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In this article, we introduce the package Moment Closure, which 
may be used to generate closure differential equations and 
closure approximations of the cumulants (moments) of a 
nonlinear stochastic compartmental model with Markov 
transitions. Specifically, this package defines the pair of 
functions MomentClosureSystem and 
MomentClosurePlots that achieves moment closure through 
the neglect of high-order cumulants. We demonstrate the 
application of these functions through the analysis of several test 
models. In select cases, the resulting cumulant approximations 
are compared across neglect levels and to exact answers.

‡ Introduction
The complexity  of  directly  estimating  the  probability  distribution  of  nonlinear  stochastic
systems  with  Markov  transitions  rapidly  increases  toward  intractability  with  the
magnitude  of  the  assumed  state  space.  This  increase  in  complexity  is  magnified  in  a
network setting when there are  multiple  nodes (compartments)  and numerous intensities.
The  formulation  of  a  partial  differential  equation  that  describes  the  moment-generating
function of such systems is immediate, yet the solution to this is often intractable for even
the  simplest  systems,  thereby  leaving  the  direct  estimation  of  the  moments  unattained.
Moment-closure  methods,  however,  may  be  used  to  specify  a  functional  relationship
between the moments of the system, which thereby allows for the approximation of only a
few  moments  through  a  closed  set  of  approximating  differential  equations.  These  func-
tional relationships are achieved either through the imposition of a known parametric prob-
ability  distribution  on  the  state  space  of  the  system  or  through  the  neglect  of  the  high-
order cumulants.

The  field  of  moment  closure  was  pioneered  by  Peter  Whittle  in  the  late  1950s  [1].  His
work consisted of the imposition of a normal distribution on the state space of the system,
thereby  providing  a  two-moment  (cumulant)  closure  scheme.  While  the  normal
assumption  provides  computational  simplicity  in  the  estimation  of  the  moments,  these
approximations are often not accurate due to the frequent large deviation of the actual, yet
unknown,  state  distribution  from  the  normal.  Since  this  pioneering  work,  several
researchers  have  investigated  using  other  parametric  distributions  and/or  high  neglect
levels  with  moment-closure  methods  [2,  3,  4].  Findings  suggest  that  the  accuracy  of
carefully  chosen  parametric  distributions  is  often  superior  to  that  of  neglect,  yet  the
difficulty in selecting such a distribution for a given system does not make this approach
robust  in  the  general  sense.  As  an  alternative,  several  recent  investigations  have  focused
on  simply  raising  the  level  of  cumulant  neglect  to  achieve  accurate  approximations  [5].
Findings suggest that this approach may lead to increased accuracy, yet at the expense of
computational  effort  and  possible  stability  problems.  Other  related  investigations  have
focused on the accuracy of using moment-closure approximates in moment-based density
approximations [6], and on the stability of moment-closure methods [7, 8].
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computational  effort  and  possible  stability  problems.  Other  related  investigations  have
focused on the accuracy of using moment-closure approximates in moment-based density
approximations [6], and on the stability of moment-closure methods [7, 8].

The application of moment closure with neglect has been applied to many diverse areas in
science and engineering, including queueing network modeling [9, 10], air traffic model-
ing [11], ecological models [12], and epidemic modeling [13]. As readily available compu-
tational  resources  increase,  applications  for  moment  closure  with  high-order  neglect  will
become  more  prevalent  across  disciplines.  The  package  Moment  Closure  was  created  to
provide an efficient mechanism to generate the closure differential  equations and closure
approximations of the cumulants of a stochastic Markov system with up to 25 nodes by ne-
glecting those cumulants that exceed a user-defined level. In the remaining sections of this
article, we will provide a general overview of moment closure with cumulant neglect, and
demonstrate  the  use  of  this  package  on  several  test  systems.  Limitations  of  the  package
and areas of future research in moment-closure methods will be discussed.

‡ Overview of Moment Closure
Consider  a  stochastic  Markov  n-node  system  with  the  state  space  XHtL = HX1HtL,
X2HtL, …, XnHtLL for Xi œ R+. The set of instantaneous changes in the state of this network
in  Dt  is  given  by  B = 88b1, b2, …, bn<, …<  with  the  corresponding  set  of  intensities
F = 8 f1HX1, X2, … , XnL, …<,  where  fiHX1, X2, … , XnL  is  a  polynomial  intensity  function
with non-negative powers corresponding to the ith set in B. As shown in Bailey [14], a par-
tial differential equation of the moment-generating function of X is given by
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where D fiH ÿ L is a partial differential operator defined for all fi eR+  that replaces each term

xi
n  with the nth  partial derivative of MH ÿ L with respect to qi. Note that equation (1) may be

rewritten for the cumulant-generating function as
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An  expansion  of  the  partial  derivatives  and  exponentials  in  equation  (2)  yields  an
expression  that  is  polynomial  in  qi.  An  equation  for  these  coefficients  yields  a  set  of
ordinary  differential  equations,  which  is  subsequently  closed  through  the  definition  of  a
neglect (truncation) level above which all cumulants will be set to zero.

As an example, consider a simple two-compartment birth-death model. The birth intensity
is  given  by  l,  the  transition  by  m x1

2,  and  the  death  by  g x1 x2.  For
B = 881, 0<, 8-1, 1<, 80, -1<<  and F = 9l, m x1

2, g x1 x2=,  the partial differential equation of
the cumulant-generating function is given by

(3)

∂

∂ t
exp HK Hq1, q2, tLL = l H exp Hq1L- 1L

∂

∂q1
exp HK Hq1, q2, tL L+

m Hexp Hq2 - q1L- 1L
∂2

∂q1
2

exp HK Hq1, q2, tL L+

g Hexp H-q2L- 1L
∂2

∂q1 ∂q2
exp HK Hq1, q2, tL L.

An expansion of the partials and exponentials under a neglect level of two yields the fol-
lowing set of ordinary differential equations.
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(4)

d

dt
k10 = l - m Ik10

2 + k20M,

d

dt
k01 = m Ik10

2 + k20M- g Hk10 k01 + k11L,

d

dt
k11 = m I2 k10 k20 - k10

2 + 2 k10 k11 - k20M- g Hk10 k11 + k01 k20L,

d

dt
k20 = l + m Ik20 + k10

2 - 4 k10 k20M,

d

dt
k02 = g Hk10 k01 + k11 - 2 k01 k02 - 2 k01 k11L+ m I4 k10 k11 + k20 + k10

2 M.

The  solution  to  this  set  of  equations  approximates  the  first-  and  second-order  cumulants
(moments) of the system. Note that a cumulant neglect level of two is equivalent to the im-
position of a parametric normal distribution, as was originated by Whittle. 

‡ The Moment Closure Package
The  Moment  Closure  package  defines  the  pair  of  functions  MomentClosureSystem
and  MomentClosurePlots  that  respectively  return  closure  differential  equations  and
closure  approximations  of  the  cumulants  of  a  nonlinear  stochastic  compartmental  model
with Markov transitions. The package is compatible with Mathematica 4.0 or higher, and
should  be  placed  in  a  directory  that  is  accessible  for  loading.  It  is  available  from
www.mathematica-journal.com/data/uploads/2010/10/MomentClosure.m.  It  may  be  call-
ed from the front end as follows.

 MomentClosure.m

The function MomentClosureSystem  receives a numerically or symbolically defined
system and a level of neglect as input, and returns a set of closure differential equations in-
clusive  of  cumulants  through  the  neglect  level.  The  function  is  entered  as
MomentClosureSystemInt, Neg where:

Ë Int  is a list b__, fix__,   of the instantaneous transitions and in-
tensities of the system.

Ë Neg set to m defines that level above which all cumulants will be neglected.

Note that as a matter of formatting for the input, state variables must be subscripted with
the  compartment  number,  Greek  letters  must  be  used  as  parameters  in  symbolically  de-
fined systems, and multiplication is not implied. Further help for the usage of this function
may be called from the front end by entering the following command.

? MomentClosureSystem

The  function  MomentClosurePlots  receives  a  numerically  defined  system,  initial
conditions  for  the  state  of  the  system,  the  neglect  level,  the  time  horizon,  a  list  of  those
cumulants for which displayed output is  desired,  and a list  of the desired range for the y
axis  for  the  plotted  output  of  the  cumulants.  The  function  is  entered  as
MomentClosurePlotsInt, Init, Neg, TimeSpan, Fns, Range, where: 
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conditions  for  the  state  of  the  system,  the  neglect  level,  the  time  horizon,  a  list  of  those
cumulants for which displayed output is  desired,  and a list  of the desired range for the y
axis  for  the  plotted  output  of  the  cumulants.  The  function  is  entered  as
MomentClosurePlotsInt, Init, Neg, TimeSpan, Fns, Range, where: 

Ë Int  is a list b__, fix__,   of the instantaneous transitions and in-
tensities of the system.

Ë Init  is  a  list  Kc__0  Value_,   of  the  cumulants  that  have  a
nonzero initial value at time zero.

Ë Neg set to m defines that level above which all cumulants will be neglected.

Ë TimeSpan set to t defines the upper endpoint of the interval H0, tL through which
evaluation occurs.

Ë Fns  is  a  list  Kc__t,   of  those  cumulants  whose  solution  will  be
plotted.

Ë Range is a list lower_, upper_ of upper and lower endpoints of the y axis
of one-to-one correspondence with PlotFunctions.

The default  of Init  is  an empty list  that denotes all  cumulants initially set to zero. The
default of Range is an empty list with the range of the y axis of all plots set to All. As
before,  note  that  state  variables  must  be  subscripted  with  the  compartment  number  and
multiplication  is  not  implied.  Help  may  be  obtained  within  the  front  end  by  calling  the
usage of this function as follows.

? MomentClosurePlots

Internal  to  the  Moment  Closure  package code,  the  functions  MomentClosureSystem
and  MomentClosurePlots  call  the  functions  LHSPDE,  EQUATE,  INITIAL,  and
NUMERICALSOLUTION. In particular:

Ë LHSPDE  defines  a  moment-  and  cumulant-generating  function  of  proper  dimen-
sionality  for  the  defined  system,  and  generates  the  left-hand  side  (LHS)  of  the
partial  differential  equation  of  the  cumulant-generating  function  (CGF)  given  in
equation (2).

Ë EQUATE generates the right-hand side (RHS) of the partial differential equation of
the CGF given in equation (2),  and equates the LSH and RHS coefficients of the
partial  differential  equation to generate a  closed set  of  ordinary differential  equa-
tions (ODEs) for the cumulants, an example of which is given in equation (4).

Ë INITIAL creates a list of initial conditions for the ODEs.

Ë NUMERICALSOLUTION  calls  the  NDSolve  function  to  numerically  solve  the
ODEs.
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‡ Numerical Applications of Moment Closure with 
Cumulant Neglect
We  use  the  MomentClosureSystem  and  MomentClosurePlots  functions  of  the
Moment Closure  package to generate the closure differential  equations and cumulant  ap-
proximations  for  various  stochastic  compartmental  models  with  topologies  that  are  fre-
quently encountered. Select cases highlight the accuracy of cumulant approximations and
demonstrate  the  effect  of  increasing  the  neglect  level.  A  discussion  about  stability  and
other limitations of this package follows.

· Two-Compartment Birth-Death Model

Consider  the  two-compartment  birth-death  model  presented  previously.  Recall  that  the
birth intensity is given by l, the transition by m x1

2, and the death by g x1 x2. The following
command calls  the  function  MomentClosureSystem  to  generate  the  moment-closure
differential  equations  for  the  cumulants  of  the  random  state  vector  XHtL = HX1HtL, X2HtLL
under a neglect level of m = 2. Note that the state variables of the multiple compartment
systems are subscripted, that is, xi  corresponds to the instantaneous number of entities in
compartment  i,  and  the  symbolic  parameters  of  the  intensity  functions  are  entered  as
Greek letters.

MomentClosureSystem
1, 0, , 1, 1,  x1^2, 0, 1,  x1 x2, 2

Building Partial Differential Equation

Starting Matching Procedure

Ordinary Differential Equations Generated

K0, 1t   K0, 1t K1, 0t 
 K1, 0t2   K1, 1t   K2, 0t,

K1, 0t     K1, 0t2   K2, 0t,
K0, 2t   K0, 1t K1, 0t  2  K0, 2t K1, 0t 

 K1, 0t2   K1, 1t  2  K0, 1t K1, 1t 
 ,
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 K1, 0t2   K1, 1t  2  K0, 1t K1, 1t 
4  K1, 0t K1, 1t   K2, 0t,

K1, 1t   K1, 0t2   K1, 0t K1, 1t 
2  K1, 0t K1, 1t   K2, 0t   K0, 1t K2, 0t 
2  K1, 0t K2, 0t, K2, 0t 

   K1, 0t2   K2, 0t  4  K1, 0t K2, 0t

To further  this  example,  let  l = 10,  m = 2,  and  g = 2.  Assume that  the  first  cumulant  of
the  first  node  is  initially  set  to  10  and  all  other  cumulants  are  zero.  The  following
command calls the function MomentClosurePlots to display the closure-based expec-
tation  and  variance  of  X1HtL  through  time  t = 2  under  a  neglect  level  of  m = 2  over  the
respective ranges H0, 10L and H0, 5L. Note that K1, 0t and K2, 0t are the first
and second cumulants of the first  compartment, which correspond to the expectation and
variance of X1HtL, respectively.

MomentClosurePlots
1, 0, 10, 1, 1, 2 x1^2, 0, 1, 2 x1 x2,
K1, 00  10, 2, 2, K1, 0t, K2, 0t,
0, 10, 0, 5

Building Partial Differential Equation

Starting Matching Procedure

Ordinary Differential Equations Generated

Starting Solving Procedure

Plotting Results
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1.5

K @2, 0D@tD

Program Complete

We continue the  example presented previously  by raising the  neglect  level  to  m = 3 and
m = 4  and  displaying  comparative  plots  for  all  first-  and  second-order  cumulants,  which
correspond to the expectations, variances, and covariance of X1HtL and X2HtL. Note that the
input  to  the  function  MomentClosurePlots  that  was  used  to  generate  these  plots  is
omitted due to space considerations, yet consists of repetitively evaluating the function un-
der neglect levels of m = 2, 3, and 4, and displaying the plots together through the Show
command.
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· Simple Birth-Death Model

Consider  a  simple  birth-death  model  defined  by  B = 881<, 8-1<<  and  F = 91, .1 x2=.  The
following  command  calls  the  function  MomentClosureSystem  to  generate  the
moment-closure  differential  equations  for  the  cumulants  of  XHtL  under  a  neglect  level  of
m = 3.

MomentClosureSystem1, 1, 1, .1 x^2, 3

Building Partial Differential Equation

Starting Matching Procedure

Ordinary Differential Equations Generated
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K1t  1.  0.1 K1t2  0.1 K2t,
K2t  2. 0.5  0.05 K1t2 

0.05 K2t  0.2 K1t K2t  0.1 K3t,
K3t  6. 0.166667  0.0166667 K1t2 

0.0166667 K2t  0.1 K1t K2t 
0.1 K2t2  0.05 K3t  0.1 K1t K3t

The following command calls  the function MomentClosurePlots  to  display the clo-
sure-based first and second cumulants of XHtL through time t = 10 under a neglect level of
m = 3. 

MomentClosurePlots1, 1, 1, .1 x^2, , 3,
10, K1t, K2t, 

Building Partial Differential Equation

Starting Matching Procedure

Ordinary Differential Equations Generated

Starting Solving Procedure

Plotting Results

2 4 6 8 10
t

0.5

1.0
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2.0

2.5

K @1D@tD

Achieving Moment Closure through Cumulant Neglect 11

The Mathematica Journal 12 © 2010 Wolfram Media, Inc.



2 4 6 8 10
t

0.5

1.0

1.5

K @2D@tD

Program Complete

These  cumulant  approximations  are  compared  to  exact  measures  in  the  following  dis-
played  plots.  (The  exact  measures  were  obtained  through  the  direct  solution  of  the  Kol-
mogorov equations [15].) Note that the input used to generate these plots is omitted due to
space considerations.

2 4 6 8 10

0.5

1

1.5

2

2.5

3
K@1D@tD

Exact

Neglect
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· Three-Compartment Model with Finite Calling Population

Consider  a  three-compartment  model  with  a  finite  calling  population  defined  by
B = 88-1, 1, 0<, 80, -1, 1<, 80, 1, -1<, 80, 0, -1<<  and F = 9x1, .1 x2

2, .1 x2 x3, .5 x3
2=,  which

is graphically depicted in the following sketch.

X1 X2 X3

Assuming that there are initially 100 units available in the calling population, the follow-
ing command yields first cumulant approximations for each compartment and for the sum
of all three compartments through time t = 10 under a neglect level of m = 3. 

MomentClosurePlots
1, 1, 0, x1, 0, 1, 1, .1 x2^2, 0, 1, 1, .1 x2 x3,
0, 0, 1, .05 x3^2, K1, 0, 00  100, 3, 10,

K1, 0, 0t, K0, 1, 0t, K0, 0, 1t,
K1, 0, 0t  K0, 1, 0t  K0, 0, 1t,

0, 100, 0, 100, 0, 100, 0, 100

Building Partial Differential Equation

Starting Matching Procedure

Ordinary Differential Equations Generated

Starting Solving Procedure
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Plotting Results
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· Limitations

The package Moment Closure is comprehensive in the sense that it does not place any re-
strictions on the topology of the system that is entered, other than it must be less than 25
nodes in size. The ensuing set of ordinary differential equations, however, may not have a
stable solution for the set of initial conditions under which it is being solved. In particular,
stationary saddle points may define regions of instability in the feasible space [7],  which
is not uncommon for complex multidimensional systems. The Moment Closure package is
limited, in that it does not check for the stability of a solution prior to attempting to solve
the differential  equations numerically.  As such,  instability  is  often detected only through
error messages indicating a singularity while attempting to solve the differential equations
over  the  range  specified.  Specifying  alternative  initial  conditions  or  reparametrizing  the
system may lead to a stable solution in such cases.

‡ Conclusion
In  this  article,  we  introduced  the  package  Moment  Closure  and  have  demonstrated  its
power and simplicity in analyzing Markov systems. The study and application of moment-
closure  methods  with  cumulant  neglect,  however,  has  been  limited  historically.  It  is  our
conjecture  that  this  was  due  largely  to  the  lack  of  computational  hardware  and  software
necessary to perform such computations beyond the normal assumption. In our search of
the literature, we were unable to find any other documented software contained in a single
environment that is able to take general nonlinear Markov systems as input and return mo-
ment-closure approximations based on cumulant neglect as output. In this regard, we hope
that the package Moment Closure will support the research efforts of others and open av-
enues for insightful research related to moment closure. Areas of related research that we
are presently pursuing include the characterization of moment-closure stability, the devel-
opment of semi-parametric approaches to moment closure, and applying moment closure
to biological systems.
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