
The Mathematica®Journal

An Algorithmic Approach to
Manifolds
An Analytical Approach to Form Modeling As an Introduction to
Computational Morphology

Rémi Barrère
An algorithmic approach to manifolds is presented, based on an object ap-
proach to the parametric plotting commands. The initial purpose was to
blend geometric and symbolic aspects, so as to equip computer-assisted de-
sign (CAD) with symbolic capabilities. Nevertheless, this investigation
aims more generally at providing a uniform treatment of analytic geometry
and field analysis, in view of applications to physics, system modeling, and
morphology.

After presenting the data structure, the core of this article describes a
range of operators for manipulating manifolds. It stresses their potential
use in shape design and scene description, in particular their ability to su-
persede several graphics packages. As such, the data type constitutes the
foundation of a computational morphology. Then, various extensions are
discussed: fields, mesh generation for finite element software, and the
prospect of extending the vector analysis package, with emphasis on ten-
sors and differential forms.

‡ Introduction
Computer algebra and symbolic programming have introduced analytical capa-
bilities into many areas of scientific computing, such as discrete systems, algebra
and summation, calculus, and differential equations. Nevertheless, little benefit
has been gained in shape design. Research in that domain has stimulated the
evolution of computer-assisted design (CAD), but, so far, these tools have
included little or no symbolic capabilities, and most CAD software is still
developed with procedural languages and numerical methods. Besides, geometric
problems have been tackled so far mainly by means of algebraic or theorem
proving methods [1], thus leading to an underdevelopment of analytical methods.

Yet the analytical approach to geometry constitutes the foundation of many
physical questions, especially those linked to space or spacetime analysis by means
of field theory. Hence, we attempt to introduce analytical capabilities into com-
puter-assisted geometry, initially in view of applications to shape description,
then with the purpose of laying the foundation of further uses in differential
geometry and field analysis. Although geometry is commonly thought of as the
unifying mathematical abstraction underlying those questions, morphology
appears as an encompassing common denominator that is able to take into
account questions outside the field of geometry, such as scene description,
linkage design, or finite element analysis.

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

Yet the analytical approach to geometry constitutes the foundation of many
physical questions, especially those linked to space or spacetime analysis by means
of field theory. Hence, we attempt to introduce analytical capabilities into com-
puter-assisted geometry, initially in view of applications to shape description,
then with the purpose of laying the foundation of further uses in differential
geometry and field analysis. Although geometry is commonly thought of as the
unifying mathematical abstraction underlying those questions, morphology
appears as an encompassing common denominator that is able to take into
account questions outside the field of geometry, such as scene description,
linkage design, or finite element analysis.

· Morphology As a Transverse Concept

Although shape and form are more or less considered equivalent in common lan-
guage, shape pertains to external geometric aspects, whereas form pertains to
more general internal structuring aspects (geometric or not).
For instance, curves, surfaces, and volumes as such are shapes, while considered
with some other characteristics, such as a field, they tend to be thought of as
forms. So a form description is a piece of information about the way in which an
object occupies and structures space. In practice, it is inherent to the way the ob-
ject (or its form) is generated and can be transformed or combined with others.
Moreover, as a result of our cognitive capabilities, we tend to understand objects
in contrast to a background and also to perceive them as structured in a container
(wrapping structure) with content (internal structure) [2]. On the contrary,
modern ideas about space (or spacetime) tend to identify it with its structuring
content, space being constituted by the relationships between objects. To some
extent, these opposing ideas can be made compatible by blending continuous
aspects (figures as expansions) and discrete ones (figures as objects),

· Mathematical and Algorithmic Requirements

Many form descriptions have been developed so far, in view of more or less spe-
cific applications such as drawing software, geometric reasoning, CAD, fractal
image generation, and data visualization. There is probably no universal form
description, for those methods always need, to some extent, to be optimized to
best serve some specific problems. However, the trend to develop ad hoc opti-
mized solutions for practical needs yields “a widely scattered conglomeration
of disparate and, at first sight, unrelated methods” [3]. This subsequently tends
to severely decrease so-called orthogonality, that is, the capability to cross-fertil-
ize disciplines by information exchange and object combinations thanks to
generic types.

By quoting Lord and Wilson [3], we may even stress the need for a mathematical
foundation for a science of morphology unifying various approaches, a need that
has not been fully recognized yet. Today, the requirement that the proposed
method should lend itself well to an algorithmic treatment must be taken into ac-
count. It should also have a broader scope than so-called mathematical morphol-
ogy, which is more or less restricted to the “pixel level” methods used for image
processing. In the following, we focus on form synthesis rather than form analy-
sis. The solution put forward derives from a common mathematical tool, slightly
adapted to an algorithmic purpose, that is, a new glance at a classical theory [4].

An Algorithmic Approach to Manifolds 187

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

· Manifolds As a Unifying Approach to Morphology

We focus on manifolds because of their sound analytical foundation, their strong
geometric flavor, and their adaptability to algorithmic treatment, especially using
computer algebra and symbolic programming. In particular, a manifold deter-
mines a codomain as a subset of some (often Euclidean) space. By regarding the
codomain as the object and the surrounding space as the background, the mani-
fold actually determines a shape. Various structuring elements, such as a coordi-
nate system (domain) or a field over the manifold, determine as many forms.
Moreover, the boundary of a manifold constitutes an element of a container|con-
tent approach. More generally, other structuring tools, such as atlases that enable
scene descriptions, will be described later.

Because of its visual aspects, shape design is in a natural relationship with the un-
derlying graphics capabilities [5, 6]. In Mathematica, these rely upon a few graph-
ics primitives (e.g., Line, Polygon) and a range of standard plotting commands
(e.g., Plot, ParametricPlot), plus a variety of complementary commands, such
as RevolutionPlot3D (Version 6) or those in Graphics`Shapes` (legacy stan-
dard packages). This leads to a functional approach where shapes are produced
by plotting commands that build them by assembling low-level graphics primi-
tives, thus excluding higher-level objects.

On the contrary, resorting to manifolds leads to a reification of shape: following
philosophers, we call reification the mental act of regarding an action as an
object. Then, manifolds and other geometric entities like fields can be defined as
quite compact symbolic objects, rather than huge assemblies of raw graphics
primitives resulting from plotting commands. This facilitates the introduction
of both higher-level entities, able to describe objects as wholes, and higher-level
symbolic functions able to manipulate and combine these entities. This also
enables the consistent gathering of graphics tools scattered around various
commands or packages and their extension not only to shape design but also to
field analysis.

· Previous Work

Beyond the classical literature about manifolds [7], Oprea [8] and Gray [9] tack-
led the question from the computational viewpoint, the former with Maple, the
latter with Mathematica. More specifically, Tazawa [10, 11] focuses on differen-
tial geometry. However, these authors do not introduce any data type for mani-
folds. Further, a wealth of literature is devoted to surface or solid modeling in
view of CAD applications [12], or applications in computational geometry [13].
In most cases, shapes are represented or approximated by splines, Bézier’s
patches or nonuniform rational B-splines (NURBS) [14], which have become a
de facto standard in commercial modeling systems because of their power to rep-
resent both free-form shapes and common analytical shapes. Despite its title,
[15] only introduces a variant of splines.

An experimental set of packages was developed to investigate the ideas presented
in this article. Morphology`Master` is simply intended to load the whole direc-
tory.

188 Rémi Barrère

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In[1]:= Needs"Morphology`Master`"

‡ An Algorithmic Approach to Manifolds
Although a manifold is usually defined as a collection (called an atlas) of patches,
that is, homeomorphisms from an open subset of n onto an open subset of a
topological space  [9], the algorithmic approach will rather focus on n as a
curvilinear coordinate system on , which in most cases will be some subset
of p. Indeed, the notion of a manifold is deeply rooted in analytical geometry,
that is, in the practical need to describe curves, surfaces, and volumes, or their n-
dimensional generalizations, both from analytical and geometrical points of view.

· The Data Structure

As a reflection of this origin, the algorithmic approach aims at blending the ana-
lytical and geometric aspects, especially their graphic counterpart. The type Man
ifold introduced hereafter denotes a patch with a specific coordinate system;
then an atlas is simply a collection of manifolds, without any continuity or differ-
entiability requirement; so we slightly depart from the usual mathematical defini-
tions.
The type Manifold consists of two entities: a set of expressions that should be
thought of as a list of parametric equations with a domain specification for the
variables that are the local coordinates on the manifold. The type being the head
of the expression leads to the informal expression template: Manifold[list
of expressions, domain specification]. The domain specification follows the syntax
of continuous domains in plotting commands: a triple or a sequence of triples {c,
cmin, cmax} denotes a coordinate symbol with a minimum value and a maximum
value. This design is adapted from a first attempt by Gray [16], who actually
adopted a more general viewpoint by considering mappings. Here is an example
of a segment of a ring with the symbolic parameter r.

In[2]:= m  Manifold Cos,  Sin, , 1, r, , 0, 3 2;
In that case, the codomain is a subset of 2 and the expressions in the first list are
usually interpreted as the parametric representation (equations) of a geometric
domain. Nevertheless, manifolds describe in principle abstract entities that entail
no assumption about their nature, except that they are elements of a topological
space. In particular, the parametrized objects need not be points nor vectors. Any
parametrized family of entities can be described as a manifold, provided it has
some differentiability or at least continuity properties. For instance, a param-
etrized family of matrices or a parametrized family of functions can be investi-
gated as manifolds. However, there is no standard visualization procedure for
such manifolds, and their graphic representation may require assumptions or
tricks.
When the codomain is a subset of p, it need not be Euclidean; manifold theory
is a relativistic theory of abstract spaces. Nevertheless, in many applications, man-
ifolds are interpreted from an absolute point of view: the codomain is supposed
to be some subset of a Euclidean space with an orthogonal Cartesian coordinate

representations are considered.

An Algorithmic Approach to Manifolds 189

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

When the codomain is a subset of p

system and the domain is viewed as a curvilinear coordinate system for the
codomain. Such an absolute interpretation is almost unavoidable when graphic
representations are considered.
However, this assumption is not mandatory, and manifolds may have other inter-
pretations: for instance, in another context, the codomain may be a subset of a
Euclidean space with a curvilinear coordinate system or even a subset of a space
with no metric property. The data type Manifold is flexible insofar as there is no
strong assumption regarding the absolute or relative interpretation attached to it.
In particular, a command like Embed is introduced that facilitates switching
between the absolute and relative interpretations.
Although it may be required in some contexts, the distinction between open or
closed intervals is useless in this algorithmic context; hence, the use of lists for do-
mains. These algorithmic versions of manifolds need not be differentiable, that
is, they describe varieties as well (e.g., fractal varieties). Finally, a manifold with
no domain is a point. Its syntax is Manifold[list of expressions]. Taking into ac-
count this limiting case is useful in some generic applications. When working
with manifolds, there is no longer any notion of point, curve, surface, or volume
as types since all are manifolds. The number of coordinates gives the nature
of the figure, with the dimension of the codomain specifying the embedding
space.

· The Selectors

The selectors extract the various arguments of a typed expression [17]. They
were initially introduced in computer science to isolate the interface specification
from the internal representation. When the representation is stable, argument ex-
traction can be done directly with patterns in the left-hand sides of trans-
formation rules. Nevertheless, some generic programs are more easily designed
by resorting to selectors.

By thinking of applications to geometry or field analysis, we use Coordinates
for the variables, Domain for the coordinate ranges, and Codomain for the para-
metric expressions (thus identifying the functions and their values).

In[3]:= ColumnThroughCoordinates, Domain, Codomainm

Out[3]=

, 
, 1, r, , 0,

3 
2


 Cos,  Sin
There might be an ambiguity between domain and codomain, which in this con-
text are the domain and codomain of the associated mapping, while the
codomain can also be thought of as a domain in a geometric sense. We neverthe-
less maintain domain and codomain because of their common use in mathemat-
ics as well as computer science, and we will resort to patch or region to denote a
geometric domain.

190 Rémi Barrère

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

· Variants
Atlases and Geometric Scenes
In the frame of this algorithmic approach, an atlas is simply a list of manifolds; so
we depart from the mathematical approach where a differentiable (or at least con-
tinuous) overlapping is required. Here, an atlas is a piecewise manifold; it is
slightly more general for it enables the accumulation of manifolds with different
dimensions. The manifolds of an atlas must nonetheless have codomains with the
same dimensions.

In[4]:= DrawAtlas
ManifoldCylindricalr, , h,
r, 12, 1, , 0, 3 2, h, 1, 1,

ManifoldCylindrical32, , h, , 0, 2 , h, 1, 0,
ManifoldCylindrical32, t, t6, t, 0, 6 

, Mesh  1, 12, 5, None, Automatic

Out[4]=

Combined with Draw, an Atlas can be viewed as an adaptation to manifolds
of the command StackGraphics from the former package Graphics`Graph
ics3D` (legacy standard packages) that directly applies to graphics objects.

Atlases are especially useful for manipulating sets of manifolds as wholes. They
constitute a natural data structure for compound shapes or geometric scenes, the
atlas then being thought of as a set of figures. Manifolds then appear as the nat-
ural primitives for scene description, in association with the type Atlas as a com-
position tool. As such, they enable combining continuous and discrete aspects.

An Algorithmic Approach to Manifolds 191

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

Many-Valued Manifolds
A many-valued manifold differs from an atlas in the sense that there is a common
domain for a list of parametrizations; nevertheless, it can possibly be rewritten as
an atlas of manifolds. The multiple parametrizations cannot only be arranged in
lists but also in matrices or higher-dimensional tables. Roughly, many-valued
manifolds implement coverings. These are mainly used to parametrize figures
with several branches (e.g., a hyperbola), in particular in the case of manifolds
computed as inverse mappings. Many-valued manifolds also allow an application
to fractals (see the section Manifolds and Fractals).

In[5]:= Solvex^2  y^4 1, y
Out[5]= y  1  x214, y   1  x214,

y   1  x214, y  1  x214

In[6]:= DrawManifoldx, y . Drop, 2, 3, x, 1, 1,
ManifoldCosh, Sinh, Cosh, Sinh, , 3, 3

Out[6]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-10 -5 5 10

-10

-5

5

10

Coordinate Systems and Manifolds
In view of a generic treatment of fields, coordinate systems should be regarded as
particular cases of coordinate systems on manifolds. This is achieved by focusing
on the transformations associated with the coordinate systems; for example,
Polar[{r, }] refers to the polar coordinate system. There is nonetheless no de-
fault symbol for coordinates: freely chosen by the user, these are specified where
needed.

In[7]:= Polarr, 
Out[7]= r Cos, r Sin
The associated rewrite rules must be given for every common coordinate system.
A symbol like Polar may express either a change of coordinates (relative view-
point) when processed as a function, or a coordinate system (absolute viewpoint)
when processed as a type (symbol wrapping a list of coordinates). For that pur-
pose, the argument of CoordinateSystem is held with the appropriate attribute.

In[8]:= Polarr,   CoordinateSystem
Out[8]= CoordinateSystemPolarr, 
Although it might seem counterintuitive at first sight, the relative viewpoint
turns out to be more practical and more meaningful, too: the idea of an absolute
coordinate system has no serious foundation and is conventional in the end. In
particular, Manifold[Polar[{r, }]] yields Manifold[{r Cos[], r
Sin[]}], that is, the Cartesian coordinates of the point. So it is equivalent to
the command CoordinatesToCartesian of the vector analysis package, the ana-
log of CoordinatesFromCartesian being obtained by introducing reciprocal co-
ordinate systems (respectively, coordinate changes), for example, InversePo
lar[{u, v}].

192 Rémi Barrère

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

Although it might seem counterintuitive at first sight, the relative viewpoint
turns out to be more practical and more meaningful, too: the idea of an absolute
coordinate system has no serious foundation and is conventional in the end. In
particular, Manifold[Polar[{r, }]] yields Manifold[{r Cos[], r
Sin[]}], that is, the Cartesian coordinates of the point. So it is equivalent to
the command CoordinatesToCartesian of the vector analysis package, the ana-
log of CoordinatesFromCartesian being obtained by introducing reciprocal co-
ordinate systems (respectively, coordinate changes), for example, InversePo
lar[{u, v}].

In[9]:= InverseFunctionPolar, InversePolaru, v

Out[9]= InversePolar,  u2  v2 , ArcTanu, v
With these conventions, the expression Manifold[Polar[{f[r, ], g[r,
]}], {r, rmin, rmax}, {, min, max}] describes a sector of a ring and Mani
fold[Polar[{f[t], g[t]}], {t, tmin, tmax}] describes a curve with paramet-
ric expressions f[t] and g[t] in polar coordinates. Curves and surfaces in three-
dimensional coordinate systems can be given similarly. Although it is uncom-
mon, this use of parametric representations in some coordinate system turns out
to be a concise and convenient way to describe manifolds.

Manifolds with Interpolating Functions
If need be, a manifold can be defined in terms of interpolating functions. Conve-
nient when solving differential equations (NDSolve), such manifolds are occasion-
ally useful for building more or less intricate shapes. Splines, Bézier manifolds, or
NURBS could also be used [18].

In[10]:= theStar  InterpolationTablet, 1  Cos5 t2 Cost,
t, 0., 2 , 5, InterpolationOrder  1,

InterpolationTablet, 1  Cos5 t2 Sint,
t, 0., 2 , 5, InterpolationOrder  1

Out[10]= InterpolatingFunction0., 6.28319, ,
InterpolatingFunction0., 6.28319, 

In[11]:= vanDerPolt_  yt, zt .
FirstNDSolvey't  zt, z't  1  yt^2 zt  yt,

y0  0.1, z0  0.1, y, z, t, 0, 15
Out[11]= InterpolatingFunction0., 15., t,

InterpolatingFunction0., 15., t

An Algorithmic Approach to Manifolds 193

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In[12]:= DrawManifoldThroughtheStart, t, 0, 2 ,
ManifoldvanDerPolt, t, 0, 15, AspectRatio  Automatic

Out[12]=
-1.0 -0.5 0.5 1.0 1.5

-1.0

-0.5

0.5

1.0

-2 -1 1 2

-2

-1

1

2

· Mappings

Mappings constitute a powerful tool that implement not only geometric transfor-
mations but also changes of coordinates. In our algorithmic context of typed enti-
ties, there are two levels: vector functions that apply to n-tuples (lists) and
mappings that apply to manifolds. Vector functions are defined according to the
informal scheme someTransform[{s1 _, s2 _, …}] := {expressions of the
si}. For instance:

In[13]:= nonLinearx_, y_ : x  3 y, y  x^2
In the following, we will have to manipulate such vector functions or even lists
of vector functions; hence, the usefulness of a construct for pure vector functions.

Pure Vector Functions and Function Systems
A pure vector function is a variant of pure functions with a single argument,
which is a list plus a means to refer to the list elements individually in the defini-
tion. Then, such a vector function can be used in place of a definition like non
Linear. In the case of nested vector functions, unique symbols are introduced.

In[14]:= VectorFunctionx, y, x  3 y, y  x^2
Out[14]= 11  3 12, 112  12 &

In[15]:= nonLinearu, v  u, v
Out[15]= True

By using Through, the construct FunctionSystem distributes the functions (or
vector functions) of a list over the argument(s).
In[16]:= FunctionSystemArcTan, 12  1 &u, v

Out[16]= ArcTanu, v, 1  u v

In[17]:= FunctionSystem
nonLinear, VectorFunctionx, y, x  y, x yu, v

Out[17]= u  3 v, u2  v, u  v, u v
Modularity prevents the use of such vector functions in the case of manifolds.

194 Rémi Barrère

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

Modularity prevents the use of such vector functions in the case of manifolds.
Moreover, these do not allow the useful notion of parametrized transformation;
hence, the introduction of mappings.

Mappings and Parametrized Mappings
Mappings constitute one of the most fundamental operations on manifolds.
Many others can be defined in terms of mappings. A mapping is a parametrized
transformation (i.e., a continuous set of transformations) with a domain specifica-
tion for each parameter that applies to manifolds and yields a manifold. When
there is no parameter, mappings amount to ordinary manifold transformations;
otherwise, they implement extrusions as shown in the section Operations on
Manifolds. Mappings are defined as subvalues. Their syntax is similar to that
of manifolds, except that the first term is a vector function or a list of vector func-
tions in the case of multiple mappings: Mapping[transformation, domain].

In[18]:= Mappingtr, c, 0, Pi
Manifoldfu, v, gu, v, u, 0, 1, v, a, b

Out[18]= Manifoldtrfu, v, gu, v, u, 0, 1, v, a, b, c, 0, 
Although they are similar, mappings differ from vector functions: the latter apply
to vectors, that is, lists, while the former apply to manifolds. A mapping is a con-
struct that applies transformations to manifolds. In the following, the rotation op-
erator applies only to lists. The wrapper Mapping enables its application to mani-
folds and the introduction of parameters. This approach enables modularity
since transformations need no longer be explicitly defined for manifolds.

In[19]:= Rotation2 3x, y

Out[19]= x
2


3 y

2
,

3 x

2

y

2


In[20]:= Rotation2 3Manifoldx, y, x, y

Out[20]= Rotation2 
3

Manifoldx, y, x, y

In[21]:= MappingRotation2 3Manifoldx, y, x, y

Out[21]= Manifoldx
2


3 y

2
,

3 x

2

y

2
, x, y

In[22]:= MappingRotationa, a, 0, Manifoldt, 0, t, 0, 1
Out[22]= Manifoldt Cosa, t Sina, t, 0, 1, a, 0, 
Like a pure function, a mapping is an inert object that becomes active when ap-
plied to a manifold. The relationship between manifolds and mappings is similar
to that between expressions and functions. A manifold can always be thought
of as some mapping applied to a generic Cartesian manifold. Here is another
standard decomposition with a parametrized mapping applied to the origin.

An Algorithmic Approach to Manifolds 195

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In[23]:= Manifoldtrx, y, z, d  MappingtrManifoldx, y, z, d,
Manifoldux, vy, d 
Mappingux, vy   &, dManifold0, 0

Out[23]= True, True

Multiple Mappings and Sheaves
Multiple mappings are intended to apply systems of functions to manifolds. A
multiple mapping generates a many-valued manifold according to the scheme
In[24]:= Mappingtr1, tr2, c, 0, Pi

Manifoldfu, v, gu, v, w, 0, 1, v, a, b
Out[24]= Manifoldtr1fu, v, gu, v, tr2fu, v, gu, v,

w, 0, 1, v, a, b, c, 0, 
Multiple mappings are useful for duplicating manifolds or implementing iterated
function systems in terms of manifolds (see the section Manifolds and Fractals).
They are nonetheless restricted to the case when the transformations share the
same parameter domain (or have no parameter). In the general case, multiple map-
pings require a specific construct: sheaves. Sheaves are collections of mappings.
Like multiple mappings, they are intended to apply function systems to mani-
folds. A sheaf generates an atlas according to the scheme

In[25]:= SheafMappingtr1, d1, Mappingtr2, d2Manifoldpr, coord
Out[25]= Atlas

Manifoldtr1pr, coord, d1, Manifoldtr2pr, coord, d2

‡ Visualization of Manifolds
The visualization of manifolds mainly relies upon the ParametricPlot and
ParametricPlot3D commands, plus the novel function SolidParametric
Plot3D developed for three-dimensional shapes. A generic command is intro-
duced in the form of polymorphic transformation rules.

· The Command Draw

Since both the functions to be plotted and the domains are part of the data
structure, manifolds require a single graphic command with a single argument
plus possible options; let us call it Draw. Only manifolds with a codomain that has
a geometric interpretation in a two- or three-dimensional space are drawn; the
length of the first argument determines the dimension of the representation
space. Then the number of coordinates determines the nature of the represented
object: point, curve, surface, volume, or higher-dimensional object. Moreover,
the codomain is supposed to be a subset of a Euclidean affine space equipped
with a canonical orthogonal Cartesian coordinate system, which has conse-
quently the status of an “absolute” reference space. Then the domain is that
of the curvilinear coordinate system of the manifold.

196 Rémi Barrère

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

Most drawings are “subcontracted” to standard parametric plotting commands.

n HdomainL p HcodomainL Plotting Function
0 2 Graphics

0 3 Graphics3D

1 2 ParametricPlot

1 3 ParametricPlot3D

2 2 ParametricPlot

2 3 ParametricPlot3D

3 3 SolidParametricPlot3D

Table 1. A summary of the various combinations.

An extension of the ParametricPlot family is required for the 3×3 case. It has
been temporarily called SolidParametricPlot3D, although polymorphism
should allow processing it as a specific case of ParametricPlot3D. Solid
ParametricPlot3D draws the boundary, which is valid only when the Jacobian
of the parametric equations does not vanish. The case p = 1 is not processed by
Draw because of its weak visual interest. Nevertheless, thanks to a lifting, it can
be rearranged into a two-dimensional or three-dimensional manifold so as to be
visualized the same way functions are visualized with Plot or Plot3D.

In[26]:= LiftManifoldht, t, 1, 1
Out[26]= Manifoldt, ht, t, 1, 1

· Higher-Dimensional Manifolds

A higher-dimensional manifold is processed by means of the two-dimensional or
three-dimensional projection of its boundary. Here is an example of the four-di-
mensional unit hypercube [19].

In[27]:= unitHyperCube4D  UnitHyperCubea, b, c, d
Out[27]= Manifolda, b, c, d, a, 0, 1, b, 0, 1, c, 0, 1, d, 0, 1
In the following, a three-dimensional projection of the four-dimensional unit hy-
percube is drawn. The transparency effects of Version 6 are appreciated. Analog
applications to complex-valued functions are also possible [20].

In[28]:= polarRiemannSurface4Dfz_,
r_, rmin_, rmax_, _, min_, max_ : Manifold
r Cos, r Sin, ComplexExpandRefz . z  r Exp ,
ComplexExpandImfz . z  r Exp ,

r, rmin, rmax, , min, max

An Algorithmic Approach to Manifolds 197

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In[29]:= sqrtPolarRiemannSurface4D 
MapAtPowerExpand, polarRiemannSurface4Dz^12,

r, 0, 3, , 0, 4  . ArgExp  r  , 1

Out[29]= Manifoldr Cos, r Sin, r Cos
2
, r Sin

2
,

r, 0, 3, , 0, 4 

In[30]:= DrawSides
MappingShadowing1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1,

1, 2, 1, 2unitHyperCube4D, 2,
MappingShadowing1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 12, 12,

1, 1, 1, 1AtlasManifold
1.5, 0, 0, 0, 0, 1.5, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 t,
t, 0, 4, sqrtPolarRiemannSurface4D

, Axes  None, Boxed  False, PlotPoints  2, 2, 5, 40,
Mesh  None, None, 3, 35,
PlotStyle  Opacity0.3, Thickness0.01, ,
ViewPoint  0.9, 2.5, 2.1, 1.9, 1.9, 1.9

Out[30]=

The remainder of this article describes a variety of tools that extend the game by
enabling numerous manifold manipulations.

‡ Shapes as Manifolds
Thanks to their graphic representations, manifolds can be used for shape descrip-
tion and visualization. As such, they constitute a means for introducing symbolic
aspects in shape design. This relies upon a number of primitive manifolds and
shapes, such as cylinder, sphere, or torus, as well as manifold and shape genera-
tors that compute boundaries, embeddings, extrusions, and so on, or that operate
by combining or transforming them.

198 Rémi Barrère

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

· Primitive Manifolds and Shapes

A manifold is obtained by combining a vector function (a shape function) and a
domain specification in the form of the construct Manifold[vector expression, do-
main]. So modularity is simply obtained by defining (hence, naming) a number
of vector functions that can then be combined at will with all kinds of domain
specifications to produce as many manifolds.
The most common shape functions are related to the usual coordinate systems
(e.g., Polar, Cylindrical, and Spherical) that describe objects with polar,
cylindrical, or spherical symmetries. These are the ingredients for building cir-
cles, disks, rings, cylinders, and spheres. Other shape functions are drawn from
classical parametric equations that define tori, Lissajous curves, families of cy-
cloids, quadrics, and so forth. These two families of shape functions are respec-
tively introduced in the packages Morphology`Coordinates` (automatic-
ally loaded by Morphology`Manifolds`) and Morphology`Shapes`.

When these shape functions are parametrized, subvalues are used for their defini-
tions. For instance, in the following definition of a parallelogram, u and v denote
two vectors while  and  denote the coordinates, that is, the shape function is
Oblique[{u1, u2, v1, v2}].

In[31]:= Obliqueu1, u2, v1, v2, 
Out[31]=  u1   u2,  v1   v2

In[32]:= ManifoldOblique1, 12, 0, 2, , , 0, 1, , 0, 1

Out[32]= Manifold 


2
, 2 , , 0, 1, , 0, 1

This way of substituting shape functions for explicit primitive manifolds avoids
possible conflicts with the standard graphics primitives and fits the polysemy
of the language of geometry, the same words (e.g., ellipse, cylinder, or cone)
denoting both lines and surfaces (respectively, surfaces and volumes). Indeed, the
domain configuration determines the dimension whatever the shape function: a
single list denotes a curve (single coordinate), two lists a surface (two coordi-
nates), and three lists a volume.

In[33]:= m  ManifoldCylindricalr0,  h , h, h, 0, 1,
ManifoldCylindricalr0, , h, , 0, , h, 0, 1,
ManifoldCylindricalr, , h,
r, 12, 1, , 0, , h, 0, 1;

In[34]:= Drawm . r0  1, Ticks  None, Axes  None,

Mesh  Automatic, 12, 3, 1, 12, 3

Out[34]=

The same cylindrical shape function generates many other figures, such as a heli-
coid, a cone, or more exotic figures.

An Algorithmic Approach to Manifolds 199

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

The same cylindrical shape function generates many other figures, such as a heli-
coid, a cone, or more exotic figures.

In[35]:= m  Manifold
Cylindricalr, , 2 , r, 12, 1, , 0, 5 ,

ManifoldCylindricalr, , r, r, 1, 1, , 0, 2 ,
Manifold
Cylindrical1, , h  Sin4 2, , 0, 2 , h, 1, 1;

In[36]:= Drawm, Ticks  None, Axes  None, BoxRatios  1, 1, 1,
BoundaryStyle  Automatic, Mesh  1, 35, 5, 15, 25, 3

Out[36]=

This approach is especially useful for embedding figures in higher-dimensional
spaces without resorting to the embedding operator. Here are the embeddings
of a circle, a ring, and half a disk.

In[37]:= m  ManifoldCylindrical1, , 0, , 0, 2 ,
ManifoldRotateLeftCylindricalr, , 0,
r, 12, 1, , 0, 3 2,

ManifoldSphericalr, 4, phi,
r, 0, 1, phi, 2, 2;

In[38]:= Drawm, Axes  None, BoundaryStyle  Automatic,

Mesh  Automatic, 0, 12, 3, 12,
PlotRange  1, 1, 1, 1, 1, 1

Out[38]=

Then, if need be, the shapes can be moved or deformed by means of affine or
more general transformations that are introduced next.

· A Small Gallery of Manifolds

With the drawing command and the novel capacities of Version 6, these primi-
tive manifolds supersede the former Shapes` package, including wireframes:
here are a few examples drawn from the package. Other examples can be found
in the literature, for example, [9] or [21].

200 Rémi Barrère

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In[39]:= Draw
ManifoldAnnular3, , , , 0, 1, , 0, 2 , , 0, 2 ,
ManifoldAnnular3, , , , 1, 2,
, 0, 3 2, , 3 4, 4,

ManifoldAnnular31, , , , 0, 2 , , 0, 2 ,
Mesh  0, 15, 10, PlotRange  4, 3, 4, 4, 1, 1,

ViewPoint  2., 1.5, 1.7, Mesh  0, 15, 5,
Mesh  15, 10, ColorFunction  White &, Axes  None

Out[39]=

In[40]:= Draw ManifoldMoebius3, , , 1, 1, , 0, 2 ,
ManifoldCylindricalr, , r, r, 1, 1, , 0, 2 ,
ManifoldMoebius3r, , h,
r, 1, 1, , 0, 2 , h, 1, 1

, Axes  None, BoundaryStyle  Automatic,

ColorFunction  Automatic, White &, Automatic,
PlotPoints  2, 22, 2, 14, 2, 22, 2,
Mesh  0, 20, 0, 12, 0, 20, 0

Out[40]=

‡ Manifolds and Fractals
· Manifolds and Fractal Functions

Fractal functions generalize the process by which the Weierstrass function is
built. Fractal curves (or, more generally, fractal varieties) can be built by means
of fractal functions, obtained by summing scale transformed versions of an initial
function, typically a trigonometric function [22].

In[41]:= ScaleTransformw, , kSint, t
Out[41]= wk  Sint wk
The command FractalFunction computes the nth approximation.
FractalFunction[_,_,n_][e_,t_]:=

Sum[ScaleTransform[,,k][e,t],{k,0,n}]

Fractal functions can be used to generate parametric approximations to fractal

An Algorithmic Approach to Manifolds 201

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

Fractal functions can be used to generate parametric approximations to fractal
manifolds. Even when not useful for scientific purposes, they may have aestheti-
cally pleasing properties.
In[42]:= Draw

Manifoldt, FractalFunction3, 0.5, 7Sint, t, t, , ,
ManifoldFractalFunction3, 4, 0.3, 0.5, 5

Cost9, Cost25, t, t, 0, 2 , AspectRatio  0.6

Out[42]=
-3 -2 -1 1 2 3

-1.5
-1.0
-0.5

0.5
1.0
1.5

0.5 1.0 1.5 2.0 2.5 3.0

1.2
1.4
1.6
1.8

· Manifolds and Iterated Function Systems

Iterated function systems (IFS) constitute another well-known way to generate
fractals [23]. Briefly, an IFS is a set of contracting affine transformations that are
iteratively applied to any initial figure. Multiple mappings directly implement the
iteration [24] rather than its variant, “chaos game” [24, 25]: they compute the nth

approximation of an IFS, from any initial manifold, in the form of a many-valued
manifold.
In[43]:= MappingIFS"Cantor"Manifoldt, 0, t, 0, 1

Out[43]= Manifold1
3

t

3
,

1

3
, 1

3

t

3
, 

1

3
, t, 0, 1

A few common IFSs are defined in the package Morphology`Fractals`, ex-
pressed in the form IFS["Name"] that yields a function system.
In[44]:= IFS"Cantor"

Out[44]= FunctionSystem1
3


1

3
&,

1

3

1

3
&

Here is an example of a Sierpinski sponge.

202 Rémi Barrère

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In[45]:= DrawNestMappingIFS"RectangularSierpinski3D", Manifold
u, 1  u v, 1  u 1  v w, u, 0, 1, v, 0, 1, w, 0, 1, 3,

PlotPoints  2, Mesh  None, Axes  None,

ViewPoint  2.4, 1.4, 0.2

Out[45]=

Giving a low value to PlotPoints is necessary to avoid a lengthy computation.
The process appears to be a quite general one that builds a variety where even
continuity properties are abandoned.
In association with a convenient initial manifold, an IFS can also produce a
branching figure. Such figures are commonly generated with L-systems.
Weighted function systems are also possible, which allow visualizing invariant
measures on fractals by means of the chaos game. Here is an example of a Sierpin-
ski triangle with weights 1 ê 2, 1 ê 4, and 1 ê 4.
In[46]:= branch1v_ : v2

branch2v_ : v2  0, 12
branch3v_ : RotationPi6, 0v3  0, 13
branch4v_ : RotationPi6, 0v3  2 0, 13

In[50]:= NestMappingArraybranch, 4, Manifold0, t, t, 0, 1, 1
Out[50]= Manifold

0, t

2
, 0, 1

2

t

2
, t

6
,

1

3


t

2 3
, t

6
,

2

3


t

2 3
, t, 0, 1

An Algorithmic Approach to Manifolds 203

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In[51]:= Draw
NestMappingArraybranch, 4,
Manifold0., 1. t, t, 0, 1, 4,

ManifoldPlayChaosGameWeightedFunctionSystem
IFS"EquilateralSierpinski2D",
0.5, 0.25, 0.25, 0., 0., 2500

, Axes  None, PlotPoints  2, PlotStyle  PointSize0.005,
AspectRatio  1.1, Automatic

Out[51]=

‡ Operations on Manifolds
Beyond the aforementioned primitives, new manifolds or shapes are generated
by combining or transforming them.

· Sides and Boundary

In the two-dimensional case, the first-order sides are edges while the second-or-
der ones are vertices. In the three-dimensional case, the first-order sides are
faces, second-order ones are edges, and third-order ones are vertices, and so
forth. The first-order sides constitute the boundary from the domain viewpoint:
in some pathological cases, the first-order sides are not necessarily the same as
the geometrical boundary, as, for example, when the codomain overlaps itself.
In[52]:= b0  Manifoldr Cost, r Sint, h,

r, 1, 2, t, 0, Pi2, h, 1, 1;
b1  Sidesb0; b2  Sidesb0, 2; b3  Sidesb0, 3; Shortb2, 1

Out[53]//Short= AtlasManifold1, 0, h, h, 1, 1,
10, Manifold0, r, 1, r, 1, 2

In[54]:= Drawb1, b2, b3, Mesh  None, Ticks  None,

Axes  None, PlotStyle  PointSize0.05

Out[54]=

204 Rémi Barrère

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

· Left Compositions

Most operations are based on various combinations of manifolds and mappings
or parametrized mappings. According to their order, we get the left compositions
and their variants that implement transformations, extrusions, and duplications
(following sections), or the right compositions and their variants that implement
embeddings, connections, changes of coordinates, and reshapings (subsequent
sections).

Transformations
In a geometrical context where manifolds are intended to describe figures or
shapes, transformations constitute a useful manifold generator. Let us recall that
these are defined as vector functions or pure vector functions that apply to n-tu-
ples (lists) of coordinates; then the Mapping construct enables their application to
manifolds.

In[55]:= deformx_, y_ : x  y 5, y  x^2
MappingdeformManifoldu, v, u, 0, 1, v, 0, 1

Out[56]= Manifoldu  v

5
, u2  v, u, 0, 1, v, 0, 1

Applying a transformation to a rectangle or a parallelepiped shows how the trans-
formation operates. The construct also applies to atlases and many-valued mani-
folds (the one in the example implementing a fractal variety).

In[57]:= Draw
MappingdeformNestMappingIFS"RectangularSierpinski2D",

Manifoldu, 1  u v, u, 0, 1, v, 0, 1, 5,
PlotPoints  2, Mesh  None, ColorFunction  ColorData11 &,
BoundaryStyle  None

Out[57]=

This general scheme is supplemented by a set of common transformations in
view of applications to geometry, shape design, CAD, or engineering.

An Algorithmic Approach to Manifolds 205

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

A Collection of Transformations
In order to facilitate a later symbolic treatment of transformations (composition
and other operations), we focus on transformations as typed objects that can be
combined according to algebraic or heuristic rules, that is, an object approach to
transformations. So there are at least three levels: typed symbolic objects imple-
menting transformations, their definitions as vector functions, plus their associ-
ated matrices in the case of affine transformations. Once they are defined as vec-
tor functions, the transformations also apply to manifolds thanks to the scheme
Mapping[transformation][manifold] or Mapping[transformation]@manifold.
Since transformations are implemented as typed objects, for example, Trans
lation[v] with v a list, rewrite rules can be given for various combinations.

In[58]:= CompositionTranslation, 0, 0, Translation0, 1, 
Out[58]= Translation, 1, 
Then in view of their use as vector functions, transformations have an associated
subvalue, according to the informal scheme SomeTransform[params_][v_]:=
expression. A complementary command defines the associated matrix in the
case of affine transformations. For each affine transformation, there is a linear
case and a strict affine case which is thought of as the linear version applied
“about” some point. For instance, here is the case of a similarity, where k is ei-
ther a scalar or a list (stretching).
Similarity[k_,pt_:0][p_List]:= k*(p-pt)+pt

In[59]:= MappingSimilaritya, b, 1, 1
Manifoldu, v, u, 0, 1, v, 0, 1

Out[59]= Manifold1  a 1  u, 1  b 1  v, u, 0, 1, v, 0, 1
In the three-dimensional case, there are different ways to specify a rotation: Eu-
ler angles, nautical angles, and axis and angle (or matrix exponential). These rota-
tions can themselves be decomposed into precession, pitching, and spinning.
That is why we introduce typed entities, so Precession[] denotes a precession
of angle j or Euler[, , ] denotes a rotation with the specified Euler angles.
The type Rotation is restricted to the two-dimensional case.

The spinning direction can be given either by a vector or by two spherical an-
gles. Precession and winding are one and the same thing; so are nutation and
rolling. Here is the rotation matrix associated with the given spinning parame-
ters, followed by the matrix of an embedding.

In[60]:= RowMapMatrixFormMatrix &, Spinning0, 1, 0, ,
Embedding0, 1, 1, 1, 1, 0, Spacer50

Out[60]=

Cos 0 Sin
0 1 0

Sin 0 Cos

0 1

1 1

1 0

These additional definitions supersede and extend those formerly found in the
standard package Geometry`Rotations`. Projections, shadows, and reflections
are defined in a similar way. Common affine transformations are defined in the
context Morphology`Transformations`, common transformations associated
with coordinate systems are defined in Morphology`Coordinates`, and trans-
formations defining classical curves or surfaces are defined in Morpholo
gy`Shapes`.

206 Rémi Barrère

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

These additional definitions supersede and extend those formerly found in the
standard package Geometry`Rotations`. Projections, shadows, and reflections
are defined in a similar way. Common affine transformations are defined in the
context Morphology`Transformations`, common transformations associated
with coordinate systems are defined in Morphology`Coordinates`, and trans-
formations defining classical curves or surfaces are defined in Morpholo
gy`Shapes`.

In[61]:= MappingScaling &, Log10,  &
Manifoldu, v, u, 0, 1, v, 1, 10^3

Out[61]= Manifoldu, Logv
Log10, u, 0, 1, v, 1, 1000

In[62]:= MappingLissajous2, 3, 5Manifoldt, t, 0, 2 
Out[62]= ManifoldSin2 t, Sin3 t, Sin5 t, t, 0, 2 

In[63]:= Draw, , Frame  False, Axes  None, PlotPoints  3, Automatic,
Mesh  5, None, AspectRatio  0.75, 1

Out[63]=

Applications to Manifolds and Shapes
Applying various transformations to standard manifolds constitutes a way to gen-
erate all kinds of shapes by deformation. In particular, Flattening (projection)
is more or less equivalent to Project from the former package Graph
ics`Graphics3D`, defined in the case of three-dimensional graphics and projec-
tions onto coordinate planes. Here is a triple mapping that concisely expresses
these three projections.

In[64]:= lifting  LiftManifoldt^2, t^3, t, 1, 1
Out[64]= Manifoldt, t2, t3, t, 1, 1

An Algorithmic Approach to Manifolds 207

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In[65]:= Drawlifting, Mapping
Flattening1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1,
Flattening0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0,
Flattening0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0

lifting, Axes  None

Out[65]=

Applying a nonlinear transformation to a rectilinear object generally yields a
curved object. This would not be directly possible with graphics primitives. With
their analytical representations, manifolds constitute the natural primitives for
nonlinear operations, while built-in graphics primitives are more or less re-
stricted to affine operations.

Applications to Higher-Dimensional Manifolds
There is an interesting use of transformations for the two-dimensional or per-
spective 3D visualization of higher-dimensional manifolds. As an example, here
is a two-dimensional shadow of the sides of a four-dimensional hypercube.

In[66]:= DrawMappingShadowing1.2, 1, 0.7, 0, 0, 1.2, 1, 0.7,
1, 0, 0.7, 1.2, 1, 0.7, 0, 1.2

SidesUnitHyperCubea, b, c, d, 2, PlotPoints  2,

Mesh  None, Axes  None, Frame  False, AspectRatio  0.7

Out[66]=

One can also compute a three-dimensional projection that is then displayed with
the Mathematica internal projection engine (see the section Higher-Dimensional
Manifolds).

208 Rémi Barrère

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

Extrusions
Extrusion is a feature commonly encountered in drawing or CAD applications.
The analytical approach to manifolds lends itself well to extending the common
extrusion process by means of parametrized transformations. This is one of the
major applications of parametrized mappings, which reveals a relationship be-
tween the theoretical notion of a continuous set of transformations and the tech-
nical idea of extrusion.
In[67]:= MappingsomeTransformation, someParameters

Manifoldparametric, someDomain
Out[67]= ManifoldsomeTransformationparametric,

someDomain, someParameters
The ordinary extrusion is no more and no less than a single parameter mapping
in the case of a translation. An embedding may be necessary to initiate the pro-
cess, in which case the undocumented function Compose conveniently ex-
presses the composition of mappings. Many-valued manifolds as well as atlases
can also be extruded.

In[68]:= Draw
ComposeMappingTranslation0, 0, h, h, 0, 15,
MappingEmbedding1, 0, 0, 0, 1, 0,
NestMappingIFS"RectangularSierpinski2D",
Manifoldu, 1  u v, u, 0, 1, v, 0, 1, 3,

ComposeMappingSpinning0, 0, 1, , , 0, 3 2,
Manifoldx, 0, z 2  Sinx, x, 0, 2 , z, 0, 1,

PlotPoints  2, 10, 3, 25, Mesh  0, 7, 1, 20,
Axes  None, BoundaryStyle  Automatic

Out[68]=

Ruled surfaces, cylindrical shapes, objects of revolution, conic objects, and others
are obtained by specific extrusions. Rotational extrusions more or less supersede
RevolutionPlot3D (formerly SurfaceOfRevolution), especially when used
with the spinning transformation, whose first parameter corresponds to the revo-
lution axis, and they naturally extend to solids of revolution.

As a final example, the function TwistedTube introduced by Edwards in [26] is
rewritten here in terms of manifolds by means of an extrusion combining a rota-
tion, a translation, an embedding, and a spinning transformation with vertical
axis.
TwistedTube[m:Manifold[{_,_}, ___], deltaTheta:{theta_, min_:0, max_:(2
Pi)}, r_, twist_]:=
 Mapping[Composition[

Spinning[{0,0,1}, theta], Embedding[{{1,0,0}, {0,0,1}}],
Translation[{r,0}], Rotation[twist theta]],
 deltaTheta][m]

An Algorithmic Approach to Manifolds 209

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

TwistedTube[m:Manifold[{_,_}, ___], deltaTheta:{theta_, min_:0, max_:(2
Pi)}, r_, twist_]:=
 Mapping[Composition[

Spinning[{0,0,1}, theta], Embedding[{{1,0,0}, {0,0,1}}],
Translation[{r,0}], Rotation[twist theta]],
 deltaTheta][m]

In[69]:= theTube  TwistedTubeManifold
Cosu2, 1  Sinu2, u, 0, 2 Pi, , 0, 4 , 3, 32;

In[70]:= DrawtheTube, Mesh  10, 70,
ViewPoint  1.9, 1.9, 2.0, Axes  None

Out[70]=

Duplications
A duplication is an accumulation of transformed manifolds that can also be
viewed as the effect of a multiple mapping. By default, many-valued manifolds
are generated. The IFS branch was defined earlier.

In[71]:= Draw
MappingTableTranslation, Abs, , 13, 0, 12
NestMappingArraybranch, 4,
Manifold0., 1. t, t, 0, 1, 3,

MappingTablePrecession, , 0, 3 2, 2Manifold
1  u Absv  u, v, 3 1  v^2, u, 0, 1, v, 1, 1,

PlotPoints  2, 2, 21, Mesh  0, 0, 20, Axes  None,
BoundaryStyle  None, Automatic,
ColorFunction  ColorData11 &, Automatic,
AspectRatio  0.8, Automatic

Out[71]=

Possible applications to the geometry of vaults or more general problems in ar-
chitectural design are mentioned by Cerny in [27]; see also [28].

210 Rémi Barrère

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

· Right Compositions

Right compositions and their variants implement embeddings, connections,
changes of coordinates, and reshapings. Here, we call a connection of two mani-
folds the identification of the coordinate system of the former with the codomain
of the latter. In most cases, this determines a connection on the embedded mani-
fold as soon as a connection is given for the carrier manifold. A connection can
be used to define a manifold (as a figure) on some other carrier manifold. Two
manifolds can be connected provided the domain of the former and the
codomain of the latter have the same dimension. If the latter has a lower dimen-
sion, it can nonetheless be connected to some submanifold of the former, in
which case the connection is rather an embedding. So connections and embed-
dings are two variants of the single operation that we call Embed, used in the
form Embed[carrier, embedded] or the variant Embed[carrier, mapping, embed-
ded], where mapping is typically an embedding.

Connections
When the domain of the first manifold has the same dimension as the codomain
of the second, the embedding boils down to a connection. Thanks to the connec-
tion of a many-valued manifold, a Sierpinski triangle can be pasted onto a
cylinder.
In[72]:= cylindricalSierpinski 

EmbedManifoldCylindrical0.5, 2   2, h, , h,
NestMappingIFS"RectangularSierpinski2D",
Manifoldu, 1  u v, u, 0, 1, v, 0, 1, 5;

An Algorithmic Approach to Manifolds 211

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In[73]:= DrawcylindricalSierpinski, Axes  None, PlotPoints  2,

Mesh  None, ColorFunction  ColorData11 &,
BoundaryStyle  None, ViewPoint  2., 1.9, 1.7

Out[73]=

Changes of Coordinates and Reshapings
When the dimensions are the same, an embedding is no more and no less than a
change of coordinates associated with a change of boundary, so it can also be
viewed as the reshaping of the second argument or else as its clipping on the first
one. Goetz and Wagon used such changes of coordinates in [29] as a means to
carry out adaptive surface plotting. The second example is adapted from Kuz-
niarek [30].

In[74]:= m1  Manifoldx, y, x y x^2  y^2, x, 1, 1, y, 1, 1;
m2  MapAtSimplify, Embedm1,

Manifoldr Cos, r Sin, r, 0, 1, , 0, 2 , 1
Out[75]= Manifoldr Cos, r Sin, Cos Sin, r, 0, 1, , 0, 2 

212 Rémi Barrère

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In[76]:= Drawm1, MapAt .     Sin4 10 &, m2, 1, Axes  None,

BoundaryStyle  Automatic, Mesh  12, 12, 5, 30

Out[76]=

In[77]:= m1  Manifoldx, y, Cotx  Siny, x, , , y, 2 , 2 ;
m2  Embedm1, Manifoldu  Sinv, v, u, , , v, 2 , 2 

Out[77]= Manifoldu  Sinv, v, Cotu, u, , , v, 2 , 2 

In[78]:= Drawm1, m2, Axes  None,

PlotRange  , , 2 , 2 , 3, 3

Out[78]=

Strict Embeddings
We sometimes need to embed a manifold, a many-valued manifold, or an atlas
into a higher-dimensional manifold. Such a strict embedding is determined by a
point where the origin of the embedded manifold is posted and the specification
of its orientation (typically with the Embedding transformation) or more gener-
ally by a submanifold that carries the embedded one.

In[79]:= EmbedManifoldPolar, , , ,
MappingEmbedding1, 2, 1, 0, Manifoldt, t, 0, Pi

Out[79]= Manifold1  t Cos2 t, 1  t Sin2 t, t, 0, 

In[80]:= EmbedManifoldPolar, , , ,
Manifold1, 2 u  1, 0, u, Manifoldt, t, 0, Pi  

Out[80]= True

An Algorithmic Approach to Manifolds 213

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

The embedding constitutes a powerful shape generator. In the following exam-
ple, a torus is built by two successive embeddings: a square is first embedded into
a cylindrical coordinate system with a convenient axis, which yields a cylinder
that in turn, is embedded into another cylindrical coordinate system with an or-
thogonal axis, which yields the torus.
In[81]:= t0  Manifoldu, v, u, 0, 2 , v, 0, 2 ;

t1  MappingPermutation2, 3, 1
EmbedManifoldCylindrical1, , z, , z, t0;

t2  EmbedManifoldCylindricalr  3, , z, r, , z, t1;
In[84]:= Drawt0, t1, t2, Frame  False, Mesh  5, 4, 12, 5, 12, 20,

BoundaryStyle  Automatic, Axes  None

Out[84]=

Similarly, a Moebius strip is built by embedding a helicoid into a cylindrical coor-
dinate system. The helicoid is obtained by extruding a segment by a left screw.
In[85]:= m0  Manifoldt, 0, 0, t, 1, 1;

m1  MappingLeftScrewing0, 2, 0, , , 0, m0
Out[86]= Manifoldt Cos, 2 , t Sin, t, 1, 1, , 0, 

In[87]:= m2  EmbedManifoldCylindricalr  3, , z, r, , z, m1;
Drawm0, m1, m2, Mesh  None, 3, 12, 3, 15,
BoundaryStyle  Automatic, Axes  None

Out[87]=

An unusual form of the Klein bottle [9, page 239] is similarly built by embedding
the twisted extrusion of a figure eight into a cylindrical coordinate system or by
applying TwistedTube to the initial figure eight.
In[88]:= k0  ManifoldSint, 0, Sin2 t, t, 0, 2 ;

k1  MappingLeftScrewing0, 2, 0, 2, , 0, 2 k0

Out[89]= ManifoldCos
2
 Sint  Sin2 t Sin

2
, ,

Cos
2
 Sin2 t  Sint Sin

2
, t, 0, 2 , , 0, 2 

214 Rémi Barrère

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In[90]:= k2  EmbedManifoldCylindrical3  r, , z, r, , z, k1;
k2  TwistedTube

ManifoldSint, Sin2 t, t, 0, 2 , , 0, 2 , 3, 12
Out[91]= True

In[92]:= Drawk0, k1, k2, Mesh  None, 15, 10, 15, 12,
BoundaryStyle  Automatic, Axes  None

Out[92]=

In all cases, an appropriate mapping, derived from the carrier manifold, yields
the same result as the embedding.
In[93]:= t2, m2, k2 

MapMappingCylindrical  3, 0, 0 &, t1, m1, k1 
MapEmbedManifoldCylindricalr, , z, r, , z,

MappingTranslation3, 0, 0,  &, t1, m1, k1
Out[93]= True

· Animations and Ray Tracing

Since Version 6, Animate and Manipulate supersede the various movie-plotting
commands of the package Graphics`Animation`. The first example shows an
ordinary motion, while the second one visualizes an extrusion. Load the package
Morphology and evaluate the Inputs to activate them.

An Algorithmic Approach to Manifolds 215

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In[94]:= AnimateDrawMappingPrecessionManifold
u, Cosv Sinu, Sinv Sinu, u, Pi, Pi, v, 0, 2 Pi,

Axes  None, Mesh  None, Boxed  False,

PlotRange  3, 3, 3, 3, 2, 2,
, 0, , AnimationRunning  False

Out[94]=

q

216 Rémi Barrère

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In[95]:= Manipulate
DrawComposeMappingSpinning0, 0, 1, , , 0, max,

Manifoldx, 0, z 2  Sinx, x, 0, 2 , z, 0, 1,
Mesh  None, Axes  None, PlotRange 
7, 7, 7, 7, 0.5, 3, max, 2 3, 0.01, 2 

Out[95]=

qmax

Finally, a tool developed by Maeder to convert and export surface graphics data
to a ray tracing program deserves to be mentioned [31], a feature from now on re-
placed by Export.

· Homotopy (Morphing) and Interpolation

Provided that linear operations can be defined with respect to some type
of objects, the homotopic transformation H1 - kLO1 + k O2, k œ @0, 1D defines all
intermediaries between the objects O1 and O2, that is, a linear interpolation be-
tween these two objects. In the case of manifolds, the idea can be generalized to
nonlinear interpolation, provided weighting functions are specified. It can also be
generalized to polynomial interpolation.

In[96]:= Homotopykg1x, g2x,
Homotopyk, k0, k1g1x, g2x, Homotopywkg1x, g2x

Out[96]= 1  k g1x  k g2x,
g2x k  k0  g1x k  k1

k0  k1
, g1x 1  wk  g2x wk

An Algorithmic Approach to Manifolds 217

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In[97]:= MappingHomotopyk, k, 0, 1
Manifold1, t, t^2, t, 0, 1,
Manifoldt, t^2, t^3, t, 0, 1


Out[97]= Manifold1  k  k t, 1  k t  k t2, 1  k t2  k t3,

t, 0, 1, k, 0, 1
Homotopy is a powerful shape generator that produces n-dimensional manifolds
by generating all the intermediaries between two (n - 1)-dimensional manifolds
(currently valid only for single-valued manifolds). If the domains are not identi-
cal, the manifolds must first be normalized. Homotopy can be used, for instance,
to design shapes with a hole.
In some cases, geometric domains are presented in the form of the so-called
cylindrical decompositions: umin § u § umax, vmin@uD § v § vmax@uD,
wmin@u, vD § w § wmax@u, vD… . That is typically the way integration domains are
specified. Homotopy then transforms those patches into manifolds. This idea
was suggested by Tavouksoglou and Freed in [32, 33].

In[98]:= Patchx, y, z, x, 0, 1, y, 0, 1  x, z, 0, 1  x  y
Out[98]= Manifoldx, 1  x y, 1  x  1  x y z,

x, 0, 1, y, 0, 1, z, 0, 1
In[99]:= Draw

MappingHomotopyk, k, 0, 1
ManifoldCos  12, Sin, h, , 0, 2 , h, 0, 1,
Manifold3 Cos, 2 Sin, h, , 0, 2 , h, 0, 1

,
Patchu  v, u  v, u, 1, 1,
v, u^4  2 u^2, 2  u  Absu, Mesh  20, 0, 0, 7, 5,

Axes  None, Boxed  False, ViewPoint  0.80, 1.70, 1.8,
Frame  False, BoundaryStyle  Automatic, AspectRatio  0.6

Out[99]=

‡ Future Directions
Thanks to their analytical potential, manifolds constitute a natural foundation for
differential geometry, field theory, and also some modeling applications. A data
structure is introduced to describe fields over manifolds. The principle of an ex-
tension to manifolds of field analysis is described. Finally, a link with a finite ele-
ment package is presented.

218 Rémi Barrère

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

· Fields

Let us represent fields by typed entities, the arguments of which are a scalar or a
rectangular array (for tensors), a list of variance specifications (except in the
scalar case), and the manifold over which the field is defined. This object ap-
proach to fields stresses the indissoluble link between the field components and
the manifold coordinates. Normal extracts the scalar or the array.

In[100]:= m  ManifoldPolar, , , 0, 1, , 0, 2 ;
potential  Field, , m

Out[101]= Field, , Manifold Cos,  Sin, , 0, 1, , 0, 2 
In[102]:= Normalpotential

Out[102]= , 
Some fields, like the metric field or the field of Christoffel coefficients, derive
from the manifold itself, so they are expressed as functions of the manifold.

Christoffel Coefficients
When the codomain is a Euclidean n-dimensional space with its canonical con-
nection, which is the default assumption, an induced connection is determined
on the manifold. Although they are not tensorial, Christoffel coefficients are usu-
ally manipulated like tensors.

In[103]:= ChristoffelGammaHigh, Low, Lowm  Normal

Out[103]= 0, 0, 0, , 0, 1


,  1


, 0

The Christoffel coefficients are then used to compute covariant derivatives.

Vector and Tensor Analysis
Vector and tensor analysis on manifolds are based on the covariant derivative
CovariantD; fields are represented as specified earlier. For antisymmetric ten-
sors, the wedge product and the exterior derivative (ExteriorD) are also
introduced.

In[104]:= CovariantDFieldu, v, Manifoldu, v, u, v  Normal
Out[104]= 1,0u, v, 0,1u, v

In[105]:= CovariantDField Cos, m  AbridgedForm
Out[105]= FieldCos,  Sin, Low,  Manifold 

An Algorithmic Approach to Manifolds 219

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

· Differential Geometry

The basic ingredients of differential geometry are the tangent manifold (Jacobian
computation) and the metric. The metric, the Christoffel coefficients, and other
differential characteristics (e.g., curvature or torsion) are common to differential
geometry and field analysis.

Tangent Manifold
One must distinguish the tangent manifold computed at some point, which is a
plane or a hyperplane, from the field of tangent manifolds that can be viewed as a
manifold over an abstract space with twice the initial dimension (the tangent bun-
dle).

In[106]:= m  Manifoldx^2  y^2, 2 x y, x, y;
In[107]:= TangentManifoldm, 1, 1

Out[107]= Manifold2 Dtx  2 Dty, 2 Dtx  2 Dty, Dtx, Dty
In[108]:= TangentBundlem

Out[108]= Manifold2 x Dtx  2 y Dty, 2 y Dtx  2 x Dty,
x, y, Dtx, Dty

Metric
When the codomain is a Euclidean n-dimensional space with its canonical
metric, which is the default assumption, an induced metric is determined on the
manifold.

In[109]:= m  ManifoldAnnularRr, , , , 0, , , 0, 2 ;
MetricLow, Lowm  Normal  MatrixForm

Out[110]//MatrixForm=
R  r Cos2 0

0 r2

The associated contravariant tensor is no more and no less than its inverse.

In[111]:= NormalMetricLow, Lowm.
NormalMetricHigh, Highm  MatrixForm

Out[111]//MatrixForm=
1 0

0 1

When the metric structure of the codomain is not Euclidean, an explicit metric
can be given; for example, the Poincaré half-plane metric.

In[112]:= PoincareMetricu, v  MatrixForm

Out[112]//MatrixForm=

2

v2
0

0
2

v2

220 Rémi Barrère

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

· Applications to Mechanical Engineering

Beyond obvious applications to space or spacetime modeling, manifolds have
uses in mechanical engineering, especially by means of interactions with finite
element packages. The details depend on the data structure used for finite ele-
ments. Here is an example with the “IMTEK Mathematica Supplement” pack-
age [34], assumed to have been installed [35] (the packages are loaded by
Mesher); see also [36] and [37].

In[113]:= Needs"Morphology`Mesher`";
m2D  Manifold3 r Cost2, r Sint, r, 1, 2, t, 0, 2;
nexus2D  ToImsNexusm2D, r, 3, t, 5;
m3D 
Manifoldr Cost, h, r Sint, r, 1, 2, h, 0, 1, t, 0, ;

nexus3D  ToImsNexusm3D, r, 3, h, 2, t, 9
Out[115]=  imsNexus 

In[116]:= GraphicsRow
Graphics imsDrawElements nexus2D  , AspectRatio  Automatic ,
Graphics3D imsDrawElements nexus3D  ,
Boxed  False, ViewPoint  1., 2., 1.2



Out[116]=

nexus2D or nexus3D are not only meshes but structures differentiating boundary
nodes from interior nodes, able to take into account boundary values in view of
further computations.

‡ Discussion and Prospects
Founded on a reification of parametric representations, this computational ap-
proach to manifolds leads to a uniform treatment of questions that arise in differ-
ential geometry and field theory plus other domains such as shape design, fractal
generation, scene description, or mesh generation. In particular, it has the poten-
tial to supersede various graphics commands. Numerous operators generate
more or less intricate or distorted manifolds by twisting and combining simpler
ones.

An Algorithmic Approach to Manifolds 221

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

As opposed to the functional approach of plotting commands that build shapes
by assembling low-level graphics primitives, manifolds lead to a higher-level de-
scription of shapes that can be defined by compact symbolic expressions, rather
than huge assemblies of raw graphics primitives. This symbolic layer paves the
way for a concise representation of many-level systems, then processed as
wholes, such as spatial scenes, linkages, or other assembled systems.
Nevertheless, the set of packages developed for that purpose is primarily in-
tended for investigating the feasibility of this project: testing has remained mini-
mal, there are no messages, exceptions have not been investigated thoroughly,
and the packages might have to be reorganized. The system of options associated
with manifolds, atlases, and the Draw command should be improved with a better
filtering mechanism. The option specification DrawingStyle is an experimental
feature that could be discarded.
In the case of intricate systems, a mechanism for naming and retrieving the subex-
pressions describing the corresponding subsystems would be welcome. For
instance, naming individual figures would occasionally be useful in the case of geo-
metric scenes. Also, it would be interesting to enable links with geometry pack-
ages like Geometrica05 [38].

Parametric representations do not lend themselves well to the algebraic
approach, from which a substantial part of the power of computer algebra
derives, which weakens the idea of a full symbolic treatment of form. Because im-
plicitization and parametrization of manifolds remain unsolved problems (except
in particular cases) [39], the relationship between parametric representations and
implicit definitions (Cartesian descriptions or inequalities) remains loose. Con-
sequently, the analytical treatment of manifolds does not lend itself well to
Boolean operations, which require algebraic computations.

The affine transformations defined in the context Morphology`Transforma
tions` have been introduced mainly in view of applications to mechanical engi-
neering. Their compatibility with the novel set of geometric transformations
of Version 6 should undergo further investigation.

Nevertheless, the major role of the analytical approach in physics gives impor-
tance to this way of representing and manipulating manifolds; so does its capa-
bility to blend and supplement a variety of tools, scattered about the kernel and
various packages.

‡ Conclusion
Founded on reified parametrizations, the algorithmic approach to manifolds pre-
sented here leads to a generic treatment of form modeling that encompasses
shape design, differential geometry, and field analysis, with direct applications to
mechanical engineering. It introduces a unified viewpoint that not only gathers
and supplements a variety of graphics tools scattered about the kernel and several
packages, but also enables a symbolic approach to form that concisely encodes
the various entities encountered in form modeling. As such, it constitutes a possi-
ble foundation for a computational morphology.

222 Rémi Barrère

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

‡ References
[1] X-S. Gao and D. Wang, eds., Mathematics Mechanization and Applications, New York:

Academic Press, 2000.

[2] G. Lakoff and R. Nunez, Where Mathematics Come From: How the Embodied Mind
Brings Mathematics into Being, New York: Basic Books, 2000.

[3] E. A. Lord and C. B. Wilson, The Mathematical Description of Shape and Form, New
York: Halsted Press, 1986.

[4] R. Barrère, “The Structuring Power of Mathematica in Mathematics and Mathematical
Education,” (Paper #35) in Electronic Proceedings of the Third International Mathe-
matica Symposium (IMS’99), Hagenberg, Austria (V. Keränen, ed.), 1999.
south.rotol.ramk.fi/keranen/IMS99/ims99papers/ims99papers.html.
library.wolfram.com/infocenter/Conferences/6138.

[5] T. Wickham-Jones, Mathematica Graphics: Techniques & Applications, New York:
Springer-Verlag, 1994.

[6] M. Trott, The Mathematica GuideBook for Graphics, New York: Springer-Verlag, 2004.

[7] M. Berger and B. Gostiaux, Differential Geometry: Manifolds, Curves and Surfaces,
Graduate Texts in Mathematics 115, New York: Springer-Verlag, 1992.

[8] J. Oprea, Differential Geometry and Its Applications, 2nd ed., Englewood Cliffs, NJ: Pren-
tice-Hall, 2004.

[9] A. Gray, Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd
ed., Boca Raton, FL: CRC Press, 1997. library.wolfram.com/infocenter/Books/3759.

[10] Y. Tazawa, “Experiments in the Theory of Surfaces,” (Paper #37) in Electronic Proceed-
ings of the Third International Mathematica Symposium (IMS’99), Hagenberg, Austria
(V. Keränen, ed.), 1999.
south.rotol.ramk.fi/keranen/IMS99/ims99papers/ims99papers.html.
library.wolfram.com/infocenter/Conferences/6177.

[11] Y. Tazawa, “Gauss-Bonnet Theorem by Mathematica,” in Symbolic Computation: New
Horizons, Proceedings of the Fourth International Mathematica Symposium (IMS’01),
Tokyo, Japan (Y. Tazawa, ed.), Tokyo: Tokyo Denki University, 2001 pp. 485|492.
library.wolfram.com/infocenter/Books/3598.

[12] J. Hoschek, D. Lasser, and L. L. Schumaker, Fundamentals of Computer Aided Geometric
Design, Wellesley, MA: A K Peters, Ltd., 1993.

[13] B. Chazelle, “Computational Geometry: A Retrospective,” in Proceedings ot the Twenty-
Sixth Annual ACM Symposium on Theory of Computing (STOC’94), Montreal, Canada,
New York: Association for Computing Machinery, 1994 pp. 75|94.
DOI-Link: doi.acm.org/10.1145/195058.195110.

[14] L. Piegl and W. Tiller, The NURBS Book, New York: Springer-Verlag, 1997.

[15] C. M. Grimm and J. F. Hughes, “Modeling Surfaces of Arbitrary Topology Using Mani-
folds,” in Proceedings of the Twenty-Second Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH’95), Los Angeles, CA: Association for Computing
Machinery, 1995 pp. 359|368.
DOI-Link: doi.acm.org/10.1145/218380.218475.

[16] J. W. Gray, Mastering Mathematica: Programming Methods and Applications, New York:
Academic Press, 1994.
library.wolfram.com/infocenter/Books/3791.

[17] R. E. Maeder, Computer Science with Mathematica: Theory and Practice for Science,
Mathematics, and Engineering, Cambridge: Cambridge University Press, 2000.

[18]]B. Bastl, “Computer Aided Geometric Design in Mathematica,” 2005 Wolfram Technol-
ogy Conference, Champaign, IL, 2005.
library.wolfram.com/infocenter/Conferences/5812.

An Algorithmic Approach to Manifolds 223

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

[19] A. Noll, “A Computer Technique for Displaying n-Dimensional Hyperobjects,” Communi-
cations of the ACM, 10(8), 1967 pp. 469|473.

[20] S. Kivelä, “On the Visualization of Riemann Surfaces,” in Applied Mathematica, Elec-
tronic Proceedings of the Eighth International Mathematica Symposium (IMS’06), Avi-
gnon, France (Y. Papegay, ed.), Sophia Antipolis, France: INRIA, 2006 ISBN
2-7261-1289-7.
internationalmathematicasymposium.org/IMS2006/IMS2006_CD/html/articles.html.

[21] D. H. von Seggern, CRC Standard Curves and Surfaces, Boca Raton, FL: CRC Press, 1993.

[22] M. Attéia and J. Gaches, Approximation Hilbertienne: Splines, Ondelettes, Fractales, Les
Ulis and Grenoble: EDP Sciences and Presses Universitaires de Grenoble (PUG), 1999.

[23] M. Barnsley, Fractals Everywhere, San Diego, CA: Academic Press, 1988.

[24] S. Wagon, Mathematica in Action, 2nd ed., New York: W. H. Freeman & Company, 1991
pp. 102|108.

[25] J. M. Gutiérrez, A. Iglesias, M. A. Rodriguez, and V. J. Rodriguez, “Fractal Image Genera-
tion Using Iterated Function Systems,” in Mathematics with Vision, Proceedings of the
First International Mathematica Symposium (IMS’95), Southampton, England
(V. Keränen and P. Mitic, eds.), Southampton: Computational Mechanics Publications,
1995 pp. 175|182.
library.wolfram.com/infocenter/Articles/1533.

[26] C. H. Edwards, “Twisted Tubes,” The Mathematica Journal, 3(1), 1993 pp. 10|13.

[27] J. Cerny, “Geometry and Architecture,” in Proceedings of the Ninth European Society for
Engineering Education (SEFI) European Seminar on Mathematics in Engineering Educa-
tion, Espoo, Finland (M. Demlové, L. Mustoe, and B. Olsson-Lehtonen, eds.) Helsinki, Fin-
land: Arcada Polytechnic, 1998 pp. 27|30.

[28] P. Morel and M. Teissier, “Architecture, Set Design, and Mathematical Pattern,” in New
Ideas in Symbolic Computation, Electronic Proceedings of the Sixth International Mathe-
matica Symposium (IMS’04), Banff, Alberta, Canada (P. Mitic, C. J. Jacob, and J. Carne,
eds.), Hampshire, England: Positive Corporation Limited, 2004.
library.wolfram.com/infocenter/Conferences/6057.

[29] R. Goetz and S. Wagon, “Adaptive Surface Plotting: A Beginning,” Mathematica in Ed-
ucation and Research, 5(3), 1996 pp. 74|83.

[30] A. Kuzniarek, “The Graphics Designer: Making the Perfect Picture,” The Mathematica
Journal, 4(4), 1994 pp. 54|60.

[31] R. Maeder, “The Mathematica Programmer: Ray Tracing and Graphics Extensions,” The
Mathematica Journal, 4(3), 1994 pp. 48|55.

[32] A. N. (Tom) Tavouktsoglou and B. Freed, “Parametric Representations of Surfaces over
Arbitrary Domains,” Mathematica in Education and Research, 3(1), 1994 pp. 20|23.
library.wolfram.com/infocenter/Articles/1116.

[33] A. N. (Tom) Tavouktsoglou and B. Freed, “Drawing Mathematical Solids,” Mathematica
in Education and Research, 3(4), 1994 pp. 22|24.

[34] O. Rübenkönig, Z. Liu, and J. Korvink, “Integrated Engineering Development Environ-
ment,” The Mathematica Journal, 10(3), 2007 pp. 562-578.
www.internationalmathematicasymposium.org.

[35] O. Rübenkönig and J. Korvink, IMTEK Mathematica Supplement (IMS), (2002|2005).
www.imtek.de/simulation/mathematica/IMSweb.

[36] N. M. Dai, “A Language to Solve Finite Element Problems,” The Mathematica Journal,
8(1), 2001 pp. 126|146.

[37] E. A. Malsch and G. Dasgupta, “Algebraic Construction of Smooth Interpolants on Poly-
gonal Domains,” The Mathematica Journal, 9(3), 2005 pp. 641|658.

[38] B. Autin, “Geometrica05,” 2005 Wolfram Technology Conference, Champaign, IL, 2005.
library.wolfram.com/infocenter/Conferences/5846.

224 Rémi Barrère

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

[39] D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms: An Introduction to
Computational Algebraic Geometry and Commutative Algebra, 2nd ed., New York:
Springer-Verlag, 1997.

R. Barrère, “An Algorithmic Approach to Manifolds,” The Mathematica Journal, 2011.
dx.doi.org/doi:10.3888/tmj.11.2–5.

‡ Available Material
An experimental set of packages was developed to investigate the ideas presented
in this article. It is available at macmaths.ens2m.fr/Mathematica/packages/
Morphology.alpha3.zip (see also the Packages link at macmaths.ens2m.fr/
Mathematica).

‡ Acknowledgments
On the occasion of academic projects, students have contributed by experiment-
ing with drafts of the material presented here and the author thanks them. A few
student project reports are available at macmaths.ens2m.fr/students (Published
Projects).

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

An Algorithmic Approach to Manifolds 225

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

About the Author
Rémi Barrère received both his undergraduate (in 1980, in engineering) and doctoral (in
1985, in mathematics) degrees from the University of Franche-Comté in Besançon, France.
Barrère first obtained a position at the University of Paris XIII and now teaches at his alma
mater, where he developed the use of computer algebra and symbolic programming tech-
niques for mathematical modeling. He teaches both mathematical modeling, as well as
applied mathematics, utilizing an experimental method: he presents scientific computing
to his students by having them develop projects using Mathematica. He has been using
this method since the early 1990s in teaching as well as research, particularly in the
domains of symbolic approximations and foundational questions. He is a member of the
Wolfram Education Group and is the author of a book on Mathematica (Mathematica:
Calcul formel et programmation symbolique pour l’informatique scientifique, Paris: Vuib-
ert, 2002).

Rémi Barrère
University of Franche-Comté, ENSMM
26 chemin de l'Epitaphe
F-25000 Besançon, France
rbarrere@ens2m.fr
macmaths.ens2m.fr

