
The Mathematica® Journal

Tzitzeica Curves and Surfaces
Alfonso F. Agnew
Alexandru Bobe
Wladimir G. Boskoff
Bogdan D. Suceava

Tzitzeica curves and surfaces represent early examples of affine-
invariant geometrical objects. At the time Gheorghe Tzitzeica 
was studying these objects, affine differential geometry (ADG) 
was in its infancy. ADG was motivated by Felix Kleinʼs influential 
Erlangen program, where a geometry was defined by its set of 
invariants under a group of symmetries. We find that the issue 
lends itself well to a relatively elementary discussion suitable for 
upper-division undergraduates and nonspecialists, while still 
providing the basic thrust of this elegant subject. Moreover, the 
topic is an excellent one to illustrate the utility of Mathematicaʼs 
symbolic manipulation and graphics capabilities. For this reason, 
the article nicely complements the existing literature on the uses 
of software in differential geometry (such as [1]), and it provides 
material that would be useful for inclusion in a differential 
geometry course either as an application or a project. 

‡ 1. Introduction

In  the  early  decades  following  the  1872  publication  of  Klein’s  Erlangen  program  [2],
Gheorghe  Tzitzeica  was  studying  particular  affine  invariants  in  three-dimensional  space,
leading  to  what  are  now  known  as  Tzitzeica  curves  and  Tzitzeica  surfaces  [3,  4].  The
results were among the earliest contributions to the then-budding area of mathematics that
now goes  by  the  name  affine  differential  geometry  [5,  6].  Tzitzeica  curves  and  surfaces
satisfy at each point the metric relation 

(1)G =  b,

where

Ë For curves, G denotes the torsion, d  is the distance from the origin to the osculat-
ing plane, b = 2, and a œ .
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Ë For surfaces, G denotes the Gaussian curvature, d is the distance from the origin to
the tangent plane, b = 4, and a œ .

In  our  treatment  of  this  topic  we  aim  to  provide  interesting  material  with  historical
remarks suitable  for  inclusion in  an undergraduate  differential  geometry course,  or  as  an
introduction  for  the  nonspecialist.  We  emphasize  how the  topic  makes  particularly  good
use of Mathematica, in the spirit of Alfred Gray’s excellent book [1]. We note that such a
discussion is absent from the literature so far. 

In  the  second  section,  we  review  the  basic  ideas  needed  for  a  discussion  of  Tzitzeica
surfaces:  affine  invariance  and the  basic  tools  of  the  differential  geometry  of  curves  and
surfaces  in  three  dimensions.  In  Section  3  we  define  Tzitzeica  curves  and  surfaces,
provide  examples,  and explicitly  exhibit  the  affine  invariance.  This  issue  is  continued in
an  appendix,  where  the  program  is  conveniently  summarized  to  allow  the  user  to  test
whether or not a surface is Tzitzeica by inputting the coordinate functions of a surface. In
Section 4 we take up the issue of asymptotic curves and their special relation to Tzitzeica
surfaces,  eventually  proving  that  on  a  Tzitzeica  surface,  asymptotic  curves  are  Tzitzeica
curves. Lastly, we make some concluding remarks in the final section.

‡ 2. Background
An  affine  transformation  may  always  be  written  x öA x + b,  where  A  is  a  nonsingular
matrix  and  b  represents  a  translation.  If  b = 0,  then  we  have  a  centro-affine  transfor-
mation,  while  if  det A = 1,  we  have  an  equi-affine  transformation.  In  the  case  of  affine
geometry,  one  is  concerned  with  objects  or  propositions  that  retain  their  character  when
an  affine  transformation  is  applied  to  the  underlying  space.  For  example,  a  circle  in  the
plane is not an object of affine geometry, because under a general affine transformation of
the plane, a circle is mapped to an ellipse with nontrivial eccentricity. On the other hand,
one can show that an ellipse will always map to an ellipse under an affine transformation,
and  so  the  property  of  “being  an  ellipse”  is  invariant  under  an  affine  transformation:  an
ellipse is an object of affine geometry.

Example 1. Here is the unit circle x2 + y2 = 1.
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ParametricPlotCost, Sint, t, 0, 2 Pi, AspectRatio  1
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We apply the shear transformation A =
1 1
0 1

 to the circle to obtain an ellipse.

A  1 1
0 1

;
A.x, y
x  y, y
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ParametricPlotA.Cost, Sint, t, 0, 2 Pi,
AspectRatio  1
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We now recall, in brief, some basic ingredients of the differential geometry of curves and
surfaces  in  three-dimensional  space  [7].  Consider  any  regular  curve  a : Iö3  (taken,
without loss of generality, to be of unit speed »» a£ »»= 1), where I  is an interval in . As-
sociated  with  a  at  each  of  its  points  is  its  orthonormal  Frenet  frame  8T, N, B<.  Here,
T = a£  is the unit tangent vector field, N = T£ ê »»T£ »» is the principal normal vector field,
and  B = TµN  is  the  binormal  vector  field.  We  note  that  the  osculating  plane  of  a  at  a
point is the plane spanned by T and N; in particular, B is normal to the osculating plane.
We allow a standard abuse of notation and denote the position vector for a point p = aHt0L
on the curve by a. Then, the orthogonal distance from the origin to the osculating plane is
the projection dosc = B ÿ a.

A subset M Õ 3  is a surface,  provided that each point of M  is contained in a neighbor-
hood that is, in turn, contained in the image of an injective regular map of an open subset
of 2  into M . Furthermore, this injective map (commonly called a patch) will be assumed
to have a continuous inverse. When working within the image of a single patch in M ,  as
we  always  will,  it  is  possible  to  define  an  unambiguous  unit  normal  vector  field  U.  We
may then define the shape operator S of M  at a point p as

(2)SpHvL = -“vU ,

where  v  is  any  tangent  vector  at  p  and  “vU  is  the  covariant  derivative  of  U  in  the
direction of v  (i.e., the vector field whose Cartesian components result from applying the
directional derivative in the direction v to each of the component functions of U). Geomet-
rically,  the  shape  operator  describes  how  the  surface  is  bending  in  the  direction  v  by
giving  a  measure  of  how  the  direction  of  the  unit  normal  (hence  the  tangent  spaces)  is
changing. The shape operator is, at each point p, a linear operator on the tangent space at
p, and the determinant of this operator is the Gaussian curvature KHpL of M  at p.
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where  v  is  any  tangent  vector  at  p  and  “vU  is  the  covariant  derivative  of  U  in  the
direction of v  (i.e., the vector field whose Cartesian components result from applying the
directional derivative in the direction v to each of the component functions of U). Geomet-
rically,  the  shape  operator  describes  how  the  surface  is  bending  in  the  direction  v  by
giving  a  measure  of  how  the  direction  of  the  unit  normal  (hence  the  tangent  spaces)  is
changing. The shape operator is, at each point p, a linear operator on the tangent space at
p, and the determinant of this operator is the Gaussian curvature KHpL of M  at p.

Given a patch of M , say x = xHu, vL, we may compute K = l n-m2

E G-F2
, where

(3)
E = x ÿ x, F = x ÿ xv, G = x ÿ x,
l = xuu ÿU, m = xuv ÿU, n = xvv ÿU,

and  where  xu =
∂
∂u x, xuv =

∂2

∂u ∂v x,  etc.  We  note  that  xu  and  xv  are  tangent  to  M .

Furthermore, we note that for a fixed point p = x Hu0, v0L of M , the orthogonal distance d
from  the  origin  in  3  to  the  tangent  plane  to  M  at  p  is  given  by  the  projection  of  the
position vector x = x Hu0, v0L for p onto U. In short, 

(4)dtan = U ÿ x.

‡ 3. Tzitzeica Curves and Surfaces

· 3.1 Basic Concepts

A curve  a  in  3  is  called  a  Tzitzeica  curve  provided  there  exists  a  constant  a œ   such
that for all points on a, 

(5)t = a dosc2,

where t is the torsion of a, defined by B£ = -t N. The torsion provides a measure of the
extent to which a is moving out of its osculating plane. Thus, in rough terms, a Tzitzeica
curve is a curve for which the motion of a  in the direction of B  is in fixed proportion to
the square of the B component of the curve a.

A  surface  M  in  3  is  called  a  Tzitzeica  surface,  provided  there  exists  a  constant  a œ 
such that for all points on M , 

(6)K = a dtan4,

where K  is the Gaussian curvature of the surface defined above. K  provides a measure of
the  extent  to  which M ,  near  a  point  p,  is  curving like  a  paraboloid  HK > 0L,  hyperboloid
HK < 0L, or a cylinder or plane HK = 0L. Thus, again in rough terms, a Tzitzeica surface is
a surface for which its bending is in fixed proportion to the normal component of the posi-
tion vector x.
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· 3.2 Example of the Tzitzeica Surface z = 1 ê x y

We work in the patch rHx, yL = Hx, y, 1 ê Hx yLL by first defining z. In the following, we in-
clude the output explicitly only for the most relevant quantities.

z  1  x y;

We plot a portion of the surface for a visual reference.

ParametricPlot3Dx, y, z, x, y, z, x, y, z,
x, y, z, x, 0.1, 4, y, 0.1, 4

We define the patch.

r  x, y, z;

We compute the tangent vector fields.

rx  Dr, x; ry  Dr, y;

The components of the first fundamental form, E, F, G, may now be computed.
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e  rx.rx

1 
1

x4 y2

f  rx.ry

1

x3 y3

g  ry.ry

1 
1

x2 y4

We define a unit normal vector field using the cross product.

u  Crossrx, ry  SqrtCrossrx, ry.Crossrx, ry  Simplify

 1

x2 1  1

x2 y4
 1

x4 y2
y

,
1

x 1  1

x2 y4
 1

x4 y2
y2

,
1

1  1

x2 y4
 1

x4 y2



Once we compute the second derivatives of r, we will be in a position to compute the com-
ponents of the shape operator.

rxx  Drx, x; rxy  Drx, y; ryy  Dry, y;

l  u.rxx  Simplify
2

x3 1  1

x2 y4
 1

x4 y2
y

m  u.rxy  Simplify
1

x2 1  1

x2 y4
 1

x4 y2
y2
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n  u.ryy  Simplify
2

x 1  1

x2 y4
 1

x4 y2
y3

We may now compute the Gaussian curvature of z = 1 ê Hx yL.

k  l n  m^2  e g  f^2  Simplify
3 x4 y4

x2  y2  x4 y42

The distance to the tangent plane is as follows.

d  u.r  Simplify  Expand
3

x 1  1

x2 y4
 1

x4 y2
y

Compare the following to the curvature above.

d^4  Simplify
81 x4 y4

x2  y2  x4 y42

Lastly, we compute the ratio of the Gaussian curvature to the fourth power of the distance
to the tangent plane. We find that z = 1 ê Hx yL is a Tzitzeica surface, since this ratio is con-
stant over the surface.

k  d^4  Simplify
1

27
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· 3.3 Applying a General Centro-Affine Transformation

We now compute the effect of a general centro-affine transformation on our Tzitzeica sur-
face. We will find that the result will again be a Tzitzeica surface with the same numerical
factor a = 1 ê 27, up to a consistent volume term. The volume term indicates that, strictly
speaking,  the  Tzitzeica  property  is  invariant  under  the  subgroup  of  central  equi-affine
(i.e., volume-preserving with no translation) transformations, where the determinant of the
representing matrix is 1.

It  is  impressive  to  note  how difficult  and  tedious  such  a  calculation  (albeit  an  important
one) would be to do by hand, whereas the entire computation takes approximately 15 sec-
onds on a dual 2.5GHz Apple Macintosh G5. Also, we note that by inputting values into
the general matrix A, one can determine the effect of a particular centro-affine transforma-
tion,  and  the  resulting  invariance  is  exhibited.  Of  course,  the  matrix  must  still  be
nonsingular.

The computational details are largely the same as above; however, we first apply the gen-
eral  transformation  by  multiplying  the  position  vector  r  by  the  matrix
A = 88a11, a12, a13<, 8a21, a22, a23<, 8a31, a32, a33<<.

z  1  x y;
1

x y

r  a11, a12, a13, a21, a22, a23, a31, a32, a33.x, y, z

a11 x 
a13

x y
 a12 y, a21 x 

a23

x y
 a22 y, a31 x 

a33

x y
 a32 y

Compute the tangent vectors and their inner products.

rx  Dr, x; ry  Dr, y; e  rx.rx; f  rx.ry;
g  ry.ry;

The computation of  the unit  normal vector  U  is  fairly complicated and is  often the most
CPU intensive (aside from simplification routines, of course).

u  Crossrx, ry  SqrtCrossrx, ry.Crossrx, ry 
Simplify;

In  order  to  compute  the  Gaussian  curvature,  we  once  again  compute  second  derivatives
and their inner products with the unit normal.
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rxx  Drx, x; rxy  Drx, y; ryy  Dry, y;
l  u.rxx  Simplify; m  u.rxy  Simplify;
n  u.ryy  Simplify;

We explicitly compute the curvature.

k  l n  m^2  e g  f^2  Simplify
3 a13 a22 a31  a12 a23 a31  a13 a21 a32 

a11 a23 a32  a12 a21 a33  a11 a22 a332 

 a12 
a13

x y2
a11 

a13

x2 y
 a22 

a23

x y2
a21 

a23

x2 y


a32 
a33

x y2
a31 

a33

x2 y

2



a12 
a13

x y2

2

 a22 
a23

x y2

2

 a32 
a33

x y2

2

a11 
a13

x2 y

2

 a21 
a23

x2 y

2

 a31 
a33

x2 y

2

a13 a21 x  a22 y  a12 y a23  a21 x2 y 
a11 x a23  a22 x y22  a13 a31 x  a32 y 
a12 y a33  a31 x2 y  a11 x a33  a32 x y22 

a23 a31 x  a32 y  a22 y a33  a31 x2 y 

a21 x a33  a32 x y22

We compute the distance to the tangent plane, so that we may compare its fourth power to
the Gaussian curvature.

d  u.r  Sqrtu.u  Simplify;
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d^4  Simplify
81 a13 a22 a31  a12 a23 a31  a13 a21 a32 

a11 a23 a32  a12 a21 a33  a11 a22 a334 x4 y4 
a13 a21 x  a22 y  a12 y a23  a21 x2 y  a11 x a23  a22 x y22 

a13 a31 x  a32 y  a12 y a33  a31 x2 y 
a11 x a33  a32 x y22  a23 a31 x  a32 y 
a22 y a33  a31 x2 y  a21 x a33  a32 x y222

k  d^4  Simplify
1  27 a13 a22 a31  a12 a23 a31 

a13 a21 a32  a11 a23 a32  a12 a21 a33  a11 a22 a332

We now see that the transformed surface is a Tzitzeica surface with the same constant of
proportionality (up to a volume term).

k Deta11, a12, a13, a21, a22, a23, a31, a32, a33^2 
d^4  Simplify

1

27

‡ 4. The Role of Asymptotic Curves
In this section we present the connection between Tzitzeica curves and Tzitzeica surfaces.
In  particular,  we  show  that  asymptotic  curves  in  a  Tzitzeica  surface  must  be  Tzitzeica
curves. Recall that a curve a in a surface M  is asymptotic if its acceleration is always tan-
gent to M:

(7)a″ ÿU = 0.

In this case, the surface normal U and the Frenet binormal B coincide, so that the osculat-
ing plane of the curve and the surface tangent plane coincide at each point of a. It follows
that

(8)dosc = dtan.

Furthermore, it can be shown ([7], p.230) that the torsion and Gaussian curvature are re-
lated by 

(9)K = -t2.

If  we  suppose  that  a  is  an  asymptotic  curve  in  a  Tzitzeica  surface  M ,  then  we  have  for
some a œ ,
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If  we  suppose  that  a  is  an  asymptotic  curve  in  a  Tzitzeica  surface  M ,  then  we  have  for
some a œ ,

(10)K = a dtan4.

Substituting for dtan from (8) and for K from (9), we get

(11)-t2 = a dosc4,

leading to the defining condition for a to be a Tzitzeica curve,

(12)t = aè dosc2,

where aè = -a.

From equation (9), it follows that a surface with asymptotic curves must have nonpositive
curvature. In particular, the previously presented surface z = 1 ê Hx yL will not have asymp-
totic  curves.  To  see  an  example  of  nontrivial  asymptotic/Tzitzeica  curves  on  a  Tzitzeica
surface,  consider  the  surface  z = 1 ë Ix2 + y2M,  which  is  indeed a  Tzitzeica  surface.  It  can

be verified that the invariant ratio k ë d4 is -4 ê 27.

Below is a standard plot of a portion of the surface in cylindrical coordinates. It is not too
difficult to convince oneself using this plot and one’s imagination that the fourth power of
the  distance  from the  origin  to  the  tangent  plane  is  proportional  to  the  curvature  at  each
point. For example, consider the region between the flat base and the narrow funnel parts,
where the magnitude of the curvature is modestly positive. This is precisely where the tan-
gent plane is nearly perpendicular to the position vector, and so there is a correspondingly
modest  distance  from  the  origin  to  the  tangent  plane  that  is  approximately  equal  to  the
length of the position vector. As one moves away from this region to a region of smaller
curvature  (down  into  the  flatter  base),  the  tangent  plane  is  now  nearly  horizontal  and
nearly passes through the origin, indicating a correspondingly short distance between the
origin and the tangent plane.
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ParametricPlot3D Cos,  Sin, 1

2
, , 4, 4,

, 0, Pi

Using  standard  methods  to  compute  asymptotic  curves  (see  for  example  Chapter  18  in
[1]), we find the asymptotic curves to be the images of logarithmic spirals of the form

(13)q = v± 3 log@rD

(14)r@qD Ø u e
±q

3 ,

where u and v are new parameters. We plot one of the spirals to aid in visualization.

Tzitzeica Curves and Surfaces 13

The Mathematica Journal 12 © 2010 Wolfram Media, Inc.



ParametricPlotCos E


3 , Sin E


3 , , 4, 4

-6 -4 -2

-4

-3

-2

-1

1

2

3

By converting to the coordinates u and v, we obtain a parametrization whose constant coor-
dinate curves are asymptotic/Tzitzeica curves on the surface. Here is one part of the sur-
face with such a parametrization, making explicit the Tzitzeica curves.
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ParametricPlot3D
v

2 3 u Cos 1
2

v  3 Logu,


v

2 3 u Sin 1
2

v  3 Logu, 


v

3

u
, u, .1, 5,

v, 5, 5
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‡ 5. Conclusion
In this article we have considered the Klein viewpoint of geometry in the case where the
symmetry group is the affine group (or one of its subgroups). This results in the study of
affine differential geometry. One of the earliest results in this direction was the aforemen-
tioned  papers  of  Gheorghe  Tzitzeica  [3,  4],  where  he  established  the  class  of  affine-
invariant  curves  and  surfaces  that  bear  his  name.  Although  the  concept  has  been  gener-
alized  to  the  case  of  hypersurfaces  in  arbitrary  dimensions,  it  is  the  case  of  curves  and
surfaces  in  three  dimensions  that  is  particularly  suitable  for  discussion  at  relatively
elementary levels. Moreover, the subject is still an active area of research, though perhaps
not  as  active  as  in  the  previous  century,  when  the  basic  theory  and  results  were  being
worked out. Lastly, we have given two detailed examples of how well-suited the material
is,  visually  and computationally,  for  using  Mathematica.  There  are  many more  activities
and projects that can be performed with this material.

‡ 6. Appendix: The Tzitzeica Test
Here we summarize the commands to test if a given surface patch is Tzitzeica. 

Ë Fill in the coordinates x, y, z of your surface as functions of the surface parameters
u and v. 

Ë In  order  to  effect  a  centro-affine  transformation,  multiply  r  by  the  desired
nonsingular matrix (numerical or symbolic).

As  is  typical  in  these  kinds  of  computations,  each  surface  may require  specific  simplifi-
cation  commands  at  various  steps.  We  find  that  for  simple  surfaces,  the  Simplify
command usually suffices.

The Tzitzeica Test:

x 

y 

z 

r  x, y, z

ru  Dr, u

rv  Dr, v
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e  ru.ru

f  ru.rv

g  rv.rv

normal  Crossru, rv  SqrtCrossru, rv.Crossru, rv 
Simplify

ruu  Dru, u

ruv  Dru, v

rvv  Drv, v

l  normal.ruu  Simplify

m  normal.ruv

n  normal.rvv  Simplify

k  l n  m^2  e g  f^2  Simplify

d  normal.r  Sqrtnormal.normal  Simplify

d^4  Simplify

k  d^4  Simplify
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