
Divisibility and State Complexity
Klaus Sutner
It is well known that the set of all natural numbers divisible by a fixed mod-
ulus m can be recognized by a finite state machine, assuming that the num-
bers are written in standard base-B representation. It is much harder to de-
termine the state complexity of the minimal recognizer [1]. In this article
we discuss the size of minimal recognizers for a variety of numeration sys-
tems, including reverse base-B representation and the Fibonacci system.

‡ Automaticity and State Complexity
· Automaticity

A sequence a = HanL is B-automatic if it can be recognized by a finite state
machine in the sense that, on input n, the machine outputs an. Here n is usually
written in standard base-B notation, though other numeration systems are also
considered. A typical example is the Morse|Thue sequence HtnL, which is often
defined in terms of iterated morphisms. However, there is an alternative charac-
terization that shows that tn is the digit-sum of the binary expansion of n modulo
2. Thus, the Morse-Thue sequence is 2-automatic. The study of automaticity has
lately attracted a lot of attention; see the excellent book by Allouche and Shallit
[2].
Little is known about the state complexity of the finite state machines in ques-
tion: given an automatic sequence, what is the size mHaL of the smallest machine
that recognizes it? Often there is a canonical machine that witnesses the auto-
maticity of a sequence and provides an upper bound on mHaL, but the inherent
complexity of the minimization process often makes it very difficult to pin down
the exact state complexity of the sequence. Using a suitable computational envi-
ronment, it is possible to generate sample data that can lead to plausible conjec-
tures. More computation can then help to prune false assumptions and produce
answers, at least in a few selected cases. This is particularly important since the
combinatorics of our problem are fairly complicated, so that, in general, no sim-
ple closed-form solutions are available.
Most of the computations in this article depend on Automata, a large package
that implements finite state machines (see [3] for a description of a version of the
package). The package is freely available at www.cs.cmu.edu/~sutner and con-
tains installation instructions.

In[1]:= Needs@"Automata`automata`"D êê Quiet
Get@"Automata`experimental`"D êê Quiet
Get@"Automata`divisibility`"D
MakeAbbrevs@D;

MakeAbbrevs::msgon : Abbreviations turned on, use MakeAbbrevs@FalseD to turn off.

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

Divisibility and Horner Automata

In this article we study the state complexity of machines recognizing the set
m of all multiples of a fixed modulus m. It is not hard to see that m is indeed
B-recognizable for any base B ¥ 1 (we will focus on the interesting case B ¥ 2 in
what follows). We denote the digit alphabet 80, 1, … , B - 1< by SB. There is a
canonical deterministic finite automaton (DFA) = m,B that accepts all strings
w œ SB

* that denote numbers in base-B notation that are divisible by m. The state
set of is the set HmL = 80, 1, … , m - 1< of modular numbers and the right ac-
tion is given by

p ÿ a = B p + a mod m.

If we fix the initial state to q0 = 0, we have q0 ÿ w = nHwLmod m for any word w.
Here nHwL denotes the value of w: the value of word w = wk-1 wk-2 … w1 w0 is

nHwL = S i < k wi B i.

Thus, the action corresponds to the standard Horner scheme of evaluating poly-
nomials and we refer to these machines as Horner automata. Here are some sam-
ple Horner automata.

In[5]:= m = 5; B = 2;
M = DivisibilityDFA@ m, B, Full Ø TrueD

Out[6]= DFA@5, -2, 881, 3, 5, 2, 4<, 82, 4, 1, 3, 5<<, 1, 81<D

We generate all words in the acceptance language of length 6 and compute their
numerical values.

In[7]:= LanguageFA@M, 6D

Out[7]= 8000000, 000101, 001010, 001111, 010100, 011001, 011110,
100011, 101000, 101101, 110010, 110111, 111100<

In[8]:= WordToNumber@BD@%D

Out[8]= 80, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60<

As required, the remainders are all 0. Other useful information about the associ-
ated language can be extracted from the automaton. For example, we can obtain
a generating function for the growth rate.

In[9]:= Clear@xD
gs = GrowthSeriesDFA@M, xD

Out[10]=
1 - 2 x + x2 - x3

1 - 3 x + 3 x2 - 3 x3 + 2 x4

Divisibility and State Complexity 431

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

·

In[11]:= Series@ gs, 8x, 0, 10< D

Out[11]= 1 + x + x2 + 2 x3 + 4 x4 + 7 x5 + 13 x6 +

26 x7 + 52 x8 + 103 x9 + 205 x10 + O@xD11

Here is a different base and modulus.

In[12]:= m = 20; B = 15;
M = DivisibilityDFA@ m, B, Full Ø TrueD

Out[13]= DFA@20, -15,
881, 16, 11, 6, 1, 16, 11, 6, 1, 16, 11, 6, 1, 16, 11,

6, 1, 16, 11, 6<, 82, 17, 12, 7, 2, 17, 12, 7, 2,
17, 12, 7, 2, 17, 12, 7, 2, 17, 12, 7<, á11à,

814, 9, 4, 19, 14, 9, 4, 19, 14, 9, 4, 19, 14, 9, 4,
19, 14, 9, 4, 19<, 815, 10, 5, 20, 15, 10, 5, 20, 15,
10, 5, 20, 15, 10, 5, 20, 15, 10, 5, 20<<, 1, 81<D

In[14]:= WordToNumber@BD@LanguageFA@M, 2DD

Out[14]= 80, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220<

Horner automata provide an upper bound for the state complexity of divisibility:
mHm L § m, regardless of the base B. Alas, the bound is usually far from tight.

· Minimal Divisibility Recognizers
Pinning Down Behavioral Equivalence
Though the canonical Horner DFAs fail to be minimal, in general they are still
helpful in determining the structure of the minimal recognizers. Recall that any
DFA for a regular language covers the minimal DFA, so we need to determine
the fibers of the covering map. Abstractly, we can describe the corresponding par-
tition as follows. Let

 k, B = 9c œ 0 § c < B k =.

It is well known that for radix B representation, automaticity of divisibility fol-
lows from the fact that the following equivalence relation has a finite index when
X = m :

x ªm,B yó" k ¥ 0, c œ k,BIB k x + c œ X õB k y + c œ X M

[4]. The index of this equivalence relation is none other than the state complexity
we are interested in.
However, this characterization does not readily produce a reasonable description
of the state complexity.
By applying a standard minimization algorithm to our Horner automata we can
generate some data that will guide the search for a description of the state com-
plexity. In the following table m is the row index and B is the column index.

432 Klaus Sutner

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

In[15]:= tab = Table@
Size@MinimizeFA@DivisibilityDFA@m, B, Full Ø TrueDDD,
8m, 12<, 8B, 16<D;

TableForm@ tab, TableHeadings Ø Automatic,
TableSpacing Ø 81, 1<, TableAlignments Ø RightD

Out[16]//TableForm=

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3
4 4 3 4 2 4 3 4 2 4 3 4 2 4 3 4 2
5 5 5 5 5 2 5 5 5 5 2 5 5 5 5 2 5
6 6 4 3 4 6 2 6 4 3 4 6 2 6 4 3 4
7 7 7 7 7 7 7 2 7 7 7 7 7 7 2 7 7
8 8 4 8 3 8 5 8 2 8 5 8 3 8 5 8 2
9 9 9 3 9 9 4 9 9 2 9 9 4 9 9 4 9

10 10 6 10 6 3 6 10 6 10 2 10 6 10 6 3 6
11 11 11 11 11 11 11 11 11 11 11 2 11 11 11 11 11
12 12 5 5 4 12 3 12 4 5 7 12 2 12 7 5 4

We write mHm, BL for the size of the minimal DFA that recognizes numbers divisi-
ble by m in base-B notation. If we disregard B = 1, the table suggests that
mHm, mL = 2. Moreover, for m and B coprime we have mHm, BL = m, so that the
Horner automaton is already minimal. Both observations are easy to prove.

For the remaining cases, note that for any word w œ SB
k we have in :

p ÿ w = Bk p + nHwL Hmod mL.

The behavior of state p in is therefore

9w œ SB
* B†w§ p + nHwL = 0 Hmod mL=.

Define the witness for p to be the length-lex minimal word w in the behavior
of p.

Proposition 1. Two states are behaviorally equivalent if and only if they have
the same witness.
Suppose p has a witness of length k. Then p is a solution of the linear equation

(1)B k x + c = 0 Hmod mL,

where the additive coefficient is bounded as 0 § c < B k. Thus, in order to deter-
mine equivalence of states, we have to characterize the solution sets of this equa-
tion. Let

k,c : the set of all solutions to equation H1L

and

k,c
£ : the set of all solutions to equation H1L which are not in ‹ l<k l,c.

We will refer to these solution sets as cumulative versus strict. Note that
k,c Œ k+1, Bc. Since the length of the behavioral witness matters, rather than just
the associated numerical value c = nHwL, we have to consider the strict rather than
just the cumulative solution sets. Our goal is to determine the number of solu-
tion sets and the levels at which they appear. As it turns out, the combinatorics
are somewhat complicated so that the easy availability of sample data is crucial.

Divisibility and State Complexity 433

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

We will refer to these solution sets as cumulative versus strict. Note that
k,c Œ k+1, Bc. Since the length of the behavioral witness matters, rather than just
the associated numerical value c = nHwL, we have to consider the strict rather than
just the cumulative solution sets. Our goal is to determine the number of solu-
tion sets and the levels at which they appear. As it turns out, the combinatorics
are somewhat complicated so that the easy availability of sample data is crucial.

Examples
Here are some examples of solution sets. We use a little wrapper function SolÖ
veModEq to solve modular equations in a useful format. The strict version re-
moves solutions from lower levels. For coprime modulus and base all solution
sets have size one; all parameters c are feasible in the sense that equation (1) has a
solution at some level k.

In[17]:= m = 10; B = 3;
Column@Table@SolveModEq@m, B, kD, 8k, 0, 2<DD

Out[18]=

880<<
880<, 83<, 86<<
880<, 81<, 82<, 83<, 84<, 85<, 86<, 87<, 88<<

Here modulus and base are not coprime. The size of the solution sets reaches a
plateau at level s = 2.

In[19]:= m = 15; B = 3;
Column@Table@Sort@SolveModEq@m, B, kDD, 8k, 0, 3<DD

Out[20]=

880<<
880, 5, 10<<
880, 5, 10<, 81, 6, 11<, 83, 8, 13<<
880, 5, 10<, 81, 6, 11<, 82, 7, 12<, 83, 8, 13<, 84, 9, 14<<

Note that the solution sets are of the form a0 + i d for i = 0, 1, … . We refer to d
as the stride of the solution set. In the example, d = 5.
Here the size of the solution sets increases until all of m appears as a solution
somewhere.

In[21]:= m = 16; B = 6;
Column@Table@Sort@SolveModEq@m, B, kDD, 8k, 0, 4<DD

Out[22]=

880<<
880, 8<, 82, 10<, 85, 13<<
880, 4, 8, 12<, 81, 5, 9, 13<, 82, 6, 10, 14<, 83, 7, 11, 15<<
880, 2, 4, 6, 8, 10, 12, 14<, 81, 3, 5, 7, 9, 11, 13, 15<<
880, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15<<

434 Klaus Sutner

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

Here are the same examples with strict solutions. The coprime case is trivial, so
we skip it.

In[23]:= m = 15; B = 3;
Column@Table@

Sort@SolveModEq@m, B, k, Mode Ø Strict, Full Ø FalseDD,
8k, 0, 3<DD

Out[24]=

880<<
885, 10<<
881, 6, 11<, 83, 8, 13<<
882, 7, 12<, 84, 9, 14<<

Note how the size of some of the strict solutions sets deviates from gcdIBk, mM.

In[25]:= m = 16; B = 6;
Column@Table@

Sort@SolveModEq@m, B, k, Mode Ø Strict, Full Ø FalseDD,
8k, 0, 2<DD

Out[26]=

880<<
888<, 82, 10<, 85, 13<<
881, 9<, 84, 12<, 86, 14<, 83, 7, 11, 15<<

Counting Cumulative Solutions
Let us tacitly assume that parameter c is feasible; that is, gcdIB k, mM c, in which
case the cardinality of k,c is gcdIBk, mM; the empty solution set is dealt with sepa-
rately. There are two natural parameters that are important for the description
of all solution sets. First, the depth k of m and B is the least level k for which
‹c k,c = m. Second, the saturation value s is the least k such that

gcdIBk, mM = gcdIBk+1, mM. Note that

k = elogB mu.

Letting gHa, bL = a ê gcdHa, bL, at level k, there are gIB k, mM solution sets
of size gcdIB k, mM each. Within each solution set the elements satisfy
x = y Imod gIm, BkMM.

Lemma 1. Let l = minHk, s - 1L and set N = ⁄k=0
l gI Bk, mM+⁄k=l +1

s

gIm, BkM. If m and B are coprime, then the total number of distinct solutions sets is N,
otherwise it is N + 1.
We leave the proof as an exercise.

Examples
We can get a short overview of the structure of the solution hierarchy with the
command ProfilemB. The command prints out the key parameters, the stride
of the solution sets, the number of solution sets, and the size of the solution sets.
Here is a case where s < k.

Divisibility and State Complexity 435

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

In[27]:= m = 15; B = 3;
ProfilemB@ m, B D

m: 15 B: 3 s: 1 k: 2

Out[28]//TableForm=

stride Ò coeffs Ò sols
0 15 1 1
1 5 1 3
2 5 3 3
3 5 9 3

Here is a sanity check.

In[29]:= Column@Table@SolveModEq@m, B, kD, 8k, 0, 3<DD

Out[29]=

880<<
880, 5, 10<<
880, 5, 10<, 83, 8, 13<, 81, 6, 11<<
880, 5, 10<, 81, 6, 11<, 82, 7, 12<, 83, 8, 13<, 84, 9, 14<<

And here is s > k.

In[30]:= m = 16; B = 6;
ProfilemB@ m, B D

m: 16 B: 6 s: 4 k: 1

Out[31]//TableForm=

stride Ò coeffs Ò sols
0 16 1 1
1 8 3 2
2 4 9 4

Counting Strict Solutions
Let s be the least k such that gcdIBk, mM = gcdIBk+1, mM, and let r, the rank of m
and B, be the maximum k such that k,c ≠ « for some c. It is easy to see that if m
is a power of B we have r = k, and r = k + 1 otherwise; hence, it suffices to con-
sider levels k § r. Up to level s the solution sets grow exponentially in size, so
k,c ≠ « for all feasible coefficients, and there are gIBk, mM solution sets at level k.

However, for k > s we have to contend with potentially empty solution sets. Re-
call that k = elogB mu. Whenever k > k, the number of feasible coefficients c at
level k is gHm, BkL rather than gHBk, mL.

Lemma 2. Let l = minHk, s - 1L and set

N = ‚

k=0

l

gI Bk, mM + minIgHm, BkL - gHBk, mL, gIm, Bk+1MM.

436 Klaus Sutner

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

If k ¥ s, then the number of disjoint solutions sets is N; otherwise, it is N + gH Bk, mL.

Corollary 1. The size of the minimal DFA recognizing numbers in base B that
are divisible by m is given by

mHm, BL = N or mHm, BL = N + gHB k, mL, depending on whether k ¥ s.

Corollary 2. The length of the longest witness for any state in is r.

B. Alexeev [1] has found a way to avoid following the hierarchy of solution sets
all the way to the end, at least in some cases. Let a be the least k such that
gIm, BkM - gIm, Bk+1M < gIBk, mM. Note that a § s, and it may well happen that
a < s.

Lemma 3. The number of disjoint solutions sets is ⁄k=0
a-1 gIBk, mM + gHm, BaL.

For a proof see [1].

‡ Reverse Base B
· Brute Force

For reverse base-B notation, the construction of the minimal DFA = m,B that
accepts all strings w œ SB

* that denote numbers divisible by m is somewhat more
complicated. One possible choice of a canonical, though not necessarily minimal,
DFA is to use as the state set a Cartesian product HmLäP, where P is the multi-
plicative submonoid of m generated by B. The right action is given by

Hp, qL ÿ a = Hq p + a, B qLmod m,

the initial state is H0, 1L, and the final states are of the form H0, _L. Thus, the first
component maintains the numerical value of the input string, modulo m, and the
second provides the appropriate multiplier for the next digit.

In[32]:= m = 10; B = 5;
M =

DivisibilityDFA@m, B, Full Ø True, Direction Ø BackwardD

Out[33]= DFA@20, -5,
882, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14, 16,

16, 18, 18, 20, 20<, 84, 12, 6, 14, 8, 16, 10,
18, 12, 20, 14, 2, 16, 4, 18, 6, 20, 8, 2, 10<,

86, 2, 8, 4, 10, 6, 12, 8, á4à, 18, 14, 20, 16,
2, 18, 4, 20<, 88, 12, 10, 14, 12, 16, 14,
18, 16, 20, 18, 2, 20, 4, 2, 6, 4, 8, 6, 10<,

810, 2, 12, 4, 14, 6, 16, 8, 18, 10, 20, 12, 2,
14, 4, 16, 6, 18, 8, 20<<, 81<, 81, 2<D

Divisibility and State Complexity 437

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

In[34]:= LanguageFA@M, 4D êê WordReverse êê WordToNumber@BD

Out[34]= 80, 250, 500, 150, 400, 50, 300, 550, 200, 450, 100, 350, 600,
130, 380, 30, 280, 530, 180, 430, 80, 330, 580, 230, 480, 10,
260, 510, 160, 410, 60, 310, 560, 210, 460, 110, 360, 610,
140, 390, 40, 290, 540, 190, 440, 90, 340, 590, 240, 490, 20,
270, 520, 170, 420, 70, 320, 570, 220, 470, 120, 370, 620<

Note that the size of this automaton is a multiple of m and may be close to m2.
When m is prime and B is a generator of the multiplicative subgroup m

* , the ma-
chine will have mHm - 1L states.

In[35]:= M = DivisibilityDFA@11,
2, Full Ø True, Direction Ø BackwardD;

M êê

Size

Out[36]= 110

However, the minimal DFA here is much smaller.

In[37]:= M êê MinimizeFA êê Size

Out[37]= 11

Some more computation suggests that indeed the size of the minimal automaton
here is bounded by m + 1.

· The Canonical Nondeterministic Automaton

We write mRHm, BL for the size of the minimal DFA that recognizes numbers
divisible by m in reverse base-B notation. Since the deterministic machine from
the previous section appears to be overly large, it is tempting to consider a nonde-
terministic one in an effort to determine mRHm, BL: the reversal of the canonical
DFA = m,B for standard base B. This machine has size m and the transitions
again are determined by linear equations modulo m. Recall that in the transi-
tions given by p ÿ a = B p + a Hmod mL. Hence we have in R:

(2)q œ dIp, wRMóq solves B †w§ x + nHwL - p = 0 Hmod mL.

Thus, the reachable states in the full power automaton of R are going to be the
solution sets of Bk x + c Hmod mL where c < Bk. Note that this time we are dealing
with cumulative solutions, not the strict hierarchy from the first section.

In[38]:= m = 15; B = 3;
M = ReverseFAüDivisibilityDFA@m, B, Full Ø TrueD;
MM = ToDFA@ M, Normalize Ø 2 D

Out[40]= DFA@7, -3, 882, 2, 3, 5, 7, 4, 6<,
83, 4, 3, 6, 2, 5, 7<, 83, 5, 3, 7, 4, 6, 2<<, 1, 81, 2<D

438 Klaus Sutner

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

In[41]:= States@MMD

Out[41]= 880<, 80, 5, 10<, 8<, 83, 8, 13<,
81, 6, 11<, 84, 9, 14<, 82, 7, 12<<

This state set is none other than the solution sets for equation (1). Since the func-
tion SolveModEq[m,B,k] disregards the empty set as a possible solution set,
we only get six states out of seven in the next computation.

In[42]:= UnionüFlattenOneüTable@ SolveModEq@m, B, kD, 8k, 0, 3<D

Out[42]= 880<, 80, 5, 10<, 81, 6, 11<,
82, 7, 12<, 83, 8, 13<, 84, 9, 14<<

When m and B are coprime, there is no sink since the equation has a solution for
all choices of the coefficients.

In[43]:= DivisibilityDFA@11, 6, Full Ø TrueD êê ReverseFA êê

ToDFA êê TrapStatesFA

Out[43]= 8<

Otherwise there are one or two trap states; in the latter case only one of the two
is final.

In[44]:= DivisibilityDFA@6, 4, Full Ø TrueD êê ReverseFA êê

ToDFA êê TrapStatesFA

Out[44]= 83<

In[45]:= DivisibilityDFA@8, 6, Full Ø TrueD êê ReverseFA êê

ToDFA êê TrapStatesFA

Out[45]= 83, 8<

Since we are not concerned with the strict hierarchy, it is actually a little easier to
count the number of all solution sets in this case.

In[46]:= m = 45; B = 3;
ProfilemB@m, BD

m: 45 B: 3 s: 2 k: 3

Out[47]//TableForm=

stride Ò coeffs Ò sols
0 45 1 1
1 15 1 3
2 5 1 9
3 5 3 9
4 5 9 9

Divisibility and State Complexity 439

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

The command DivisibilityDFA with option FullØTrue preserves the struc -
ture of the state set:

In[48]:= Column@SolveModEq@m, B, Range@0, 4DDD

Out[48]=

880<<
880, 15, 30<<
880, 5, 10, 15, 20, 25, 30, 35, 40<<
880, 5, 10, 15, 20, 25, 30, 35, 40<<
880, 5, 10, 15, 20, 25, 30, 35, 40<<

As before let s be the least k such that gcdIBk, mM = gcdIBk+1, mM and let
k = elogB mu. Also let r be the maximum k such that some new solution appears
at level k. Thus, if m is a power of B, we have r = k, and r = k + 1 otherwise.

Lemma 4. Let l = minHk, s - 1L and set N = ⁄k=0
l g I Bk, mM+⁄k=l+1

s

gIm, BkM.

If m and B are coprime, then the number of solutions sets is N, otherwise it is N +1.

Corollary 3. The size of the power automaton obtained from m,B
R is N or

N + 1 depending on whether m and B are coprime.

Corollary 4. The length of the longest witness for any state in powJm,B
R N is r.

· Minimal Recognizers

We claim that the power automaton obtained from R is always reduced and
thus already minimal. To see this, call a state p in a machine M rich if its behav-
ior contains at least one word not in the behavior of Q - 8p<. Clearly, any state
P Œ Q in the power automaton of M that contains a rich state cannot be equiva-
lent to any other state. Hence it suffices to prove the following.

Lemma 5. All states in R are rich.

Proof. Let p be any state in R and choose a word w such that
nHwL = p Hmod mL, whence wR is in the behavior of p in R. Suppose wR lies also
in the behavior of state q. Then 0 solves B†w§ x + nHwL - q = 0 Hmod mL and p = q,
as required. ·

Corollary 5. The power automaton obtained from m,B
R is minimal.

440 Klaus Sutner

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

‡ Fibonacci Base
Any strictly increasing sequence HUnL of positive integers where U0 = 1 gives rise
to a numeration system. In order to keep the number of distinct digits finite, the
condition that sup Un+1 ê Un be bounded is usually imposed [5]. In this case the
digits can be chosen as SD = 80, 1, … , D - 1< where D - 1 is the largest integer
less than the supremum. In general, numbers will admit multiple representations
in such a numeration system and the normalized representation can be defined as
the one obtained by the natural greedy algorithm.
A classical example is given by the Fibonacci sequence (starting at the third
term): HUnL = 1, 2, 3, 5, 8, 13, … . In this case lim Un+1 ê Un is the golden ratio,

f =
1+ 5

2
. Hence there are only digits 80, 1< and the normalized representation

can be computed as follows. We need a little auxiliary function that returns the
largest Fibonacci number not greater than a given number.

In[49]:= n = RandomInteger@10^4D;
LargestFibonacci@nD

Out[50]= 14

In[51]:= Fibonacci@%D § n < Fibonacci@% + 1D

Out[51]= True

Then a standard greedy algorithm will produce the Fibonacci representation of a
number.

In[52]:= FibonacciDigitsRaw@1001D
FibonacciDigits@1001D

Out[52]= 816, 7, 2<

Out[53]= 81, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1<

A famous open problem related to the Fibonacci sequence is to determine the pe-
riod length of the sequence modulo m. These numbers are sometimes referred to
as Pisano numbers; see Sloane’s database of sequences at A001175.

We write perHmL for the length of the sequence modulo m. It is easy to see that
the function is multiplicative. It seems that for primes p we have
perHpeL = pe-1 perHpL but no proof is known. Moreover, the behavior of per on
primes is not well understood either. It is known that perHpL = p - 1 exactly when
there is a primitive root a modulo p such that a2 = a + 1 Hmod pL. Also,
perHmL = m if and only if m = 24 ÿ 5e.

In[54]:= Pisano@811, 19, 31, 41<D

Out[54]= 810, 18, 30, 40<

Divisibility and State Complexity 441

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

· Brute Force

The obvious brute-force construction of a finite state machine for numbers in Fi-
bonacci base (not necessarily normalized) that are divisible by m is to use as the
state set the Cartesian product Q = 80, 1, … , m - 1<ä 80, 1, … , n - 1<, where
n = perHmL is the Pisano number of m. The right action on Q is given by

Hp, qL ÿ 0 = Hp, q - 1 mod nL and
Hp, qL ÿ 1 = Ir + Fq+1 mod m, q - 1 mod nM

where Fn denotes the nth Fibonacci number. It is straightforward to construct
this automaton, assuming for the time being that H0, 0L is the initial and final
state. The method employed is based on the construction of a cyclic semi-
module, which is then interpreted as a DFA. Automata contains a command GenÖ
erateDFA that implements the necessary machinery.

In[55]:= Clear@dotD
m = 3;
n = Pisano@mD;
P0 = Mod@

RotateRight@ReverseüFibonacciüRange@0, n - 1D, 2D, mD;
dot@8p_, q_<, "0"D := 8 p, Mod@q + 1, nD <;

dot@8p_, q_<, "1"D :=

8 Mod@ p + P0@@q + 1DD, mD, Mod@q + 1, nD <;
q0 = 80, 0<;
M = GenerateDFA@ q0, dot, -2, Ò === q0 &, Normalize Ø 1 D

Out[62]= DFA@24, -2, 882, 4, 5, 6, 7, 9, 11, 10, 12, 13, 14,
15, 16, 17, 18, 19, 20, 1, 22, 21, 3, 23, 24, 8<,

83, 4, 5, 7, 8, 10, 9, 11, 13, 14, 12, 15, 16, 17,
19, 20, 18, 21, 1, 22, 23, 2, 24, 6<<, 1, 81<D

At present, the automaton only accepts words with a length that is a multiple
of 8 = perH3L.

In[63]:= LanguageFA@M, -40, SizeOnly Ø TrueD

Out[63]= 81, 0, 0, 0, 0, 0, 0, 0, 88, 0, 0, 0, 0, 0, 0, 0,
21856, 0, 0, 0, 0, 0, 0, 0, 5592448, 0, 0, 0, 0, 0,
0, 0, 1431655936, 0, 5726623232, 0, 0, 0, 0, 0, 0<

442 Klaus Sutner

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

In order to get words of arbitrary length we need to add more initial states.

In[64]:= PositionList@ States@MD, Cases@ States@MD, 80, _<D D;

MM = SetInitialFA@ M, % D

Out[65]= FA@24, -2, 881, 1, 2<, 82, 1, 4<, 83, 1, 5<,
84, 1, 6<, 85, 1, 7<, 86, 1, 9<, 87, 1, 11<, 88, 1, 10<,
89, 1, 12<, 810, 1, 13<, 811, 1, 14<, 812, 1, 15<,
813, 1, 16<, 814, 1, 17<, á21à, 812, 2, 15<,
813, 2, 16<, 814, 2, 17<, 815, 2, 19<, 816, 2, 20<,
817, 2, 18<, 818, 2, 21<, 819, 2, 1<, 820, 2, 22<,
821, 2, 23<, 822, 2, 2<, 823, 2, 24<, 824, 2, 6<<,

81, 2, 4, 6, 9, 12, 15, 18<, 81<D

A small sanity check: the numerical values are all multiples of 3~and all such val-
ues seem to appear.

In[66]:= FromFibonacciWord@LanguageFA@ MM, -6 DD

Out[66]= 880<, 80<, 80, 3<, 80, 3, 3, 6<, 80, 3, 3, 6, 6, 9<,
80, 3, 3, 6, 6, 9, 9, 12, 15, 18<, 80, 3, 3, 6, 6, 9, 9, 12,
15, 18, 15, 18, 18, 21, 21, 24, 21, 24, 24, 27, 27, 30<<

· A Canonical Automaton

The automaton MM from the previous section is nondeterministic because of its
multiple initial states, though all transitions are deterministic. What is the size
of the corresponding power automaton and minimal automaton?

In[67]:= MM êê ToDFA

Out[67]= DFA@9, -2, 881, 3, 4, 6, 2, 8, 5, 9, 7<,
82, 4, 5, 7, 8, 1, 3, 6, 9<<, 1, 81, 4, 7<D

In[68]:= MM êê MinimizeFA êê Size

Out[68]= 9

The power automaton is already minimal and much smaller than might be ex-
pected. To see why, note that MM is a permutation automaton. Hence, the size
of all the states in the power automaton is n, the Pisano number of m, and the
number of initial states. In fact, all these states contain exactly one element Hp, rL
for each 0 § p < n.

Divisibility and State Complexity 443

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

In[69]:= ToDFA@ MM, Normalize Ø 2D êê States

Out[69]= 8880, 0<, 80, 1<, 80, 2<, 80, 3<,
80, 4<, 80, 5<, 80, 6<, 80, 7<<, 881, 1<, 80, 2<,
81, 3<, 82, 4<, 82, 5<, 80, 6<, 82, 7<, 81, 0<<,

881, 1<, 81, 2<, 80, 3<, 81, 4<, 82, 5<, 82, 6<,
80, 7<, 82, 0<<, 880, 0<, 81, 2<, 81, 3<, 80, 4<,
81, 5<, 82, 6<, 82, 7<, 82, 1<<, 880, 1<, 81, 2<,
82, 3<, 82, 4<, 80, 5<, 82, 6<, 81, 7<, 81, 0<<,

880, 1<, 81, 3<, 81, 4<, 80, 5<, 81, 6<, 82, 7<,
82, 0<, 82, 2<<, 880, 0<, 81, 1<, 82, 3<,
80, 4<, 82, 5<, 81, 6<, 81, 7<, 82, 2<<,

880, 2<, 82, 3<, 81, 4<, 81, 5<, 80, 6<, 81, 7<,
82, 0<, 82, 1<<, 880, 3<, 82, 4<, 81, 5<,
81, 6<, 80, 7<, 81, 0<, 82, 1<, 82, 2<<<

But then we might as well use sequences of length n of remainders modulo m as
states. The action on these sequences can be chosen to be

P ÿ 0 = rotHPL
P ÿ 1 = rotHPL + F Hmod mL

where F = HF0, F1, … , Fn-1Lmod m is a period of the Fibonacci sequence mod-
ulo m, and rot indicates a cyclic shift to the left. It is straightforward to imple-
ment this automaton, using again the command GenerateDFA from Automata.

In[70]:= M = FibonacciDivDFA@ 3 D

Out[70]= DFA@9, -2, 881, 3, 4, 6, 2, 8, 5, 9, 7<,
82, 4, 5, 7, 8, 1, 3, 6, 9<<, 1, 81, 4, 7<D

While the states of these automata depend on the Pisano numbers, the size of the
automata appears simply to be m2.

In[71]:= TableForm@Table@ 8k, SizeüFibonacciDivDFA@kD<, 8k, 2, 6<D,
TableAlignments Ø RightD

Out[71]//TableForm=

2 4
3 9
4 16
5 25
6 36

It is easy to establish this conjecture. The states are all Fibonacci-type sequences
modulo m but with different initial conditions. All initial conditions occur since
the standard sequence has the form H0, 1, … , 1L.

It follows that the minimal automaton can have size at most m2. To show that
this bound is tight, it suffices to prove that the canonical automaton is already
reduced. To this end, write 2 for the input 0n-1 1, so that P ÿ 2 = P + F Hmod mL.
Letting P = Hp0, p1, … , pn-1L, P ÿ 0i-1 2 j 0n-1 is final if and only
if pi = - j Hmod mL. Hence, all states have distinct behavior, and we are done.

444 Klaus Sutner

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

‡ References
[1] B. Alexeev, “Minimal DFAs for Testing Divisibility,” Journal of Computer and System Sci-

ences, 69(2), 2004 pp. 235|243. DOI Link: doi:10.1016/j.jcss.2004.02.001.

[2] J-P. Allouche and J. Shallit, Automatic Sequences: Theory, Applications, Generalizations,
Cambridge: Cambridge University Press, 2003.

[3] K. Sutner, “Automata: A Hybrid System for Computational Automata Theory,” in Pro-
ceedings of the Seventh International Conference on Implementation and Application
of Automation (CIAA’02), Tours, France (J-M. Champarnaud and D. Maurel, eds.), Berlin:
Springer, 2002 pp. 221|227.

[4] V. Bruyère, G. Hansel, C. Michaux, and R. Villmaire, “Logic and p-Recognizable Sets of In-
tegers,” Bulletin of the Belgian Mathematical Society, 1, 1994 pp. 191|238.

[5] V. Bruyère and G. Hansel, “Recognizable Sets of Numbers in Nonstandard Bases,” in
Proceedings of the Second Latin American Symposium on Theoretical Informatics,
Valparaiso, Chile (R. A. Baeza-Yates, E. Goles, and P. V. Poblete, eds.), Lecture Notes in
Computer Science, 911, London: Springer-Verlag, 1995 pp. 167|197.

About the Author
Klaus Sutner teaches computer science and internal martial arts at Carnegie Mellon
University. His research interests lie in the area of computability, in particular, computa-
tions involving finite state machines and related systems such as cellular automata. Over
the years, the Automata package used in this article has proven to be a great asset in
research in automata theory and in teaching this beautiful subject to students.

Klaus Sutner
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213
sutner@cs.cmu.edu

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

Klaus Sutner, “Divisibility and State Complexity,” The Mathematica Journal, 2010.
dx.doi.org/doi:10.3888/tmj.11.3–8.

Divisibility and State Complexity 445

Divisibility and State Complexity 445

