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It is well known that the set of all natural numbers divisible by a fixed mod-
ulus m can be recognized by a finite state machine, assuming that the num-
bers are written in standard base-B representation. It is much harder to de-
termine the state complexity  of  the minimal  recognizer [1].  In this  article
we discuss the size of minimal recognizers for a variety of numeration sys-
tems, including reverse base-B representation and the Fibonacci system. 

‡ Automaticity and State Complexity
· Automaticity

A  sequence  a = HanL  is  B-automatic  if  it  can  be  recognized  by  a  finite  state
machine in the sense that, on input n,  the machine outputs an.  Here n  is usually
written  in  standard  base-B  notation,  though  other  numeration  systems  are  also
considered.  A  typical  example  is  the  Morse|Thue  sequence  HtnL,  which  is  often
defined in terms of iterated morphisms. However, there is an alternative charac-
terization that shows that tn  is the digit-sum of the binary expansion of n modulo
2. Thus, the Morse-Thue sequence is 2-automatic. The study of automaticity has
lately attracted a lot of attention; see the excellent book by Allouche and Shallit
[2].
Little  is  known about  the  state  complexity  of  the  finite  state  machines  in  ques-
tion: given an automatic sequence,  what is  the size mHaL  of  the smallest  machine
that  recognizes  it?  Often  there  is  a  canonical  machine  that  witnesses  the  auto-
maticity  of  a  sequence  and  provides  an  upper  bound  on  mHaL,  but  the  inherent
complexity of the minimization process often makes it very difficult to pin down
the exact state complexity of the sequence. Using a suitable computational envi-
ronment, it is possible to generate sample data that can lead to plausible conjec-
tures.  More computation can then help to prune false  assumptions and produce
answers,  at  least  in  a  few selected cases.  This  is  particularly  important  since  the
combinatorics of our problem are fairly complicated, so that, in general, no sim-
ple closed-form solutions are available. 
Most  of  the  computations  in  this  article  depend  on  Automata,  a  large  package
that implements finite state machines (see [3] for a description of a version of the
package).  The  package  is  freely  available  at  www.cs.cmu.edu/~sutner  and  con-
tains installation instructions. 

In[1]:= Needs@"Automata`automata`"D êê Quiet
Get@"Automata`experimental`"D êê Quiet
Get@"Automata`divisibility`"D
MakeAbbrevs@D;

MakeAbbrevs::msgon : Abbreviations turned on, use MakeAbbrevs@FalseD to turn off.
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Divisibility and Horner Automata 

In  this  article  we  study  the  state  complexity  of  machines  recognizing  the  set
m  of all multiples of a fixed modulus m. It is not hard to see that m  is indeed
B-recognizable for any base B ¥ 1 (we will focus on the interesting case B ¥ 2 in
what  follows).  We  denote  the  digit  alphabet  80, 1, … , B - 1<  by  SB.  There  is  a
canonical deterministic finite automaton (DFA)  = m,B  that accepts all strings
w œ SB

*  that denote numbers in base-B notation that are divisible by m. The state
set  of    is  the set  HmL = 80, 1, … , m - 1<  of  modular numbers and the right ac-
tion is given by

p ÿ a = B p + a mod m.

If  we fix  the initial  state to q0 = 0,  we have q0 ÿ w = nHwLmod m  for  any word w.
Here nHwL denotes the value of w: the value of word w = wk-1 wk-2 … w1 w0 is 

nHwL = S i < k wi B i.

Thus, the action corresponds to the standard Horner scheme of evaluating poly-
nomials and we refer to these machines as Horner automata. Here are some sam-
ple Horner automata.

In[5]:= m = 5; B = 2;
M = DivisibilityDFA@ m, B, Full Ø TrueD

Out[6]= DFA@5, -2, 881, 3, 5, 2, 4<, 82, 4, 1, 3, 5<<, 1, 81<D

We generate all words in the acceptance language of length 6 and compute their
numerical values.

In[7]:= LanguageFA@M, 6D

Out[7]= 8000000, 000101, 001010, 001111, 010100, 011001, 011110,
100011, 101000, 101101, 110010, 110111, 111100<

In[8]:= WordToNumber@BD@%D

Out[8]= 80, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60<

As required, the remainders are all 0. Other useful information about the associ-
ated language can be extracted from the automaton. For example, we can obtain
a generating function for the growth rate.

In[9]:= Clear@xD
gs = GrowthSeriesDFA@M, xD

Out[10]=
1 - 2 x + x2 - x3

1 - 3 x + 3 x2 - 3 x3 + 2 x4
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In[11]:= Series@ gs, 8x, 0, 10< D

Out[11]= 1 + x + x2 + 2 x3 + 4 x4 + 7 x5 + 13 x6 +

26 x7 + 52 x8 + 103 x9 + 205 x10 + O@xD11

Here is a different base and modulus.

In[12]:= m = 20; B = 15;
M = DivisibilityDFA@ m, B, Full Ø TrueD

Out[13]= DFA@20, -15,
881, 16, 11, 6, 1, 16, 11, 6, 1, 16, 11, 6, 1, 16, 11,

6, 1, 16, 11, 6<, 82, 17, 12, 7, 2, 17, 12, 7, 2,
17, 12, 7, 2, 17, 12, 7, 2, 17, 12, 7<, á11à,

814, 9, 4, 19, 14, 9, 4, 19, 14, 9, 4, 19, 14, 9, 4,
19, 14, 9, 4, 19<, 815, 10, 5, 20, 15, 10, 5, 20, 15,
10, 5, 20, 15, 10, 5, 20, 15, 10, 5, 20<<, 1, 81<D

In[14]:= WordToNumber@BD@LanguageFA@M, 2DD

Out[14]= 80, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220<

Horner automata provide an upper bound for the state complexity of divisibility:
mHm L § m, regardless of the base B. Alas, the bound is usually far from tight.

· Minimal Divisibility Recognizers
Pinning Down Behavioral Equivalence
Though the canonical Horner DFAs fail  to be minimal,  in general they are still
helpful in determining the structure of the minimal recognizers.  Recall  that any 
DFA for  a  regular  language  covers  the  minimal  DFA,  so  we  need  to  determine
the fibers of the covering map. Abstractly, we can describe the corresponding par-
tition as follows. Let 

 k, B = 9c œ  0 § c < B k =.

It  is  well  known  that  for  radix  B  representation,  automaticity  of  divisibility  fol-
lows from the fact that the following equivalence relation has a finite index when
X = m :

x ªm,B yó" k ¥ 0, c œ k,BIB k x + c œ X õB k y + c œ X M

[4]. The index of this equivalence relation is none other than the state complexity
we are interested in.
However, this characterization does not readily produce a reasonable description
of the state complexity.
By applying a standard minimization algorithm to our Horner automata we can
generate some data that will guide the search for a description of the state com-
plexity. In the following table m is the row index and B is the column index.
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In[15]:= tab = Table@
Size@MinimizeFA@DivisibilityDFA@m, B, Full Ø TrueDDD,
8m, 12<, 8B, 16<D;

TableForm@ tab, TableHeadings Ø Automatic,
TableSpacing Ø 81, 1<, TableAlignments Ø RightD

Out[16]//TableForm=

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3
4 4 3 4 2 4 3 4 2 4 3 4 2 4 3 4 2
5 5 5 5 5 2 5 5 5 5 2 5 5 5 5 2 5
6 6 4 3 4 6 2 6 4 3 4 6 2 6 4 3 4
7 7 7 7 7 7 7 2 7 7 7 7 7 7 2 7 7
8 8 4 8 3 8 5 8 2 8 5 8 3 8 5 8 2
9 9 9 3 9 9 4 9 9 2 9 9 4 9 9 4 9

10 10 6 10 6 3 6 10 6 10 2 10 6 10 6 3 6
11 11 11 11 11 11 11 11 11 11 11 2 11 11 11 11 11
12 12 5 5 4 12 3 12 4 5 7 12 2 12 7 5 4

We write mHm, BL for the size of the minimal DFA that recognizes numbers divisi-
ble  by  m  in  base-B  notation.  If  we  disregard  B = 1,  the  table  suggests  that
mHm, mL = 2.  Moreover,  for  m  and  B  coprime  we  have  mHm, BL = m,  so  that  the
Horner automaton is already minimal. Both observations are easy to prove. 

For the remaining cases, note that for any word w œ SB
k  we have in : 

p ÿ w = Bk p + nHwL Hmod mL.

The behavior of state p in  is therefore 

9w œ SB
* B†w§ p + nHwL = 0 Hmod mL=.

Define  the  witness  for  p  to  be  the  length-lex  minimal  word  w  in  the  behavior
of p. 

Proposition 1.  Two  states  are  behaviorally  equivalent  if  and  only  if  they  have
the same witness. 
Suppose p has a witness of length k. Then p is a solution of the linear equation 

(1)B k x + c = 0 Hmod mL,

where the additive coefficient is bounded as 0 § c < B k. Thus, in order to deter-
mine equivalence of states, we have to characterize the solution sets of this equa-
tion. Let

k,c : the set of all solutions to equation H1L

and

k,c
£ : the set of all solutions to equation H1L which are not in ‹ l<k l,c.

We  will  refer  to  these  solution  sets  as  cumulative  versus  strict.  Note  that
k,c Œ k+1, Bc. Since the length of the behavioral witness matters, rather than just
the associated numerical value c = nHwL, we have to consider the strict rather than
just  the  cumulative  solution  sets.  Our  goal  is  to  determine  the  number  of  solu-
tion sets  and the levels  at  which they appear.  As  it  turns  out,  the combinatorics
are somewhat complicated so that the easy availability of sample data is crucial.
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Examples
Here are some examples of solution sets. We use a little wrapper function SolÖ
veModEq  to  solve  modular  equations  in  a  useful  format.  The  strict  version  re-
moves  solutions  from  lower  levels.  For  coprime  modulus  and  base  all  solution
sets have size one; all parameters c are feasible in the sense that equation (1) has a
solution at some level k.

In[17]:= m = 10; B = 3;
Column@Table@SolveModEq@m, B, kD, 8k, 0, 2<DD

Out[18]=

880<<
880<, 83<, 86<<
880<, 81<, 82<, 83<, 84<, 85<, 86<, 87<, 88<<

Here modulus and base are not coprime. The size of the solution sets reaches a
plateau at level s = 2.

In[19]:= m = 15; B = 3;
Column@Table@Sort@SolveModEq@m, B, kDD, 8k, 0, 3<DD

Out[20]=

880<<
880, 5, 10<<
880, 5, 10<, 81, 6, 11<, 83, 8, 13<<
880, 5, 10<, 81, 6, 11<, 82, 7, 12<, 83, 8, 13<, 84, 9, 14<<

Note that the solution sets are of the form a0 + i d  for i = 0, 1, … . We refer to d
as the stride of the solution set. In the example, d = 5. 
Here the  size  of  the  solution sets  increases  until  all  of  m  appears  as  a  solution
somewhere.

In[21]:= m = 16; B = 6;
Column@Table@Sort@SolveModEq@m, B, kDD, 8k, 0, 4<DD

Out[22]=

880<<
880, 8<, 82, 10<, 85, 13<<
880, 4, 8, 12<, 81, 5, 9, 13<, 82, 6, 10, 14<, 83, 7, 11, 15<<
880, 2, 4, 6, 8, 10, 12, 14<, 81, 3, 5, 7, 9, 11, 13, 15<<
880, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15<<
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Here are the same examples with strict solutions. The coprime case is trivial,  so
we skip it. 

In[23]:= m = 15; B = 3;
Column@Table@

Sort@SolveModEq@m, B, k, Mode Ø Strict, Full Ø FalseDD,
8k, 0, 3<DD

Out[24]=

880<<
885, 10<<
881, 6, 11<, 83, 8, 13<<
882, 7, 12<, 84, 9, 14<<

Note how the size of some of the strict solutions sets deviates from gcdIBk, mM.

In[25]:= m = 16; B = 6;
Column@Table@

Sort@SolveModEq@m, B, k, Mode Ø Strict, Full Ø FalseDD,
8k, 0, 2<DD

Out[26]=

880<<
888<, 82, 10<, 85, 13<<
881, 9<, 84, 12<, 86, 14<, 83, 7, 11, 15<<

Counting Cumulative Solutions
Let us tacitly assume that parameter c  is feasible; that is,  gcdIB k, mM c,  in which
case the cardinality of k,c  is gcdIBk, mM; the empty solution set is dealt with sepa-
rately.  There  are  two  natural  parameters  that  are  important  for  the  description
of  all  solution  sets.  First,  the  depth  k  of  m  and  B  is  the  least  level  k  for  which
‹c k,c = m.  Second,  the  saturation  value  s  is  the  least  k  such  that

gcdIBk, mM = gcdIBk+1, mM. Note that 

k = elogB mu.

Letting  gHa, bL = a ê gcdHa, bL,  at  level  k,  there  are  gIB k, mM  solution  sets
of  size  gcdIB k, mM  each.  Within  each  solution  set  the  elements  satisfy
x = y Imod gIm, BkMM.

Lemma 1.  Let  l = minHk, s - 1L  and  set  N = ⁄k=0
l gI Bk, mM+⁄k=l +1

s

gIm, BkM.  If  m and B are coprime, then the total number of distinct solutions sets is  N,
otherwise it is N + 1. 
We leave the proof as an exercise.

Examples
We can get  a  short  overview of  the structure of  the solution hierarchy with the
command ProfilemB.  The command prints out the key parameters, the stride
of the solution sets, the number of solution sets, and the size of the solution sets.
Here is a case where s < k. 
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In[27]:= m = 15; B = 3;
ProfilemB@ m, B D

m: 15 B: 3 s: 1 k: 2

Out[28]//TableForm=

stride Ò coeffs Ò sols
0 15 1 1
1 5 1 3
2 5 3 3
3 5 9 3

Here is a sanity check.

In[29]:= Column@Table@SolveModEq@m, B, kD, 8k, 0, 3<DD

Out[29]=

880<<
880, 5, 10<<
880, 5, 10<, 83, 8, 13<, 81, 6, 11<<
880, 5, 10<, 81, 6, 11<, 82, 7, 12<, 83, 8, 13<, 84, 9, 14<<

And here is s > k. 

In[30]:= m = 16; B = 6;
ProfilemB@ m, B D

m: 16 B: 6 s: 4 k: 1

Out[31]//TableForm=

stride Ò coeffs Ò sols
0 16 1 1
1 8 3 2
2 4 9 4

Counting Strict Solutions
Let s be the least k such that gcdIBk, mM = gcdIBk+1, mM, and let r, the rank of m
and B, be the maximum k such that k,c ≠ « for some c. It is easy to see that if m
is a power of B we have r = k, and r = k + 1 otherwise; hence, it suffices to con-
sider  levels  k § r.  Up to  level  s  the  solution sets  grow exponentially  in  size,  so
k,c ≠ « for all feasible coefficients, and there are gIBk, mM solution sets at level k. 

However, for k > s we have to contend with potentially empty solution sets. Re-
call  that  k = elogB mu.  Whenever  k > k,  the  number  of  feasible  coefficients  c  at
level k is gHm, BkL rather than gHBk, mL.

Lemma 2. Let l = minHk, s - 1L and set

N = ‚

k=0

l

gI Bk, mM + minIgHm, BkL - gHBk, mL, gIm, Bk+1MM.
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If k ¥ s, then the number of disjoint solutions sets is N; otherwise, it is N + gH Bk, mL. 

Corollary 1. The size of the minimal DFA recognizing numbers in base B that
are divisible by m is given by

mHm, BL = N or mHm, BL = N + gHB k, mL, depending on whether k ¥ s.

Corollary 2. The length of the longest witness for any state in  is r. 

B. Alexeev [1]  has  found a  way to avoid following the hierarchy of  solution sets
all  the  way  to  the  end,  at  least  in  some  cases.  Let  a  be  the  least  k  such  that
gIm, BkM - gIm, Bk+1M < gIBk, mM.  Note  that  a § s,  and  it  may  well  happen  that
a < s. 

Lemma 3. The number of disjoint solutions sets is ⁄k=0
a-1 gIBk, mM + gHm, BaL.

For a proof see [1].

‡ Reverse Base B
· Brute Force

For reverse base-B notation, the construction of the minimal DFA  = m,B  that
accepts all  strings w œ SB

*  that denote numbers divisible by m  is somewhat more
complicated. One possible choice of a canonical, though not necessarily minimal,
DFA is  to use as the state set a Cartesian product HmLäP,  where P  is  the multi-
plicative submonoid of m generated by B. The right action is given by

Hp, qL ÿ a = Hq p + a, B qLmod m,

the initial state is H0, 1L, and the final states are of the form H0, _L. Thus, the first
component maintains the numerical value of the input string, modulo m, and the
second provides the appropriate multiplier for the next digit.

In[32]:= m = 10; B = 5;
M =

DivisibilityDFA@m, B, Full Ø True, Direction Ø BackwardD

Out[33]= DFA@20, -5,
882, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14, 16,

16, 18, 18, 20, 20<, 84, 12, 6, 14, 8, 16, 10,
18, 12, 20, 14, 2, 16, 4, 18, 6, 20, 8, 2, 10<,

86, 2, 8, 4, 10, 6, 12, 8, á4à, 18, 14, 20, 16,
2, 18, 4, 20<, 88, 12, 10, 14, 12, 16, 14,
18, 16, 20, 18, 2, 20, 4, 2, 6, 4, 8, 6, 10<,

810, 2, 12, 4, 14, 6, 16, 8, 18, 10, 20, 12, 2,
14, 4, 16, 6, 18, 8, 20<<, 81<, 81, 2<D
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In[34]:= LanguageFA@M, 4D êê WordReverse êê WordToNumber@BD

Out[34]= 80, 250, 500, 150, 400, 50, 300, 550, 200, 450, 100, 350, 600,
130, 380, 30, 280, 530, 180, 430, 80, 330, 580, 230, 480, 10,
260, 510, 160, 410, 60, 310, 560, 210, 460, 110, 360, 610,
140, 390, 40, 290, 540, 190, 440, 90, 340, 590, 240, 490, 20,
270, 520, 170, 420, 70, 320, 570, 220, 470, 120, 370, 620<

Note that the size of this automaton is a multiple of m  and may be close to m2.
When m is prime and B is a generator of the multiplicative subgroup m

* , the ma-
chine will have mHm - 1L states.

In[35]:= M = DivisibilityDFA@11,
2, Full Ø True, Direction Ø BackwardD;

M êê

Size

Out[36]= 110

However, the minimal DFA here is much smaller.

In[37]:= M êê MinimizeFA êê Size

Out[37]= 11

Some more computation suggests that indeed the size of the minimal automaton
here is bounded by m + 1.

· The Canonical Nondeterministic Automaton

We  write  mRHm, BL  for  the  size  of  the  minimal  DFA  that  recognizes  numbers
divisible  by m  in  reverse  base-B  notation.  Since the deterministic  machine from
the previous section appears to be overly large, it is tempting to consider a nonde-
terministic  one in  an effort  to  determine mRHm, BL:  the  reversal  of  the canonical
DFA  = m,B  for standard base B. This machine has size m and the transitions
again are determined by linear equations modulo m. Recall that in  the transi-
tions given by p ÿ a = B p + a Hmod mL. Hence we have in R:

(2)q œ dIp, wRMóq solves B †w§ x + nHwL - p = 0 Hmod mL.

Thus, the reachable states in the full power automaton of R  are going to be the
solution sets of Bk x + c Hmod mL where c < Bk. Note that this time we are dealing
with cumulative solutions, not the strict hierarchy from the first section.

In[38]:= m = 15; B = 3;
M = ReverseFAüDivisibilityDFA@m, B, Full Ø TrueD;
MM = ToDFA@ M, Normalize Ø 2 D

Out[40]= DFA@7, -3, 882, 2, 3, 5, 7, 4, 6<,
83, 4, 3, 6, 2, 5, 7<, 83, 5, 3, 7, 4, 6, 2<<, 1, 81, 2<D
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In[41]:= States@MMD

Out[41]= 880<, 80, 5, 10<, 8<, 83, 8, 13<,
81, 6, 11<, 84, 9, 14<, 82, 7, 12<<

This state set is none other than the solution sets for equation (1). Since the func-
tion SolveModEq[m,B,k]  disregards  the  empty set  as  a  possible  solution set,
we only get six states out of seven in the next computation.
 
In[42]:= UnionüFlattenOneüTable@ SolveModEq@m, B, kD, 8k, 0, 3<D

Out[42]= 880<, 80, 5, 10<, 81, 6, 11<,
82, 7, 12<, 83, 8, 13<, 84, 9, 14<<

When m and B are coprime, there is no sink since the equation has a solution for
all choices of the coefficients. 

In[43]:= DivisibilityDFA@11, 6, Full Ø TrueD êê ReverseFA êê

ToDFA êê TrapStatesFA

Out[43]= 8<

Otherwise there are one or two trap states; in the latter case only one of the two
is final.

In[44]:= DivisibilityDFA@6, 4, Full Ø TrueD êê ReverseFA êê

ToDFA êê TrapStatesFA

Out[44]= 83<

In[45]:= DivisibilityDFA@8, 6, Full Ø TrueD êê ReverseFA êê

ToDFA êê TrapStatesFA

Out[45]= 83, 8<

Since we are not concerned with the strict hierarchy, it is actually a little easier to
count the number of all solution sets in this case.

In[46]:= m = 45; B = 3;
ProfilemB@m, BD

m: 45 B: 3 s: 2 k: 3

Out[47]//TableForm=

stride Ò coeffs Ò sols
0 45 1 1
1 15 1 3
2 5 1 9
3 5 3 9
4 5 9 9 
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The command DivisibilityDFA with option FullØTrue preserves the struc -
ture of the state set: 



In[48]:= Column@SolveModEq@m, B, Range@0, 4DDD

Out[48]=

880<<
880, 15, 30<<
880, 5, 10, 15, 20, 25, 30, 35, 40<<
880, 5, 10, 15, 20, 25, 30, 35, 40<<
880, 5, 10, 15, 20, 25, 30, 35, 40<<

As  before  let  s  be  the  least  k  such  that  gcdIBk, mM = gcdIBk+1, mM  and  let
k = elogB mu.  Also let r  be the maximum k  such that some new solution appears
at level k. Thus, if m is a power of B, we have r = k, and r = k + 1 otherwise.

Lemma 4.  Let  l = minHk, s - 1L  and  set  N = ⁄k=0
l g I Bk, mM+⁄k=l+1

s

gIm, BkM.

If m and B are coprime, then the number of solutions sets is N, otherwise it is N +1. 

Corollary 3.  The  size  of  the  power  automaton  obtained  from  m,B
R  is  N  or

N + 1 depending on whether m and B are coprime.

Corollary 4. The length of the longest witness for any state in powJm,B
R N is r. 

· Minimal Recognizers

We  claim  that  the  power  automaton  obtained  from  R  is  always  reduced  and
thus already minimal. To see this, call a state p in a machine M  rich if its behav-
ior  contains  at  least  one  word  not  in  the  behavior  of  Q - 8p<.  Clearly,  any  state
P Œ Q in the power automaton of M  that contains a rich state cannot be equiva-
lent to any other state. Hence it suffices to prove the following.

Lemma 5. All states in R are rich.

Proof.  Let  p  be  any  state  in  R  and  choose  a  word  w  such  that
nHwL = p Hmod mL, whence wR  is in the behavior of p in R. Suppose wR  lies also
in the behavior of state q.  Then 0 solves B†w§ x + nHwL - q = 0 Hmod mL  and p = q,
as required. ·

Corollary 5. The power automaton obtained from m,B
R  is minimal.
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‡ Fibonacci Base
Any strictly increasing sequence HUnL of positive integers where U0 = 1 gives rise
to a numeration system. In order to keep the number of distinct digits finite, the
condition  that  sup Un+1 ê Un  be  bounded  is  usually  imposed  [5].  In  this  case  the
digits  can be  chosen as  SD = 80, 1, … , D - 1<  where  D - 1 is  the  largest  integer
less than the supremum. In general, numbers will admit multiple representations
in such a numeration system and the normalized representation can be defined as
the one obtained by the natural greedy algorithm.
A  classical  example  is  given  by  the  Fibonacci  sequence  (starting  at  the  third
term):  HUnL = 1, 2, 3, 5, 8, 13, … .  In  this  case  lim Un+1 ê Un  is  the  golden  ratio,

f =
1+ 5

2
. Hence there are only digits 80, 1< and the normalized representation

can be computed as  follows.  We need a  little  auxiliary function that  returns the
largest Fibonacci number not greater than a given number. 

In[49]:= n = RandomInteger@10^4D;
LargestFibonacci@nD

Out[50]= 14

In[51]:= Fibonacci@%D § n < Fibonacci@% + 1D

Out[51]= True

Then a standard greedy algorithm will produce the Fibonacci representation of a
number. 

In[52]:= FibonacciDigitsRaw@1001D
FibonacciDigits@1001D

Out[52]= 816, 7, 2<

Out[53]= 81, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1<

A famous open problem related to the Fibonacci sequence is to determine the pe-
riod length of the sequence modulo m. These numbers are sometimes referred to
as Pisano numbers; see Sloane’s database of sequences at A001175. 

We write perHmL  for the length of the sequence modulo m.  It is easy to see that
the  function  is  multiplicative.  It  seems  that  for  primes  p  we  have
perHpeL = pe-1 perHpL  but  no  proof  is  known.  Moreover,  the  behavior  of  per  on
primes is not well understood either. It is known that perHpL = p - 1 exactly when
there  is  a  primitive  root  a  modulo  p  such  that  a2 = a + 1 Hmod pL.  Also,
perHmL = m if and only if m = 24 ÿ 5e.

In[54]:= Pisano@811, 19, 31, 41<D

Out[54]= 810, 18, 30, 40<
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· Brute Force

The obvious brute-force construction of a finite state machine for numbers in Fi-
bonacci base (not necessarily normalized) that are divisible by m  is  to use as the
state  set  the  Cartesian  product  Q = 80, 1, … , m - 1<ä 80, 1, … , n - 1<,  where
n = perHmL is the Pisano number of m. The right action on Q is given by 

Hp, qL ÿ 0 = Hp, q - 1 mod nL and
Hp, qL ÿ 1 = Ir + Fq+1 mod m, q - 1 mod nM

where  Fn  denotes  the  nth  Fibonacci  number.  It  is  straightforward  to  construct
this  automaton,  assuming  for  the  time  being  that  H0, 0L  is  the  initial  and  final
state.  The  method  employed  is  based  on  the  construction  of  a  cyclic  semi-
module, which is then interpreted as a DFA. Automata contains a command GenÖ
erateDFA that implements the necessary machinery.

In[55]:= Clear@dotD
m = 3;
n = Pisano@mD;
P0 = Mod@

RotateRight@ReverseüFibonacciüRange@0, n - 1D, 2D, mD;
dot@8p_, q_<, "0"D := 8 p, Mod@q + 1, nD <;

dot@8p_, q_<, "1"D :=

8 Mod@ p + P0@@q + 1DD, mD, Mod@q + 1, nD <;
q0 = 80, 0<;
M = GenerateDFA@ q0, dot, -2, Ò === q0 &, Normalize Ø 1 D

Out[62]= DFA@24, -2, 882, 4, 5, 6, 7, 9, 11, 10, 12, 13, 14,
15, 16, 17, 18, 19, 20, 1, 22, 21, 3, 23, 24, 8<,

83, 4, 5, 7, 8, 10, 9, 11, 13, 14, 12, 15, 16, 17,
19, 20, 18, 21, 1, 22, 23, 2, 24, 6<<, 1, 81<D

At  present,  the  automaton  only  accepts  words  with  a  length  that  is  a  multiple
of 8 = perH3L. 

In[63]:= LanguageFA@M, -40, SizeOnly Ø TrueD

Out[63]= 81, 0, 0, 0, 0, 0, 0, 0, 88, 0, 0, 0, 0, 0, 0, 0,
21856, 0, 0, 0, 0, 0, 0, 0, 5592448, 0, 0, 0, 0, 0,
0, 0, 1431655936, 0, 5726623232, 0, 0, 0, 0, 0, 0<
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In order to get words of arbitrary length we need to add more initial states. 

In[64]:= PositionList@ States@MD, Cases@ States@MD, 80, _<D D;

MM = SetInitialFA@ M, % D

Out[65]= FA@24, -2, 881, 1, 2<, 82, 1, 4<, 83, 1, 5<,
84, 1, 6<, 85, 1, 7<, 86, 1, 9<, 87, 1, 11<, 88, 1, 10<,
89, 1, 12<, 810, 1, 13<, 811, 1, 14<, 812, 1, 15<,
813, 1, 16<, 814, 1, 17<, á21à, 812, 2, 15<,
813, 2, 16<, 814, 2, 17<, 815, 2, 19<, 816, 2, 20<,
817, 2, 18<, 818, 2, 21<, 819, 2, 1<, 820, 2, 22<,
821, 2, 23<, 822, 2, 2<, 823, 2, 24<, 824, 2, 6<<,

81, 2, 4, 6, 9, 12, 15, 18<, 81<D

A small sanity check: the numerical values are all multiples of 3~and all such val-
ues seem to appear.

In[66]:= FromFibonacciWord@LanguageFA@ MM, -6 DD

Out[66]= 880<, 80<, 80, 3<, 80, 3, 3, 6<, 80, 3, 3, 6, 6, 9<,
80, 3, 3, 6, 6, 9, 9, 12, 15, 18<, 80, 3, 3, 6, 6, 9, 9, 12,
15, 18, 15, 18, 18, 21, 21, 24, 21, 24, 24, 27, 27, 30<<

· A Canonical Automaton

The automaton MM  from the  previous  section  is  nondeterministic  because  of  its
multiple  initial  states,  though  all  transitions  are  deterministic.  What  is  the  size
of the corresponding power automaton and minimal automaton?

In[67]:= MM êê ToDFA

Out[67]= DFA@9, -2, 881, 3, 4, 6, 2, 8, 5, 9, 7<,
82, 4, 5, 7, 8, 1, 3, 6, 9<<, 1, 81, 4, 7<D

In[68]:= MM êê MinimizeFA êê Size

Out[68]= 9

The  power  automaton  is  already  minimal  and  much  smaller  than  might  be  ex-
pected.  To  see  why,  note  that  MM  is  a  permutation  automaton.  Hence,  the  size
of  all  the  states  in  the  power  automaton  is  n,  the  Pisano  number  of  m,  and  the
number of initial states. In fact, all these states contain exactly one element Hp, rL
for each 0 § p < n. 
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In[69]:= ToDFA@ MM, Normalize Ø 2D êê States

Out[69]= 8880, 0<, 80, 1<, 80, 2<, 80, 3<,
80, 4<, 80, 5<, 80, 6<, 80, 7<<, 881, 1<, 80, 2<,
81, 3<, 82, 4<, 82, 5<, 80, 6<, 82, 7<, 81, 0<<,

881, 1<, 81, 2<, 80, 3<, 81, 4<, 82, 5<, 82, 6<,
80, 7<, 82, 0<<, 880, 0<, 81, 2<, 81, 3<, 80, 4<,
81, 5<, 82, 6<, 82, 7<, 82, 1<<, 880, 1<, 81, 2<,
82, 3<, 82, 4<, 80, 5<, 82, 6<, 81, 7<, 81, 0<<,

880, 1<, 81, 3<, 81, 4<, 80, 5<, 81, 6<, 82, 7<,
82, 0<, 82, 2<<, 880, 0<, 81, 1<, 82, 3<,
80, 4<, 82, 5<, 81, 6<, 81, 7<, 82, 2<<,

880, 2<, 82, 3<, 81, 4<, 81, 5<, 80, 6<, 81, 7<,
82, 0<, 82, 1<<, 880, 3<, 82, 4<, 81, 5<,
81, 6<, 80, 7<, 81, 0<, 82, 1<, 82, 2<<<

But then we might as well use sequences of length n of remainders modulo m as
states. The action on these sequences can be chosen to be 

P ÿ 0 = rotHPL
P ÿ 1 = rotHPL + F Hmod mL

where  F = HF0, F1, … , Fn-1Lmod m  is  a  period  of  the  Fibonacci  sequence  mod-
ulo  m,  and  rot  indicates  a  cyclic  shift  to  the  left.  It  is  straightforward  to  imple-
ment this automaton, using again the command GenerateDFA from Automata.

In[70]:= M = FibonacciDivDFA@ 3 D

Out[70]= DFA@9, -2, 881, 3, 4, 6, 2, 8, 5, 9, 7<,
82, 4, 5, 7, 8, 1, 3, 6, 9<<, 1, 81, 4, 7<D

While the states of these automata depend on the Pisano numbers, the size of the
automata appears simply to be m2.

In[71]:= TableForm@Table@ 8k, SizeüFibonacciDivDFA@kD<, 8k, 2, 6<D,
TableAlignments Ø RightD

Out[71]//TableForm=

2 4
3 9
4 16
5 25
6 36

It is easy to establish this conjecture. The states are all Fibonacci-type sequences
modulo m  but  with different initial  conditions.  All  initial  conditions occur since
the standard sequence has the form H0, 1, … , 1L. 

It  follows  that  the  minimal  automaton  can  have  size  at  most  m2.  To  show that
this  bound  is  tight,  it  suffices  to  prove  that  the  canonical  automaton  is  already
reduced. To this end, write 2 for the input 0n-1 1, so that P ÿ 2 = P + F Hmod mL.
Letting  P = Hp0, p1, … , pn-1L,  P ÿ 0i-1 2 j 0n-1  is  final  if  and  only
if pi = - j Hmod mL. Hence, all states have distinct behavior, and we are done.
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