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Building on the preexisting deployment of equation-based surface geome-
tries in architecture, surface logic explores the dialogue between twentieth-
century pioneers of reinforced concrete and the contemporary possibilities
made  accessible  by  the  instrumentation  of  computation.  Computational
modeling  of  equation-based  surfaces  opens  designers  to  unprecedented
access  and  design  sensibilities  driven  by  parametric  variation,  differential
topological relationship, fabrication techniques, material analysis, and phys-
ical performance.

‡ Surface Logic
Architecture  has  long  been  dominated  by  orthogonal  Cartesian  principles  of
design  preferring  two-dimensional  planning  and  composition.  Traditionally,
three-dimensional  surface  principles,  such  as  domes  and  vaults,  were  imple-
mented  at  positions  predetermined  by  planimetrics.  Although  it  is  possible  to
produce  complex  three-dimensional  space  from  such  principles,  the  guiding
parameters  were  usually  generated  by  orthographic  projections:  plans,  sections,
and  elevations.  Advancements  in  computation  such  as  calculus-based  non-
uniform rational B-spline (NURBS) surfaces and the accessibility of three-dimen-
sional  modeling  interfaces  have  liberated  architects  from  two-dimensional
orthogonal  logics.  Surface  logic  attempts  to  describe  a  new way  of  thinking  for
architects  guided  by  the  principles  inherent  to  working  with  equation-based
surfaces.  

· Surface Logic Precedent

It is important to first preface this argument with the fact that surface logics are
not  entirely  new  to  architecture.  One  can  trace  the  roots  from  complex  three-
dimensional  principles  of  double-helix  stairs  to extreme vaulting of  high Gothic
cathedrals.  Even though these  elements  are  extremely  complex  in  themselves,  it
was not until the work of Antoni Gaudi that surface logic truly manifested itself
three-dimensionally  at  all  levels  of  architectural  design.  Gaudi’s  vaults  at  the
Guell crypt marked the first use of the hyperbolic paraboloid [1]. The linear char-
acteristic  of  this  surface  forms  a  developable  surface,  which  naturally  integrates
with the linear brick work of the masonry construction of the crypt. Unlike tra-
ditional  vaulting,  the  logic  of  the  surfaces  was  the  primary  guiding  principle  of
architectural  space.  The plan of the crypt can only be read as the result  of  such
principles,  not  vice  versa.  Gaudi  continued  his  investigation  of  equation-based
surfaces by exploring the principles of the catenary curve. The word “catenary” is 
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derived from the Latin word for “chain”; it is the curve a hanging flexible wire or
chain assumes when supported at  its  ends and acted upon by a uniform gravita-
tional  force  [2].  In  order  to  access  these  principles,  Gaudi  constructed  stereo-
static  models  using  weighted  chains.  Acting  fully  in  tension,  the  inverted
catenary provides logic perfectly integral to the physics of compression for load-
bearing structures. These surface logics not only provided a structural solution to
the Sagrada Familia, but continue to register at every scale of the design even to
surface articulation and composition.

Figure 1. Typical geometry deployed in reinforced concrete.

Figure 2. Antoni Gaudi's Guell crypt.

The evolution of these principles that Gaudi employed translated into the work
of  early  twentieth-century  reinforced  concrete  pioneers.  Although  reinforced
concrete was a radical material departure, able to act in compression and tension
simultaneously, the equation-based developable surfaces were equally integral to
the  new material.  The  geometry  of  the  surface  performed  structurally  as  in  the
work  of  Gaudi  and  also  provided  logic  for  the  construction  of  the  wood  form-
work  necessary  to  house  the  new  fluid  material.  These  principles  were  first
deployed  as  singular  spanning  solutions  to  the  infrastructure  of  bridges  and
viaducts,  but  eventually  made  their  way  into  architectural  projects  such  as  the
Hippodrome  of  Eduardo  Torroja,  the  Orly  hangers  of  Eugène  Freyssinet,  and
the concrete exhibition hall of Robert Maillart. A direct relationship between the
logic  of  the  equation-based  surfaces  and  the  structural  performance,  construct-
ability, material deployment, and spatial organization informs all of these works.  
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Figure 3. Eugène Freyssinet Orly hangers.

Figure 4. Robert Maillart concrete hall and bridges.

Figure 5. Eduardo Torroja hippodrome.

Figure 6. Pier Luigi Nervi sports palace.
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Figure 7. Work by Félix Candela.

Figure 8. Eero Saarinen TWA terminal.

Later,  other  concrete  masters  such  as  Pier  Luigi  Nervi,  Félix  Candela,  Eero
Saarinen,  and  Eladio  Dieste  exhausted  such  principles  in  countless  variations.
Because of  the surface logic integration,  it  is  very hard to say whether the work
of  such  builders  is  that  of  an  engineer  or  an  architect.  At  the  same  time  it  is
important  to  note  that  other  architects,  such  as  Erich  Mendelsohn,  Rudolph
Steiner,  and  Frederick  Kiesler,  were  making  use  of  reinforced  concrete.  Unlike
previous  builders,  their  work  relies  on  the  ability  of  the  surface  aesthetics  to
convey notions of dynamism, religion, or sculptural space. This difference is not
an attempt to dismiss these works, but for the purpose of this article it is critical
to understand that they were not working within the discipline of equation-based
surface  logic.  In  return,  this  work  employed  reductive  secondary  logics  for
constructability and material performance and organization. 

With the invention and standardization of prestressed concrete, the surface rela-
tion to geometry became internalized. The one-to-one relationship of geometry
and  structure  of  thin-shell  concrete  again  transitioned  to  the  new  materials  of
membrane structures and pneumatics.  Although the guiding principles are simi-
lar due to the lightweight nature of the material of such surfaces, these buildings
rarely had the holistic organizational impact of their concrete and masonry prede-
cessors. Conventional implementations usually followed tent typologies, allowing
only  roofing  capabilities,  returning  to  elementary  deployment  similar  to  that  of 
planimetric installations of the dome or vault.  

Sur face Logic 407

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.



· New Surface: New Accessibility

In  the  last  10  years,  the  availability  of  personal  computers  and  the  advance  in
processing power have enabled architects everywhere to generate and manipulate
complex  surfaces  with  ease  in  the  digital  realm.  At  first,  architects  integrated
three-dimensional software with advanced rendering and dynamic packages from
the  movie  industry.  The  resultant  surfaces  were  usually  smooth,  semi-trans-
parent,  and  seductively  rendered  products.  Initially,  there  was  an  attempt  to
legitimate such surface generation through postmodern processes of semiotics or
collage.  Typical  projects  in  this  realm  attempted  to  use  and  form  surfaces  by
embedding  external  indexes  or  traditional  manual  art  and  sculpture  techniques.
Regardless  of  whether  the  metaphoric  import  was  that  of  stock  market  trends,
animated  site  flows,  or  expressionistic  dynamism,  the  surface  technique  rarely
varied.  In  order  to  create  a  continuous  blending  of  these  external  logics,  the
technique  defaulted  to  freeform  lofting.  Furthermore,  the  digital  translation  of 
such  external  logics  usually  resulted  in  a  numerical  set  that  allowed  little  more
than  a  variety  in  narrative  for  the  generation  of  similar  forms  in  which  global
syntactical  principles  of  the  index  rarely  provided  any  internal  local  logics  to
build  upon.  If  the  projects  advanced  further  into  the  physical  material  realm,
reductive  orthogonal  conventions  such  as  Cartesian  sectioning  were  needed  to
provide  a  clear  formal  understanding  of  the  logic  outside  of  the  creation  of  the
surface.  This  just  continued  to  typify  the  predictability  of  such  projects.  If  the
formal translation of surfaces generated by external logics will eventually default
into  Cartesian  bread-slicing,  then  there  are  only  two  options  to  pursue  for  the
surfaces  to  exist  materially.  The first  is  to  accept  the  Cartesian  slicing  and start
with  it  as  a  generator.  The  second  is  to  generate  surfaces  by  logic  inherent  to
their formation.

· Surfaces in Mathematics

In  order  to  truly  understand  surface  principles,  it  is  important  to  learn  from
other disciplines  that  also work with surfaces.  Two adjacent  mathematical  fields
that  are particularly  relevant  are differential  topology and differential  geometry.
As in architecture, surface logic in mathematics developed before the use of com-
putation. Born on the bridges of  Koenigsberg in 1735, topology emerged out of 
the lack of an adequate language for describing forms [3]. The new field created
a number of principles and tools for evaluating complex surfaces. Early twentieth-
century  plaster  models  by  Ludwig  Brill  and  later  Martin  Schilling  can  still  be
found  exhibited  for  the  teaching  of  mathematical  surfaces.  Recently  there  has
been a revived interest  in equation-based surfaces [4].  This  is  due largely to the
new accessibility  to  complex  surfaces  made  possible  by  computational  programs
such  as  Mathematica.  Speed  of  computation,  ease  of  representation,  and  com-
puter-based manufacturing have allowed radical  advances  in  both the accessibil-
ity  to  traditional  complex  surfaces  as  well  as  the  development  of  entirely  new
ones. Although minimal surfaces exist in natural forms such as soap bubbles, now
topologists are actually engineering new ones with the potential  for applications
in molecular and material design. 
The following work represents a series of architectural investigations into the log- 
ics of equation-based surfaces. 
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‡ Reinventing the George Washington Bridge Bus Station
· Architecture Studio: Andrew Saunders

We first looked at the possibility of reinventing the George Washington Bridge
Bus  Station  in  New  York  City,  originally  designed  by  Pier  Luigi  Nervi.  The
studio started with common surfaces documented in Modern Differential Geometry
of Curves and Surfaces with Mathematica by Alfred Gray. Enabled by Mathematica,
the  students  were  able  to  gain  quick  access  to  parametrically  plotted  surfaces.
With the help of Mathematica  notebooks from Matthias Weber of Indiana Uni-
versity,  the  students  progressed  into  more  advanced  minimal  surfaces.  Students
conducted  a  series  of  compositional  diagrams  and  stereolithography  models  to
understand  the  complex  symmetries  and  bipolar  spatial  relationship  brought
about  by  the  kaleidoscopic  patching  composition  of  minimal  surfaces.  Given
these new advances in equation-based surfaces coupled with advances in manufac-
turing and fabrication, the studio speculated on how to evolve the vocabulary of 
Nervi and the other masters of reinforced concrete. 

Figure 9. Sections: Ashley Hanrahan.

Figure 10. Renderings: Ashley Hanrahan.

Sur face Logic 409

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.



410 Andrew Saunders and Amie Nulman

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

Figure  11.  Compositional  analysis  of  minimal  surface  from  Matthias  Weber:  Kerstin  Kraft,
Lexi  Sanford,  Ashley  Hanrahan,  Douglas  Samuel,  Emaan  Farhoud,  Joe  Morin,  John  Davi,
Justin Bosy, Monzoor Tokhi, Adam LoGiudice. 



‡ Fabricating Differential
· Seminar/Workshop: Andrew Saunders and David Riebe

The second project  investigated  the  possibilities  of  material  fabrication through
differential geometry. The seminar again began with common surfaces in differ-
ential  geometry  from  Modern  Differential  Geometry  of  Curves  and  Surfaces  with
Mathematica.  The  students  started  by  parametrically  plotting  40  variations  of  a
common surface such as the Enneper, catenoid, helicoid, and monkey saddle. At
first the manipulations of the formulas were random. Once the students analyzed
the  variants,  certain  characteristics  of  each  of  the  original  surfaces  began  to
emerge.  The  students  returned  to  the  original  and  started  to  guide  the  modifi-
cation in pursuit of certain formal topological signatures that could inform fabri-
cation techniques. When the students authored parametrically a variation of the
original  surface,  the  investigation  turned  to  the  potential  physical  properties  of
the  new  surfaces.  Students  first  physically  modeled  the  surfaces  with  stere-
olithography. It is important to the studio to advance beyond the representation
of  the  surface  by  using  the  identified  topological  signatures  to  inform  material 
organization.  

Figure  12.  Fabrication  models  enabled  by  the  Math  Plug-In  for  Rhino  (by  Jess  Maertterer): 
Ryan Salvas, Eric Smith, Alex Lagula, Brent Hanson. 
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Figure 13. Mathematica differential hybrids: Brent Hanson, Alex Lagula, Ben Waserman.

‡ Parachute Pavilion
· Architecture: Andrew Saunders and Ted Ngai

The final project was a proposal for the Parachute Pavilion on Coney Island and
the analysis of the structural performance of minimal surfaces. In this project for
Coney Island, the brief asked for a pavilion to be sited at the base of the historic
parachute ride. The program is composed of public viewing, dining, and retail, as
well  as  private  rental  and  dining  facilities.  The  project  incorporated  the  surface
logic of the Riemann minimal surface. Topologically the surface acts as a spatial
knot  of  circulation  that  negotiates  the  public  and  private  programs  vertically
three levels through the boardwalk. This knot creates an ambiguous relationship
between  the  iconic  and  figural  singularities  of  the  popular  rides  of  the  theme
park  and  the  infrastructural  ground  condition  of  the  boardwalk.  The  kaleido-
scopic  patching  of  the  minimal  surface  is  directly  translated  into  prefabricated 
local  modules  that  mirror  and  rotate  to  form  the  trunk  for  the  cantilevered
pavilion.  
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Figure 14. 

Figure 15. 
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Figure 16. 

414 Andrew Saunders and Amie Nulman

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.



Figure 17. 

‡ Parachute Pavilion Structure
· Structural Performance Analysis: Amie Nulman, Structural 

Engineer at Ove Arup & Partners, Ltd.
Complex  curved  geometrical  surfaces  must  follow  the  same  laws  of  gravity,
physics,  and  material  behavior  as  simple  linear  geometries.  The  primary  differ-
ence  for  structural  analysis  between  simple  linear  surfaces  and  complex  curved 
surfaces is the way the surface is supported and the subsequent analysis method.
Complex  curved  surfaces  can  be  constructed  by  either  treating  the  surface  as  a
facade  supported  by  a  rationalized  framing  system  or  by  requiring  the  surface
itself to be a load-bearing structure.  
Traditionally,  curved  surfaces  were  supported  by  a  secondary  rational  framing
system except  for  specific  simple  geometries,  such  as  arches,  vaults,  and  domes, 
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where  linear  analysis  approaches  could  be  used  to  determine  and  solve  the 
element  forces,  stresses,  and  support  reactions.  Continuing  advancements  in
computer-aided  analysis  permit  increasingly  complex  geometries  to  be  analyzed 
and designed as independent load-bearing elements. 
If a complex curved surface is supported on a secondary framing system, conven-
tional  structural  analysis  methods  can  be  employed  to  solve  stress  calculations
based  on  member  orientation,  spans,  loading,  and  support  conditions.  For
instance, a complex curved roof system supported by beams and columns would
be  analyzed  using  a  single  structural  member  for  each  framing  element.  Initial
sizing  for  scheme  design  can  sometimes  be  done  using  proven  rules  of  thumb,
and the final force calculations can occasionally be done by hand, without the aid
of  computer  analysis.  Still  today,  complex  curved  geometries  required  to  span
significant  unsupported distances,  like  sports  arenas  and concert  halls,  are  likely 
achieved by introducing a secondary system.   
If a complex curved surface is treated as a self-supported load-bearing structure,
engineers  use  the  finite  element  method  to  solve  element  stress  calculations,  as
that allows them to correctly capture the complicated geometry and the effects of 
loading and support conditions. Finite element analysis essentially transforms an
unintuitive,  complex  form into  a  system of  piecewise-continuous  uncomplicated
objects  by  reducing  compound  geometries  into  a  series  of  simple  shapes  with
deflection  compatibility  parameters.  Once  the  internal  forces  and  stresses  are
determined by  analysis,  material-specific  design  to  determine  final  constructible
parameters is a parallel process for structural elements, regardless of their shape. 
The  finite  element  method  employed  by  computer  programs  to  perform  struc-
tural analysis is not a new discovery. It has been a feasible analysis alternative for 
a  plethora  of  mathematical  and engineering tasks  for  over  four  decades,  follow-
ing significant development of digital computing in the 1960s. 
Recent technological advances that enable the design of complex curved surfaces 
in architecture include capabilities to create surfaces digitally, transfer the geome-
tries  between  development  and  analysis  programs,  properly  discretize  the
surfaces  to  ensure  reliable  analysis,  and  increase  computer  analysis  capacities  to
analyze  the  resulting  models.  Now  the  decision  on  how  to  support  complex
curved surfaces is less predetermined and is a result of collaboration between the
architect and the structural engineer. 

· Analysis Approach

The  central  translational  corridor  of  the  proposed  Parachute  Pavilion  evolved
from symmetrical manipulations of a basic module of the mathematically derived
Riemann minimal  surface.  Based on the mathematical  logic and the scale  of  the
resulting  minimal  surface,  the  Pavilion  surface  was  analyzed  as  an  independent
load-bearing  structure.  The  remainder  of  the  Pavilion  structure  would  be 
resolved following investigation of the central surface. 
A finite element analysis computer program developed by Arup, Oasys GSA, was
used  to  analyze  the  surface.  The  GSA  processor  solves  for  surface  mesh  node 
displacements  based  on  specified  material  and  loading  conditions  and  interpo-
lates the results to compute element strains and stresses.  
To create the finite element model, the Pavilion surface model is discretized into
a mesh of finite elements using a preprocess program. The finite element mesh is  
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the primary source of analysis accuracy and an efficient finite element model will
balance  structurally  accurate  results  with  sensible  computational  demands.  The
mesh must be refined enough to correctly capture the complex geometries of the 
surface but compact enough not to inhibit analysis.  

Figure 18. Finite element mesh.

Figure 19. Finite element mesh.

Figure 20. Finite element mesh.

The finite element method is not an exact analysis, but the results of an appropri-
ately  constructed  finite  element  model  are  accurate  enough  for  engineering
purposes, especially given the safety factors and tolerances associated with struc- 
tural engineering and building construction. 

· Behavior Assessment

The structural behavior of the Pavilion surface is unintuitive, so an initial run of
the  finite  element  model  was  performed  to  assess  general  characteristics  of  the
shape  as  well  as  the  level  of  mesh  refinement.  The  Pavilion  surface  mesh  was 
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imported  into  GSA,  the  elements  were  assigned  material  properties  (concrete
shell  elements,  8"  uniform thickness),  and  the  mesh  was  given  boundary  condi-
tions  to  represent  the  proposed  structure  beneath  the  surface  in  the  full 
Parachute Pavilion design. 
Based  on  the  proposed  level  beneath  the  boardwalk  of  the  Parachute  Pavilion, 
the first two levels of the surface have vertical and horizontal supports around the
edges and are therefore relatively stiff areas with low displacements and stresses.
The  two  levels  above  the  boardwalk  are  modeled  with  no  additional  vertical  or
horizontal  supports,  and  the  load  is  thereby  transferred  down  the  structure  via
the continuous  surface.  The interior  central  warped segment  (where  the oppos-
ing  surface  geometries  meet)  is  the  most  rigid  area  above  ground and therefore
attracts load and resists vertical and horizontal deflections.

Figure 21. Applied support conditions.

The  vertical  deflections  of  the  surface  are  largest  at  the  extreme  unsupported 
ends  (top  surface)  and  are  symmetric  about  the  center.  The  horizontal
deflections of the surface are largest at the points farthest from the central rigid
element  and  indicate  that  the  structure  is  rotating~almost  an  identical  amount
at both ends~about the central stiff element. 

Figure 22. Vertical deflection.

Figure 23. Rotation.
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The  deflections  in  all  three  directions  Hx, y, zL  increase  the  farther  the  surface
extends  from  applied  support  conditions  and  act  symmetrically  about  the  stiff 
center.

Figure 24. Horizontal deflection in long direction.

Figure 25. Horizontal deflection in short direction.
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Figure 26. Vertical deflection.

Large  stress  concentrations  formed  at  both  the  exterior  and  interior  vertical
surface  faces  in  the  central  region.  The  stresses  along  the  exterior  vertical  face
result  from the structural  discontinuity,  and therefore change in stiffness,  at  the
point adjoining two vertical levels of the surface. The stresses along the interior
vertical  face  are  a  result  of  the  opposing  cantilever  structures  that  cause  large 
tensile forces across the warped, stiff central support. 

Figure 27. Axial stress.
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Figure 28. Uniform and nonuniform loading deflection diagram.

Figure 29. Uniform and nonuniform loading bending moment diagram.

In order to achieve a more detailed and accurate finite element analysis, the mesh
was  further  refined  to  replace  the  original  quadrilateral  mesh  elements  with
triangle  mesh  elements  (of  half  the  size)  in  the  regions  of  high  stress.  This
alleviates large stress gradients across elements and stress discontinuities between 
elements. 
The deflections and stress patterns of the initial uniform surface analysis are anal-
ogous to a central vertically rigid element (column) with equivalent  cantilevered
horizontal  elements  (beams).  This  structural  system yields  maximum deflections
at the ends of the cantilevers and large tensile stresses in the horizontal members 
across the top of the vertically rigid element (column). Deflection limits charac-
teristically govern the required depth of the horizontal (beam) structure, and the
system is particularly sensitive to unbalanced loading conditions. 

Unbalanced loads result in an unbalanced moment at the column element. This
unbalanced  moment  must  be  resolved  by  the  column  element  because  the
moment is not counterbalanced with an equal and opposite moment in the oppos-
ing  beam  element.  This  condition,  unbalanced  loading  resulting  in  unbalanced
moment transfer into the column, requires a stiffer (larger) column element than 
a balanced system.
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Structural Analogies

Following the initial assessment of the structural behavior of the Pavilion surface,
a further study was done to determine the structural efficiency of the surface. To 
accurately model the behavior of the repeated Riemann surface module, compar-
isons to the entire Pavilion surface were complex and unnecessary.
The symmetry of the construction of the Pavilion surface (based on rotations and
translations  of  the  basic  Riemann  surface  module)  simplified  the  process  of
determining a smaller module to experiment with. Using analogies to deflection
behavior of  the Pavilion surface model,  the boundary conditions for modeling a
double  surface  element  (one  rotation  of  the  Riemann  surface)  were  developed,
and  this  element  was  compared  to  numerous  alternate  structures  under  similar 
loading conditions. 

Figure 30. Deflections of analogous surface and stick models.

Figure 31. Deflections from unbalanced loads.
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The surface was compared to two different surface models,  a cantilevered frame
and a strict cantilever, as well as stick models of those shapes. Due to geometric
differences  such  as  longer  beam  elements  and  columns  unrestrained  along  the
vertical  face similar  to the Riemann surface,  it  is  logical  to have larger resultant
deflections  of  the  comparison  shapes.  However,  the  resulting  displacements  of
the  comparison  shapes  being  four  to  five  times  greater  is  an  unpredicted  result
and demonstrates the shape is clearly a more efficient structure. 

·



· Structural Analysis

The structural investigation of the surface was initially focused on understanding
how  the  shape  responds  to  a  nonzero  gravity  environment.  Under  uniform
loading, the symmetry of the shape is accentuated by symmetrical deflections and
element  stresses.  The  surface  behavioral  characteristics  can  be  compared  to  a 
double cantilever beam and column system, but it is evident that the geometry of
the surface renders a more efficient structural form.
In order to complete the structural analysis of the Pavilion surface, a final model
of  the  surface  was  developed  with  what  had  been  assessed  about  the  surface 
behavior  combined  with  material  properties  and  building  code  requirements
(such as deflections and loadings).
Deflection  criteria  are  determined  based  on  a  combination  of  building  code 
requirements  and  interface  of  structural  elements  with  other  elements  of  the
building. Building codes specify maximum deflection criteria, which are typically
set  to  ensure  stability  of  the  structural  design.  Where  structural  interfaces  are
sensitive, for example the connection of the perimeter horizontal structure to the
building  facade,  vertical  deflection  criteria  will  typically  be  imposed  that  are
more onerous than the code requirements for stability. 
In  combination  with  the  weight  of  the  structure  and  any  applied  material  loads 
(facade, floor finishes), building codes specify a minimum live load be applied to
structures  based  on  occupancies.  The  live  loads  are  applied  across  the  entire
horizontal  surface  as  well  as  to  alternating  spans  in  order  to  fully  represent  the
nature of an inhabited space with respect to people flow and congregation. Finite
element  analysis  of  the  structure  under  the  various  load  combinations  proved
that  alternately  locating  the  live  loads  across  the  surface  was  the  most  onerous
analysis  case,  as  it  caused  unsymmetrical  deflection  and  stresses  in  both  the
vertical and horizontal elements.
Initial surface thicknesses are classically estimated using rules of thumb based on
span and boundary conditions.  The initial  surface  thicknesses  are  then specified 
in  the  finite  element  model  and  adjusted,  as  necessary,  to  resolve  member
deflections and forces,  following the first analysis run of the fully loaded model.
For a strict cantilever, the initial thickness in the middle of the surface would be
estimated  at  almost  twice  the  thickness  the  model  actually  requires,  further
emphasizing the positive structural contributions of the surface shape. 
A post-processor was run directly following the finite element analysis  to deter-
mine reinforcing ratios for specified concrete shell thicknesses and again to check 
that all internal stresses and forces were within allowable ranges.

Sur face Logic  423

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.



Figure 32. Concrete reinforcement quantities.

· Additional Analysis

Although  we  were  specifically  interested  in  understanding  the  behavior  of  the 
mathematically derived Parachute Pavilion minimal surface, the next step was to
explore structural rationalizations of the Pavilion to make a more efficient struc-
ture. 
As the structure acts roughly like a double cantilever, the forces in the surface are
largest  in  the  central  region  and  thus  the  maximum  thickness  of  the  surface  is 
required  in  this  area.  The  more  load  applied  to  the  surface  at  locations  away
from the central  region (at  the ends  of  the cantilevers),  the higher  the resultant
deflections  and  forces  will  be  at  the  center,  and  subsequently,  the  thicker  the
surface must be. Therefore, one approach to rationalization can be thinning out
the  surface  structure  as  it  progresses  from  the  central  region,  in  order  to
minimize  excessive  thickness  and  avoid  additional  material  weight.  This
approach  can  be  seen  as  a  departure  from  the  pure  mathematically  derived
surface,  which  would  still  apply  if  a  uniformly  thick  surface  was  used.  One
surface  of  the  structure,  top  or  bottom,  can  maintain  the  characteristics  of  the
mathematically  derived  surface,  while  the  curvature  of  the  other  surface  adjusts
to permit the changes in thickness.

Figure 33. Varied thickness elements.
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The single point at the intersection of the vertically stacked surfaces needs to be
thickened  to  allow  a  vertical  load  path  down  the  sides  of  the  surface.  This
alternate  load  path  would  minimize  the  load  required  to  transfer  down  the
surface, which would minimize deflections and stresses in the surface. This ratio-
nalization  can  virtually  be  considered  not  to  be  a  departure  from  the  original
mathematically  derived  surface,  as  it  naturally  occurs  from  the  inherent
structural thickness of the surface. 

Figure 34. Vertical thickened elements.

Figure 35. Edge trusses.

Figure 36. Edge trusses.
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Figure 37. Edge trusses.

Figure 38. 

Further consideration of materials and construction techniques may also provide
structural  rationalization  without  the  need  to  compromise  the  original  Pavilion 
surface.  Structural  engineers  are  currently  exploring  advanced  analysis  and  new
construction materials  and techniques in order to promote the increasing archi-
tectural explorations of complex geometric surfaces.
Although  each  investigation  emphasizes  different  deployments  of  surface  logic, 
five new characteristics of design thinking consistently emerge.

· Thinking Parametrically

All  projects  begin  by  looking  at  preconceived  equation-based  surfaces  ranging
from common surfaces found in differential geometry to newer minimal surfaces.
Because  these  surfaces  are  determined  by  separate  equations  in  the  x,  y,  and  z
functions, they can easily be altered by modifying the parameters of the equation.
Initially, this approach may seem extremely unintuitive for the understanding of
complex  three-dimensional  forms,  especially  for  those  outside  the  field  of
mathematics.  Because  of  the  speed  of  computation,  the  modified  calculations
quickly  return  a  variation  of  the  original.  Instead  of  manually  modifying  the
surface  geometry  by  pulling  points  or  using  transforming  tools  of  conventional  
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modeling  programs,  Mathematica  allows  unprecedented  access  to  the  internal
logic of the surface equation. The slightest manipulation of code returns instant
formal  consequences  for  the  replotted  surface.  This  is  a  radical  shift  in  the  way
architects  have  traditionally  mastered  geometry.  Initial  frustration  from  not
being  able  to  guide  the  form  by  manually  sculpting  the  geometry  turns  into  a
revelation  of  inconceivable  possibilities  brought  about  from harnessing  the  true
power of computation to inform surfaces.  

· Thinking Iteratively 

One of  the major  advantages  of  working computationally  is  the extreme ease of
generating  and  processing  huge  amounts  of  information  at  such  a  rapid  pace.
Traditionally,  design  is  an  iterative  process.  For  architects,  one  of  the  most
critical parts of the design process is to learn through doing. Although the design
process  may  be  presented  linearly,  the  actual  process  itself  is  a  constant  reeval-
uation  of  certain  premises  through  iterative  investigation.  The  current  speed  of
computation  enables  the  iterative  process  to  expand  exponentially.  It  is  only
through these iterations that the designer can start to gain a new intuition about
certain  signatures  and predictability  within  equation-based surfaces.  This  ability
to  be  on  the  one  hand  prolific  and  on  the  other  specific  and  precise  is  a  whole 
new sensibility for design thinking.

· Thinking Topologically

By studying the properties of geometric figures or solids that are not changed by 
homeomorphisms,  topology  puts  preference  on  flexible  formal  relationships.
Thinking topologically comes out of a desire to focus on the possibilities of three-
dimensional  relationships  that  exist  outside  of  Cartesian-defined  geometry.  It  is
important  that  the  flexibility  does  not  substitute  for  precision  in  form  making,
but  rather  enables  the  exploration of  the  precise  intricate  relationships  inherent   
in mathematical surfaces.  The surfaces are not seen as the means to an end, but 
rather the motivating diagram for complex connections. 

· Thinking Beyond the Representational
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Modeling is  a  critical  part  of  the architectural  design process.  One of  the major
practical  uses  of  computers  in  the  field  of  architecture  is  for  three-dimensional
modeling. As in Mathematica, architectural modeling software proves useful in its
ability  to  quickly  generate  convincing  representations  of  complex  three-dimen-
sional  forms.  This  form  of  three-dimensional  representation  even  extends  into
the  physical  realm,  enabled  by  digital  fabrication  processes.  Like  the  earlier
mathematical models of Ludwig Brill and Martin Schilling, these models are very
helpful  in  understanding  and  teaching  the  three-dimensional  consequences  of
surfaces derived from computation. Although these models are physical, they are
not material.  It  is  critical  to move beyond a physical  model that only represents
the precise geometry of the surface and into the possibilities of material organiza-
tion.  The  surface  logic  of  equation-based  surfaces  provides  an  opportunity  for
both  material  effects  and  performance.  These  new  surfaces  are  not  reduced  to
flexible  conduits  representing  foreign  indexical  systems  or  metaphoric  import,
but instead rely on internal logics of surface formation. These principles have the
ability  to  provide  material  organization  that  is  coherent  with  the  surface  itself. 
Reductive logic is no longer needed in order to fabricate the physical. 



·

Thinking Bottom Up

Surface characteristics can be divided into two types; local and global. Local char- 
acteristics  can  be  described  by  examining  local  neighborhoods  of  points.  These
micro relationships are not dictated by a macro organization, but in turn genet-
ically  compose  the  larger  global  characteristics,  such  as  embeddedness,
orientability,  symmetry,  and  periodicity.  As  Stephen  Wolfram  states  in  A  New
Kind of Science, simple rules combine to form complex behaviors. Although these
behaviors can be observed in urban conditions, architects have never consciously
deployed simple local rules in the attempt to create an entirely different charac-
teristic of global organization. The mosque hypostyle and the mat typologies do
deploy  algebraic  relations  that  result  in  indeterminate  field  conditions,  but  they
do not exhibit entirely different characteristics of organization as a whole. Under-
standing  the  global  design  implications  from  the  local  conditions  could  have
many architectural consequences at every scale.
The  results  of  these  investigations  into  surface  logic  may  appear  motivated  by 
purely formal or sculptural desires. Although this is a beneficial byproduct of the
research  that  cannot  be  undervalued,  the  use  of  Mathematica  truly  allows
architects  to  access  the  logics  of  equation-based  surfaces  in  pursuit  of  not  only
new form but also new performance. 
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