
Exploratory Toolkit for
Evolutionary and Swarm-Based
Optimization
Namrata Khemka
Christian Jacob
Optimization of parameters or “systems” in general plays an ever-in-
creasing role in mathematics, economics, engineering, and the life
sciences. As a result, a wide variety of both traditional mathematical and
nontraditional algorithmic approaches have been introduced to solve
challenging and practically relevant optimization problems. Evolutionary
optimization methods~in the form of genetic algorithms, genetic pro-
gramming, and evolution strategies~represent nontraditional opti-
mization algorithms that draw inspiration from the processes of natural
evolution. Particle swarm optimization is another set of more recently
developed algorithmic optimizers inspired by social behaviors of organisms
such as birds [1] and social insects. These new evolutionary approaches in
optimization are now entering the stage and are becoming very successful
tools for solving real-world optimization problems [2]. We present Visplore
and Evolvica as a toolkit to investigate, explore, and visualize evolutionary
and swarm-based optimization techniques. A webMathematica interface is
also available.

‡ 1. Introduction
The evolutionary optimization methods of the genetic algorithm (GA) [3],
genetic programming (GP) [4], and evolution strategy (ES) [5] are a branch of
nontraditional optimization methods drawing inspiration from the processes of
natural evolution. The particle swarm optimizer (PSO), on the other hand, is
inspired by the social behavior of bird flocking [6]. Recently, we have been inves-
tigating the performance of evolution- and swarm-based optimizers in the
domain of biomechanics, which we developed with the Human Performance
Laboratory at the Faculty of Kinesiology, University of Calgary [7|9]. In this
particular biomechanical application, numerical optimization algorithms are used
to design equipment for sports activities. The involved simulations of muscle
movements are very time consuming and high dimensional, thus making their
evaluation costly and difficult. Simulating a soccer kick is an example of a model
that investigates muscle activation patterns within the leg and foot when kicking
a soccer ball toward the goal. The specific objective in this case is to obtain a
high ball speed, in order to minimize the goal keeper’s chances of catching the
ball. In 1998, Cole applied a (1+ l) ES to this model [7, 8]. More recently, we
presented improved adaptations of the model parameters through a PSO [2, 10].

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

The main focus of this article, however, is not on the optimization of parameters
for the soccer kick model. Instead, we present what has been learned from our
comparison studies of the evolution- and swarm-based optimizers on a set of
selected benchmark functions. These benchmark studies turned out to be
extremely useful in understanding the intricacies in performance regarding three
optimizers: (1) the originally used H1 + lL ES; (2) a canonical (“basic”) PSO
(bPSO); and (3) a PSO with noise-induced (“random”) inertia weight settings
(rPSO). We describe and analyze the performance of each of these optimizers on
five benchmark functions in two, four, and 10 dimensions. These findings are
projected to performance characteristics that were found in the real-world appli-
cation of the discussed soccer-kick model, which poses a 56-dimensional opti-
mization problem. The Mathematica notebooks that were created provide us with
insights regarding the relations between control parameters and system perfor-
mance of the optimizers under study. Consequently, we gain a better under-
standing of the algorithms on multidimensional real-world problems.

This article is organized as follows. In Section 2 we give descriptions of the three
optimization algorithms used in our comparison. An introduction to the bench-
mark functions and an outline of the experimental setup follows in Sections 3
and 4, respectively. We discuss the experimental results and summarize the
lessons learned in Section 5. The accompanying webMathematica site is pre-
sented in Section 6. The paper is concluded in Section 7.

‡ 2. The Three Contenders
The three contenders for our comparative study of evolution- and swarm-based
optimization algorithms are: (1) a relatively simple H1 + lL ES; (2) a canonical
(“basic”) PSO (bPSO); and (3) a PSO with noise-induced (“random”) inertia
weight settings (rPSO). The following subsections present these approaches in
more detail.

· 2.1. (1+l) Evolution Strategy

ES has been a successful evolutionary technique for solving complex
optimization problems since the 1960s [5]. ES evolves vectors of real numbers
and the “genetic” information is interchanged between these vectors through
recombination operators. Slight variations (“mutations”) on these vectors are
obtained by evolving strategy parameters that determine the amount of change
applied to each vector component.

In the H1 + lL ES scheme, a single parent is mutated l times. Each of the newly
created offspring is evaluated, and the parents and the offspring are added to the
selection pool. The single best individual among the 1 + l solutions in the pool
survives and becomes the parent for the next iteration. Now we describe the
Hm ê r + lL strategy, which is a generalization of the H1 + lL scheme, where m par-
ents generate l offspring through the recombination of r individuals.

Exploratory Toolkit for Evolutionary and Swarm-Based Optimization 377

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

Hm ê r + lL ES Algorithm
Ë Step 1. Initialize the population of size m by randomly assigning loca-

tions P = Ip1, … , pi, … , pmM and strategy parameters

S = Is”1, … , s”i, … , s”mM, where pi = Ipi1, … , pidM œ d and

s”i = Is”i1, … , s”idM œ d.

Ë Step 2. Using the recombination operator c, generate l ¥ m offspring
by randomly selecting and recombining r individuals from the pool of m
parents.

• pi
£ = cIp1

£ , … , pr
£ M, where pi

£ œ P for 1 § j § r.

• pi
£ = IcIp11

£ , … , pr1
£ M, … , cIp1d

£ , … , prd
£ MM for 1 § k § l.

• P£ = Ip1
£ , … , pl

£ M.

Ë Step 3. Mutations.

• pk
″ := pk

£ + z”k where z”k := IN0ISk1M… N0ISkdMM for 1 § k § l.

• NaHSL returns a Gaussian distributed random value around a with
variance s.

• P″ = P£ + Ip1
″ , … , pl

″ M.

Ë Step 4. Evaluate the fitness  of all individuals in P″.

Ë Step 5. Select the m best individuals to serve as parents for the next
generation.

• P = Best
m

@ D HP″L.

Ë Step 6. If the termination criterion is met:

• Stop.

• Otherwise, go to Step 2.

· 2.2. Basic Particle Swarm Optimization

As the bPSO we use the original PSO version introduced by Eberhart and
Kennedy [6]. Inspired by both social behavior and bird flocking patterns, the par-
ticles “fly” through the solution space and tend to land on better solutions.

The search is performed by a population of particles i; each has a location vector
pi = Ipi1, … , pidM œ d that represents a potential solution in a d-dimensional
search space. Each particle i also keeps track of its velocity vector n”i that deter-
mines the direction and how far the particle moves in the next iteration. The fit-
ness of a particle is determined by an evaluation function  HpiL. Particles move
through the search space in discrete time steps. In order to provide a balance
between local (with a higher tendency to converge to a solution in close
proximity) and global search (looking for overall good solutions), an inertia

378 Namrata Khemka and Christian Jacob

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

weight w was suggested by Shi and Eberhart [11, 12]. In the bPSO algorithm this
term is set to the constant value w = 1.

bPSO Algorithm
Ë Step 1. Initialize particle population of m particles by stochastically as-

signing locations P = Ip1, … , pi, … , pmM and velocities

V = In”1, … , n”i, … , n”mM.

Ë Step 2. Evaluate the fitness of all particles:
 HPL = I Hp1L, … ,  HpiL, … ,  HpmLM.

Ë Step 3. Keep track of the locations where each individual had its highest
fitness so far:

• Pbest = Jp1
best , … , pi

best , … , pm
best N where

pi
best = pi

new if and only if  Hpi
new L >  HpiL.

Ë Step 4. Keep track of the position with the global best fitness:

• pglobal
best = max IPbest M.

Ë Step 5. Modify the particle velocities based on the previous best and
global best positions:

• n”i
new = w n”i + j1Jpi

best - piN + j2Jpglobal
best - piN for 1 § i § n.

Ë Step 6. Update the particle locations:

• pi = pi + n”i
new for 1 § i § n.

Ë Step 7. If the termination criterion is met:

• Stop.

• Otherwise, go to Step 2.

· 2.3. Random Particle Swarm Optimization

Previous work with PSOs suggests that the so-called inertia weight w should be
annealed (dPSO) over time in order to obtain better results [13]. This time-
decreasing inertia weight facilitates a global search at the beginning and the later
small inertia weight fine-tunes the search space. Since the annealed value is
dependent on time, the number of iterations must be known in advance.
However, in most real-world scenarios, like the soccer-kick optimization [2], it is
extremely difficult to know the number of necessary iteration steps in advance.
The “random” rPSO version tries to alleviate this problem by assigning a
random number to w (Step 5) in each iteration as follows:

w =
0.5 + r

2
.

Exploratory Toolkit for Evolutionary and Swarm-Based Optimization 379

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

When r is a uniformly distributed random number in the interval @0, 1D, w is a

uniformly distributed random number in the interval B 1
4

, 3
4
F.

‡ 3. Benchmarks
According to the no free lunch theorem [14], it is difficult to identify a clearly
superior search or optimization algorithm in any comparison. Therefore our
purpose is not to show which one of the three algorithms outperforms the others
in any particular case, but to find out which of these optimizers is better suited
for specific optimization challenges. In particular, we also want to investigate
whether an algorithm’s performance characteristics in two dimensions~where
visualization and manual inspection are easiest and most accessible~transfer to
higher dimensions. We evaluate the performance of the H1 + lL ES scheme and
both versions of the particle swarm algorithms on a small set of numerical
benchmark functions.
We use the five benchmark functions illustrated and described in more detail fol-
lowing. We explore each of these benchmark search spaces for dimensions d = 2,
d = 4, and d = 10. The first three functions are unimodal, that is, with a single
global optimum. The last two functions are multimodal, where the number of lo-
cal maxima increases exponentially with the problem size [15]. In the following
function descriptions, x* denotes the location of the global optimum. In the func-
tion plots, the location of the global optimum is marked by a red sphere.

Ë f1: Sphere

f1 = -‚
j=1

d

x j
2, -5.12 § x j § 5.12,  Hx*

L = 0.

This is a simple, symmetric, smooth, unimodal search space (inverted
parabola) and is known to be easily solved by all algorithms. As in our case,
it is mainly used to calibrate optimizer control parameters.

-5
-2.5

0
2.5

5
x -5

-2.5
0
2.5
5

y-5
-2.5

0
2.5

5
x

Ë f2: Edge

f2 = - ‚
j=1

d

°x j• + ‰
j=1

d

°x j• , -10 § x j § 10,  Hx*
L = 0.

380 Namrata Khemka and Christian Jacob

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

The function f2 has shared edges, making it more difficult to find good so-
lutions around the ridges.

-10
-5

0
5

10
x -10

-5
0
5
10

y-10
-5

0
5

10
x

Ë f3: Step

f3 = - 12 +‚
j=1

d

ex ju , -5.12 § x j § 5.12,  Hx*
L = 0.

We included the linear surface function f3 in order to see whether the al-
gorithms perform a gradient ascent strategy.

-5
-2.5

0
2.5

5
x -5

-2.5
0
2.5
5

y-5
-2.5

0
2.5

5
x

Ë f4: Ackley

f4 = - -20 e
-0.2

1

d
⁄j=1

d x j
2

- e
1

d
⁄j=1

d cosI2 p x jM + 20 + e , -30 § x j § 30,  Hx*
L = 0.

The Ackley function is more difficult as search algorithms tend to settle on
any of the local optima, making it more challenging to identify the global
optimum.

-20
0

20x
-20

0

20

y
-20

0
20x

Exploratory Toolkit for Evolutionary and Swarm-Based Optimization 381

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

Ë f5: Griewangk

f5 = - 1 +
1

4000
‚
j=i

d

x j
2 -‰

j=1

d

cos
x j

j
, -100 § x j § 100,  Hx*

L = 0.

Griewangk’s function has hundreds of local optima in the center. We
included it to compare the algorithms’ performances on Griewangk and
the sphere function.

-100
-50

0
50

100
x -100

-50
0
50
100

y-100
-50

0
50

100
x

‡ 4. Experimental Setup
For each of the three optimizers ES, bPSO, and rPSO, we performed 20 experi-
ments on each of the five test functions f1 to f5 for dimensions d = 2, d = 4, and
d = 10. A different random number seed is used for each of the 20 runs. The ini-
tial individuals (including those for ES) are uniformly distributed throughout the
search space. Each initial population generated for an ES experiment is also used
for the bPSO and rPSO experiments. This ensures that all comparable runs start
with the same initial distribution of individuals. The termination criterion for all
runs was to stop when the maximum number of iterations tmax = 1500 was
reached. By that time all the optimizers had already reached their convergence
phase (see Figure 2 later). The parameter settings for the three algorithms are de-
scribed in Tables 1, 2, and 3 .

Population size, n 10

Location range, pi j œ Aplow, phighE varies

Velocity range, vi j œ Avlow, vhighE 10% of pi j

Exploitation rate, j1 0.1
Exploration rate, j2 1

Table 1. bPSO parameter settings.

382 Namrata Khemka and Christian Jacob

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

Population size, n 10

Location range, pi j œ Aplow, phighE varies

Velocity range, vi j œ Avlow, vhighE 10% of pi j

Exploitation rate, j1 1.5
Exploration rate, j2 1.5

Table 2. rPSO parameter settings.

Population size Hselection poolL, 1 + l 1 + 9
Mutation step size radius 1

Table 3. ES parameter settings.

‡ 5. Discussion of the Results
The results of the evolution-based optimizer and the two particle swarm optimi-
zation techniques are briefly discussed in this section.

· 5.1. Phenotype Plots

Figure 1 gives an example of the population dynamics resulting from each of the
three algorithms (ES in column 1, bPSO in column 2, and rPSO in column 3) ap-
plied over a certain number of iterations. The individuals are represented as dots
where in each plot three iterations (red, blue, green) are depicted. In order to
achieve a fair comparison, all three algorithms start from the same initial popula-
tions. The behavior of the individuals is seen at different iterations, making it
easy to compare and contrast the movement of the individuals and study their
convergence behavior. For example, f1 is plotted at iterations 2 (red), 7 (blue),
and 40 (green).
In comparison to the H1 + lL ES scheme, we observe that the particle swarm indi-
viduals (both bPSO and rPSO) have higher exploration capabilities, search the
solution space more thoroughly, and search in multiple directions. The ES indi-
viduals stay close to each other within a certain mutation radius. This is a typical
effect of using this particular ES scheme. The individuals of the ES algorithm con
verge to a local optimum solution for functions f4 and f5. This also illustrates the
fact that ES individuals exhibit strong local search behaviors, which in this case is
mainly due to a relatively small mutation step size.

Exploratory Toolkit for Evolutionary and Swarm-Based Optimization 383

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

f1 HES, bPSO, rPSOL : Iterations 2, 7, 40

f2 HES, bPSO, rPSOL : Iterations 2, 6, 20

f3 HES, bPSO, rPSOL : Iterations 2, 7, 60

f4 HES, bPSO, rPSOL : Iterations 2, 20, 60

f5 HES, bPSO, rPSOL : Iterations 2, 20, 60

Figure 1. Phenotypical plots for the two-dimensional versions of the benchmark functions f1

to f5. From left to right the columns show snapshots of typical optimization runs for ES,
bPSO, and rPSO. The populations of the first, second, and third snapshot at the iterations as
indicated are represented as red, blue, and green spheres, respectively.

384 Namrata Khemka and Christian Jacob

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

· 5.2. Convergence Plots

The convergence plots represent mean fitness values computed over all 20 runs
for all 1500 iterations. This graph helps to demonstrate the convergence behav-
ior of the individuals of a particular algorithm and also illustrates which of the
three algorithms has the fastest fitness convergence speed. Figure 2 summarizes
the results, which are shown for d = 2 (column 1), d = 4 (column 2), and d = 10
(column 3).

f1 HES, bPSO, rPSOL : dimensions H2, 4, 10L

f2 HES, bPSO, rPSOL : dimensions H2, 4, 10L

f3 HES, bPSO, rPSOL : dimensions H2, 4, 10L

f4 HES, bPSO, rPSOL : dimensions H2, 4, 10L

f5 HES, bPSO, rPSOL : dimensions H2, 4, 10L

Figure 2. Fitness plots of the benchmark functions f1 to f5. From left to right the columns il-
lustrate the convergence behaviors of the three algorithms (ES: blue, rPSO: orange, bPSO:
green) in 2, 4, and 10 dimensions.

Exploratory Toolkit for Evolutionary and Swarm-Based Optimization 385

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

In almost all cases, the ES algorithm is comparable to rPSO. The bPSO algo-
rithm turns out to be the slowest in terms of convergence speed for d = 2. How-
ever, as the number of dimensions increases (d = 4), the convergence rate of ES
decreases, and in 10 dimensions ES converges more slowly and toward lower fit-
ness values.
All three algorithms show relatively steep ascents during the first 100 or 200
iterations. In general, rPSO tends to rapidly level off without making any further
progress (for most of the test cases) during the rest of the simulation; that is, the
swarm stagnates and no changes are observed in terms of finding a better fitness
value. For instance, on f1, particle swarms stagnate and flatten out without any
further improvements. However, the convergence rate of ES on the function f3
gradually slows down but does not completely level off, which indicates that if it
is allowed to run longer it may discover better solutions.
Another observation made for function f5 in two dimensions is that rPSO has
the slowest convergence rate. This is in line with the results of the phenotype
plot (Figure 1), where the particles do not converge to one location.

· 5.3. Success Plots

The best fitness value obtained at the end of each run is illustrated in Figure 3.
For each function the fitness values of all 20 runs are plotted in ascending order
from left to right. Therefore, each graph displays the success rate of each algo-
rithm on a particular function. The best (right-most point), worst (left-most
point), and mean fitness can also be easily derived from these graphs.
In all 20 runs, the ES algorithm finds worse solutions than both PSO algorithms
for d = 2, 4, and 10, as shown by the left-most blue point in Figure 3. This is in
line with the results of the phenotype plots (Figure 1), especially for the multi-
modal functions f4 and f5, where the ES individuals are unsuccessful in finding
the global optimum. The higher exploration capabilities of the PSO algorithms
seem to facilitate the discovery of better solutions in comparison to the local ES
scheme.
In the phenotype plots (Figure 1) it can also be observed that the bPSO particles
do not converge to one solution only. However, there is always at least one parti-
cle that finds the global optimum. Therefore, the bPSO and rPSO algorithms
are comparable in terms of finding the best solution, as illustrated by the right-
most green and orange points in Figure 3.

386 Namrata Khemka and Christian Jacob

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

f1 HES, bPSO, rPSOL : dimensions H2, 4, 10L

f2 HES, bPSO, rPSOL : dimensions H2, 4, 10L

f3 HES, bPSO, rPSOL : dimensions H2, 4, 10L

f4 HES, bPSO, rPSOL : dimensions H2, 4, 10L

f5 HES, bPSO, rPSOL : dimensions H2, 4, 10L

Figure 3. Success ratio plots of the benchmark functions f1 to f5. From left to right the
columns show the best fitness value obtained at the end of each run of the three algo-
rithms (ES: blue, rPSO: orange, bPSO: green) in 2, 4, and 10 dimensions.

· 5.4. Parameter Range Plots

For the following analysis we only look at algorithm performance on the 10-di-
mensional benchmarks. In Figure 4 we visualize changes during the course of the
evolutionary search for each variable range. For example, in the first row of Fig-
ure 4 the vertical bars represent the range for each of the 10 variables, over all
iterations, limited to all those solutions that have a fitness of at least t ¥ -5.
Here the highest fitness is zero. Knowing how the value ranges change is impor-
tant, especially when exploring real-world optimization problems, since it can

Exploratory Toolkit for Evolutionary and Swarm-Based Optimization 387

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

.

provide insights on whether the fitness function is sensitive with respect to a par-
ticular variable or not. Figure 4 also clearly visualizes the stage of convergence in
each dimension.
Figure 4 shows that the ES algorithm maintains a high parameter range in
comparison to the particle swarm algorithms. This is in line with the results of
Figure 2, where ES has the slowest convergence speed for d = 10. Evolution
strategies seem to consistently keep wider parameter ranges. Both particle swarm
algorithms show comparable ranges.

f1 HES, bPSO, rPSOL : t ¥ -5

f2 HES, bPSO, rPSOL : t ¥ -5

f3 HES, bPSO, rPSOL : t ¥ -1

f4 HES, bPSO, rPSOL : t ¥ -5

f5 HES, bPSO, rPSOL : t ¥ -5

Figure 4. Parameter range plots for the 10-dimensional versions of the benchmark functions
f1 to f5. From left to right the columns show the parameter ranges for each of the 10
dimensions over a certain threshold value (t) for ES, bPSO, and rPSO.

388 Namrata Khemka and Christian Jacob

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

‡ 6. “Evolutionary Swarms” webMathematica Site
The comparisons conducted provide knowledge and insights about the algo-
rithms, while illustrating the movement of the individuals in the solution space
(Figure 1). They point out various characteristics such as the convergence speed
and the success an algorithm has in finding good solutions. The strengths and
weaknesses of the algorithms are exploited. For example, PSO algorithms have a
higher exploration rate, whereas the H1 + lL scheme of ES depicts a local search
scheme.
We created a set of notebooks to compare the H1 + lL scheme of ES and both of
the particle swarm optimizers on the benchmark functions (f1 to f5). We then
converted those notebooks to webMathematica. This interactive site provides a
hands-on tutorial and an experimental environment through a selection of 10
benchmark functions along with visualization tools.
This site currently includes three variants of particle swarms: basic (bPSO), ran-
dom (rPSO), and those with decreasing inertia weight (dPSO). We also imple-
mented both of the simple ES schemes: the H1 + lL scheme and the H1, lL scheme
as well as the generalized evolution strategies Hm + lL and Hm, lL as described in
Section 2.
As it is in general difficult to know the settings of various parameters, we provide
suggestions for different settings. This will help users to gain further knowledge
regarding these optimizers.
The website can be accessed at www.swarm-design.org.

‡ 7. Conclusion
The best way to understand and use evolution- and swarm-based algorithm
heuristics is through practical experience, which can be gained most efficiently
on smaller-scale problems. The Evolutionary & Swarm Optimization website
that we developed will be merged with the collection of notebooks from the
Evolvica package [16]. This database of notebooks and the swarm algorithms pro-
vides an experimental and inquiry platform for introducing evolutionary and
swarm-based optimization techniques to those who wish to further their knowl-
edge of evolutionary computation. Making these notebooks available through a
webMathematica site means that anyone with access to the newly built web pages
will have instant access to a wide range of optimization algorithms.

‡ References
[1] C. Jacob and N. Khemka, “Particle Swarm Optimization: An Exploration Kit for Evolution-

ary Optimization,” in New Ideas in Symbolic Computation: Proceedings of the Sixth In-
ternational Mathematica Symposium (IMS’04), Banff, Alberta, Canada (P. Mitic, C. Jacob,
and J. Carne, eds.), Hampshire, UK: Positive Corporation Ltd., 2004.
library.wolfram.com/infocenter/Conferences/6039.

[2] N. Khemka, C. Jacob, and G. Cole, “Making Soccer Kicks Better: A Study in Particle
Swarm Optimization and Evolution Strategies,” in Proceedings of the IEEE Congress on
Evolutionary Computation (CEC’05), Edinburgh, U.K., New York: IEEE, 2005.

Exploratory Toolkit for Evolutionary and Swarm-Based Optimization 389

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

[3] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Read-
ing, MA: Addison-Wesley Publishing Company, 1989.

[4] J. R. Koza, Genetic Programming: On the Programming of Computers by Means of Natu-
ral Selection, Cambridge, MA: MIT Press, 1992.

[5] I. Rechenberg, “Evolution Strategies: Nature’s Way of Optimization,” Optimization
Methods and Applications, Possibilities and Limitations (H. W. Bergmann, ed.), Lecture
Notes in Computer Science, 47, Berlin: Springer, 1989 pp. 106|126.

[6] J. Kennedy and R. C. Eberhart, “Particle Swarm Optimization,” in Proceedings of the
IEEE International Conference on Neural Networks, Perth, WA, Australia, New York:
IEEE, 1995 pp. 1942|1948.

[7] G. Cole and K. Gerristen, Influence of Mass Distribution in the Shoe and Plate Stiffness
on Ball Velocity During a Soccer Kick, Herzogenaurach, Germany: Adidas-Salomon AG,
2002.

[8] G. Cole and K. Gerristen, Optimal Mass Distribution and Plate Stiffness of Football Shoes,
Herzogenaurach, Germany: Adidas-Salomon AG, 2002.

[9] G. Cole and K. Gerristen, Influence of Medio-Lateral Mass Distribution in a Soccer Shoe
on the Deflection of the Ankle and Subtabular Joints during Off-Centre Kicks, Herzoge-
naurach, Germany: Adidas-Salomon AG, 2003.

[10] N. Khemka, “Comparing PSO and ES: Benchmarks and Applications,” M.Sc. Thesis, Uni-
versity of Calgary, Calgary, Alberta, Canada, 2005.

[11] Y. Shi and R. C. Eberhart, “Parameter Selection in Particle Swarm Optimization,” in Ev-
olutionary Programming VII: Proceedings of the Seventh International Conference on
Evolutionary Programming, San Diego, CA (V. W. Porto, N. Saravanan, D. E. Waagen,
and A. E. Eiben, eds.), Lecture Notes in Computer Science, 1447, London: Springer-Ver-
lag, 1998 pp. 591|600.

[12] Y. Shi and R. C. Eberhart, “A Modified Particle Swarm Optimizer,” in Proceedings of the
IEEE Congress on Evolutionary Computation (CEC’98), Anchorage, AK, New York: IEEE,
1998 pp. 69|73.

[13] R. C. Eberhart and Y. Shi, “Comparison between Genetic Algorithms and Particle Swarm
Optimization,” in Evolutionary Programming VII: Proceedings of the Seventh Interna-
tional Conference on Evolutionary Programming, San Diego, CA (V. W. Porto, N. Sara-
vanan, D. E. Waagen, and A. E. Eiben, eds.), Lecture Notes in Computer Science, 1447,
London: Springer-Verlag, 1998 pp. 611|616.

[14] D. H. Wolpert and W. G. Macready, “No Free Lunch Theorems for Search,” SFI Working
Paper # 95-02-010, Santa Fe, NM: Santa Fe Institute, 1995.

[15] H-P. Schwefel, Evolution and Optimum Seeking, New York: John Wiley & Sons, 1995.

[16] C. Jacob, Illustrating Evolutionary Computation with Mathematica (The Morgan Kauf-
mann Series in Artificial Intelligence), San Francisco, CA: Morgan Kaufmann Publishers,
2001.

390 Namrata Khemka and Christian Jacob

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

Namrata Khemka, and Christian Jacob, “Exploratory Toolkit for Evolutionary and Swarm-
Based Optimization,” The Mathematica Journal, 2010. dx.doi.org/doi:10.3888/tmj.11.3–5.

About the Authors
Namrata Khemka received her Ph.D. in computer science from the University of Calgary in
2009. She received her M.Sc. in 2005 and B.Sc. in 2003. Her interests lie in data visualiza-
tion, optimization techniques, and swarm- and agent-based modeling.

Christian Jacob received his Ph.D. in computer science from the University of Erlangen-
Nuremberg in Erlangen, Germany. He is currently an associate professor in
the Department of Computer Science (Faculty of Science) and the Department
of Biochemistry & Molecular Biology (Faculty of Medicine) at the University
of Calgary. Jacob’s research interests are in evolutionary computing, emergent phenom-
ena, and swarm intelligence, with applications in civil engineering, biological modeling,
medical sciences, computational creativity, and art.

Namrata Khemka
Christian Jacob
University of Calgary, Calgary, AB, Canada, T2N1N4
namrata.khemka@gmail.com
jacob@cpsc.ucalgary.ca

Exploratory Toolkit for Evolutionary and Swarm-Based Optimization 391

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

