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Visualizing Minimal Surfaces
Rendering Solid Models with the Aid of 3D 
Printers

O. Michael Melko

3D printers are a potentially useful tool for geometric 
visualization in mathematical research and education. In this 
article, we describe the mathematics of minimal surfaces in 
some detail, and then we present a Mathematica package for 
generating solid model data of such surfaces. In particular, we 
show how the package was used to generate a 3D model of 
Costaʼs surface.

‡ Introduction
In [1], Palais describes a program for the visualization of mathematics through the use of
computer  graphics.  He  notes  that  visualization  has  been  instrumental  in  some  important
mathematical  discoveries  and  is  also  useful  for  educational  purposes.  With  this  in  mind,
he  proposes  the  creation  of  an  online  interactive  gallery  of  mathematical  visualization,
which  he  calls  a  “mathematical  exploratorium.”  As  helpful  as  computer  graphics  are  for
visualization, it can be argued that there is an additional benefit to be had in viewing and
handling  an  actual  physical  object.  Indeed,  there  has  been  a  long-standing  tradition  at
German  universities  of  producing  plaster  models  of  interesting  geometric  objects.
Nowadays,  physical  models can be easily created by means of stereolithography, or  “3D
printing technology.”

3D printers  produce  solid  objects  from appropriate  input  data.  They  were  originally  cre-
ated  for  rapid  prototyping  of  new  product  designs  but  are  increasingly  being  used  for
other  purposes,  such  as  highly  customized  manufacturing  and  scientific  visualization.
Their  applications  will  continue  to  grow as  the  underlying  technology  improves  and  de-
creases in cost. One type of 3D printer uses a powder-binder technology to create objects
via a layering technique: a thin layer of powder is spread across a planar surface, and then
a  print  head  applies  a  binder  within  the  cross-sectional  area  of  the  object  being  created.
This process is repeated, adding layer upon layer, until the object is complete.

As input, 3D printers require data specifying the vertices, polygons, and normals of the ob-
ject to be rendered. If the object is to be colored, the colors of the polygons must also be
provided. Various file formats may be used to store this data, including the Polygon File
Format (or PLY), which is also known as the Stanford Triangle Format. This is the file for-
mat used to render Costa’s surface and is described later.The Mathematica Journal 12 © 2010 Wolfram Media, Inc.



As input, 3D printers require data specifying the vertices, polygons, and normals of the ob-

provided. Various file formats may be used to store this data, including the Polygon File
Format (or PLY), which is also known as the Stanford Triangle Format. This is the file for-
mat used to render Costa’s surface and is described later.

We generate point (or vertex) data for Costa’s surface by means of its Weierstrass represen-
tation.  Loosely  speaking,  the  Weierstrass  representation  provides  a  recipe  for  creating  a
parametrization of a minimal surface in 3  from two meromorphic functions defined on a
Riemann  surface.  In  particular,  when  these  functions  are  ƒ  and  C êƒ£,  where  ƒ  is  the
Weierstrass  ƒ  function  and  C  is  a  certain  constant,  the  underlying  Riemann  surface  is  a
torus of the form  ê G, where G is a discrete lattice in the complex plane . The resulting
minimal  surface  has  often been rendered in  3D graphics  images.  To produce the  coordi-
nate data for this surface, we must integrate certain rational functions of ƒ and C êƒ£. This
results in coordinate functions that are expressed in terms of the Weierstrass ƒ and Ϛ func-
tions. Since these functions are built into Mathematica, it is easy to generate the required
data.

To  generate  a  solid  model,  we  must  produce  vertex  and  face  data  for  a  polyhedron  that
bounds a volume in 3. To achieve this, we first choose a proper subregion of a fundamen-
tal  domain  of  the  functions  ƒ  and  Ϛ  that  contains  no  poles.  This  ensures  that  the  corre-
sponding  piece  of  Costa’s  surface  is  of  finite  extent.  We  then  generate  two  surfaces  by
means of  normal  displacement  and “glue” the resulting boundaries  together.  This  data  is
then exported to a PLY file, which is used to print the model.

In  what  follows,  we  first  provide  some  background  from  minimal  surface  theory.  This
includes  a  review  of  classical  surface  theory,  a  description  of  the  Weierstrass  represen-
tation,  a  summary  of  pertinent  facts  about  elliptic  functions,  and  a  description  of  the
parametrization of Costa’s surface that we use to generate model data. This is followed by
a description of the Minimal Surfaces  package developed to render the model data. Then
we illustrate how to use the functionality provided by this package to create both graphics
objects and PLY data. Finally, discuss some ways in which the work in this paper might
be  extended,  including  ideas  for  mathematical  experimentation  and  enhancements  to  the
Minimal Surfaces package.

‡ A Thumbnail Sketch of Minimal Surface Theory

Intuitively,  a  smooth  surface    in  Euclidean  space  3  is  locally  area  minimizing  if  any
small  deformation  of    results  in  a  surface  of  larger  area.  (The  precise  mathematical
definition  of  minimal  surface  requires  the  introduction  of  some  technical  preliminaries
and is given later.) Soap films spanning a curve in 3, for example, satisfy this property.
In  general,    may  have  self-intersections,  in  which  case  the  surface  is  said  to  be
immersed, otherwise, we say that it is embedded. The purpose of this section is to describe
the  Weierstrass  representation  for  minimal  surfaces,  which  provides  a  way  of  explicitly
constructing a large class of such surfaces via complex function theory. As an example, we
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shall discuss Costa’s minimal surface in some detail. We begin by summarizing essential
facts from classical surface theory; further details may be found in [2].

· Essential Facts from Classical Surface Theory

We parametrize  a smooth surface   in 3  by means of a map X :W Ø ,  where W  is an
open connected subset (or region) in 2, and we assume that XHWL = . We refer to  as
the trace of X. Furthermore, we use Hu, vL to denote a system of coordinates on W, and we
assume that X  is smooth, i.e., differentiable to arbitrary order with respect to u and v. We
also  assume  that  X  is  regular,  i.e.,  that  the  tangent  vectors  ∂X ê ∂u  and  ∂X ê ∂v  are  lin-
early independent for every point Hu, vL œ W.

Let X , \ denote the standard inner product on 3, and fix an orientation. Then the metric,
or first fundamental form, on  with respect to X is given by the symmetric tensor

I := ds2 = E du2 + 2 F du dv+G dv2,

where the coefficients E, F, and G are functions on W given by

E := [
∂X

∂u
,
∂X

∂u
_, F := [

∂X

∂u
,
∂X

∂v
_, G := [

∂X

∂v
,
∂X

∂v
_.

Let S2  denote the sphere of unit radius in 3  centered at the origin, and let ZHu, vL be the
unit normal vector at the point XHu, vL in  that is consistent with the chosen orientation of
3. We use Z

`
Hu, vL to denote the unique element of S2  that is parallel to ZHu, vL. The map

Z
`

:W Œ 2 Ø S2 Œ 3  is called the Gauss map—it provides a measure of how the surface
bends in its ambient space. The Gauss map is used to define the second fundamental form,

II := L du2 + 2 M du dv+ N dv2,

where the coefficients L, M , and N are again functions on W given by

L := -[
∂Z
`

∂u
,
∂X

∂u
_, M := -[

∂Z
`

∂u
,
∂X

∂v
_, N := -[

∂Z
`

∂v
,
∂X

∂v
_.

We  identify  the  first  and  second  fundamental  forms  with  the  2µ 2  symmetric  matrices
that define them:

I =
E F
F G , II = K

L M
M N O.

The forms I and II encode intrinsic and extrinsic geometric properties of the surface . In-
trinsic properties are those that are derived from the presence of a distance measure on 
and  do  not  change  under  isometric  (or  distance-preserving)  deformations  in  the  ambient
space 3.  Extrinsic properties are those that depend on how the surface is immersed into
3.  (As  a  motivating  example,  consider  wrapping  a  geographical  map  into  a  tube:  dis-
tances between points within the map do not change, but the way they lie in space does.) A
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fundamental fact from classical surface theory is that, up to rigid motion, the forms I and
II completely determine the geometry of  and how it lies in 3.

The mean curvature H and the Gauss curvature K are defined by

(1)

H :=
1

2
tr III ÿ I-1M =

1

2

L G- 2 M F + N E

E G- F2
,

K := det III ÿ I-1M =
L N - M2

E G- F2
.

Both H  and K  are independent of the choice of coordinates on W, and it turns out that H  is
an  extrinsic  property  of  ,  while  K  is  an  intrinsic  property.  The  latter  fact  is  the  well-
known Theorem Egregrium of Gauss.

An important example of an intrinsic property of  is its area, which we denote by AHL.
This area is expressed in terms of the first fundamental form as follows:

(2)A HL := ‡
W

dA = ‡
W

det I du dv = ‡
W

E G - F2 du dv,

where  dA = det I du dv  is  the  infinitesimal  element  of  area  on    with  respect  to  the
parametrization  X.  Note  that  the  integral  in  equation  (2)  is  independent  of  the  choice  of
parametrization, so that it only depends on the trace  of X.

Suppose now that r :W Ø  is a smooth function. Then we can use r to define a normal
variation Xt of M  as follows:

Xt Hu, vL := X Hu, vL+ t r Hu, vL N Hu, vL.

For small values of t, the image XtHWL is a smooth surface near  = XHWL. If AHtL denotes
the area of XtHWL, then a straightforward calculation shows that

A£ H0L = -2 ‡
W
r H dA,

where  H  and  dA  denote  the  mean  curvature  and  element  of  area  of  .  If  a  surface  is
locally area minimizing, we expect the derivative A£H0L to vanish for all choices of r. This
can only happen if H vanishes identically. Hence, we have the following:

Theorem. If the surface  Œ 3  is locally area minimizing, then the mean curvature
H of  vanishes identically (H ª 0).

The standard definition of minimal surface is motivated by this fact:

Definition:  The  surface   Œ 3  is  minimal  if  its  mean  curvature  H  vanishes
identically.

Thus  H ª 0  is  a  necessary,  but  not  sufficient,  condition  for    to  be  locally  area  mini-
mizing. Determining whether a minimal surface is actually locally area minimizing would
entail calculating the second variation of the area functional on . The implication would
follow if the second variation were always positive.
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The total curvature K of  is defined to be

K := ‡
W
†K§ dA.

We  say  that    has  finite  total  curvature  if  K < ¶.  Furthermore,  we  say  that    is
complete if all its geodesics can be extended indefinitely. A surface is said to be of finite
topological  type  if  it  can  be  smoothly  deformed  into  a  compact  surface  of  finite  genus,
possibly  with  several  holes.  It  was  long  conjectured  that  the  only  complete,  embedded
minimal  surfaces  in  3  of  finite  topological  type  are  the  plane,  the  catenoid,  and  the
helicoid. Costa’s minimal surface was the first counterexample to this conjecture to have
been found (see [3] for details).

· The Weierstrass Representation for Minimal Surfaces

It  turns  out  that  the geometry of  minimal  surfaces  is  intimately related to  complex func-
tion  theory.  This  connection  leads  to  a  simple  recipe  for  constructing  minimal  surfaces,
which we describe here. We only state the necessary results; further details may be found
in [2].

We  identify  2  with  the  complex  plane    by  means  of  the  usual  correspondence
Hu, vL ¨ u+ i v. Suppose that W is a simply connected region in , that is, a region in  in
which all closed curves can be contracted to a point. A complex-valued function f  on W is
said to be holomorphic if its complex derivative f £HzL exists for all z œ W.

Theorem. Suppose that f , g :WØ are two holomorphic functions on a simply con-
nected region W, and define y :W Ø 3 to be the holomorphic curve with components

(3)

y1HzL :=
f HzL

4
I1- gHzL2M,

y2HzL := i
f HzL

4
I1+ gHzL2M,

y3HzL :=
1

2
f HzL gHzL.

Then we have the following:

(i) Componentwise integration

(4)g HzL := ‡
z0

z
yHzL dz

yields a holomorphic curve g :W Ø 3.

(ii) For each t œ , the trace of the map

(5)XtHu, vL := ReAei t gHu+ i vLE
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is a minimal surface. The collection of all such maps is called the associate family of g.

(iii) For any t œ , g is the stereographic projection into  of the Gauss map of Xt.

Since f  and g are assumed to be holomorphic on W, and W is assumed to be simply con-
nected, it  follows from basic complex function theory that the integration in equation (4)
is path independent.

We refer  to  a  triple  H f , g, WL  satisfying  the  above  conditions  as  the  Weierstrass  data  for
the corresponding associate family XtHWL, and we refer to X0 as the Weierstrass representa-
tion of the minimal surface  := X0HWL. Note that Xt  is an isothermal parametrization for
each t œ , that is, the coefficients of the first fundamental form satisfy E = G and F = 0.
In fact, it can be shown that

(6)ds2 =
1

4
»» f HzL »»2 I1+ »» g HzL »»2M2 »» dz »»2,

where z = u+ i v. Also, we have

(7)K =
-16 »» g£HzL »»2

»» f HzL »»2 I1+ »» g HzL »»2M4
.

Here, »» z »» denotes the complex norm of z and »» dz »»2 =du2 + dv2.  

· Meromorphic Functions on Complex Tori

Our  goal  in  this  subsection  is  to  introduce  the  Weierstrass  data  used  to  obtain  a
parametrization of Costa’s surface. Before doing so, we provide a little background in ellip-
tic function theory. Details may be found in [4].

Suppose that w1 and w2 are two complex numbers such that Im@w1 êw2D ≠ 0. Then the lat-
tice  of  points  G := 8k1 w1 + k2 w2 k1, k2 œ <  is  a  subgroup  of  the  group  of  translations
on    and  G  is  isomorphic  to  the  additive  group  of  Gaussian  integers  @iD.  Thus,  w œ G
acts  on    by  the  rule  z Ø z+w,  and  the  quotient  space   ê G  is  topologically  a  torus,
which inherits a complex structure from . Let p : Ø  ê G denote the corresponding pro-
jection map. We refer to w1 and w2 as basic periods of G and sometimes write T for  ê G.

Any function f
`
 on  ê G lifts to a function f  on . Such a function satisfies f Hz+wL = f HzL

for all w œ G  and is said to be G  periodic.  It  is not possible for a complex function to be
both G periodic and holomorphic in all of , but there is a rich theory of functions that are
G  periodic and meromorphic.  A function f  is  meromorphic  on W  if  it  is  holomorphic on
W\A, where A is a discrete set without accumulation points in W, and if, for any a œ A, f
has a pole at a, that is, f  has a power series expansion in a neighborhood of a of the form

f HzL =
c-k

Hz- aLk
++

c-1
z- a

+ c0 + c1 Hz- aL+ c2 Hz- aL2 +.
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The positive integer k is called the order of the pole at a. A pole is said to be simple if it is
of order one. Functions that are both meromorphic and periodic with respect to some lat-
tice G are referred to as elliptic functions.

Our objective in what follows is to describe a particular solution of the period problem. In
the context of complex tori, it may stated as follows:

The  Period  Problem:  Find  meromorphic  functions  f  and  g,  periodic  with  respect  to
some lattice G in , such that Re@gD is also G periodic, where g  is given by equation (4).
Here,  the  Weierstrass  data  is  H f , g, W\AL,  where  W  is  a  fundamental  domain  of  G  in  ,
and A is the set of poles of f  and g in W.

Note that, by making appropriate cuts in W\A, we may consider it to be simply connected.
Any solution to this problem will topologically be a torus (possibly with several holes) im-
mersed in 3.

Costa’s surface arises from what is arguably the most basic of elliptic functions: the Weier-
strass ƒ function. It is defined by the series expansion

(8)ƒHz; GL :=
1

z2
+ ‚

wœG*

:
1

Hz-wL2
-

1

w2
>,

where G* := G\80< denotes the set of nonzero elements in G. This function has poles of or-
der two at each of the lattice points in G and is holomorphic everywhere else in . It there-
fore projects to a meromorphic function with exactly one pole of order two in  ê G.  It is
known that any meromorphic function on  ê G may be expressed as a rational function of
ƒHz; GL and its complex derivative ƒ£Hz; GL. In fact, these functions are related by the funda-
mental equation

(9)ƒ£Hz; GL2 = 4 HƒHz; GL- e1L HƒHz; GL- e2L HƒHz; GL- e3L,

where

(10)e1 := ƒK
w1

2
O, e2 := ƒK

w2

2
O, e3 := ƒ

w1 +w2

2
.

A related function is the Weierstrass Ϛ function, which is defined by

(11)ϚHz; GL :=
1

z
+ ‚

wœG*

:
1

z-w
+

1

w
+

z

w2
>.

The Ϛ  function is  not  G  periodic  and hence not  elliptic.  It  is  holomorphic  on \G,  how-
ever, and has simple poles at the points of G. Furthermore, it is related to the Weierstrass
ƒ function by the rule

(12)Ϛ£Hz; GL = -ƒHz; GL.

This function arises naturally when calculating the integral in equation (4) for the Weier-
strass data of Costa’s surface. Although the Ϛ function is not G periodic, it does satisfy the
following period relations:
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(13)ϚHz+wk; GL = ϚHz; GL+ 2 ϚK
wk

2
; GO, k = 1, 2.

Furthermore, a theorem due to Legendre states that

(14)w2 ϚK
w1

2
; GO-w1 ϚK

w2

2
; GO = p i.

These facts are used in the next subsection.

We refer to special points in  or  ê G as marked points. These are points at which singu-
larities,  such  as  poles,  occur.  Open  disks  centered  at  marked  points  are  referred  to  as
marked disks. Let DHz, εL denote the disk of radius ε with center at the point z œ , and de-
fine DGHz, εL by

DGHz, εL := DHz, εL+G = 8x +w x œ DHz, εL, w œ G<.

The  set  DGHz, εL  can  be  viewed  as  the  collection  of  all  points  in    that  are  mapped  to  a
marked disk in  ê G by the projection p. 

We  now  specialize  to  the  case  where  w1 = 1  and  w2 = i.  In  this  case,  G  is  the  standard
square lattice of Gaussian integers in , and we simply write ƒHzL for ƒHz; GL and ϚHzL for
ϚHz; GL. The numbers in equation (10) now satisfy

(15)e1 = -e2, e3 = 0.

The  set  U := 8u+ i v 0 b u, v b 1<  defines  a  fundamental  domain  of  the  covering
p : Ø  ê G. Let

B = DGH0, ε1L ‹ DGH1 ê 2, ε2L ‹ DGHi ê 2, ε3L,

where ε1, ε2, and ε3  are small positive numbers, and define WHε1, ε2, ε3L to be U\B. Note
that WHε1, ε2, ε3L  is a unit square in   with four quarter-disks of radius ε1  removed from
the corners of U, two half-disks of radius ε2 removed from the midpoints of the horizontal
edges  of  U,  and  two  half-disks  of  radius  ε3  removed  from the  midpoints  of  the  vertical
edges  of  U.  The  projection  pHU\BL  is  a  torus  with  three  marked  disks  removed.  These
disks are centered at pH0L, pH1 ê 2L, and pHi ê 2L.

With these preliminaries, we are ready to specify the Weierstrass data for Costa’s surface.
We take our domain to be WHε1, ε2, ε3L, and set

(16)f HzL = ƒHzL, g HzL =
8 p e1
ƒ£HzL

.

Both of these functions are holomorphic on WHε1, ε2, ε3L, and since WHε1, ε2, ε3L is simply
connected, the integration in equation (4) is path independent.

· Costaʼs Minimal Surface

In general, one might have to resort to numerical integration in equation (4) to obtain the
Weierstrass representation for a surface. However, the integration can be carried out explic-
itly  for  the  functions  in  equation  (16),  when  restricted  to  WHε1, ε2, ε3L.  This  calculation
was first performed by Alfred Gray and is given in [2]. The result is as follows:
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itly  for  the  functions  in  equation  (16),  when  restricted  to  WHε1, ε2, ε3L.  This  calculation
was first performed by Alfred Gray and is given in [2]. The result is as follows:

Theorem.  Let  G@1 ê 2D := 8k1 w1 +k2 w2 2 k1, 2 k2 œ<  denote  the  lattice  of
Gaussian half-integers. Then the Weierstrass data in equation (16), when substituted into
equation  (3)  and  integrated,  yields  the  holomorphic  curve  g : \G@1 ê 2DØ3,  whose
components are given by 

(17)

g1HzL :=
1

2
:-ϚHzL+ pH z- i L+

p2H1+ iL

4 e1
>+

p

4 e1
:Ϛ z-

1

2
-Ϛ z-

i

2
>,

g2HzL :=
i

2
:-ϚHzL- p Hz- 1L-

p2H1+ iL

4 e1
>-

i p

4 e1
:Ϛ z-

1

2
-Ϛ z-

i

2
>,

g3HzL :=
2 p

4
:log

ƒHzL- e1
ƒHzL+ e1

- i p>.

The corresponding trace of X0 = Re@gD is Costa’s minimal surface.

We  now  use  the  properties  of  ƒ  and  Ϛ  discussed  earlier  to  demonstrate  that  Costa’s
surface  is  topologically  a  torus  with  three  points  removed.  Define  three  points  in
 :=  ê G  by a1 := pH0L,  a2 := pH1 ê 2L,  and a3 := pHi ê 2L  .  We may think of these points
as the projection to   of G@1 ê 2D in . From the form of g in equation (17), it is clear that
g is holomorphic on \G@1 ê 2D.

Note that, for the basic periods H1, iL, we have i G = G as sets. In this case, it is clear from
the definition of the Ϛ function in equation (11) that

ϚHi z; GL = ϚHi z; i GL =
1

i
ϚHz; GL.

This fact, together with equation (14), implies that

(18)Ϛ
1

2
=

p

2
, Ϛ

i

2
= -

p i

2
.

Equations (13, 17, 18) then allow us to conclude that

g Hz+ 1L = g HzL+ i p H1, 0, 0L, g Hz+ iL = g Hz+ iL+ i p H0, -1, 0L.

This  clearly  implies  that  Re@gHz+wLD = Re@gHzLD  for  all  w œ G,  that  is,  that  X0  is  G  peri-
odic. Thus, we have demonstrated the following:

Proposition:  The  map  X0 =Re@gD,  where  g  is  given  by  equation  (17),  solves  the
period problem. Hence X0 projects to a real-analytic map X

`
0 :  \8a1, a2, a3<Ø3.

Substituting  equation  (16)  into  equation  (6),  we  see,  with  the  help  of  equations  (9,  15),
that the metric on  \8a1, a2, a3< is given by
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(19)ds2 =
1

4
»»ƒHzL »»+

2 p »» e1 »»

»»ƒHzL2 - e12 »»

2

»» dz »»2 .

From this formula, it is not difficult to show that the function ds ê »» dz »» has poles of order
two at a1, a2, and a3. Thus, the metric diverges at the ends of Costa’s surface, which we
define  to  be  the  image  under  X

`
0  of  the  punctured  disks  pHD£H0, εLL,  pHD£H1 ê 2, εLL,  and

pHD£Hi ê 2, εLL  in  .  Here, D£Hz, εL  denotes the disk DHz, εL  in ,  excluding its center.  We
shall see later that X

`
0  diverges at different rates at a1  than at a2  and a3. This is due to the

fact that the principal part of the Laurent expansion of ds ê »» dz »» at z = 0 has a larger lead-
ing  coefficient  than  that  at  z = 1 ê 2  or  z = i ê 2,  even  though  all  of  the  poles  are  of  the
same order. As can be seen in Figure 3, the end corresponding to the punctured disk about
a1 = pH0L is asymptotically planar, while the other two ends are asymptotically catenoidal
in form.

In the next section, we describe the contents of the Minimal Surfaces package. After that,
we show how to use the package to generate polyhedral data representing the trace of the
parametrization

(20)X
`
0 :W

`
Hε1, ε2, ε3L Ø 3,

where W
`
Hε1, ε2, ε3L := p@WHε1, ε2, ε3LD.

‡ The Minimal Surfaces Package
We now describe  the  public  functions  in  the  Minimal  Surfaces  package.  Note  that  there
are a number of utility functions with private context that are not described here. Further
documentation may be found within the package source file. 

· Special Data Types

Arc@8x, y<, r, 8q1, q2<, orientationD  is  a  two-dimensional  graphics  primi-
tive  specifying  a  circular  arc  with  center  8x, y<,  radius  r,  and  initial  and  terminal  angles
8q1, q2<,  which  are  assumed  to  satisfy  -p § q1, q2 § p.  The  orientation  may  be  either
Clockwise or CounterClockwise.

· Surface-Generating Functions 

CostaSurface@u, vD  returns  the  image  in  3  corresponding  to  the  point  in  2 ï2

with coordinates Hu, vL.
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ParallelSurface@X, p, dD  returns  the  normal  displacement  at  distance  d  from
XHpL  along the normal  of  X  at  XHpL,  where X  is  a  regular  map on some domain W Œ 2

into 3.

· Vertex Creation and Triangulation

CreateVertexData@curve, optionsD  produces  a  collection  of  planar  points
within the boundary specified by the closed curve curve = 8c1, c2, … <,  which consists of
a list of line segments and circular arcs and is assumed to be traversed counterclockwise.

The  output  is  a  list  of  the  form  8interior, boundary<.  The  interior  list  consists  of  planar
points properly inside the boundary specified by curve, while boundary = 8b1, b2, …< is a
list of sublists, each member of which is a list of planar points lying on the corresponding
line segment or arc specified by curve.

Currently, the only supported option is MeshSize Ø 8n1, n2<, which specifies the num-
ber of sample points to use in the x and y directions. The defaults are n1 = n2 = 10.

GlueComponents@top, bottomD glues together a pair of polyhedral surfaces speci-
fied  by  the  lists  top  and  bottom.  These  lists  are  assumed  to  have  the  same  form
8vertices, faces, boundary<  as  output  from  the  Triangulate  function.  It  is  also  as-
sumed that the boundary components of top and bottom have the same shape.

The output has the form 8vertices, faces<,  where vertices  is the join of the vertex sublists
of  top  and  bottom,  and  faces  is  a  list  of  sublists  of  the  form
8top- faces, bottom- faces, boundary- faces<.

Triangulate@vertices, curve, optionsD produces a triangulation of a planar
region. The list vertices is of the same form as the output of CreateVertexData, and
curve, which consists of a list of line segments and circular arcs, defines the boundary of
the region to be triangulated.

The  output  is  a  list  of  the  form 8vertices, faces, boundary<.  The  elements  of  vertices  are
planar points of the form 8x, y<. The elements of faces are ordered triples of positive inte-
gers  8a, b, c<.  The  elements  of  such  triples  refer  to  positions  in  the  list  of  vertices  and
thereby define triangles. The list boundary  is of the form 8p1, p2, …<,  where each sublist
p j contains positive integers pointing to the position in the list vertices of points that lie on

the jth connected component of the boundary of the triangulated region.

This  function has one option,  which is  of  the form Identifications Ø l.  The default  value
for  l  is  l = 8<,  in  which  case  no  identifications  occur.  The  other  possibility  is  l = 8l1, l2<,
where each element of l1  specifies the positions of a pair of edges in curve that are to be
identified, and each element of l2  specifies the positions of a cycle of circular arcs whose
endpoints are to be identified. 
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Remark: The result after identification is assumed to be a Riemann surface, possibly
with several marked disks removed.

· Graphics Functions

CreatePolyhedron@8vertices, faces<D  returns  a  list  of  3D  graphics  direc-
tives  and  primitives  describing  a  polyhedron.  The  sublist  vertices  consists  of  points  that
are  the  vertices  of  a  polyhedron,  and  faces  is  a  list  of  sublists  of  the  form  8x1, x2, … <,
where x j  has the form 9g j, f j=. Each g j  is a list of graphics directives to be applied to the
face list f j.

Remark: This function could easily be modified to allow the application of graphics
directives to edges and vertices. 

· Import/Export Functions

ExportGraphics@"file", data, "format"D  writes  geometric  data  contained
in  the  list  data  to  an  ASCII  file  named  file.  The  list  data  is  assumed  to  be  in  the  same
form  as  input  data  to  CreatePolyhedron,  except  that  Mathematica  graphics  direc-
tives  are  replaced  with  equivalent  directives  that  are  compliant  with  the  export  format.
The  form  of  the  output  is  specified  by  format.  Currently  the  only  supported  format  is
PLY, which stands for the polygon file format

Remark: A desirable enhancement to  this  function would be to include a  POVRAY
export format. This would produce object data appropriate for creating scenes with the Per-
sistence of Vision Raytracer program.

· The Polygon File Format

We now give a brief summary of the PLY file format, limiting our discussion to those as-
pects used in the current version of the ExportGraphics function. Further details may
be found in [5].

A PLY file has three main parts: a header, a list of vertices, and a list of faces. Listing 1 is
an example of a PLY file specifying a cube with faces of various colors. The header con-
tains  comments  and  declarations  of  data  types  and  their  properties.  Each  line  of  a  com-
ment starts with the token comment,  and data types are specified with the token element.
The  elements  necessary  for  our  purposes  are  vertex  and  face.  The  declaration  of  an  ele-
ment must include the number of occurrences of elements of that type in the file. The ele-
ment’s properties are declared immediately after its declaration. For example, the group of
statements
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element vertex 8
property float32 x
property float32 y
property float32 z

specifies that the file in question contains data for eight vertices and that each vertex has
three properties Hx, y, zL, which are floating-point numbers representing the coordinates of
the vertex.

Each line of the vertex list specifies the Hx, y, zL coordinates of a vertex. A list of data speci-
fying faces follows the vertex data. Each line of this list gives, in order, the number of ver-
tices  in  a  face  and  the  position  in  the  vertex  list  corresponding  to  a  vertex  of  the  face.
Color attributes of the face can then be given in the form of RGB-color intensities, which
are specified by integers from 0 to 255. The orientation of a face can be determined from
the order in which its vertices are presented. Note that indexing of the vertices begins at 0.
Thus, when 0 occurs in the vertex list of a face in Listing 1, for example, it points to the
first vertex, which has coordinates H0, 0, 0L.

ply
format ASCII 1.0
comment a cube      a comment
element vertex 8 8 vertices in file
property float32 x  x coordinate of vertex
property float32 y  y coordinate of vertex
property float32 z  z coordinate of vertex
element face 6      6 faces in file
property list uchar int vertex_indices vertex incidence list
property uchar red
property uchar green
property uchar blue
end header
0 0 0               start of vertex list
0 0 1
0 1 1
0 1 0
1 0 0
1 0 1
1 1 1
1 1 0
4 0 1 2 3 128   0 128 start of face list
4 7 6 5 4 192 128   0
4 0 4 5 1 128 192   0
4 1 5 6 2 256   0   0
4 2 6 7 3   0 256   0
4 3 7 4 0   0   0 256

Ú Listing 1. A simple PLY file specifying a cube with faces of various colors. The comments in italics 
to the right are not part of the file.
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· A Note on Performance

Of the  functions  listed  above,  the  most  time-consuming is  Triangulate,  which inter-
nally calls DelaunayTriangulation.  It seemed convenient to use the latter because
it is part of the ComputationalGeometry package, which is a standard Mathematica
add-on package. Another attractive feature of Delaunay triangulation is that, by design, it
produces  the  most  regular  triangulation  of  a  planar  point  set.  The  most  efficient  algo-
rithms for Delaunay triangulation have a time complexity of OHn logHnLL.

The model shown in Figure 4 was created by evaluating Triangulate  on a vertex set
containing about 60,000 points. This took more than 14 hours on a workstation with dual
Opteron 244 processors. (Mathematica Version 5.2 only used one CPU, and the availabil-
ity of RAM was not an issue.)

There  are  at  least  two  ways  the  overall  performance  of  the  Minimal  Surfaces  package
could  be  improved,  both  of  which  involve  reducing  the  vertex  data  used  as  input  to
Triangulate. This is discussed further in the subsection on enhancements.

We  note  that  an  alternative  approach  might  be  to  replace  the  current  version  of
Triangulate  with  an  “adaptive  cell  division  algorithm.”  In  this  scenario,  one  would
start with a sparse vertex set in the given domain W, which would be triangulated by some
method. Then one would use some function, such as the metric in equation (6), to decide
if  the  triangulation  needs  to  be  refined  in  a  neighborhood  of  any  given  vertex.  The  best
method of  refinement  is  likely to  be midpoint  subdivision of  any triangle  incident  to  the
vertex in question. This may prove to be faster than using Delaunay triangulation.

‡ Generating the Model Data for Costaʼs Surface
We now show how the functions described above are used to create a model of Costa’s sur-
face. The essential steps are as follows:

1. Use the  Line  and Arc  data  types  to  define  a  curve bounding a  suitable  domain
W Œ .

2. Call CreateVertexData to obtain a collection of points V Œ W.

3. Apply Triangulate to V  in order to obtain its Delaunay triangulation; provide
boundary identifications, if appropriate.

4. Apply  a  composition  of  ParallelSurface  and  CostaSurface  to  the  data
V  generated in step 2 to obtain vertex data for two polyhedral surfaces in 3  that
are normal displacements of points lying on Costa’s surface. Note that the faces of
the resulting polyhedral surfaces are defined by the same incidence relations result-
ing from step 3.

5. Use GlueComponents to create a single volume-bounding polyhedron from the
two normally displaced polyhedral surfaces created in step 4.

6. Call  ExportGraphics  to  produce  the  PLY  file  required  for  printing  a  solid
model.

First, we load the Minimal Surfaces package and define some useful functions. It is avail-
able  from  www.mathematica-journal.com/data/uploads/2010/12/MinimalSurfaces.m.  We
assume the package is contained in the same directory as this notebook.
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First, we load the Minimal Surfaces package and define some useful functions. It is avail-
able  from  www.mathematica-journal.com/data/uploads/2010/12/MinimalSurfaces.m.  We
assume the package is contained in the same directory as this article.

SetDirectory@NotebookDirectory@DD;
<< MinimalSurfaces`

The following function defines the curve bounding the region WHd, e, fL  described in the
paragraph after equation (15). Recall that the input parameters Hd, e, fL represent the radii
of the three marked disks with centers at pH0L, pH1 ê 2L, and pHi ê 2L, where p, as before, de-
notes the projection p : Ø  ê G. Note that this curve consists of 16 segments and is tra-
versed counterclockwise, hence the circular arcs it contains are traversed clockwise.

boundary@d_, e_, f_D := 8

Line@88d, 0<, 8H1 ê 2L - e, 0<<D,
Arc@81 ê 2, 0<, e, 8p, 0<, ClockwiseD,
Line@88H1 ê 2L + e, 0<, 81 - d, 0<<D,
Arc@81, 0<, d, 8p, p ê 2<, ClockwiseD,

Line@881, d<, 81, H1 ê 2L - f<<D,
Arc@81, 1 ê 2<, f, 8-p ê 2, p ê 2<, ClockwiseD,
Line@881, H1 ê 2L + f<, 81, 1 - d<<D,
Arc@81, 1<, d, 8-p ê 2, -p<, ClockwiseD,

Line@881 - d, 1<, 8H1 ê 2L + e, 1<<D,
Arc@81 ê 2, 1<, e, 80, -p<, ClockwiseD,
Line@88H1 ê 2L - e, 1<, 8d, 1<<D,
Arc@80, 1<, d, 80, -p ê 2<, ClockwiseD,

Line@880, 1 - d<, 80, H1 ê 2L + f<<D,
Arc@80, 1 ê 2<, f, 8p ê 2, -p ê 2<, ClockwiseD,
Line@880, H1 ê 2L - f<, 80, d<<D,
Arc@80, 0<, d, 8p ê 2, 0<, ClockwiseD

<

The function grid generates a rectangular array of horizontal and vertical lines with off-
set q = 8q1, q2<, step size s = 8s1, s2<, and index range n = 88n11, n12<, 8n21, n22<<; it is used
to generate the background grid in Figure 2.
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gridlines@q_, s_, n_D :=
Join@
Table@
Line@88qP1T + k sP1T, qP2T + nP2TP1T sP2T<,

8qP1T + k sP1T, qP2T + nP2TP2T sP2T<<D,
8k, nP1TP1T, nP1TP2T<

D,
Table@Line@88qP1T + nP1T P1T sP1T, qP2T + k sP2T<,

8qP1T + nP1T P2T sP1T, qP2T + k sP2T<<D,
8k, nP2TP1T, nP2TP2T<D

D;

· Example Output from CreateVertexData and Triangulate

Before invoking the commands that produce the graphics object illustrated in Figure 3, we
illustrate  what  the  output  of  the  CreateVertexData  and  Triangulate  functions
looks like for a small mesh size.

b = boundary@1 ê 6, 1 ê 4, 1 ê 4D;
v = CreateVertexData@b, MeshSize Ø 810, 10<D;

The list v produced is of length 2. The first part of v consists of the interior points shown
in green in Figure 1. Here is a short listing.

vP1T êê Short

::
1

10
,
1

5
>, á43à, :

9

10
,
4

5
>>

The second part of v consists of 16 sublists, each of which contains vertices that lie on the
corresponding segment of b. For example, the last segment in b corresponds to the quar-
ter-circle in the lower-left corner of Figure 1. The vertices that lie in the segment bP-1T
are the elements of the list vP2, -1T.

vP2, -1T

::0,
1

6
>, :

1

10
,

2

15
>, :

2

15
,

1

10
>, :

1

6
, 0>>

Here is the first  part  of vP2T,  which contains vertices that lie on the leftmost horizontal
line segment on the real axis. Note that the endpoints of incident segments overlap.
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vP2, 1T

::
1

6
, 0>, :

1

5
, 0>, :

1

4
, 0>>

Figure  1,  below,  graphically  illustrates  the  structure  of  v.  The  green  points  are  vertices
that lie in the interior of the boundary curve b, and the red points are vertices lying in b it-
self. Note that all of the points in v lie in the gray rectangular grid.

Show@
Graphics@
88GrayLevel@0.8`D, gridlines@80, 0<, 80.1`, 0.1`<,

880, 10<, 80, 10<<D<,
8Green, PointSize@0.02`D, Point êü vP1T<,
8Red, PointSize@0.02`D, Point êü Flatten@vP2T, 1D<<D,

Frame Ø True, PlotRange Ø 88-0.2`, 1.2`<, 8-0.2`, 1.2`<<,
AspectRatio Ø AutomaticD

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ú Figure 1. Vertex data generated using CreateVertexData with parameter values d = 1 ê6, 
e = f = 1 ê4, and MeshSize Ø 810, 10<.

We now triangulate the vertex data v shown in Figure 1 without edge identifications. The
resulting triangulation differs from a Delaunay triangulation in that certain triangles inci-
dent to boundary points of WHd, e, fL but not lying within the domain itself are excluded.

p = Triangulate@v, bD;

The output p of Triangulate has three parts. The first part pP1T is a flat list of all the
vertices  (both  interior  and  boundary)  shown  in  Figure  1.  Duplicate  points  have  been
removed.
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pP1T êê Short

::
1

10
,
1

5
>, á111à, :

2

15
,

1

10
>>

The second part of p contains incidence relations that define faces, which are always trian-
gles. The positive integers in each sublist of pP2T are locations of vertices in pP1T.

pP2T êê Short

881, 109, 110<, á154à, 845, 77, 78<<

For example, the following command extracts the vertices in pP1T that correspond to the
first face listed in pP2T.

Part@pP1T, pP2, 1TD

::
1

10
,
1

5
>, :0,

1

4
>, :0,

1

5
>>

The  third  part  of  p  is  a  list  containing  one  sublist  pP3, 1T  that  defines  the  boundary
curve of the triangulation. When identifications are used, the list pP3T may contain multi-
ple boundary components.  In the next subsection, for example, Triangulate  is  called
with  identifications  that  produce  three  boundary  components.  Each  component  in  that
case corresponds to the boundary of a marked disk that has been removed from the torus
  described in the paragraph after equation (17).

pP3T êê Short

8846, 47, 48, 49, á60à, 110, 111, 112, 113<<

The following group of commands first maps the vertices of p into the horizontal plane of
3; the resulting output list is named q. Then some graphics directives are added to q, and
the resulting list is used as input to CreatePolyhedron. The output list s is then flat-
tened so that it can be used as input to Graphics3D.

id@u_, v_D := 8u, v, 0<
q = 8Apply@id, pP1T, 81<D, pP2T, pP3T<;

gr = :RGBColorB
3

4
,
3

4
, 0F, Specularity@GrayLevel@1D, 5D>;

qw = 8qP1T, 88gr, qP2T<<<;
s = CreatePolyhedron@qwD;
ss = Flatten êü s;

In general, the length of the output s of CreatePolyhedron is the same as the length
of the second part of the input qw. Thus, in the present case, s has length 1. The first part
of  sP1T  consists  of  graphics  directives,  and  the  second  part  consists  of  graphics  primi-
tives that are applied to the faces of the triangulation q. Part of the output from the current
evaluation is  shown below. To create the polyhedron shown in Figure 3,  we will  build a
list similar to qw, above. The second part of the resulting list itself has five parts, each of
which corresponds to one of the five parts of the surface shown in the figure, namely, the
green (or inside) part, the yellow (or outside) part, and the three purple rims.
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In general, the length of the output s of CreatePolyhedron is the same as the length

of  sP1T  consists  of  graphics  directives,  and  the  second  part  consists  of  graphics  primi-
tives that are applied to the faces of the triangulation q. Part of the output from the current
evaluation is  shown below. To create the polyhedron shown in Figure 3,  we will  build a
list similar to qw, above. The second part of the resulting list itself has five parts, each of
which corresponds to one of the five parts of the surface shown in the figure, namely, the
green (or inside) part, the yellow (or outside) part, and the three purple rims.

sP1, 1T

:RGBColorB
3

4
,
3

4
, 0F, Specularity@GrayLevel@1D, 5D>

sP1, 2, 1T

PolygonB::
1

10
,
1

5
, 0>, :0,

1

4
, 0>, :0,

1

5
, 0>>F

Figure 2 shows what the triangulation of the small dataset looks like.

Show@Graphics3D@ssD, AspectRatio Ø Automatic, Axes Ø False,
Boxed Ø False, ViewPoint Ø 80, 0, 9<D

Ú Figure 2. Triangulation of the vertex data in Figure 1 using the Triangulate function.

· Creation and Triangulation of Vertex Data for a Torus

In this subsection, we discuss how the CreateVertexData and Triangulate func-
tions  were  used  to  help  produce  the  polyhedron  shown  in  Figure  3.  The  mesh  size  of
50µ 50 employed here is moderate in order to reduce computation time and the size of the
resulting  datasets.  Note  that  our  marked  disks  are  given  radii  of  d = 1 ê 8  and
e = f = 1 ê 24.  This  compensates  for  the  difference  in  the  rate  of  divergence at  the  poles
pH0L,  pH1 ê 2L,  and  pHi ê 2L  of  the  parametrization  X

`
0  defined  in  the  proposition  following

equation (17). The ends of the resulting surface are roughly the same size.
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In this subsection, we discuss how the CreateVertexData and Triangulate func-
tions  were  used  to  help  produce  the  polyhedron  shown  in  Figure  3.  The  mesh  size  of

resulting  datasets.  Note  that  our  marked  disks  are  given  radii  of  d = 1 ê 8  and
e = f = 1 ê 24.  This  compensates  for  the  difference  in  the  rate  of  divergence at  the  poles
pH0L,  pH1 ê 2L,  and  pHi ê 2L  of  the  parametrization  X

`
0  defined  in  the  proposition  following

equation (17). The ends of the resulting surface are roughly the same size.

b = boundary@1 ê 8, 1 ê 24, 1 ê 24D;
v = CreateVertexData@b, MeshSize Ø 850, 50<D;

The list edgeIds specifies edges in b that are to be identified, and the list vertexIds
specifies the endpoints of circular arcs in b that are to be identified. For example, the sub-
list 81, 11< in edgeIds indicates that the lower-left horizontal line segment in Figure 2 is
to be identified with the upper-left horizontal line segment. Similarly, the sublist 82, 10< in
vertexIds indicates that corresponding endpoints of the semicircular arcs with centers
at  H1 ê 2, 0L  and  H1 ê 2, iL  are  to  be  identified.  The  list  vertexIds  is  used  to  identify
which components of the boundary curve close up to form boundary curves. In this case,
we get three such curves.

edgeIds = 881, 11<, 83, 9<, 85, 15<, 87, 13<<;
vertexIds = 882, 10<, 84, 16, 12, 8<, 86, 14<<;

When we pass these identifications to Triangulate as an option, output similar to that
in the previous subsection is produced, except that some incidence relations in p are reas-
signed, and extra vertices are dropped.

p = Triangulate@v, b, Identifications Ø 8edgeIds, vertexIds<D;

· Vertex Data for Normal Displacements of Costaʼs Surface

The ParallelSurface  function is used to create a small normal offset of the vector-
valued  function  it  takes  as  an  argument.  Here,  the  function  is  CostaSurface,  which
can be used to generate the true Costa surface. Note that, since CostaSurface returns a
vector in 3, ParallelSurface also returns a vector in 3.

Z@u_, v_, rho_D :=
ParallelSurface@CostaSurface@x, yD, 8x, y<, rhoD ê.
8x Ø u, y Ø v, d Ø rho<

To create the polyhedron in Figure 3, we choose r = ±0.025 as our offset and define two
real vector-valued functions accordingly.

X1@u_, v_D := Re@Z@u, v, 0.025DD
X2@u_, v_D := Re@Z@u, v, -0.025DD

The following commands use X1 and X2 to map the vertex data of the two-dimensional tri-
angulation defined by p into 3.
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q1 = 8Apply@X1, pP1T, 81<D, pP2T, pP3T<;
q2 = 8Apply@X2, pP1T, 81<D, pP2T, pP3T<;

The  function  GlueComponents  is  now  used  to  connect  the  boundary  components  of
q1 and q2. First, the vertex and face lists of q1 and q2 are concatenated, and then addi-
tional  faces,  which  are  incident  to  vertices  in  the  boundary  curves,  are  appended  to  the
face list. The resulting polyhedron bounds a volume in 3.

zx = GlueComponents@q1, q2D;

We now define the graphics directives we wish to apply to each component of our surface.

gr1 = :EdgeForm@D, RGBColorB
1

2
,
3

4
, 0F,

Specularity@GrayLevel@0.5`D, 6D>;

gr2 = :EdgeForm@D, RGBColorB
3

4
,
1

2
, 0F,

Specularity@GrayLevel@1D, 9D>;

gr3 = :EdgeForm@D, RGBColorB
1

2
, 0,

1

2
F,

Specularity@GrayLevel@1D, 9D>;

The following command produces input in the form required by CreatePolyhedron.
That is, qw has the form qw = 8verts, 88g1, f1<, …, 8gn, fn<<<, where each f j
is a list of incidence relations in the vertex list verts defining faces and each g j  is a list of
graphics directives to be applied to f j.

qw = 8zxP1T, Join@88gr1, zxP2TP1T<, 8gr2, zxP2TP2T<<,
Map@8gr3, Ò< &, zxP2TP3TDD<;

Now we apply CreatePolyhedron to get a graphics object. As before, we need to flat-
ten the list s to produce input acceptable to the Graphics3D function.

s = CreatePolyhedron@qwD;
ss = Map@Flatten, sD;
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Graphics3D@ss, AspectRatio Ø Automatic, Axes Ø False,
Boxed Ø False, Lighting Ø "Neutral",
ViewPoint Ø 8-2.417`, -1.984`, 1.294`<D

Ú Figure 3. Costaʼs surface with d = 1 ê8, e = f = 1 ê24, r = ±0.1, and MeshSize Ø 850, 50<.

· Printing Technology and the Solid Model

The photograph shown in Figure 4 is a 3D model of Costa’s surface that was printed using
a ZCorp Model 402Z 3D printer.  This device is no longer in production but is similar to
the ZCorp Model 510. The principal difference between the two is that the Model 510 has
a higher print resolution. See [6] for more details on the Model 510.

We first convert our choice of RGB values to integers in the range @0, 255D.

rgb =
Floor@256 881 ê 2, 3 ê 4, 0<, 83 ê 4, 1 ê 2, 0<, 81 ê 2, 0, 1 ê 2<<D;

Now  we  produce  a  list  rw  in  the  correct  format  for  input  into  the  ExportGraphics
function. Note its similarity in structure to qw.

rw = 8zxP1T, Join@88rgbP1T, zxP2TP1T<, 8rgbP2T, zxP2TP2T<<,
Map@8rgbP3T, Ò< &, zxP2TP3TDD<;

The PLY file  corresponding to  the  surface  pictured  in  Figure  3  is  produced by  invoking
the ExportGraphics function as follows.

ExportGraphics@"costa-8-24-24-50-50.ply", rw, "PLY"D

To obtain the solid model illustrated in Figure 4, a PLY file was created using the parame-
ters d = 1 ê 8, e = f = 1 ê 24, r = ±0.2, and MeshSize Ø 8250, 250<. The large mesh
size  ensured  that  the  model  would  be  smooth,  and  the  rather  large  normal  displacement
r = ±0.2 ensured that it would be thick enough to avoid breakage during production. The
resulting object is about eight inches in diameter.
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To obtain the solid model illustrated in Figure 4, a PLY file was created using the parame-
ters d = 1 ê 8, e = f = 1 ê 24, r = ±0.2, and MeshSize Ø 8250, 250<. The large mesh
size  ensured  that  the  model  would  be  smooth,  and  the  rather  large  normal  displacement
r = ±0.2 ensured that it would be thick enough to avoid breakage during production. The
resulting object is about eight inches in diameter.

Ú Figure 4. Photograph of a solid model of Costaʼs surface generated from a PLY file with parame-
ters d = 1 ê8, e = f = 1 ê24, r = ±0.2, and MeshSize Ø 8250, 250<.

‡ Discussion
In this section, we put what was done here in perspective and outline some ways of generat-
ing Weierstrass data that may lead to new examples of minimal surfaces. These methods,
together with other enhancements discussed in this section, may be incorporated in future
versions of the Minimal Surfaces package. 

· Genus One Minimal Surfaces

First, it would be interesting to look for other examples of genus one minimal surfaces, pos-
sibly with more than three ends. The Weierstrass data for such a surface would be given
by elliptic functions on . An obvious choice for Weierstrass data would be

(21)f HzL = ƒkHz; GL, gHzL =
C

ƒk
£ Hz; GL

,

where C is a constant, and ƒkHz; GL, for k ¥ 2, is defined on  ê G by the absolutely conver-
gent series

ƒkHz; GL :=
1

zk
+ ‚

wœG*

1

Hz-wLk
-

1

wk
.

The case k = 2 is just that of Costa’s surface, where G = @iD and C = 8 p e1 . The con-
vergence  of  this  series  is  actually  rather  subtle  for  k = 2,  and  the  difference  in  the  sum-
mands cannot be separated. For k ¥ 3, we may rewrite ƒkHz; GL as
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The case k = 2 is just that of Costa’s surface, where G = @iD and C = 8 p e1 . The con-
vergence  of  this  series  is  actually  rather  subtle  for  k = 2,  and  the  difference  in  the  sum-
mands cannot be separated. For k ¥ 3, we may rewrite ƒkHz; GL as

ƒkHz; GL =
H-1Lk-2

k !

dk-2

dzk-2
ƒHz; GL+ EkHGL,

where EkHGL is the Eisenstein series of weight k:

EkHGL := ‚
wœG*

1

wk
.

It was mentioned earlier that any elliptic function may be expressed as a rational function
of ƒHz; GL and its derivative ƒ£Hz; GL. We can achieve this for the Weierstrass data in equa-
tion (21) by repeatedly differentiating equation (9) and applying the above observations.

· Higher Genus Minimal Surfaces

We now discuss two ways in which one may generate examples of minimal surfaces that
have a topology other than that of a torus.

ü Automorphic Functions on Hyperbolic Space

Every  compact,  connected  surface    has  a  simply-connected  universal  covering  space,
which we denote by *. If  has no additional structure, we know that * must be topologi-
cally a sphere, which we take to be the extended complex plane ‹ 8¶<, or an open sub-
set of the plane, which we take to be . A surface  is said to have a conformal structure
if, for every point p œ  , one has a notion of the angle between any two tangent vectors
based at p. If  is a simply connected region in , we have the following fundamental fact
from complex analysis:

Riemann Mapping Theorem. Any simply connected region in the complex plane 
(other than  itself) is conformally equivalent to the unit disk U := 8zœ z < 1<.

A Riemann  surface  is  a  surface  endowed  with  a  conformal  structure.  If    is  a  Riemann
surface of genus at least two, the Riemann mapping theorem allows us to think of its uni-
versal covering space * as being the unit disk U Œ . In fact, following [7], a simply con-
nected Riemann surface * is classified as being

Ë elliptic if it is conformally equivalent to the whole Riemann sphere ‹ 8¶<

Ë parabolic if it is conformally equivalent to the finite plane 

Ë hyperbolic if it is conformally equivalent to the unit disk U

Thus, any compact Riemann surface  is of the form  = * ê G, where G is a discrete sub-
group of a group  of conformal transformations on *. 
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Ë If  *  is  elliptic,  then    is  the  full  group    of  linear  fractional  transformations
z Ø Ha z + bL ê Hc z + dL for complex constants a, b, c, and d with a d - b c ≠ 0.

Ë If *  is parabolic, then  is the group  of linear transformations z Ø a z + b, for
complex constants a and b.

Ë If  *  is  hyperbolic,  then   is  the group   of  linear fractional  transformations of
the form z Ø ei qH z - aL ë H1- āzL, where q œ , a œ U, and ā is the complex conju-
gate of a. In this case,   is isomorphic to the matrix group PSL2HL.

In accordance with the above, we say that  is elliptic if * is elliptic,  is parabolic if *

is parabolic, etc. To simplify the discussion a bit, we sometimes use the term Weierstrass
data  to  mean  a  pair  of  meromorphic  functions  J f

`
, g̀N  on  a  compact  Riemann  surface  .

These functions lift naturally to a pair of G-invariant functions H f , gL on *.

The catenoid is an example of a minimal surface that arises from Weierstrass data on an el-
liptic  Riemann  surface.  The  main  subject  of  this  paper  has  been  Costa’s  surface,  which
arises from Weierstrass data on a parabolic Riemann surface (i.e.,  a  torus).  Minimal sur-
faces of higher topological type arise from Weierstrass data on Riemann surfaces of hyper-
bolic  type.  In  order  to  find  such  data,  we  seek  meromorphic  functions  H f , gL  on  the  unit
disk U  that are invariant under a discrete subgroup G Œ  . Such functions are referred to
as automorphic functions.  A fundamental domain of G  acting on U  can be specified by a
subregion of U bounded by line segments and circular arcs. Thus, the rendering methodol-
ogy  used  here  should  extend  directly  to  the  hyperbolic  case.  This  leads  us  to  pose  the
following:

Problem: Use automorphic functions on the unit disk U as Weierstrass data for the con-
struction of new examples of minimal surfaces.

It should be noted that the author has not been able to find any references in the mathemati-
cal  literature  taking  this  approach  to  the  construction  of  minimal  surfaces.  There  is  an-
other approach, however, which is briefly discussed in the next section.

ü Algebraic Curves in 2

Riemann surfaces may also be realized as affine algebraic curves in 2, which are the solu-
tions  of  polynomial  equations  in  two  complex  variables  of  the  form  PHz, wL = 0.  Such
curves are not compact, but they can be compactified via an embedding into the complex
projective  plane  P2.  From  this  perspective,  Riemann  surfaces  can  easily  be  identified
with branched coverings of the complex plane  or the Riemann sphere ‹ 8¶<. In equa-
tion (9), for example, we see that the Weierstrass data for Costa’s surface essentially pro-
vides a complex parametrization of the elliptic curve

w2 = 4 z3 - g2 z- g3,

where g2 := -4 He1 e2 + e1 e3 + e2 e3L and g3 := 4 e1 e2 e3.

In [8], Thayer describes a family of higher genus minimal surfaces, which he calls Chen–
Gackstatter–Karcher  surfaces  or  CGK  surfaces.  In  constructing  these  surfaces,  he  first
identifies Riemann surfaces of the form
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Gackstatter–Karcher  surfaces  or  CGK  surfaces.  In  constructing  these  surfaces,  he  first
identifies Riemann surfaces of the form

wk - R HzL = 0,

where RHzL  is a rational function in z  of a specific form. He then constructs minimal sur-
faces  with  the  Weierstrass  data  f HzL = 1  and  gHzL = C wk-1 = C RHzLHk-1Lêk,  which  are  de-
fined on a specific branch of the underlying Riemann surface. Here, the Gauss map g may
be viewed as a multivalued function from  into the Riemann sphere ‹ 8¶<. This leads
us to pose the following:

Problem: Is it possible to construct an explicit correspondence between automorphic func-
tions on the unit  disk U  and affine or projective algebraic curves? In particular,  can we
find automorphic functions on U that are Weierstrass data for CGK surfaces?

We note that Thayer’s paper [8] contains numerous figures illustrating specific examples
of CGK surfaces.  The figures were generated using a program called MESH, which was
written by James Hoffman. MESH is an adaptive mesh generation program that is specifi-
cally  designed  to  generate  vertex,  edge,  and  face  data  for  minimal  surfaces.  This  data  is
generated via numerical integration of the component functions of the Weierstrass repre-
sentation.  MESH is  a  command-line application with a client-server architecture,  the use
of which requires some knowledge of C++ or FORTRAN programming.

· Periodic Minimal Surfaces

Finally, we note that there are known examples of surfaces that are periodic in the sense
that they are invariant under a discrete group of rigid motions in 3. A particularly interest-
ing family of such surfaces is described in [10]. It would be interesting to search for new
examples of such periodic minimal surfaces via the use of automorphic functions.

· Enhancements to the Minimal Surfaces Package

We finish with a short list of possible enhancements to the Minimal Surfaces package.

Ë Improve  performance  by  employing  a  method  for  selecting  the  density  of  vertex
data on the basis of the surface metric given by equation (6). Alternatively, use the
metric as a basis for an adaptive mesh generation algorithm.

Ë Improve performance by employing symmetries of surfaces to reduce the amount
of computation.

Ë Include functionality for rendering other minimal surfaces, including the CGK sur-
faces described above.

Ë Incorporate functionality that permits the visualization of different coordinate sys-
tems  on  a  minimal  surface.  Of  particular  interest  would  be  principal  curvature
lines and asymptotic lines. 
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Ë Include functionality for rendering geodesics, including the ability to find and ren-
der closed geodesics.

Ë Include  an  export  function  that  is  suitable  for  use  with  the  Persistence  of  Vision
Ray Tracer (POVRAY) program.

Finally, we note that the Minimal Surfaces package was originally written using Mathemat-
ica  Version  5.2.  One  reviewer  of  this  paper  indicated  that  the  DelaunayTriÖ
angulation  routine  in  the  Computational  Geometry  Package  for  Mathematica  5.2  is
known to have poor complexity and has suggested the use of Martin Kraus’s Polygon Tri-
angulation  package  [11]  instead.  Martin  Kraus’s  package  seems  to  provide  significantly
better  performance  and  may  be  incorporated  into  a  future  version  of  Minimal  Surfaces.
The  same  reviewer  also  pointed  out  that,  in  later  releases  of  Mathematica,  the  built-in
Export function supports both PLY and POVRAY file formats.
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