 t, t, 0, 

In[80]:= EmbedManifoldPolar, , , ,
Manifold1, 2 u  1, 0, u, Manifoldt, t, 0, Pi  

Out[80]= True
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The embedding  constitutes  a  powerful  shape  generator.  In  the  following  exam-
ple, a torus is built by two successive embeddings: a square is first embedded into
a  cylindrical  coordinate  system  with  a  convenient  axis,  which  yields  a  cylinder
that in turn, is embedded into another cylindrical coordinate system with an or-
thogonal axis, which yields the torus.   
In[81]:= t0  Manifoldu, v, u, 0, 2 , v, 0, 2 ;

t1  MappingPermutation2, 3, 1
EmbedManifoldCylindrical1, , z, , z, t0;

t2  EmbedManifoldCylindricalr  3, , z, r, , z, t1;
In[84]:= Drawt0, t1, t2, Frame  False, Mesh  5, 4, 12, 5, 12, 20,

BoundaryStyle  Automatic, Axes  None

Out[84]=

Similarly, a Moebius strip is built by embedding a helicoid into a cylindrical coor-
dinate system. The helicoid is obtained by extruding a segment by a left screw.
In[85]:= m0  Manifoldt, 0, 0, t, 1, 1;

m1  MappingLeftScrewing0, 2, 0, , , 0, m0
Out[86]= Manifoldt Cos, 2 , t Sin, t, 1, 1, , 0, 

In[87]:= m2  EmbedManifoldCylindricalr  3, , z, r, , z, m1;
Drawm0, m1, m2, Mesh  None, 3, 12, 3, 15,
BoundaryStyle  Automatic, Axes  None

Out[87]=

An unusual form of the Klein bottle [9, page 239] is similarly built by embedding
the twisted extrusion of a figure eight into a cylindrical coordinate system or by
applying TwistedTube to the initial figure eight.
In[88]:= k0  ManifoldSint, 0, Sin2 t, t, 0, 2 ;

k1  MappingLeftScrewing0, 2, 0, 2, , 0, 2 k0

Out[89]= ManifoldCos
2
 Sint  Sin2 t Sin

2
, ,

Cos
2
 Sin2 t  Sint Sin

2
, t, 0, 2 , , 0, 2 
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In[90]:= k2  EmbedManifoldCylindrical3  r, , z, r, , z, k1;
k2  TwistedTube

ManifoldSint, Sin2 t, t, 0, 2 , , 0, 2 , 3, 12
Out[91]= True

In[92]:= Drawk0, k1, k2, Mesh  None, 15, 10, 15, 12,
BoundaryStyle  Automatic, Axes  None

Out[92]=

In  all  cases,  an  appropriate  mapping,  derived  from  the  carrier  manifold,  yields
the same result as the embedding. 
In[93]:= t2, m2, k2 

MapMappingCylindrical  3, 0, 0 &, t1, m1, k1 
MapEmbedManifoldCylindricalr, , z, r, , z,

MappingTranslation3, 0, 0,  &, t1, m1, k1
Out[93]= True

· Animations and Ray Tracing

Since Version 6, Animate and Manipulate supersede the various movie-plotting
commands  of  the  package  Graphics`Animation`.  The  first  example  shows  an
ordinary motion, while the second one visualizes an extrusion. Load the package
Morphology and evaluate the Inputs to activate them. 
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In[94]:= AnimateDrawMappingPrecessionManifold
u, Cosv Sinu, Sinv Sinu, u, Pi, Pi, v, 0, 2 Pi,

Axes  None, Mesh  None, Boxed  False,

PlotRange  3, 3, 3, 3, 2, 2,
, 0, , AnimationRunning  False

Out[94]=

q
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In[95]:= Manipulate
DrawComposeMappingSpinning0, 0, 1, , , 0, max,

Manifoldx, 0, z 2  Sinx, x, 0, 2 , z, 0, 1,
Mesh  None, Axes  None, PlotRange 
7, 7, 7, 7, 0.5, 3, max, 2 3, 0.01, 2 

Out[95]=

qmax

Finally,  a tool developed by Maeder to convert and export surface graphics data
to a ray tracing program deserves to be mentioned [31], a feature from now on re-
placed by Export.

· Homotopy (Morphing) and Interpolation

Provided  that  linear  operations  can  be  defined  with  respect  to  some  type
of objects,  the  homotopic  transformation  H1 - kLO1 + k O2,  k œ @0, 1D  defines  all
intermediaries between the objects  O1  and O2,  that is,  a  linear interpolation be-
tween these two objects. In the case of manifolds, the idea can be generalized to
nonlinear interpolation, provided weighting functions are specified. It can also be
generalized to polynomial interpolation.

In[96]:= Homotopykg1x, g2x,
Homotopyk, k0, k1g1x, g2x, Homotopywkg1x, g2x

Out[96]= 1  k g1x  k g2x,
g2x k  k0  g1x k  k1

k0  k1
, g1x 1  wk  g2x wk
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In[97]:= MappingHomotopyk, k, 0, 1
Manifold1, t, t^2, t, 0, 1,
Manifoldt, t^2, t^3, t, 0, 1


Out[97]= Manifold1  k  k t, 1  k t  k t2, 1  k t2  k t3,

t, 0, 1, k, 0, 1
Homotopy is a powerful shape generator that produces n-dimensional manifolds
by  generating  all  the  intermediaries  between  two  (n - 1)-dimensional  manifolds
(currently valid only for single-valued manifolds).  If  the domains are not identi-
cal, the manifolds must first be normalized. Homotopy can be used, for instance,
to design shapes with a hole.
In  some  cases,  geometric  domains  are  presented  in  the  form  of  the  so-called
cylindrical  decompositions:  umin § u § umax,  vmin@uD § v § vmax@uD,
wmin@u, vD § w § wmax@u, vD… . That is typically the way integration domains are
specified.  Homotopy  then  transforms  those  patches  into  manifolds.  This  idea
was suggested by Tavouksoglou and Freed in [32, 33].

In[98]:= Patchx, y, z, x, 0, 1, y, 0, 1  x, z, 0, 1  x  y
Out[98]= Manifoldx, 1  x y, 1  x  1  x y z,

x, 0, 1, y, 0, 1, z, 0, 1
In[99]:= Draw

MappingHomotopyk, k, 0, 1
ManifoldCos  12, Sin, h, , 0, 2 , h, 0, 1,
Manifold3 Cos, 2 Sin, h, , 0, 2 , h, 0, 1

,
Patchu  v, u  v, u, 1, 1,
v, u^4  2 u^2, 2  u  Absu, Mesh  20, 0, 0, 7, 5,

Axes  None, Boxed  False, ViewPoint  0.80, 1.70, 1.8,
Frame  False, BoundaryStyle  Automatic, AspectRatio  0.6

Out[99]=

‡ Future Directions
Thanks to their analytical potential, manifolds constitute a natural foundation for
differential  geometry,  field  theory,  and also  some modeling applications.  A data
structure is introduced to describe fields over manifolds. The principle of an ex-
tension to manifolds of field analysis is described. Finally, a link with a finite ele-
ment package is presented. 

218 Rémi Barrère

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.



· Fields

Let us represent fields by typed entities, the arguments of which are a scalar or a
rectangular  array  (for  tensors),  a  list  of  variance  specifications  (except  in  the
scalar  case),  and  the  manifold  over  which  the  field  is  defined.  This  object  ap-
proach to  fields  stresses  the  indissoluble  link between the field  components  and
the manifold coordinates. Normal extracts the scalar or the array.  

In[100]:= m  ManifoldPolar, , , 0, 1, , 0, 2 ;
potential  Field, , m

Out[101]= Field, , Manifold Cos,  Sin, , 0, 1, , 0, 2 
In[102]:= Normalpotential

Out[102]= , 
Some  fields,  like  the  metric  field  or  the  field  of  Christoffel  coefficients,  derive
from the manifold itself, so they are expressed as functions of the manifold.

Christoffel Coefficients
When the  codomain is  a  Euclidean n-dimensional  space  with  its  canonical  con-
nection,  which  is  the  default  assumption,  an  induced  connection  is  determined
on the manifold. Although they are not tensorial, Christoffel coefficients are usu-
ally manipulated like tensors.

In[103]:= ChristoffelGammaHigh, Low, Lowm  Normal

Out[103]= 0, 0, 0, , 0, 1


,  1


, 0

The Christoffel coefficients are then used to compute covariant derivatives.

Vector and Tensor Analysis
Vector  and  tensor  analysis  on  manifolds  are  based  on  the  covariant  derivative
CovariantD;  fields  are  represented  as  specified  earlier.  For  antisymmetric  ten-
sors,  the  wedge  product  and  the  exterior  derivative  (ExteriorD)  are  also
introduced.

In[104]:= CovariantDFieldu, v, Manifoldu, v, u, v  Normal
Out[104]= 1,0u, v, 0,1u, v

In[105]:= CovariantDField Cos, m  AbridgedForm
Out[105]= FieldCos,  Sin, Low,  Manifold 
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· Differential Geometry

The basic ingredients of differential geometry are the tangent manifold (Jacobian
computation) and the metric. The metric, the Christoffel coefficients, and other
differential characteristics (e.g.,  curvature or torsion) are common to differential
geometry and field analysis. 

Tangent Manifold
One must  distinguish the  tangent  manifold  computed at  some point,  which is  a
plane or a hyperplane, from the field of tangent manifolds that can be viewed as a
manifold over an abstract space with twice the initial dimension (the tangent bun-
dle).  

In[106]:= m  Manifoldx^2  y^2, 2 x y, x, y;
In[107]:= TangentManifoldm, 1, 1

Out[107]= Manifold2 Dtx  2 Dty, 2 Dtx  2 Dty, Dtx, Dty
In[108]:= TangentBundlem

Out[108]= Manifold2 x Dtx  2 y Dty, 2 y Dtx  2 x Dty,
x, y, Dtx, Dty

Metric
When  the  codomain  is  a  Euclidean  n-dimensional  space  with  its  canonical
metric, which is the default assumption, an induced metric is determined on the
manifold. 

In[109]:= m  ManifoldAnnularRr, , , , 0, , , 0, 2 ;
MetricLow, Lowm  Normal  MatrixForm

Out[110]//MatrixForm=
R  r Cos2 0

0 r2

The associated contravariant tensor is no more and no less than its inverse. 

In[111]:= NormalMetricLow, Lowm.
NormalMetricHigh, Highm  MatrixForm

Out[111]//MatrixForm=
1 0

0 1

When the metric  structure of  the codomain is  not  Euclidean,  an explicit  metric
can be given; for example, the Poincaré half-plane metric. 

In[112]:= PoincareMetricu, v  MatrixForm

Out[112]//MatrixForm=

2

v2
0

0
2

v2
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· Applications to Mechanical Engineering

Beyond  obvious  applications  to  space  or  spacetime  modeling,  manifolds  have
uses  in  mechanical  engineering,  especially  by  means  of  interactions  with  finite
element  packages.  The  details  depend  on  the  data  structure  used  for  finite  ele-
ments.  Here  is  an  example  with  the  “IMTEK  Mathematica  Supplement”  pack-
age [34],  assumed  to  have  been  installed [35]  (the  packages  are  loaded  by
Mesher); see also [36] and [37].

In[113]:= Needs"Morphology`Mesher`";
m2D  Manifold3 r Cost2, r Sint, r, 1, 2, t, 0, 2;
nexus2D  ToImsNexusm2D, r, 3, t, 5;
m3D 
Manifoldr Cost, h, r Sint, r, 1, 2, h, 0, 1, t, 0, ;

nexus3D  ToImsNexusm3D, r, 3, h, 2, t, 9
Out[115]=  imsNexus 

In[116]:= GraphicsRow
Graphics imsDrawElements nexus2D  , AspectRatio  Automatic ,
Graphics3D imsDrawElements nexus3D  ,
Boxed  False, ViewPoint  1., 2., 1.2



Out[116]=

nexus2D or nexus3D are not only meshes but structures differentiating boundary
nodes from interior nodes, able to take into account boundary values in view of
further computations. 

‡ Discussion and Prospects
Founded  on  a  reification  of  parametric  representations,  this  computational  ap-
proach to manifolds leads to a uniform treatment of questions that arise in differ-
ential geometry and field theory plus other domains such as shape design, fractal
generation, scene description, or mesh generation. In particular, it has the poten-
tial  to  supersede  various  graphics  commands.  Numerous  operators  generate
more or  less  intricate  or  distorted manifolds  by twisting and combining simpler
ones.
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As  opposed  to  the  functional  approach  of  plotting  commands  that  build  shapes
by assembling low-level graphics primitives, manifolds lead to a higher-level de-
scription of  shapes  that  can be  defined by  compact  symbolic  expressions,  rather
than  huge  assemblies  of  raw  graphics  primitives.  This  symbolic  layer  paves  the
way  for  a  concise  representation  of  many-level  systems,  then  processed  as
wholes, such as spatial scenes, linkages, or other assembled systems.  
Nevertheless,  the  set  of  packages  developed  for  that  purpose  is  primarily  in-
tended for investigating the feasibility of this project: testing has remained mini-
mal,  there  are  no  messages,  exceptions  have  not  been  investigated  thoroughly,
and the packages might have to be reorganized. The system of options associated
with manifolds, atlases, and the Draw command should be improved with a better
filtering mechanism. The option specification DrawingStyle  is  an experimental
feature that could be discarded. 
In the case of intricate systems, a mechanism for naming and retrieving the subex-
pressions  describing  the  corresponding  subsystems  would  be  welcome.  For
instance, naming individual figures would occasionally be useful in the case of geo-
metric scenes.  Also,  it  would be interesting to enable links with geometry pack-
ages like Geometrica05 [38].

Parametric  representations  do  not  lend  themselves  well  to  the  algebraic
approach,  from  which  a  substantial  part  of  the  power  of  computer  algebra
derives, which weakens the idea of a full symbolic treatment of form. Because im-
plicitization and parametrization of manifolds remain unsolved problems (except
in particular cases) [39], the relationship between parametric representations and
implicit  definitions  (Cartesian  descriptions  or  inequalities)  remains  loose.  Con-
sequently,  the  analytical  treatment  of  manifolds  does  not  lend  itself  well  to
Boolean operations, which require algebraic computations.

The  affine  transformations  defined  in  the  context  Morphology`Transforma
tions` have been introduced mainly in view of applications to mechanical engi-
neering.  Their  compatibility  with  the  novel  set  of  geometric  transformations
of Version 6 should undergo further investigation.

Nevertheless,  the  major  role  of  the  analytical  approach  in  physics  gives  impor-
tance  to  this  way  of  representing  and  manipulating  manifolds;  so  does  its  capa-
bility to blend and supplement a variety of tools,  scattered about the kernel and
various packages. 

‡ Conclusion
Founded on reified parametrizations, the algorithmic approach to manifolds pre-
sented  here  leads  to  a  generic  treatment  of  form  modeling  that  encompasses
shape design, differential geometry, and field analysis, with direct applications to
mechanical  engineering.  It  introduces  a  unified  viewpoint  that  not  only  gathers
and supplements a variety of graphics tools scattered about the kernel and several
packages,  but  also  enables  a  symbolic  approach  to  form  that  concisely  encodes
the various entities encountered in form modeling. As such, it constitutes a possi-
ble foundation for a computational morphology. 
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