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Simulating a Chain Sliding 
off a Desktop
Jan Vrbik

The main purpose of this article is to develop an algorithm for 
simulating a chain sliding off a desktop and to design and 
demonstrate the corresponding program.

‡ Equations of Motion
Consider a chain consisting of n+ 1 point-like particles of the same mass (equal to 1, by a
choice of units), connected by n massless, perfectly flexible, inelastic links of equal length
(also equal to 1). The chain is laid on a table top, straight and perpendicular to the edge.
Then the first particle is pulled (together with the rest of the chain) gently over the edge of
the table.  This causes the chain to start  sliding down, due to gravity (also of unit  magni-
tude), in a frictionless manner [1].

Let us assume now that k  particles have already left the table, and that their positions are
defined by k angles j1, j2, …, jk  by which the first k links deviate from the vertical, and
by s, the distance of the last particle to have left the table edge (jk  is thus the angle of the
hanging  part  of  the  corresponding  link;  the  rest  of  it  still  lies  flat  on  the  table).  Collec-
tively, these k + 1 variables are known as generalized coordinates [2], as they fully spec-
ify the position of every particle.

Now, using rectangular coordinates with the origin at the table’s edge, the x axis oriented
vertically  downward,  and  the  y  axis  pointing  horizontally,  away  from  the  table,  we  can
compute the corresponding x and y coordinates of each particle by

(1)xi = :
s cos jk +⁄j=i

k-1 cos j j 1 § i § k
0 k + 1 § i § n+ 1

and

(2)yi = :
s sin jk +⁄j=i

k-1 sin j j 1 § i § k
s+ k - i k + 1 § i § n+ 1

The following program does exactly that.
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n = 10;
coord@j_List, s_D := Module@8k = Length@jD<,
Table@

If@i § k, Sum@If@j ã k, s, 1D 8Cos@j@@jDDD, Sin@j@@jDDD<,
8j, i, k<D,

80, s + k - i<D, 8i, n + 1<DD

The  ensuing  Lagrangian  is  the  sum  of  the  kinetic  energies  (that  is,  x
°
i
2+ y° i

2

2 ,  where  a  dot

means  a  time  derivative)  of  all  n+ 1  particles,  minus  the  sum of  their  potential  energies
(which, individually, equal -xi), namely

(3)L = ‚
i=1

n+1 x° i2 + y° i
2

2
+ xi .

This is easily converted to a Mathematica function.

Lagr@k_D := ModuleA8xy = coord@Table@ji@tD, 8i, k<D, s@tDD<,

TotalAFlattenAD@xy, tD2EE ë 2 + Sum@xy@@i, 1DD, 8i, k<D êê

TrigReduceE

The resulting equations of motion are obtained from

(4)
d

dt

∂L

∂q°
=

∂L

∂q
,

where  q  is,  one  by  one,  each  of  the  generalized  coordinates.  Here  is  the  corresponding
program.

eqs@k_D := Module@8L = Lagr@kD<,
Append@Table@D@D@L, ji'@tDD, tD ã D@L, ji@tDD, 8i, k<D êê

TrigReduce,
D@D@L, s'@tDD, tD ã D@L, s@tDDDD

For  any  particular  set  of  initial  values,  namely  a  list  of  k  angles  ji  (the  first  argument),
their  time  derivatives  (the  second  argument),  distance  s  (for  our  purpose  set  to  0  or,  to
avoid a technical problem, to a negligibly small value), and the derivative of s (the third ar-
gument), we can solve these equations by the following program.
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step@p_List, pd_List, sd_D := ModuleB8k = Length@pD, sol, T<,

sol =

NDSolveB9eqs@kD, Table@8ji@0D ã p@@iDD, ji'@0D ã pd@@iDD<,

8i, k<D, s@0D ã 10-5,

s'@0D ã sd=, Append@Table@ji, 8i, k<D, sD, :t, 0,
1

sd
>,

SolveDelayed Ø TrueF@@1DD;

T = t ê. FindRootBs@tD ã 1 ê.sol, :t,
1

sd
>F;

8Table@ji@TD, 8i, k<D,
Append@Table@ji'@TD, 8i, k - 1<D,
jk'@TD - Cos@jk@TDD s'@TDD,

s'@TD, H1 - Sin@jk@TDDL s'@TD< ê. solF

The program advances the solution until s reaches the value of 1, that is, when the Hk + 1Lst

particle has just left the desktop (technically, it is easier to let it go a bit further and then
backtrack to time T  defined by sHTL = 1). The program returns the new values of the ji an-
gles, their derivatives, the horizontal velocity of the Hk + 1Lst particle (equal to s° HTL; its ver-
tical  velocity  is  zero),  and  the  rate  of  increase  of  the  length  of  the  kth  link,  given  by
H1- sin jkHTLL s° HTL.  Note  that  the  final  value  of  j° kHTL  has  to  be  modified  to
j° kHTL- s° HTL cos jkHTL, since as soon as the Hk + 1Lst  particle leaves the table (even though,
at this point, only by an infinitesimal amount), jk  is no longer measured from the edge of
the  table;  the  kth  link  now  begins  at  this  newly  freed  particle  (this  does  not  change  the
value of jk itself, but it does change its derivative; the reader should be able to clearly visu-
alize this).  Furthermore, this also means that now the kth  and Hk + 1Lst  particles no longer
keep their  distance fixed (as  the last  item of  the program’s output  clearly indicates).  Be-
fore we can continue with the next such step (to pull yet another particle off the desktop),
we  need  to  apply  some  new  mechanism  to  quickly  (preferably  instantaneously)  modify
the velocities of these two particles, to make them maintain their fixed distance of 1 unit. 

‡ Impulsive Solution
To achieve  this,  we  replace  the  link  connecting  the  last  two  “free”  particles  by  a  spring
with a large spring constant of l2 and an equilibrium length of 1. Furthermore, we have to
introduce  two  extra  generalized  coordinates  X  and  Y  (the  rectangular  coordinates  of  the
Hk + 1Lst point).  This  requires  only  the  following  minor  modifications  of  the  coord  and
Lagr routines (now combined into a single program).
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comb@k_D := ModuleB:xy = TableBIfBi § k + 1, 8X@tD, Y@tD< +

SumAIf@j ã k, s@tD, 1D 9CosAjj@tDE, SinAjj@tDE=, 8j, i, k<E,

:0, X@tD2 + Y@tD2 + k - i>F, 8i, n + 1<F>,

TotalAFlattenAD@xy, tD2EE - l2 Hs@tD - 1L2

2
+

Sum@xy@@i, 1DD, 8i, k + 1<D êê TrigReduceF

The resulting Lagrangian is then easily converted into the corresponding equations of mo-
tion;  unfortunately,  the  resulting  solution  exhibits  undamped oscillations  of  s  (the  length
of the kth link). To be able to continue with our simulation, we must first dampen these by
adding to the corresponding differential equation a large frictional term of -15 l s°  (the co-
efficient  of  15  was  found  empirically,  to  approximate  critical  damping).  Adding  friction
will ultimately result in a small (and inevitable, for all models of this kind) loss of energy.

Then, we magnify the time scale by using t ª l t as a new independent variable, and simi-

larly replace each of the generalized coordinates q by q0 +
q`

l
, where q0  is the correspond-

ing initial value, and q̀ thus becomes the new dependent variable on a similarly magnified
scale  (its  initial  value  is  always  0).  Finally,  we  let  l Ø ¶  and  keep  only  l-proportional
terms  of  each  equation  (all  other  terms  are,  in  this  limit,  discarded).  The  following  pro-
gram  does  all  this,  building  the  corresponding  set  of  differential  equations  (yet  to  be
solved).

damp@p_ListD := ModuleB8k = Length@pD, ode, L<, L = comb@kD;

ode = 8Table@D@D@L, ji'@tDD, tD - D@L, ji@tDD, 8i, k<D,
D@D@L, s'@tDD, tD - D@L, s@tDD

+ 15 l s'@tD, D@D@L, X'@tDD, tD - D@L, X@tDD,
D@D@L, Y'@tDD, tD - D@L, Y@tDD<;

ode =
ode

l
ê. :Derivative@i_D@q_D@tD Ø li-1 Derivative@iD@q`D@tD,

ji_@tD ß p@@iDD +
ji
`
@tD

l
, s@tD Ø 1 +

s`@tD

l
, q_@tD ->

q`@tD

l
> êê

Cancel;

ode = Series@ode, 8l, Infinity, 0<D êê Normal êê ChopF

All we need to do then is to integrate the resulting equations until a fully damped solution
is attained (this means that s̀ and s°  have reached the value of 0, and the other velocities no
longer change). In real time, this happens instantaneously (a finite change of t represents
only  an  infinitesimal  increase  in  t,  due  to  the  l Ø ¶  limit);  consequently,  the  values  of
our generalized coordinates remain fixed (again, a finite change in q̀ does not modify the
value of q). This is no longer true for the corresponding derivatives—note that
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is attained (this means that s̀ and s°  have reached the value of 0, and the other velocities no
longer change). In real time, this happens instantaneously (a finite change of t represents
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(5)
d q̀

d t
ª

d q

d t
.

The procedure thus changes, instantaneously, only the values of all generalized velocities.
The actual solution is carried out by the program called impulse.

impulse@p_List, pd_List, yd_, sd_D :=

ModuleB8k = Length@pD, ode, sol<,

ode = 9damp@pD, TableAji
`
@0D, 8i, k<E,

TableAji
` '@0D - pd@@iDD, 8i, k<E,

s`@0D, s`'@0D - sd, X
`
@0D, X

`
'@0D, Y

`
@0D - 10-5, Y

`
'@0D - yd=;

ode = Thread@Equal@ode êê Flatten, 0DD;

sol = NDSolveAode, 9TableAji
` , 8i, k<E, X

`
, Y

`
, s`= êê Flatten,

8t, 0, 100<,
SolveDelayed Ø TrueE@@1DD;

:AppendAp, ArcTanAX
`
@tD, Y

`
@tDEE,

AppendBTableAji
` '@tD, 8i, k<E,

X
`
@tD Y

`
'@tD - X

`
'@tD Y

`
@tD

X
`
@tD2 + Y

`
@tD2

F,

X
`
@tD X

`
'@tD + Y

`
@tD Y

`
'@tD

X
`
@tD2 + Y

`
@tD2

> ê. t Ø 100 ê. solF

The  program  takes  the  output  of  step  as  its  arguments,  initializes  all  variables  to  0
(except  for  Y

`
,  which  needs  to  be  made  negligibly  small)  then,  based  on  (5),  initializes

their  derivatives  (the  program’s  input),  and  advances  the  solution  for  100  units  of  the  t
scale (this appears sufficient to reach the desired equilibrium). If needed, the routine could
be made more efficient by eliminating the j̀i  as dependent variables (each j̀i '  can be ex-

pressed as a linear combination of X
`

', Y
`

' , and s ').

‡ Simulation
Now we want to simulate a complete motion of such a chain until it loses touch with the
table. The first step (until the second particle is about to lose contact with the desktop) is
very  simple;  it  results  in  the  first  particle  being  suspended  vertically  (i.e.,  j1 = j1

° = 0)
from  the  desktop’s  edge,  sliding  down  (and  pulling  the  rest  of  the  chain)  at  the  speed

2
n+1  (the chain’s kinetic energy must equal the loss of potential energy). After that, we

have to alternate applying impulse and step to the current solution.
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n = 10; chain = :80<, 80<,
2

n + 1
,

2

n + 1
>;

Do@chain = Apply@step, Apply@impulse, chainDD, 8n - 1<D

The final shape of the chain (rotated by 90 degrees due to our coordinate system) is then
displayed.

ListPlot@Take@coord@chain@@1DD, 1D, 1 + Length@chain@@1DDDD,
Joined Ø True, AspectRatio Ø Automatic,
PlotMarkers Ø AutomaticD
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To get a more realistic approximation to a real chain (or rope), one would have to substan-
tially  increase  the  value  of  n.  This  would  require  rewriting our  programs in  a  more  effi-
cient,  task-dedicated  manner.  Nevertheless,  even  with  the  existing  program,  we  can  still
produce (in several minutes) the following final profile of a 20-link chain.
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One can prove that, in the limit as n Ø ¶, the chain will maintain an inverted L shape un-
til  exactly  half  of  it  has  left  the  desktop,  and  only  then  start  building  the  characteristic
bulge of  the final  solution [3,  4].  This  is  to  a  good approximation true even with our  21
points,  as  we  can  see  by  displaying  the  chain’s  shape  after  10  particles  have  left  the
tabletop.
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We will leave it up to the reader to explore how (in)sensitive the solution is to the value of
the  damping  constant,  how  much  energy  is  lost  in  the  impulse  part  of  the  solution,  and
other such interesting issues.
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