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Important  properties  pertaining  to  families  of  discrete  dynamical  systems
are  furnished  here  by  studying  the  kneading  theory  developed  by  Milnor
and Thurston, and subsequently implementing the spider algorithm, devel-
oped by Hubbard and Schleicher. The focus is on identifying crucial com-
binatorial and numerical properties of periodic critical orbits in one-dimen-
sional  discrete  dynamical  systems,  which  are  generated  by  iterating  real
quadratic  polynomial  maps that  constitute  an important  class  of  unimodal
systems.

‡ Introduction
The  mathematical  concepts  and  notations,  which  facilitate  the  introduction  of
the kneading theory developed by Milnor and Thurston [1] and the spider algo-
rithm developed by Hubbard and Schleicher [2], are summarized first.

A mapping f  of an interval I Õ  given by f : I Ø I  gives rise to a dynamical sys-
tem on I  by iteration. An orbit of a point x0 œ I  is a sequence of points 8xi<i¥0 Õ I
given by xi+1 = f HxiL.  We use the standard notation xn = f nHx0L,  where f n  indi-
cates the n-times composition of f  with itself.  An orbit is  called periodic with a
primitive period n if xi+n = xi  for some n ¥ 1, but xi+k ≠ xi  for k = 1, 2, … , n - 1.
A critical periodic orbit is a periodic orbit that contains the critical point of f . A
critical  periodic  orbit  is  also  called  a  superstable  periodic  orbit.  A  point  is  called
critical if the derivative of the map is zero at the point.
Symbolic  dynamics  are  techniques  used  in  the  study  of  dynamical  systems.  The
simplest form converts orbits 8xi<i¥0  into sequences of symbols from an alphabet
 = 9a1, a2 … , ak=.  In  our  unimodal  case,  the  alphabet  consists  of  three  sym-
bols,   = 8L, R, C<.  The iteration process  (the dynamical  system) translates  into
a  simple  operator  on  the  symbol  space  consisting  of  infinite  words  from  .  In
this article we look at some elementary symbolic dynamics for simple one-dimen-
sional systems f : I Ø I, where f  is a smooth function of the interval I Õ  such
that f  has only one critical point c  in I. We may write I = IL ‹8c< ‹IR  such that
f  is decreasing on IL  and increasing on IR. Let IL = @l, cL and IR = Hc, rD. The ad-
dress  of  a  point  x œ I,  denoted by aHxL,  is  given by aHxL = L  if  x œ IL,  aHxL = C  if
x = c,  and aHxL = R  if  x œ IR.  Since x œ I fl f HxL œ I  by assumption, the orbit of
a point x0 œ I  is contained in I,  and we may assign an infinite sequence of sym-
bols AHx0L = 8si<i¥0  to the orbit according to the rule si = aI f iHx0LM. The sequence
AHx0L  is  also  called  the  itinerary  of  the  point  x0.  There  is  a  natural  mapping  on
the space of symbol sequences compatible with the dynamics on I,  the shift  map
s,  defined  by  sI8si<i¥0M = 8si+1<i¥0.  Let  AHx0L = 8si<i¥0;  then  clearly
sHAHx0LL = AH f Hx0LL.  Hence  the  action  x # f HxL  corresponds  to  shifting  the  se-
quence of symbols one place to the left and forgetting the first symbol in the se-
quence  AHxL.  The  critical  point  c œ I  plays  a  special  role  in  the  dynamics  of  f .
The  symbol  sequence  AHcL,  which  gives  the  dynamics  of  the  critical  orbit,  is
called the kneading sequence of f  and is denoted by K H f L = AHcL. The kneading se-
quence of f  for a superstable periodic orbit is  periodic.  A periodic kneading se-
quence  is  written  with  an  overbar,  as  in  the  sequence  K H f L = LRLLLLC  of  pe-
riod 7. There is a periodic orbit for this sequence, while there is no orbit for the
dynamical  system  corresponding  to  the  sequence  LRLLLRC.  One  of  the  main
problems  in  this  field  is  to  decide  if  a  given  periodic  symbol  sequence  corre-
sponds to an orbit  in the dynamical  system f : I Ø I.  A symbol sequence with a
corresponding  orbit  in  the  dynamical  system  is  called  admissible.  We  apply  the
theory developed in [1] and [3] to obtain an algorithm that decides if a given sym-
bol sequence is admissible. This algorithm is based on the fact that the kneading
sequence is minimal with respect to the lexicographic order denoted by Ç on the
symbol  space  S = .  In  particular,  if  s  is  the  shift  map  on  the  symbol  space,
then K Ç siHK L, i = 1, … , n - 1, for any admissible kneading sequence of length
n. 
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The spider algorithm [2, 4] was designed to study certain properties of the Man-
delbrot set for families of dynamical systems ga :  Ø . We apply the spider al-
gorithm to real  unimodal  systems generated by quadratic  polynomials  using ad-
missible  kneading sequences.  The construction of  a  periodic  kneading sequence
of  length n  corresponds to finding a  certain real  solution of  a  polynomial  equa-
tion of degree 2n-1. This leads to a numerical method for studying the parameter
space of unimodal systems generated by quadratic polynomials.  The Sharkovsky
theorem [5, 6] is illustrated in [7] as a special case, “period 3 fl chaos”.

It is easy to see that it is sufficient to study a single representative pqHxL = x2 + q

among  the  nondegenerate  quadratic  polynomials:  let  fa,b,gHxL = a x2 + b x + g,
where a ≠ 0. Then for any such map there is  a homeomorphism (in fact,  of the
simple form hHxL = a x + b) such that pq = hÎ fa,b,g Îh-1, where the quantities a, b,
and q depend on a, b, and g. Hence pqHa,b,gL  and fa,b,g  are topologically conjugate
and have the same dynamics. In the following, we use pq  as the representative for
the quadratic polynomials.
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‡ Some Simple Properties of the Family x # x2 +q

A fixed point xp is called hyperbolic if ° f ' IxpM• ≠ 1. We may replace f  by any iter-
ate of f  and hence an n-periodic orbit 9xqi = is called hyperbolic if ° H f nL ' Ixqi M• ≠ 1.
A hyperbolic invariant set L is called hyperbolic (in the one-dimensional case) if
the  derivative  of  f  is  greater  (smaller)  than  1  in  absolute  value  for  all  points  in
the invariant set. In higher dimensions, with f : MöM, where M  is a compact
smooth  manifold,  hyperbolicity  means  that  the  tangent  bundle  of  the  invariant
set  has  a  D f -invariant  splitting  into  a  contracting  subbundle  and  an  expanding
subbundle. It might of course happen that one of these is empty (the invariant set
is an expeller or attractor). For a more precise definition of hyperbolicity, see [8],
and for an application showing how hyperbolicity  ensures  stability  of  the topol-
ogical type of the system under small perturbations, see [9].

We now state some simple properties of the dynamical system pq : x # x2 + q. All
of  the  properties  listed  are  easily  proved  using  elementary  calculus,  so  we  omit
the calculations. The statements on symbolic dynamics and hyperbolicity can eas-
ily  be  proved  using  the  techniques  in  [8]  or  a  modification  of  the  arguments  in

the  next  section.  In  the  following,  let  xlHqL = K1 - 1 - 4 q O ì 2,

xrHqL = K1 + 1 - 4 q O ì 2,  and  IHqL = @-xrHqL, xrHqLD  whenever  these  quantities

are real (i.e., when q § 1 ê 4). Clearly, x = 0 is the only critical point of pq.

1. If q > 1 ê 4, then limnØ¶ pqnHx0L = ¶ for all x0 œ .

2. If  q < 1 ê 4,  then  pq  has  two  fixed  points  given  by  x1 = xlHqL  and
x2 = xrHqL.

3. If -2 § q § 1 ê 4, then the interval I = IHqL is invariant under pq; that is,
pqHIHqLL Õ IHqL.

4. If q < -2, then every periodic orbit of pq  is repelling; pq  has periodic or-
bits  of  every  primitive  order,  but  none  of  them  contains  the  critical
point.

5. If q < -2, then pq  has an invariant Cantor set Lq Õ IHqL such that the re-
striction  pq Lq  is  topologically  conjugate  to  a  one-sided  shift  on  two
symbols.  Furthermore,  the  set  Lq  is  hyperbolic.  For  any  point
x0 œ  î IHqL, we have limnØ¶ pqnHx0L = ¶.

6. The  mapping  p : x # x2 + q  is  topologically  conjugate  to  the  mapping
f : x # a x2 + b x + g  via  the  homeomorphism  h : x # a x + b,  a ≠ 0,
with a = a, b = b ê 2, and q = a g + I2 b - b2M ë 4, where p = hÎ f Îh-1.
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‡ Real Spiders and the Spider Map
Consider  the n-periodic  orbit  containing the critical  point  x = 0 under  the map
pq for a suitable choice of q: 

x0 = 0 # x1 #  # xn-1 # xn = 0.

Since xi+1 = pqHxiL, we have xi œ pq-1Hxi+1L, and the correct point to choose in the
fiber pq-1Hxi+1L is given by the kneading symbol at that location in the periodic or-
bit.  In  our  case,  the  fiber  pq-1H yL  is  empty  if  y < q,  contains  exactly  one  point  if
y = q,  and  contains  two  points  if  y > q.  The  coding,  SqHx0L = 8si<i¥1,  of  an  orbit
under pq is done according to the rule 

si =

L if pq
i Hx0L < 0

C if pq
i Hx0L = 0

R if pq
i Hx0L > 0

The  kneading  sequence  of  pq  is  the  symbolic  orbit  of  the  critical  point,
K HqL = SqH0L. In our setting the kneading sequence is periodic. We use the nota-
tion K HqL = LRC  to denote that the finite symbol sequence under the bar is re-
peated an infinite number of times. It is easily seen that not all symbol sequences
are  compatible  with  the  underlying  dynamical  system.  In  fact,  it  can  be  shown
that  there  is  at  most  one  order  of  points  that  is  compatible  with  a  kneading
sequence.
A real spider is a very special case of the spiders defined on the Riemann sphere
for complex systems. On the Riemann sphere, a spider is an equivalence class of
curve systems connected in ¶, the “body” of the spider, and the curves going out
from this point may be thought of as the “legs”. The legs are used to impose an
ordering  of  the  points  in  .  However,  in    there  is  a  natural  ordering,  so  the
space of real spiders associated with the dynamical system pq  takes the form of n-
tuples  of  real  numbers  subject  to  a  set  of  inequalities  x1 < x j1 <  < x jn-2 < x2,
where xn = 0.

· The Spider Space

Let  x = Hx1, x2, … , xnL œ n  and  j = H j1, j2, … , jnL  be  an  index  vector,  where
ji œ 81, … , n<  with  ji ≠ jk  if  i ≠ k.  Let  S j,k Õ n  be  the  subset

S j,k = 9x œ n : x j1 < x j2 <  < x jn and x jk = 0=.  The  space  S j,k  equipped  with
the  natural  inherited  topology  from  n  is  called  the  real  spider  space  associated
with H j, kL.  A mapping s : S j,k Ø S j,k  is called a spider mapping.  We will later in-
dex the space S j,k by a periodic admissible kneading sequence, writing S j,k = SK .

Example 1.  Consider  the  real  spider  space  SH1,3,2L,2 =

8Hx1, x2, x3L œ 3 : x1 < x3 < x2 with x3 = 0<  and  let  sHx1, x2, x3L =

I- x2 - x1 , -x1 , 0M. The map s is clearly well defined on SH1,3,2L,2  as x2 > x1;
the first component in the image is negative and the second component is posi-
tive.  Suppose s  has a  fixed point sHxL = x.  Then x1 = - x2 - x1 ,  x2 = -x1 ,
and  x3 = 0.  We  find  x1

2 = x2 - x1,  x2
2 = -x1,  and  x3 = 0.  By  rearranging  these

equations, we have x1 = x1, x2 = x1
2 + x1, and x3 = 0. This corresponds exactly to

the orbit 0 Ø q Ø q2 + q Ø 0, and hence any such fixed point corresponds to a su-
perstable period-3 orbit under pqHxL = x2 + q.
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Example 2.  Consider  the  real  spider  space  SI1,4,5,3,2M,3 =

9Ix1, x2, x3, x4, x5M œ 5 : x1 < x4 < x5 < x3 < x2 with x5 = 0=  and  let  s  be  the
map defined by

sIx1, x2, x3, x4, x5M =

K- x2 - x1 , x3 - x1 , x4 - x1 , - -x1 , 0O = I y1, y2, y3, y4, y5M.

We  check  that  this  map  is  well  defined;  that  is,  we  show  that
x œ SI1,4,5,3,2M,3 fl sHxL œ SI1,4,5,3,2M,3.  First,  x2 > 0  and  x1 < 0  means

x2 - x1 > -x1 > 0 and y1 = - x2 - x1 < - -x1 = y4 < 0 = y5.  Next,  because
x3 > x4  and  x4 > x1,  we  have  that  x3 - x1 > x4 - x1 > 0;  hence,
y2 = x3 - x1 > x4 - x1 = y3 > 0. Therefore the map is well defined. Assume
as in Example 1 that s has a fixed point x, that is, sHxL = x. The fixed point equa-
tion  gives  us  that  x1

2 = x2 - x1,  x2
2 = x3 - x1,  x3

2 = x4 - x1,  x4
2 = -x1,  and  x5 = 0.

Substituting,  we  rewrite  these  equations  as  x1 = 0 + x1,  x2 = x1
2 + x1,

x3 = x2
2 + x1 = Ix1

2 + x1M
2 + x1,  x4 = x3

2 + x1 = IIx1
2 + x1M

2 + x1M
2
+ x1,  and  x5 = 0.

This is exactly a critical period-5 orbit for our polynomial family pq, where 

0 Ø q Ø q2 + q Ø Iq2 + qM2 + q Ø IIq2 + qM2 + qM
2
+ q Ø 0.

Hence, a fixed point for this spider map corresponds to a superstable period-5 or-
bit with kneading sequence LRRLC.

Example 3.  In  Examples  1  and  2  we  used  spider  maps  with  fixed  points
that correspond to periodic critical orbits obeying certain combinatorial proper-
ties.  In the two first  cases we used kneading sequences that are compatible with
the dynamics of  the system x # x2 + q.  We now choose a map that corresponds
to an incompatible kneading sequence (later to be called an inadmissible knead-
ing sequence). Consider the sequence LRLRC. This gives us the real spider space
SI1,4,5,3,2M,3 = 9Ix1, x2, x3, x4, x5M œ 5 : x1 < x3 < x5 < x4 < x2 with x5 = 0=  and
suggests that we define the spider map as          

s Ix1, x2, x3, x4, x5M =

K- x2 - x1 , x3 - x1 , - x4 - x1 , -x1 , 0O = I y1, y2, y3, y4, y5M.

We  show  that  s : SI1,4,5,3,2M,3 Ø SI1,4,5,3,2M,3  is  not  well  defined.  Note  that,  since
x1 < 0  and  x2 > x4 > 0,  we  have  x2 - x1 > x4 - x1 > 0  so
y1 = - x2 - x1 < - x4 - x1 = y3 < 0.  Hence,  y1 < y3 < 0 = y5.  However,

x3 < 0  so  x3 - x1 < 0 - x1,  that  is,  y2 = x3 - x1 < -x1 = y4,  implying  that
SI1,4,5,3,2M,3 is not closed under s. As a consequence, some of the roots of the com-
ponent functions may become complex after a few iterations of s. Indeed, this is
exactly what happens as we show later on.
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‡ Finding Admissible Kneading Sequences Using the 
Minimality of the Kneading Sequence with Respect to the 
Lexicographic Order
We  apply  the  theory  developed  in  [1]  to  obtain  an  algorithm  that  decides  if  a
kneading  sequence  is  admissible.  This  algorithm  is  based  on  the  fact  that  the
kneading sequence is minimal with respect to the lexicographic order denoted by
Ç as defined in the next subsection. In particular, if s is the shift map on the sym-
bol space, then K Ç siHK L, i = 1, … , n - 1, for any admissible kneading sequence
K  of length n. 

· The Lexicographic Order

Let  = 8L, C, R< be a three-letter alphabet with the ordering L < C < R, and let
S =   be the set of infinite words from  subject to the restriction: suppose Wa
and  Wb  are  two  words  in  S  containing  the  letter  C,  say  Wa = W1 C W2  and
Wb = W3 C W4, where W1 and W3 do not contain the letter C; then W2 = W4.

Let S œ S,  where we write S = 8si<i¥0. Assume that sk ≠ C  for 0 § k § n.  We de-
fine  tnHSL = ⁄i=0

n vHsiLmod 2,  where  vHsiL = 1  if  si = L  and  vHsiL = 0  if  si = R.  In
other words,  as S  is  the sequence of addresses coming from the dynamical orbit
9pq

kHxL=k¥0,  the  quantity  tn  determines  the  orientation  properties  for  pqn  at  the
point  x.  Note  that  pq  is  decreasing  (orientation  reversing)  for  x < 0
(corresponding to the symbol L) and increasing (orientation preserving) for x > 0
(corresponding to the symbol R).
We can now define a signed lexicographic ordering, denoted by Ä (less) and Ç (less
or  equal),  for  two  elements  S, T œ S.  Assume  that  si = ti  for  0 § i § n - 1,  then
S Ä T  if  either  tn-1HSL = 0  and  sn < tn,  or  tn-1HSL = 1  and  sn > tn.  We  write
S Ç T  if S Ä T  or S = T . 
The following lemma is  used to construct  the general  algorithm for finding ad-
missible kneading sequences.

Lemma 1.  Let  K H f L  be  a  kneading  sequence  of  a  unimodal  map  f : I Ø I,  let
AHxL  be  the  itinerary  of  a  point  x œ I,  and  let  s  denote  the  shift  map  on  the  symbol
space. Then K H f L Ç siHAHxLL for all x œ I and i ¥ 0. In particular, K H f L Ç siHK H f LL.

Proof. See [3] or [1]. ·

We may use the special case AHxL = K H f L of Lemma 1 to decide if a given candi-
date  S  for  a  periodic  kneading  sequence  of  length  n  is  admissible.  We  simply
need to test if S Ç siHSL for 1 § i § n - 1.
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Mathematica Programs
We first generate possible candidates for admissible periodic kneading sequences
and then reduce the number of candidates by excluding some sequences that can-
not be candidates. Clearly all sequences must start with LR if n ¥ 3, and it is easy
to  prove  that  sequences  of  the  form  LRLW RC  and  LRLRW C,  where  W  is  a
word  from  8L, R<  including  the  empty  word,  cannot  be  admissible  for  n ¥ 5.
Here are the programs that generate the candidates.

In[1]:= nLsn_ : StringJoinTable"L", n;
nRsn_ : StringJoinTable"R", n;
BaseStringn_, m_ : nLsn  nRsm;
Generatorsn_ : MapBaseString, Tablen  i, i, i, 0, n;
KneadSeq1 : "C"; KneadSeq2 : "LC"; KneadSeq3 : "LRC";
KneadSeqn_Integer : Map"LR"    "C" &, MapStringJoin, Flatten

MapPermutations, MapCharacters, Generatorsn  3, 1;
ExclusionRuleOnen_Integer : Map"LRL"    "RC" &,

MapStringJoin, Flatten
MapPermutations, MapCharacters, Generatorsn  5, 1;

ExclusionRuleTwon_Integer : Map"LRLR"    "C" &,
MapStringJoin, Flatten

MapPermutations, MapCharacters, Generatorsn  5, 1;
FilteredKneadSeqn_Integer : Ifn  5, KneadSeqn,

ComplementKneadSeqn,
UnionFlattenExclusionRuleOnen, ExclusionRuleTwon;

These programs find the signed lexicographic order for the candidate strings. 

In[10]:= LexOrderx_, y_ : Modulealphabet  "L", "C", "R", px, py,
px  FirstFlattenPositionalphabet, x;
py  FirstFlattenPositionalphabet, y;
ReturnIfpx py, 0, Ifpx  py, 1, 1;

SymbolValuex_ : Ifx  "L", 1, 0;
LxOrds_List, t_List, n_Integer :

Modulel  Lengths, i  1, res  0,
Ifs t, Switchn, 1, Return0, 0,

ReturnFalse, 1, ReturnTrue;
Whilesi ti && i  l, res  SymbolValuesi; i;;
IfEvenQres && LexOrdersi, ti 1,
Switchn, 1, Return1, 0, ReturnTrue, 1, ReturnTrue;

IfOddQres && LexOrdersi, ti 1,
Switchn, 1, Return1, 0, ReturnTrue, 1, ReturnTrue;

Switchn, 1, Return1, 0, ReturnFalse, 1, ReturnFalse;
LexicographicOrders_List, t_List : LxOrds, t, 1;
LGOrderLesss_List, t_List : LxOrds, t, 0;
LGOrderLessOrEquals_List, t_List : LxOrds, t, 1;
s_  t_ : LGOrderLessCharacterss, Characterst;
s_  t_ : LGOrderLessOrEqualCharacterss, Characterst;
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These  programs  test  the  candidates  and  return  the  ones  that  are  admissible
sequences.
In[18]:= MinimalSeqQs_ :

IfMaxMapLexicographicOrderCharacterss,  &, Map
Characters, TableStringJoinRotateLeftCharacterss, i,
i, 1, LengthCharacterss  1  0, True, False;

GenerateAdmissibleKneadingSequencesn_Integer :
Modulelgl, gl, al  ,
Ifn  6, ReturnFilteredKneadSeqn;
lgl  Lengthpl  FilteredKneadSeqn;
DoIfMinimalSeqQpli, al  al, pli, i, 1, lgl;
ReturnFlattenal;

Here is  what  we wanted to obtain.  Due to the large number of  elements  in  the
output, we only count the number of words in each list.

In[20]:= LengthFilteredKneadSeq14,
LengthGenerateAdmissibleKneadingSequences14

Out[20]= 1280, 585

‡ The Ordering of Points in an Admissible Periodic Kneading 
Sequence (Or, Forming the Real Spiders)

Let K H f L = LRW C  be an admissible kneading sequence with †K H f L§ = n and W  a
word  from  the  alphabet  8L, R<  with  †W § = n - 3.  Let  the  corresponding
dynamical  orbit  be 8x1, x2, … , xn<,  where xn = 0 in our case.  The problem is  to
order  the  points  in  the  orbit  on  the  real  line  x jH1L < x jH2L <  < x jHnL,  in  other
words,  to  find  a  bijective  function  j : 81, … , n< Ø 81, … , n<  based  on  the
kneading  information.  Let  Ò HK H f L, LL = nL  and  Ò HK H f L, RL = nR  denote  the
number of L  and R  in the word LRW ,  respectively. Clearly n = nL + nR + 1, and
nL, nR ¥ 1  if  n ¥ 3.  We  have  some  trivial  information  about  the  function  j.
Clearly jH1L = 1, jH2L = nL, and jH1 + nLL = jHn - nRL = n. We compute the image
of j using the same trick used for computing the admissible kneading sequences,
that  is,  we  sort  points  according  to  their  lexicographic  order.  The  following
lemma from [1] relates the order of points in the dynamic space with the order of
addresses in the symbol space.

Lemma 2. Let f : I Ø I  be  a unimodal  map where the critical  point  is  a  mini-
mum,  let  x, y œ I  with  x < y,  and  let  AHxL  and  AH yL  denote  their  itineraries.  Then
AHxL Ç AH yL with respect to the signed lexicographical order.

Proof. See [1], Section 3. ·

We apply Lemma 2 to find the ordering of  points  in the dynamical  space of  an
admissible kneading sequence given by K H f L = LRW C, where W  is a word from
the  alphabet  8L, R<  as  follows.  The  symbols  in  the  periodic  word  LRW C  are

x1, x2, … , xn
1, 2, … , n, and these are split into three groups according to their symbol in the
kneading  sequence.  For  example,  the  sequence  LRLLRLC  is  mapped  to
881, 3, 4, 6<, 87<, 82, 5<<.  The  problem  is  then  reduced  to  sorting  the  first  and
third groups according to their relative positions in the dynamic space. Now we
just  compare  two  versions  of  the  symbol  sequence  LRW C  by  rotating  left  the
correct  number  of  times  according  to  the  symbol  position  in  the  string,  so  this
symbol  becomes  the  first  symbol,  given  by  the  indices  we  have  already  found.
We  then  apply  Lemma  2  to  determine  their  relative  positions  in  the  dynamic
space.
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We apply Lemma 2 to find the ordering of  points  in the dynamical  space of  an
admissible kneading sequence given by K H f L = LRW C, where W  is a word from
the  alphabet  8L, R<  as  follows.  The  symbols  in  the  periodic  word  LRW C  are
assigned to symbolic points x1, x2, … , xn  in the dynamic space, that is, to indices
1, 2, … , n, and these are split into three groups according to their symbol in the
kneading  sequence.  For  example,  the  sequence  LRLLRLC  is  mapped  to
881, 3, 4, 6<, 87<, 82, 5<<.  The  problem  is  then  reduced  to  sorting  the  first  and
third groups according to their relative positions in the dynamic space. Now we
just  compare  two  versions  of  the  symbol  sequence  LRW C  by  rotating  left  the
correct  number  of  times  according  to  the  symbol  position  in  the  string,  so  this
symbol  becomes  the  first  symbol,  given  by  the  indices  we  have  already  found.
We  then  apply  Lemma  2  to  determine  their  relative  positions  in  the  dynamic
space.

Mathematica Programs
The following program gives a version of the map j operating on words that cor-
respond to dynamical orbits.
In[21]:= SplitLCRs_ : MapFlatten,

PositionCharacterss, "L", PositionCharacterss, "C",
ReversePositionCharacterss, "R";

MySortFunctions_, u_Integer, w_Integer :
IfLexicographicOrderRotateLeftCharacterss, u  1,

RotateLeftCharacterss, w  1  0, True, False;
JSortMap::"nonsequence"  "Inadmissible sequence: `1`.";

JSortMaps_ : Modulell, lc, rl, nlst,
If MinimalSeqQs, MessageJSortMap::"nonsequence", s;
ReturnRangeLengthCharacterss;

nlst  SplitLCRs;
lc  nlst2;
IfLengthnlst1  2,

ll  Sortnlst1, MySortFunctions, 1, 2 &, ll  nlst1;
IfLengthnlst3  2, lr  Sortnlst3,

MySortFunctions, 1, 2 &, lr  nlst3;
ReturnFlattenll, lc, lr;

Here is an example using the admissible sequence LRLLRLC.
In[25]:= JSortMap"LRLLRLC"

Out[25]= 1, 4, 6, 3, 7, 5, 2
We  use  the  function  JSortMap  to  produce  a  function  for  generating  a  suitable
element of the spider space associated with a given admissible kneading sequence
K . The element is then used as an initial point for the spider algorithm given in
the  next  section  to  generate  the  dynamical  orbit  for  the  system  pq.  We  choose
this  spider  because  it  has  equally  spaced  points  in  each  of  the  intervals  @-2, 0L
and  H0, 2D  according  to  the  numbers  of  L  and  R  in  the  word  K .  The  pro-
gramming here is straightforward; we only need to find an “inverse” to the map
described by JSortMap.

In[26]:= LRCounts_ :
MapLength, MapFlatten, PositionCharacterss, "L",

;
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In[26]:=

MapLength, MapFlatten, PositionCharacterss, "L",
PositionCharacterss, "R";

LRCLists_ : Modulen, l, r,
n  LRCounts;
l  Table2  2 in1, i, 0, n1  1;
r  Table2 in2, i, 1, n2;
ReturnFlattenl, 0, r;

InitSpiders_ : Moduless, spider, index,
ss  LRCLists;
spider  RangeLengthss;
index  MapReverse,

SortTableJSortMapsi, i, i, 1, Lengthss;
Dospiderindexi, 2  ssindexi, 1, i, 1, Lengthss;
Returnspider;

Here is an example with the admissible sequence LRLLRLC.
In[29]:= InitSpider"LRLLRLC"

Out[29]= 2, 2, 
1

2
, 

3

2
, 1, 1, 0

‡ Mathematica Implementation of a Spider Map
The simple Examples 1, 2, and 3 suggest how we should define the spider map as-
sociated  with  a  periodic  kneading  sequence.  Consider  the  periodic  dynamical
sequence

0 Ø x1 Ø x2 Ø  Ø xn-1 Ø 0,

where we have xi+1 = xi
2 + x1  for 0 § i < n - 1 with xn = x0 = 0. Hence, we have

xi
2 = xi+1 - x1,  so  xi = si xi+1 - x1 ,  where  si œ 8-1, 0, 1<  if  the  corresponding

kneading symbol is L, C, or R.
Implementing a  real  spider map that  chooses  correct  roots  according to a  given
kneading  sequence  is  easily  done  in  Mathematica.  Here,  we  do  not  perform any
error or sanity checks, so our map simply takes the form

In[30]:= RealSpiderMapk_Listl_List :
TableSpiderRootl1, kilModi, Lengthl  1,
i, 1, Lengthl

where SpiderRoot returns the correct root according to the symbol in the knead-
ing sequence. In our case, this map can be defined by

In[31]:= SpiderRoot_, sym_x_ : Ifsym  "C", 0.0,

Ifsym  "L", N x   , Ifsym  "R", N x   
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‡ The Spider Algorithm
We now briefly describe the spider algorithm for the system x # x2 + q. 

We have  seen in  Examples  1  and 2  that  a  critical  periodic  orbit  is  a  fixed point
for  the  spider  map  constructed  by  choosing  the  correct  roots  according  to  the
combinatorics  of  the  dynamical  orbit.  Example  1  shows  that  this  fixed  point,  in
the special case of a period-3 orbit,  is stable. We might hope that this is true in
general for any critical periodic orbit, and hence suggest the following algorithm. 
Problem:  Find a parameter value qK œ @-2, 0D  such that the real dynamical sys-
tem x # x2 + qK  has a periodic kneading sequence K .

The Real Spider Algorithm:
A)  Choose a finite string K  of length n  of symbols,  where the first  two symbols
are  L  and  R,  the  next  n - 3  symbols  are  chosen  from  the  two-letter  alphabet
8L, R<, and the last symbol is C.
B)  Form  the  map  s : n Ø n,  where  the  kth  component  function  is
yk = sk xk+1 - x1  and sk = -1, 1, 0 if the kth  symbol in the string is L, R, or C,
respectively. 
C)  Choose a  vector x0 = Hx1, x2, … , xnL œ n,  where the points  are ordered ac-
cording  to  the  dynamics  of  the  periodic  orbit  for  the  dynamical  system
x # x2 + q.
D)  Form the sequence xi+1 = sHx0L  and stop the iteration process  when the se-
quence of vectors converges to some point y œ n (or in n).
E) The parameter qK  with the desired critical orbit is given by qK = y1.

In Mathematica this is implemented by the following iteration process.

First[
FixedPoint[

RealSpiderMap[Characters[kneading_sequence]],spider]
 ]

Here kneading_sequence is a string of symbols and spider is an ordered list of
real  numbers.  If  the  kneading  sequence  is  not  compatible  with  the  dynamics,
then the returned number is nonreal, that is, a number in  \ .
We  define  three  functions  associated  with  the  numerical  computation  of  the
spider  algorithm:  SpiderIterationList[k,n],  SpiderFixedPoint[k,n],  and
CriticalParameter[k,n].  In  all  cases  k  is  a  kneading  sequence  and  n  is  an
optional  integer  passed  to  FixedPoint  or  FixedPointList  to  control  the
maximum number of iterations. This is necessary in some cases because there is a
“bit-flip” on the least significant bit at the fixed point, causing a nonstopping con-
dition in FixedPoint. Note that we check if k is an admissible periodic kneading
sequence.  The  function  SpiderIterationList  returns  a  list  of  all  steps  in  the
iteration  process  taken  to  find  the  fixed  point  of  the  spider  map.  The  function
SpiderFixedPoint  returns  the  fixed  point  (the  orbit)  associated  with  the
kneading  sequence  k.  The  function  CriticalParameter  returns  the  first  com-
ponent  of  the  fixed  point,  that  is,  the  parameter  q  for  pq  corresponding  to  the
periodic kneading sequence.
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In[32]:= SpiderIterationListk_, n___Integer :
FixedPointListRealSpiderMapCharactersk, InitSpiderk, n;

SpiderFixedPointk_, n___Integer :
FixedPointRealSpiderMapCharactersk, InitSpiderk, n;

CriticalParameterk_, n___Integer : FirstSpiderFixedPointk, n;

‡ Examples
We  now  give  some  examples  using  the  programs.  Some  variations  of  the  func-
tions are also used; open this cell to see the programs.

· Dynamics of a Period-15 Orbit

In  this  example  we  display  the  dynamics  of  the  period-15  orbit
LRLLLLLLLLRLRLC in two different ways. We first check that this string repre-
sents an admissible periodic kneading sequence.
In[87]:= AdmissibleQ"LRLLLLLLLLRLRLC"

Out[87]= True

We can represent the superstable orbit  LRLLLLLLLLRLRLC  graphically in the
usual way by drawing the graph of pq  for the value of q corresponding to this se-
quence  in  red,  drawing  the  diagonal  in  blue,  and  then  following  the  orbit
through  the  critical  point  with  green  lines.  Doing  it  this  way  makes  it  hard  to
keep track of the orbit properties. 

In[88]:= ShowDynamicOrbit"LRLLLLLLLLRLRLC"

Out[88]=

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Another way is to simply display how points on the critical orbit move around un-
der  the  map  pq  without  taking  their  exact  location  into  account.  We  just  show
their  relative  locations,  which  point  is  mapped  to  which,  and  in  what  direction.
In  the  following  diagram  the  points  in  the  orbit  of  LRLLLLLLLLRLRLC  are
shown in black along the horizontal  axis  and the critical  point  is  marked with a
C. The curved lines represent how the points on the orbit are mapped with lines
above  the  horizon  meaning  a  movement  from  left  to  right,  and  those  below  a
movement from right to left.
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In[89]:= ShowDiagramOrbit"LRLLLLLLLLRLRLC"

Out[89]= C

LRLLLLLLLLRLRLC

· Admissible Sequences of Length 9

In this  example we compute all  admissible sequences of  length 9 and the corre-
sponding critical parameter. Note that this corresponds to finding certain real so-
lutions of a polynomial of degree 28. There are 28 admissible sequences of length
9.  (The  function  SortedAdmissibleSequences  is  described  in  the  next
subsection.)
In[90]:= admseq  SortedAdmissibleSequences9

Out[90]= LRRRRRRRC, LRRRRRRLC, LRRRRRLLC, LRRRRRLRC, LRRRRLLRC, LRRRRLLLC,
LRRRRLRLC, LRRRRLRRC, LRRRLLRRC, LRRRLLRLC, LRRRLLLLC, LRRRLLLRC,
LRRRLRLRC, LRRRLRLLC, LRRRLRRLC, LRRLLRRLC, LRRLLRLLC, LRRLLRLRC,
LRRLLLLRC, LRRLLLLLC, LRRLLLRLC, LRRLRLRLC, LRRLRLLLC,
LRRLRLLRC, LRLLRLLLC, LRLLRLRLC, LRLLLLRLC, LRLLLLLLC

We use the function CriticalParameter to find the corresponding q values for
the dynamical system x # pqHxL. 

In[91]:= param  MapCriticalParameter, admseq
Out[91]= 1.99994, 1.99949, 1.99859, 1.99722, 1.99542,

1.99313, 1.99038, 1.987, 1.98381, 1.97946, 1.97478,
1.96942, 1.96402, 1.95733, 1.94957, 1.93224,
1.92229, 1.91144, 1.90312, 1.89078, 1.87838, 1.84129,
1.82276, 1.78587, 1.69014, 1.65613, 1.59568, 1.55528

Note that these solutions are all the (real) zeros of the polynomial of degree 256
corresponding to periodic orbits through the zeros of the dynamical system. The
polynomial can be computed with Nest.

In[92]:= px_ : x2  ;
ShortNestp, 0, 9  Expand, 12

Out[93]//Short=   2  2 3  5 4  14 5  42 6  132 7  429 8  1430 9  4606 10 
14364 11  43810 12 232 2514273632010848 245 
232268682367776 246  19378537561280 247  1445348279984 248 
95166629216 249  5444445216 250  265070400 251 
10676064 252  341440 253  8128 254  128 255  256
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The following table  shows the  periodic  kneading sequence and the  correspond-
ing parameter q.

In[94]:= TableForm
Tableadmseqi, parami  InputForm, i, 1, Lengthadmseq,
TableHeadings  None, "String", "Parameter"

Out[94]//TableForm=

String Parameter

LRRRRRRRC 1.999943521765674
LRRRRRRLC 1.999491438016398
LRRRRRLLC 1.9985865888422067
LRRRRRLRC 1.9972230246965785
LRRRRLLRC 1.995419032661308
LRRRRLLLC 1.9931302548789758
LRRRRLRLC 1.990376381055951
LRRRRLRRC 1.987004347515047
LRRRLLRRC 1.983810249999715
LRRRLLRLC 1.9794575048559522
LRRRLLLLC 1.97478085890012
LRRRLLLRC 1.9694191207308984
LRRRLRLRC 1.9640243368201455
LRRRLRLLC 1.9573250505356987
LRRRLRRLC 1.949574903249391
LRRLLRRLC 1.932243966576094
LRRLLRLLC 1.9222857782462959
LRRLLRLRC 1.9114446314734534
LRRLLLLRC 1.9031167730155967
LRRLLLLLC 1.890775424360235
LRRLLLRLC 1.8783826015000962
LRRLRLRLC 1.841288561509693
LRRLRLLLC 1.8227563224922927
LRRLRLLRC 1.7858656464106737
LRLLRLLLC 1.6901422631188634
LRLLRLRLC 1.6561325625742074
LRLLLLRLC 1.5956809634397457
LRLLLLLLC 1.5552827007685832

· Sorted Lexicographical Ordering

We define a function SortedAdmissibleSequences[n] that returns the admissi-
ble periodic kneading sequences of length n in sorted lexicographical order. In ad-
dition, we have associated the symbols  and  with the lexicographical order.

In[95]:= SortedAdmissibleSequencesn_Integer :
SortGenerateAdmissibleKneadingSequencesn,
LGOrderLessCharacters1, Characters2 &;
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Here is  an example  with  SortedAdmissibleSequences  for  sequences  of  length
15.  There  are  1091  different  admissible  sequences  of  this  length.  The  function
sorts these with respect to the lexicographical order. The notation <<n>>  means
n strings are omitted in the output.
In[96]:= ShortSortedAdmissibleSequences15, 6

Out[96]//Short= LRRRRRRRRRRRRRC, LRRRRRRRRRRRRLC, LRRRRRRRRRRRLLC,
LRRRRRRRRRRRLRC, LRRRRRRRRRRLLRC, 1082, LRLLLLLLLLRLLLC,
LRLLLLLLLLRLRLC, LRLLLLLLLLLLRLC, LRLLLLLLLLLLLLC

We may use the symbols  (Precedes) and  (PrecedesSlantEqual) to test the lexi-
cographic  order  of  two  strings.  These  relations  work  on  any  nonempty  string
from the alphabet 8L, C, R<. The strings do not need to be of equal length.

In[97]:= "LRC"  "LRLC", "LRLLLLLLLLLLRLC"  "LRC", "CLLRC"  "LLR"
Out[97]= True, False, False

· The Sharkovsky Ordering of 

The  bifurcation  diagram  in  the  following  figure  shows  the  attracting  set  of  the
critical  orbit.  We  cannot  see  the  repelling  periodic  orbits  in  this  diagram.  The
Sharkovsky  theorem  states  the  relationship  between  coexisting  periodic  orbits
without considering stability properties.

In[98]:= ListPlotLogisticBifucationDiagramData2, 0.5`, 0.004`,

0, 500, 400, Frame  True, PlotStyle  PointSize0.001`

Out[98]=

-2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6
-2

-1

0

1

2

The  natural  numbers    are  ordered  as  follows  by  @.  With  k, n œ ,  the
Sharkovsky ordering is given by

3 @ 5 @ 7 @ 9 @  @ 2 n + 1 @  @ 2 ÿ 3 @ 2 ÿ 5 @  @ 2 ÿ H2 n + 1L @
 @ 2k ÿ H2 n + 1L @  @ 2k @ 2k-1 @  @ 8 @ 4 @ 2 @ 1.

The Sharkovsky Theorem
Let f : I Ø I  be a continuous map of some interval I Õ . If f  has a periodic or-
bit of primitive period n, then f  has periodic orbits of primitive period m for all
m with n @ m in the Sharkovsky ordering. In particular, if f  has a periodic orbit
of primitive period three, then f  has periodic orbits of all periods.

See [5],  [6],  or [8] for a proof. Because [5] was written in Russian the result was
unknown for a long time in the West. A proof of a special case of the Sharkovsky
theorem, the theorem named “period-3 implies chaos”, was given in [7] because
the authors were unaware of the result in [5]. However, the proof of this special
case is much easier than the general proof of the Sharkovsky theorem.
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See [5], [6], or [8] for a proof. Because [5] was written in Russian the result was un-
known for a  long time in the West.  A proof of  a  special  case of  the Sharkovsky
theorem, the theorem named “period-3 implies chaos”, was given in [7] because
the authors were unaware of the result in [5]. However, the proof of this special
case is much easier than the general proof of the Sharkovsky theorem.

Consider  the  dynamical  system  x # x2 + q.  The  Sharkovsky  ordering  of    has
the  odd  numbers  (1  excluded)  as  its  greatest  numbers  in  reverse  order,
3 @ 5 @ 7 @ 9 @  @ H2 n + 1L @  ,  n ¥ 1.  The  Sharkovsky  theorem  implies
that  the  first  period-H2 n + 3L  orbit  must  come  into  existence  before  or  at  the
same time (with respect to the parameter) as a period-H2 n + 1L orbit when the pa-
rameter  is  varied  from  q = -1  to  q = -2.  As  shown  in  our  previous  examples,
there is more than one admissible period-m  kneading sequence if  m > 3. Let qm
denote the last occurrence (with respect to the usual order in ) of a superstable
period-m orbit, m an odd number, for q œ @-2, -1D. We will find the sequence 

q3 § q5 § q7 § q9 § q11 § 

using kneading sequences and the lexicographical order. Note that this sequence
does  not  give  the  bifurcation  points  in  the  parameter  space,  but  they  are  quite
good approximations, as the width of the windows containing the attracting peri-
odic  windows  becomes  very  narrow  on  the  left  side  of  the  bifurcation  diagram
shown earlier.
Let K  be an admissible sequence of length 2 n + 1, with n > 2. It is easily shown
that  the  maximal  strings  of  this  length  are  of  the  form  LRLLC.  This  means
that these critical  periodic orbits are the first  to appear when moving in the pa-
rameter  space  from the right  to  the  left  (see  the  bifurcation diagram).  This  fact
saves a lot of computation as we do not have to use the function SortedAdmiss
ibleSequences. We may simply generate each sequence of length 2 n + 1 that is
needed.
Equipped with the fact that the maximal odd kneading sequences are of the form
K = LRLLC,  we  generate  these  for  a  consecutive  sequence  of  odd  numbers
and compute the corresponding critical parameter using the spider algorithm.

In[99]:= UpperStringn_Integer :
"LR"  StringJoinTable"L", n  3  "C";

kns  TableUpperString2 n  1, n, 1, 20;
ind  MapLength, MapCharacters, kns;
sym  Tableindi, i, 1, Lengthind;
val  MapCriticalParameter, 600 &, kns;

In[104]:= TableFormTransposesym, MapInputForm, val,
TableHeadings  None, "Parameter", "Value"

Out[104]//TableForm=

Parameter Value

3 1.7548776662466932
5 1.6254137251233038
7 1.5748891397523008
9 1.5552827007685832
11 1.547903761803955
13 1.5452017816926567
15 1.5442285601195278
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15
17 1.5438809005277097
19 1.5437571734462723
21 1.5437132119079386
23 1.5436976024122815
25 1.5436920614376182
27 1.5436900947470673
29 1.543689396728154
31 1.543689148991056
33 1.543689061066118
35 1.543689029860556
37 1.543689018785357
39 1.5436890148546478
41 1.5436890134595964

Note that these calculations correspond to finding particular nontrivial real solu-
tions of polynomials of degrees in the range 922, 24, 26, … , 240=.

· Inadmissible Sequences

We now consider what happens if the spider algorithm is applied to an inadmissi-
ble sequence. The sequence LRLRC of length 5 is not admissible.

In[105]:= AdmissibleQ"LRLRC"
Out[105]= False

In  the  next  computation  we  apply  the  spider  algorithm  with  this  configuration
and we easily see that we should use an initial spider of the form 8-2, 2, -1, 1, 0<.

In[106]:= FixedPointRealSpiderMapCharacters"LRLRC", 2, 2, 1, 1, 0
Out[106]= 1.25637  0.380321 , 0.177448  0.575325 ,

1.55588  0.17614 , 1.13337  0.167784 , 0.
We obtain an orbit  in .  Even if  we use a different initial  spider,  we obtain the
same orbit.

In[107]:= FixedPointRealSpiderMapCharacters"LRLRC",
RandomReal2, 2, 5, 500

Out[107]= 1.25637  0.380321 , 0.177448  0.575325 ,
1.55588  0.17614 , 1.13337  0.167784 , 0.

This orbit is a critical orbit for the system z # pqHzL viewed as a complex dynami-
cal system.
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‡ Conclusion
The main issue in this work was not the implementation of the spider algorithm,
which  was  trivial,  but  rather  the  implementation  of  algorithms  that  decide  if  a
given string of symbols is compatible with the dynamics of x # x2 + q.  We used
symbolic  techniques  to  show  how  a  dynamical  orbit  is  ordered  and  how  to  use
symbolic  dynamics  to  obtain  numerical  results.  Mathematica  provides  excellent
tools for this purpose.

‡ References
[1] J. Milnor and W. Thurston, “On Iterated Maps of the Interval,” in Dynamical Systems, Pro-

ceedings  of  the  Special  Year,  College  Park,  MD,  Lecture  Notes  in  Mathematics,  1342,
Berlin/Heidelberg: Springer, 1988 pp. 465|563. doi .10.1007/BFb0082819.

[2] J.  H.  Hubbard  and  D.  Schleicher,  “The  Spider  Algorithm,”  in  Complex  Dynamics:  The
Mathematics behind the Mandelbrot and Julia Sets, Proceedings of Symposia in Applied
Mathematics, 49, New York: AMS, 1994 pp. 155|180.

[3] H-M. Xie,  Grammatical  Complexity  and One-Dimensional  Dynamical  Systems (Directions
in Chaos), Vol. 6, Singapore: World Scientific Publishing Company, Ptc. Ltd., 1996.

[4] D.  A.  Brown,  “Using  Spider  Theory  to  Explore  Parameter  Spaces,”  Ph.D.  thesis,  Ithaca,
NY: Cornell University, 2001.

[5] A. N. Sharkovsky, “Coexistence of Cycles of a Continuous Transformation of a Line into
Itself,” Ukrainshii Mathematicherhii Zhurna, 16(1), 1964 pp. 61|71 (in Russian).

[6] A.  N.  Sharkovsky,  Y.  L.  Maistrenko,  and  E.  Yu.  Romanenko,  Difference  Equations  and
Their Applications (Mathematics and Its Applications, Vol.  250),  New York: Kluwer Aca-
demic Press, 1993.

[7] T.  Y.  Li  and  J.  A.  Yorke,  “Period  Three  Implies  Chaos,”  The  American  Mathematical
Monthly, 82(10), 1975 pp. 985|992 www.its.caltech.edu/~matilde/LiYorke.pdf.

[8] R.  Devaney,  An Introduction to  Chaotic  Dynamical  Systems,  Menlo  Park,  CA:  Benjamin/
Cummings Publishing Company, 1986.

[9] T.  M. Jonassen, “Lifts  of One-Dimensional Systems: I.  Hyperbolic Behaviour,” Journal of
Physics A: Mathematical and General, 30(3), 1997 pp. 937|948.

About the Author
Tore  M.  Jonassen  completed  his  Ph.D.  in  mathematics  from  Oslo  University  in  1994  in
nonlinear  dynamical  systems.  Currently,  Jonassen  is  an  associate  professor  in  the
computer  science  department  of  Oslo  University  College,  Oslo,  Norway.  He  has  been  an
active researcher  using Mathematica  and an enthusiastic  participant in  the International
Mathematica Symposia. 

T. M. Jonassen
Department of Computer Science
Faculty of Engineering
Oslo University College, Norway
torejo@hio.no

332 T. M. Jonassen

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

T. M. Jonassen, “A Mathematica Implementation of Nonlinear Dynamical Systems Theory via
the Spider Algorithm and Finding Critical Zeros of High-Degree Polynomials,” The Mathemat-
ica Journal, 2010. dx.doi.org/doi:10.3888/tmj.11.3–2.

T. M. Jonassen
Department of Computer Science
Faculty of Engineering
Oslo University College, Norway
torejo@hio.no


