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Optimization  of  parameters  or  “systems”  in  general  plays  an  ever-in- 
creasing  role  in  mathematics,  economics,  engineering,  and  the  life
sciences.  As  a  result,  a  wide  variety  of  both  traditional  mathematical  and
nontraditional  algorithmic  approaches  have  been  introduced  to  solve
challenging  and  practically  relevant  optimization  problems.  Evolutionary
optimization  methods~in  the  form  of  genetic  algorithms,  genetic  pro-
gramming,  and  evolution  strategies~represent  nontraditional  opti-
mization  algorithms  that  draw  inspiration  from  the  processes  of  natural
evolution.  Particle  swarm  optimization  is  another  set  of  more  recently
developed algorithmic optimizers inspired by social behaviors of organisms
such as birds [1] and social insects. These new evolutionary approaches in
optimization are now entering the stage and are becoming very successful
tools for solving real-world optimization problems [2]. We present Visplore
and Evolvica  as  a  toolkit  to investigate,  explore,  and visualize evolutionary
and  swarm-based  optimization  techniques.  A  webMathematica  interface  is
also available.

‡ 1. Introduction
The  evolutionary  optimization  methods  of  the  genetic  algorithm  (GA)  [3],
genetic  programming  (GP)  [4],  and  evolution  strategy  (ES)  [5]  are  a  branch  of 
nontraditional  optimization  methods  drawing  inspiration  from  the  processes  of
natural  evolution.  The  particle  swarm  optimizer  (PSO),  on  the  other  hand,  is
inspired by the social behavior of bird flocking [6]. Recently, we have been inves-
tigating  the  performance  of  evolution-  and  swarm-based  optimizers  in  the
domain  of  biomechanics,  which  we  developed  with  the  Human  Performance
Laboratory  at  the  Faculty  of  Kinesiology,  University  of  Calgary  [7|9].  In  this
particular biomechanical application, numerical optimization algorithms are used
to  design  equipment  for  sports  activities.  The  involved  simulations  of  muscle
movements  are  very  time  consuming  and  high  dimensional,  thus  making  their
evaluation costly and difficult. Simulating a soccer kick is an example of a model
that investigates muscle activation patterns within the leg and foot when kicking
a  soccer  ball  toward  the  goal.  The  specific  objective  in  this  case  is  to  obtain  a
high  ball  speed,  in  order  to  minimize  the  goal  keeper’s  chances  of  catching  the
ball.  In  1998,  Cole  applied  a  (1+  l)  ES  to  this  model  [7,  8].  More  recently,  we
presented improved adaptations of the model parameters through a PSO [2, 10].
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The main focus of this article, however, is not on the optimization of parameters
for  the  soccer  kick  model.  Instead,  we  present  what  has  been  learned  from our
comparison  studies  of  the  evolution-  and  swarm-based  optimizers  on  a  set  of
selected  benchmark  functions.  These  benchmark  studies  turned  out  to  be
extremely useful in understanding the intricacies in performance regarding three
optimizers:  (1)  the  originally  used  H1 + lL  ES;  (2)  a  canonical  (“basic”)  PSO
(bPSO);  and  (3)  a  PSO  with  noise-induced  (“random”)  inertia  weight  settings
(rPSO). We describe and analyze the performance of each of these optimizers on
five  benchmark  functions  in  two,  four,  and  10  dimensions.  These  findings  are
projected to performance characteristics that were found in the real-world appli-
cation  of  the  discussed  soccer-kick  model,  which  poses  a  56-dimensional  opti-
mization problem. The Mathematica notebooks that were created provide us with
insights  regarding  the  relations  between  control  parameters  and  system  perfor-
mance  of  the  optimizers  under  study.  Consequently,  we  gain  a  better  under-
standing of the algorithms on multidimensional real-world problems.

This article is organized as follows. In Section 2 we give descriptions of the three
optimization algorithms used in our comparison.  An introduction to the bench-
mark  functions  and  an  outline  of  the  experimental  setup  follows  in  Sections  3
and  4,  respectively.  We  discuss  the  experimental  results  and  summarize  the
lessons  learned  in  Section  5.  The  accompanying  webMathematica  site  is  pre-
sented in Section 6. The paper is concluded in Section 7.

‡ 2. The Three Contenders
The three contenders for our comparative study of  evolution- and swarm-based
optimization  algorithms  are:  (1)  a  relatively  simple  H1 + lL  ES;  (2)  a  canonical
(“basic”)  PSO  (bPSO);  and  (3)  a  PSO  with  noise-induced  (“random”)  inertia
weight  settings  (rPSO).  The  following  subsections  present  these  approaches  in
more detail.

· 2.1. (1+l) Evolution Strategy

ES  has  been  a  successful  evolutionary  technique  for  solving  complex
optimization  problems  since  the  1960s  [5].  ES  evolves  vectors  of  real  numbers
and  the  “genetic”  information  is  interchanged  between  these  vectors  through
recombination  operators.  Slight  variations  (“mutations”)  on  these  vectors  are
obtained  by  evolving  strategy  parameters  that  determine  the  amount  of  change
applied to each vector component. 

In the H1 + lL  ES scheme, a  single parent is  mutated l  times.  Each of  the newly
created offspring is evaluated, and the parents and the offspring are added to the
selection pool.  The single  best  individual  among the 1 + l  solutions  in  the pool
survives  and  becomes  the  parent  for  the  next  iteration.  Now  we  describe  the
Hm ê r + lL  strategy, which is a generalization of the H1 + lL  scheme, where m  par-
ents generate l offspring through the recombination of r individuals.
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Hm ê r + lL ES Algorithm
Ë Step  1.  Initialize  the  population  of  size  m  by  randomly  assigning  loca-

tions  P = Ip1, … , pi, … , pmM  and  strategy  parameters

S = Is”1, … , s”i, … , s”mM,  where  pi = Ipi1, … , pidM œ d  and

s”i = Is”i1, … , s”idM œ d.

Ë Step  2.  Using  the  recombination  operator  c,  generate  l ¥ m  offspring
by randomly selecting and recombining r individuals from the pool of m
parents.

• pi
£ = cIp1

£ , … , pr
£ M, where pi

£ œ P for 1 § j § r.

• pi
£ = IcIp11

£ , … , pr1
£ M, … , cIp1d

£ , … , prd
£ MM for 1 § k § l.

• P£ = Ip1
£ , … , pl

£ M. 

Ë Step 3. Mutations.

• pk
″ := pk

£ + z”k where z”k := IN0ISk1M… N0ISkdMM for 1 § k § l.

• NaHSL returns a Gaussian distributed random value around a with 
variance s.

• P″ = P£ + Ip1
″ , … , pl

″ M.

Ë Step 4. Evaluate the fitness  of all individuals in P″.

Ë Step  5.  Select  the  m  best  individuals  to  serve  as  parents  for  the  next
generation.

• P = Best
m

@ D HP″L.

Ë Step 6. If the termination criterion is met:

• Stop.

• Otherwise, go to Step 2.

· 2.2. Basic Particle Swarm Optimization

As  the  bPSO  we  use  the  original  PSO  version  introduced  by  Eberhart  and
Kennedy [6]. Inspired by both social behavior and bird flocking patterns, the par-
ticles “fly” through the solution space and tend to land on better solutions. 

The search is performed by a population of particles i; each has a location vector
pi = Ipi1, … , pidM œ d  that  represents  a  potential  solution  in  a  d-dimensional
search space.  Each particle  i  also keeps track of  its  velocity  vector  n”i  that  deter-
mines the direction and how far the particle moves in the next iteration. The fit-
ness  of  a  particle  is  determined by  an  evaluation  function   HpiL.  Particles  move
through  the  search  space  in  discrete  time  steps.  In  order  to  provide  a  balance
between  local  (with  a  higher  tendency  to  converge  to  a  solution  in  close
proximity)  and  global  search  (looking  for  overall  good  solutions),  an  inertia
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weight w was suggested by Shi and Eberhart [11, 12]. In the bPSO algorithm this
term is set to the constant value w = 1. 

bPSO Algorithm
Ë Step  1.  Initialize  particle  population  of  m  particles  by  stochastically  as-

signing  locations  P = Ip1, … , pi, … , pmM  and  velocities

V = In”1, … , n”i, … , n”mM.

Ë Step  2.  Evaluate  the  fitness  of  all  particles:
 HPL = I Hp1L, … ,  HpiL, … ,  HpmLM.

Ë Step 3. Keep track of the locations where each individual had its highest
fitness so far:

• Pbest = Jp1
best , … , pi

best , … , pm
best N where 

pi
best = pi

new if and only if  Hpi
new L >  HpiL.

Ë Step 4. Keep track of the position with the global best fitness: 

• pglobal
best = max IPbest M.

Ë Step  5.  Modify  the  particle  velocities  based  on  the  previous  best  and
global best positions:

• n”i
new = w n”i + j1Jpi

best - piN + j2Jpglobal
best - piN for 1 § i § n.

Ë Step 6. Update the particle locations:

• pi = pi + n”i
new for 1 § i § n.

Ë Step 7. If the termination criterion is met:

• Stop.

• Otherwise, go to Step 2.

· 2.3. Random Particle Swarm Optimization

Previous work with PSOs suggests that the so-called inertia weight w  should be
annealed  (dPSO)  over  time  in  order  to  obtain  better  results  [13].  This  time-
decreasing inertia weight facilitates a global search at the beginning and the later
small  inertia  weight  fine-tunes  the  search  space.  Since  the  annealed  value  is
dependent  on  time,  the  number  of  iterations  must  be  known  in  advance.
However, in most real-world scenarios, like the soccer-kick optimization [2], it is
extremely  difficult  to  know  the  number  of  necessary  iteration  steps  in  advance.
The  “random”  rPSO  version  tries  to  alleviate  this  problem  by  assigning  a
random number to w (Step 5) in each iteration as follows:

w =
0.5 + r

2
.
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When r  is  a  uniformly  distributed  random number  in  the  interval  @0, 1D,  w  is  a 

uniformly distributed random number in the interval B 1
4

, 3
4
F. 

‡ 3. Benchmarks
According  to  the  no  free  lunch  theorem  [14],  it  is  difficult  to  identify  a  clearly 
superior  search  or  optimization  algorithm  in  any  comparison.  Therefore  our
purpose is not to show which one of the three algorithms outperforms the others
in  any particular  case,  but  to  find out  which of  these  optimizers  is  better  suited
for  specific  optimization  challenges.  In  particular,  we  also  want  to  investigate
whether  an  algorithm’s  performance  characteristics  in  two  dimensions~where
visualization  and  manual  inspection  are  easiest  and  most  accessible~transfer  to
higher  dimensions.  We  evaluate  the  performance  of  the  H1 + lL  ES  scheme  and
both  versions  of  the  particle  swarm  algorithms  on  a  small  set  of  numerical
benchmark functions. 
We use the five benchmark functions illustrated and described in more detail fol-
lowing. We explore each of these benchmark search spaces for dimensions d = 2,
d = 4,  and  d = 10.  The  first  three  functions  are  unimodal,  that  is,  with  a  single
global optimum. The last two functions are multimodal, where the number of lo-
cal  maxima  increases  exponentially  with  the  problem size  [15].  In  the  following 
function descriptions, x* denotes the location of the global optimum. In the func-
tion plots, the location of the global optimum is marked by a red sphere. 

Ë f1: Sphere

f1 = -‚
j=1

d

x j
2, -5.12 § x j § 5.12,  Hx*

L = 0.

This  is  a  simple,  symmetric,  smooth,  unimodal  search  space  (inverted 
parabola) and is known to be easily solved by all algorithms. As in our case,
it is mainly used to calibrate optimizer control parameters.

-5
-2.5

0
2.5

5
x -5

-2.5
0
2.5
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y-5
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0
2.5

5
x

Ë f2: Edge

f2 = - ‚
j=1

d

°x j• + ‰
j=1

d

°x j• , -10 § x j § 10,  Hx*
L = 0.
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The function f2 has shared edges, making it more difficult to find good so-  
lutions around the ridges.
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Ë f3: Step

f3 = - 12 +‚
j=1

d

ex ju , -5.12 § x j § 5.12,  Hx*
L = 0.

We included the linear surface function f3  in order to see whether the al-  
gorithms perform a gradient ascent strategy. 
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5
x

Ë f4: Ackley

f4 = - -20 e
-0.2

1

d
⁄j=1

d x j
2

- e
1

d
⁄j=1

d cosI2 p x jM + 20 + e , -30 § x j § 30,  Hx*
L = 0.

The Ackley function is more difficult as search algorithms tend to settle on  
any of the local optima, making it more challenging to identify the global
optimum. 
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Ë f5: Griewangk

f5 = - 1 +
1

4000
‚
j=i

d

x j
2 -‰

j=1

d

cos
x j

j
, -100 § x j § 100,  Hx*

L = 0.

Griewangk’s  function  has  hundreds  of  local  optima  in  the  center.  We
included  it  to  compare  the  algorithms’  performances  on  Griewangk  and
the sphere function. 
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‡ 4. Experimental Setup
For each of the three optimizers ES, bPSO, and rPSO, we performed 20 experi-
ments on each of the five test functions f1  to f5  for dimensions d = 2, d = 4, and
d = 10. A different random number seed is used for each of the 20 runs. The ini-
tial individuals (including those for ES) are uniformly distributed throughout the
search space. Each initial population generated for an ES experiment is also used
for the bPSO and rPSO experiments. This ensures that all comparable runs start
with the same initial distribution of individuals. The termination criterion for all
runs  was  to  stop  when  the  maximum  number  of  iterations  tmax = 1500  was
reached.  By  that  time  all  the  optimizers  had  already  reached  their  convergence 
phase (see Figure 2 later). The parameter settings for the three algorithms are de-
scribed in Tables 1, 2, and 3 . 

Population size, n 10

Location range, pi j œ Aplow, phighE varies

Velocity range, vi j œ Avlow, vhighE 10% of pi j

Exploitation rate, j1 0.1
Exploration rate, j2 1

Table 1. bPSO parameter settings.
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Population size, n 10

Location range, pi j œ Aplow, phighE varies

Velocity range, vi j œ Avlow, vhighE 10% of pi j

Exploitation rate, j1 1.5
Exploration rate, j2 1.5

Table 2. rPSO parameter settings.

Population size Hselection poolL, 1 + l 1 + 9
Mutation step size radius 1

Table 3. ES parameter settings.

‡ 5. Discussion of the Results
The results of the evolution-based optimizer and the two particle swarm optimi- 
zation techniques are briefly discussed in this section.

· 5.1. Phenotype Plots

Figure 1 gives an example of the population dynamics resulting from each of the
three algorithms (ES in column 1, bPSO in column 2, and rPSO in column 3) ap-
plied over a certain number of iterations. The individuals are represented as dots 
where  in  each  plot  three  iterations  (red,  blue,  green)  are  depicted.  In  order  to
achieve a fair comparison, all three algorithms start from the same initial popula-
tions.  The  behavior  of  the  individuals  is  seen  at  different  iterations,  making  it
easy  to  compare  and  contrast  the  movement  of  the  individuals  and  study  their
convergence  behavior.  For  example,  f1  is  plotted  at  iterations  2  (red),  7  (blue),
and 40 (green).  
In comparison to the H1 + lL ES scheme, we observe that the particle swarm indi- 
viduals  (both  bPSO  and  rPSO)  have  higher  exploration  capabilities,  search  the
solution space more thoroughly, and search in multiple directions. The ES indi-
viduals stay close to each other within a certain mutation radius. This is a typical
effect of using this particular ES scheme. The individuals of the ES algorithm con
verge to a local optimum solution for functions f4 and f5. This also illustrates the
fact that ES individuals exhibit strong local search behaviors, which in this case is
mainly due to a relatively small mutation step size. 
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f1 HES, bPSO, rPSOL : Iterations 2, 7, 40

f2 HES, bPSO, rPSOL : Iterations 2, 6, 20

f3 HES, bPSO, rPSOL : Iterations 2, 7, 60

f4 HES, bPSO, rPSOL : Iterations 2, 20, 60

f5 HES, bPSO, rPSOL : Iterations 2, 20, 60

Figure 1. Phenotypical plots for the two-dimensional versions of the benchmark functions f1

to  f5.  From  left  to  right  the  columns  show  snapshots  of  typical  optimization  runs  for  ES,
bPSO, and rPSO. The populations of the first, second, and third snapshot at the iterations as
indicated are represented as red, blue, and green spheres, respectively. 
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· 5.2. Convergence Plots

The convergence plots  represent  mean fitness  values  computed over  all  20 runs
for all  1500 iterations. This graph helps to demonstrate the convergence behav-
ior  of  the  individuals  of  a  particular  algorithm  and  also  illustrates  which  of  the
three algorithms has  the fastest  fitness  convergence speed.  Figure 2 summarizes
the results, which are shown for d = 2 (column 1),  d = 4 (column 2),  and d = 10 
(column 3). 

f1 HES, bPSO, rPSOL : dimensions H2, 4, 10L

f2 HES, bPSO, rPSOL : dimensions H2, 4, 10L

f3 HES, bPSO, rPSOL : dimensions H2, 4, 10L

f4 HES, bPSO, rPSOL : dimensions H2, 4, 10L

f5 HES, bPSO, rPSOL : dimensions H2, 4, 10L

Figure 2. Fitness plots of the benchmark functions f1  to f5. From left to right the columns il-
lustrate  the  convergence  behaviors  of  the  three  algorithms  (ES:  blue,  rPSO:  orange,  bPSO: 
green) in 2, 4, and 10 dimensions. 
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In  almost  all  cases,  the  ES  algorithm  is  comparable  to  rPSO.  The  bPSO  algo-
rithm turns out to be the slowest in terms of convergence speed for d = 2. How-
ever, as the number of dimensions increases (d = 4), the convergence rate of ES
decreases, and in 10 dimensions ES converges more slowly and toward lower fit-
ness values.
All  three  algorithms  show  relatively  steep  ascents  during  the  first  100  or  200
iterations. In general, rPSO tends to rapidly level off without making any further
progress (for most of the test cases) during the rest of the simulation; that is, the
swarm stagnates and no changes are observed in terms of finding a better fitness
value.  For  instance,  on  f1,  particle  swarms  stagnate  and  flatten  out  without  any
further improvements.  However,  the convergence rate of  ES on the function f3
gradually slows down but does not completely level off, which indicates that if it
is allowed to run longer it may discover better solutions. 
Another  observation  made  for  function  f5  in  two  dimensions  is  that  rPSO  has
the  slowest  convergence  rate.  This  is  in  line  with  the  results  of  the  phenotype
plot (Figure 1), where the particles do not converge to one location.

· 5.3. Success Plots

The best  fitness value obtained at  the end of each run is  illustrated in Figure 3.
For each function the fitness values of all 20 runs are plotted in ascending order
from left  to  right.  Therefore,  each graph displays  the  success  rate  of  each algo-
rithm  on  a  particular  function.  The  best  (right-most  point),  worst  (left-most
point), and mean fitness can also be easily derived from these graphs. 
In all 20 runs, the ES algorithm finds worse solutions than both PSO algorithms
for d = 2, 4, and 10, as shown by the left-most blue point in Figure 3. This is in
line  with  the  results  of  the  phenotype  plots  (Figure  1),  especially  for  the  multi-
modal  functions  f4  and f5,  where the ES individuals  are  unsuccessful  in  finding
the  global  optimum.  The higher  exploration capabilities  of  the  PSO algorithms
seem to facilitate the discovery of better solutions in comparison to the local ES
scheme.
In the phenotype plots (Figure 1) it can also be observed that the bPSO particles
do not converge to one solution only. However, there is always at least one parti-
cle  that  finds  the  global  optimum.  Therefore,  the  bPSO  and  rPSO  algorithms
are comparable in terms of  finding the best  solution,  as  illustrated by the right-
most green and orange points in Figure 3.
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f1 HES, bPSO, rPSOL : dimensions H2, 4, 10L

f2 HES, bPSO, rPSOL : dimensions H2, 4, 10L

f3 HES, bPSO, rPSOL : dimensions H2, 4, 10L

f4 HES, bPSO, rPSOL : dimensions H2, 4, 10L

f5 HES, bPSO, rPSOL : dimensions H2, 4, 10L

Figure  3.  Success  ratio  plots  of  the  benchmark  functions  f1  to  f5.  From  left  to  right  the
columns  show  the  best  fitness  value  obtained  at  the  end  of  each  run  of  the  three  algo- 
rithms (ES: blue, rPSO: orange, bPSO: green) in 2, 4, and 10 dimensions. 

· 5.4. Parameter Range Plots

For the following analysis  we only look at algorithm performance on the 10-di-
mensional benchmarks. In Figure 4 we visualize changes during the course of the
evolutionary search for each variable range. For example, in the first row of Fig-
ure  4  the  vertical  bars  represent  the  range  for  each  of  the  10  variables,  over  all
iterations,  limited  to  all  those  solutions  that  have  a  fitness  of  at  least  t ¥ -5.
Here the highest fitness is zero. Knowing how the value ranges change is impor-
tant,  especially  when  exploring  real-world  optimization  problems,  since  it  can 
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.

provide insights on whether the fitness function is sensitive with respect to a par-
ticular variable or not. Figure 4 also clearly visualizes the stage of convergence in 
each dimension.
Figure  4  shows  that  the  ES  algorithm  maintains  a  high  parameter  range  in 
comparison  to  the  particle  swarm algorithms.  This  is  in  line  with  the  results  of
Figure  2,  where  ES  has  the  slowest  convergence  speed  for  d = 10.  Evolution
strategies seem to consistently keep wider parameter ranges. Both particle swarm 
algorithms show comparable ranges. 

f1 HES, bPSO, rPSOL : t ¥ -5

f2 HES, bPSO, rPSOL : t ¥ -5

f3 HES, bPSO, rPSOL : t ¥ -1

f4 HES, bPSO, rPSOL : t ¥ -5

f5 HES, bPSO, rPSOL : t ¥ -5

Figure 4. Parameter range plots for the 10-dimensional versions of the benchmark functions
f1  to  f5.  From  left  to  right  the  columns  show  the  parameter  ranges  for  each  of  the  10
dimensions over a certain threshold value (t) for ES, bPSO, and rPSO.  
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‡ 6. “Evolutionary Swarms” webMathematica Site
The  comparisons  conducted  provide  knowledge  and  insights  about  the  algo-
rithms,  while  illustrating  the  movement  of  the  individuals  in  the  solution  space
(Figure 1). They point out various characteristics such as the convergence speed
and  the  success  an  algorithm  has  in  finding  good  solutions.  The  strengths  and
weaknesses of the algorithms are exploited. For example, PSO algorithms have a 
higher  exploration rate,  whereas  the  H1 + lL  scheme of  ES depicts  a  local  search
scheme. 
We created a set of notebooks to compare the H1 + lL scheme of ES and both of
the  particle  swarm  optimizers  on  the  benchmark  functions  ( f1  to  f5).  We  then
converted  those  notebooks  to  webMathematica.  This  interactive  site  provides  a
hands-on  tutorial  and  an  experimental  environment  through  a  selection  of  10 
benchmark functions along with visualization tools. 
This site currently includes three variants of particle swarms: basic (bPSO), ran-
dom (rPSO),  and  those  with  decreasing  inertia  weight  (dPSO).  We  also  imple-
mented both of the simple ES schemes: the H1 + lL scheme and the H1, lL scheme
as  well  as  the  generalized  evolution  strategies  Hm + lL  and  Hm, lL  as  described  in 
Section 2. 
As it is in general difficult to know the settings of various parameters, we provide
suggestions for different settings. This will help users to gain further knowledge 
regarding these optimizers. 
The website can be accessed at www.swarm-design.org. 

‡ 7. Conclusion
The  best  way  to  understand  and  use  evolution-  and  swarm-based  algorithm
heuristics  is  through  practical  experience,  which  can  be  gained  most  efficiently  
on  smaller-scale  problems.  The  Evolutionary  &  Swarm  Optimization  website
that  we  developed  will  be  merged  with  the  collection  of  notebooks  from  the
Evolvica package [16]. This database of notebooks and the swarm algorithms pro-
vides  an  experimental  and  inquiry  platform  for  introducing  evolutionary  and
swarm-based optimization techniques to those who wish to further their knowl-
edge  of  evolutionary  computation.  Making  these  notebooks  available  through  a
webMathematica  site means that anyone with access to the newly built web pages
will have instant access to a wide range of optimization algorithms. 
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