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Monte Carlo Simulation of 
Simple Molecules
Jan Vrbik

We show how a Monte Carlo procedure (based on random 
numbers) can generate a large sample of electron locations in any 
simple molecule. Based on this sampling, we can accurately 
estimate the moleculeʼs ground-state energy and other properties 
of interest. We demonstrate this using the LiH molecule.

‡ Trial Solution to Schrödinger Equation
A  mathematical  description  of  a  molecule  (say  LiH)  is  provided  by  a  solution  to  the
Schrödinger equation [1] (a differential eigenvalue problem with smallest eigenvalue E0):
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, the i summation is over all elec-

trons, F is a function of their positions, and E0  is the molecule’s ground-state energy. The
electrostatic potential V  in the molecule is given by
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Here, the first summation is over all electrons and nuclei, where Za and Ra are the nuclear
charges  and locations,  respectively.  The second summation is  over  all  pairs  of  electrons,
and  the  last  one,  analogously,  is  over  all  pairs  of  nuclei.  The  nuclear  locations  are  kept
fixed in accordance with the Born–Oppenheimer approximation [2]. We use atomic units,
in which the electron’s charge, mass, and Planck’s constant are set equal to 1.

Thus, V  for the LiH molecule is computed by the following functions, assuming that the
Li nucleus is located at the origin.
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m@q_D := q.q

RH = 80, 0, 3<;

V@Q_D := SumB-
3

m@Q@@iDDD
-

1

m@Q@@iDD - RHD
, 8i, 4<F +

SumB
1

m@Q@@iDD - Q@@jDDD
, 8i, 3<, 8j, i + 1, 4<F +

3

m@RHD

The  argument  Q  consists  of  the  four  electron  positions,  each  a  list  of  three  Cartesian
coordinates.

The solution F  to (1) is  subject  to two boundary conditions:  that  F = 0 whenever one or
more electrons approach infinity, and that F must change sign whenever two electrons of
the same spin are interchanged, in accord with the Pauli exclusion principle [3].

There are several techniques for finding an approximate solution to (1), which we denote
by Y , to distinguish it from the exact solution F. Monte Carlo is a method that “borrows”
one of these solutions, called, in this context, a trial function [1], and seeks to improve its
accuracy.  This  is  done  by  generating,  with  the  help  of  Y,  a  random  statistical  sample,
called an ensemble in this context, representing the exact solution. Based on this ensemble
of electron locations, or configurations, one can then easily find, within the “standard” sta-
tistical error, the value of the molecule’s ground-state energy, and related properties such
as dipole moment and polarizability, etc.

To build a trial solution for LiH, we start with two molecular orbitals, linear combinations
of four simple atomic orbitals [2].

MO@q_D := K
1 0 0.05 0
0 1 0.38 -0.22

O.

8Exp@-2.89 m@qDD, Exp@-0.87 m@q - RHDD,
q@@3DD Exp@-2.85 m@qDD, Hq@@3DD - RH@@3DDL Exp@-0.95 m@q - RHDD<

The argument q is a list of three coordinates that describe a location of a single electron.
The parameters of the MO  functions and those of J  in the next expression have been ob-
tained by minimizing the variational energy (7).

Secondly,  we  define  the  so-called  Jastrow function  [2],  its  arguments  being  locations  of
each pair of electrons.

J@q1_, q2_D := ExpB
0.5 m@q1 - q2D

1 + 0.6 m@q1 - q2D
F

The resulting trial function has the following form.

y@q1_, q2_, q3_, q4_D :=
Det@8MO@q1D, MO@q2D<D Det@8MO@q3D, MO@q4D<D J@q1, q3D
J@q1, q4D J@q2, q3D J@q2, q4D

The two factors are determinants of the two molecular orbitals, each evaluated at the loca-
tion  of  the  four  electrons.  Electrons  1  and  2  have  spin  “up,”  while  3  and  4  have  spin
“down.”  The  remaining  factors  are  Jastrow  functions  for  each  pair  of  opposite-spin
electrons.
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Next we estimate the ground-state energy of LiH based on this trial function.

‡ Variational Estimate of the Smallest Eigenvalue
Let us rewrite (1) more compactly as

(3)F = E0 F,

where  represents the sum of both operators on the left-hand side of (1). The variational
principle tells us [2] that

(4)
Ÿ Y Y „R

Ÿ Y2 „R
¥ E0.

The integration is over the three coordinates of each of the four electrons, altogether a 12-
dimensional  problem—no  mean  task—and  Y  is  any  trial  solution  to  (1).  The  limit  of
equality  holds  only  for  the  exact  solution  F,  but  for  approximate  solutions,  called  varia-
tional estimates of the ground-state energy, the left-hand side of (4) is usually quite close
to  E0.  The  main  problem  is  how  to  evaluate  the  two  12-dimensional  integrals;  this  is
impossible  to  do  analytically  and  not  feasible  even  numerically.  Well,  Monte  Carlo  has
the answer.

Let us first define the so-called drift function by

(5)F = :
1Y

Y
,

2Y

Y
,

3Y

Y
,
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Y
>

and local energy by

(6)EL =
 Y

Y
= -

1

2

⁄i i
2Y

Y
+ V .

Here are the corresponding commands.

Y = Apply@y, Partition@Table@xi, 8i, 12<D, 3DD;
F = Table@D@Y, xiD, 8i, 12<D ê Y;

EL = -
1

2
Sum@D@Y, 8xi, 2<D, 8i, 12<D ê Y +

V@Partition@Table@xi, 8i, 12<D, 3DD;

The  coordinates  of  the  four  electrons  are  now  called  x1, x2, …, x12,  understanding  that
these are the x, y, z coordinates of the first electron, followed by the x, y, z coordinates of
the second electron, etc. The left-hand side of (4) can now be rewritten as
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The  coordinates  of  the  four  electrons  are  now  called  x1, x2, …, x12,  understanding  that
these are the x, y, z coordinates of the first electron, followed by the x, y, z coordinates of
the second electron, etc. The left-hand side of (4) can now be rewritten as

(7)
Ÿ EL Y2 „R

Ÿ Y2 „R
.

Next, we randomly generate a large sample of 1000 configurations of x1, x2, …, x12  val-
ues denoted collectively as Ro and compute the corresponding Y, F, and EL.

n = 1000;
Ro = Partition@RandomReal@8-3, 3<, 12 nD, nD;
Po = Y ê. xi_ ß Ro@@iDD;
Fo = F ê. xi_ ß Ro@@iDD;
Eo = EL ê. xi_ ß Ro@@iDD;

By averaging the 1000 values of EL, we get an estimate of E0. Unfortunately, this estimate
will be very inaccurate since our random sample of configurations bears, at this point, no
relationship to Y2 of (7).

To fix this, we move each configuration to a new location, specified by

(8)Rn = Ro + t Fo + t N,

where Fo  is the drift function evaluated at the old location Ro, N is a random vector of 12
independent  components  from  the  normal  distribution  (with  mean  0  and  standard  devi-
ation 1), and t is an extra parameter called the step size, which controls the speed of this
motion. This will bring us a step closer to the desired distribution of configurations whose
probability density function is proportional to Y2, but it will take dozens of such moves to
reach it. Monitoring the consecutive sample averages of EL, we find no systematic change
but only random fluctuations after reaching a so-called equilibration. Once in equilibrium,
we continue advancing our configuration for as many steps (called iterations) as feasible,
to reduce the statistical error of the final estimate. This is computed by combining all the
individual sample averages into one: the so-called grand mean).

There is only one little snag: the result will still have an error proportional to the step size
t.  To  correct  for  this,  we  would  have  to  make  t  impractically  small  and  equilibration
would take forever. Fortunately, there is another way, called Metropolis sampling [3]: for
each proposed move (8) we compute a scalar quantity

(9)T =
Yn
2

Yo
2

expKHFo + FnL ÿ BRo -Rn +
t

2
HFo - FnLFO,

where  the  subscripts  n  and  o  mean  that  Y  and  F  have  been  evaluated  at  the  new or  old
location,  respectively.  The  move  is  then  accepted  with  a  probability  equal  to  T.  When
T > 1,  the  move  is  accepted  automatically.  When  a  move  is  rejected,  the  configuration
simply  remains  at  its  old  location  Ro.  The  step  size  t  should  be  adjusted  to  yield  a  rea-
sonable proportion of rejections, say between 10% and 30%.

Rejecting  configurations  in  this  manner  creates  the  last  small  problem:  in  our  original
random  sample  there  is  usually  a  handful  of  configurations  which,  because  they  have
landed  at  “wrong”  locations,  just  would  not  move.  To  fix  this,  we  have  to  monitor,  for
each configuration, the number of consecutive times a move has been rejected, and let  it
move, regardless of T, when this number exceeds a certain value, such as 10. After this is
done and the sample equilibrates,  the problem automatically disappears,  and no configu-
ration is ever refused its move more than six consecutive times (confirming that 10 consec-
utive rejections was a good indication of a “stuck” configuration).
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Rejecting  configurations  in  this  manner  creates  the  last  small  problem:  in  our  original

landed  at  “wrong”  locations,  just  would  not  move.  To  fix  this,  we  have  to  monitor,  for
each configuration, the number of consecutive times a move has been rejected, and let  it
move, regardless of T, when this number exceeds a certain value, such as 10. After this is
done and the sample equilibrates,  the problem automatically disappears,  and no configu-
ration is ever refused its move more than six consecutive times (confirming that 10 consec-
utive rejections was a good indication of a “stuck” configuration).

The following program carries this out (its execution will take a minute or two).

t = 0.05; moni = Table@0, 8n<D; res = 8<;

DoB

Rn =
Ro + t Fo +

PartitionBRandomRealBNormalDistributionB0, t F, 12 nF,

nF;

Pn = Y ê. xi_ ß Rn@@iDD; Fn = F ê. xi_ ß Rn@@iDD;
En = EL ê. xi_ ß Rn@@iDD;

T = ThreadBThread@10 < moniD »» ThreadB RandomReal@80, 1<, nD <

Pn2 ë Po2 ExpBSumBHFo + FnL@@iDD KRo - Rn +
t

2
HFo - FnLO@@iDD,

8i, 12<FFFF;

Ro = MapThread@If, 8Table@T, 812<D, Rn, Ro<, 2D;
Fo = MapThread@If, 8Table@T, 812<D, Fn, Fo<, 2D;
Eo = MapThread@If, 8T, En, Eo<D;
Po = MapThread@If, 8T, Pn, Po<D;

moni = MapThread@If, 8T, Table@0, 8n<D, moni + 1<D;
res = Append@res, 8Total@EoD ê n, Count@T, TrueD ê n êê N<D,

860<F

Note that  moni  keeps track,  for  each configuration,  of  how many of its  last  consecutive
proposed  moves  have  been  rejected,  its  value  being  reset  to  0  as  soon  as  a  move  is  ac-
cepted. The program returns (in res) the value of all sample averages of the local energy
EL, together with the average acceptance rate.

This displays the former.
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ListPlot@Transpose@resD@@1DD, PlotMarkers Ø AutomaticD
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We see that about 50 iterations are necessary to reach equilibrium.

To get an accurate estimate of E0, we repeat the simulation with substantially more itera-
tions,  changing  the  Do  loop’s  “count”  from  60  to  1000,  and  then  computing  the  grand
mean  of  the  EL  values  by  Map@Total, Transpose@resDD.  In  our  case,  this  yields
-8.0261 atomic units, with an average acceptance rate of about 85%.

The easiest way to find the corresponding statistical error is to execute the same program,
independently, 5 to 10 times, and then to combine the individual results.

Mean@est = 8-8.0261, -8.0320, -8.0296, -8.0272, -8.0314<D

StandardDeviation@estD í 5 - 1

-8.02926

0.0012853

This improves the estimate to -8.0293 atomic units,  with the standard error of ±0.0013.
The  “exact”  ground-state  energy  of  LiH  is  -8.0700  atomic  units.  The  obvious  dis-
crepancy,  well  beyond the statistical  error,  between our estimate and this  value is  due to
our  use  of  a  rather  primitive  trial  function.  In  accordance  with  the  variational  principle,
our estimate remains higher than the exact value.

‡ Monte Carlo Estimate of the Smallest Eigenvalue

When, in (7), we replace Y2  by Y F, the expression then yields “nearly” the exact value of
E0, subject only to a small nodal error [1]. So, all we need to do is to modify our simula-
tion  program accordingly,  to  get  a  sample  from a  distribution  whose  probability  density
function is proportional to Y F instead of Y2. This can be achieved by assuming that each
configuration carries a different weight, computed from
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When, in (7), we replace Y2  by Y F, the expression then yields “nearly” the exact value of
E0, subject only to a small nodal error [1]. So, all we need to do is to modify our simula-
tion  program accordingly,  to  get  a  sample  from a  distribution  whose  probability  density
function is proportional to Y F instead of Y2. This can be achieved by assuming that each
configuration carries a different weight, computed from

(10)W = 1- t‚
j

exp I- 2 t3ê2 jMä@EL H jL- EcD,

where EL H jL is the local energy of the configuration as computed j iterations ago, the sum-
mation is  over  all  past  iterations,  and Ec  is  a  rough estimate of  E0  (the variational  result
will  do).  The  sum  in  (10)  “depreciates”  the  past  EL - Ec  values  at  a  rate  that  should
resemble the decrease in serial correlation of the EL  sequence, which can be easily moni-
tored during the variational simulation.

The  new  estimates  of  E0  are  then  the  correspondingly  weighted  averages,  computed  at
each step and then combined in the usual grand-mean fashion. There are two slight prob-
lems with this algorithm, but both can be easily alleviated.

1. Occasionally  (e.g.,  when  an  electron  moves  too  close  to  a  nucleus),  EL H jL- Ec
may  acquire  an  unusually  low  value,  making  the  corresponding  W  rather  large,
sometimes  larger  than  all  the  remaining  weights  combined.  We  must  eliminate
“outliers”  outside  the  ±J0.5+ 0.03

t
N  range.  It  is  better  to  do  this  in  a  symmetrical

way by truncating the value to the nearest boundary of the interval.

2. The  final  (grand-mean)  estimate  may  have  a  small,  t-proportional  bias.  This  can
be  removed  only  by  repeating  the  simulation,  preferably  more  than  once,  at
several (say 3 to 5) distinct values of t, and getting an unbiased estimate of E0  by
performing  a  simple  polynomial  regression.  It  is  the  intercept  of  the  resulting
regression line (corresponding to t = 0) that yields the final answer.

This  can all  be  achieved by the  following simple  modifications  of  the  program from the
previous  section.  Monte  Carlo  techniques  in  general  require  a  long  time  to  execute  (this
one may take several hours). 

For this reason, we have made it (and the subsequent command, which processes its out-
put) non-evaluatable.
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t = 0.025; S = moni = Table@0, 8n<D; res = 8<; L = ExpA-2 t3ê2E;

DoB

Rn =
Ro + t Fo +

PartitionBRandomRealBNormalDistributionB0, t F, 12 nF,

nF;

Pn = Y ê. xi_ ß Rn@@iDD; Fn = F ê. xi_ ß Rn@@iDD;
En = EL ê. xi_ ß Rn@@iDD;

T = ThreadBThread@10 < moniD »» ThreadB RandomReal@80, 1<, nD <

Pn2 ë Po2 ExpBSumBHFo + FnL@@iDD KRo - Rn +
t

2
HFo - FnLO@@iDD,

8i, 12<FFFF;

Ro = MapThread@If, 8Table@T, 812<D, Rn, Ro<, 2D;
Fo = MapThread@If, 8Table@T, 812<D, Fn, Fo<, 2D;
Eo = MapThread@If, 8T, En, Eo<D;
Po = MapThread@If, 8T, Pn, Po<D;

moni = MapThread@If, 8T, Table@0, 8n<D, moni + 1<D;

Eh = TableBMinBMaxB-0.5 -
0.03

t
, Eo@@iDD + 8.03F, 0.5 +

0.03

t
F,

8i, n<F;

S = S L + Eh; W = 1 - t S; W = W ê Total@WD;
res = Append@res, 8Total@W EoD, Count@T, TrueD ê n êê N<D,

87000<F

A ListPlot of the iteration averages of EL will show that equilibration now takes many
more  steps  (about  500,  when  t = 0.025)  than  in  the  case  of  variational  simulation.  We
have  thus  decided  to  discard  the  first  1000  results  and  partition  the  remaining  6000  into
six blocks of 1000.

r025 =
Drop@Map@Total, Partition@Transpose@resD@@1DD, 1000DD ê 1000,
1D

Similarly,  we  can  produce  six  such  values  with  t = 0.050  and  t = 0.075,  calling  them
r050 and r075, respectively.
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r025 = 8-8.0675, -8.0666, -8.0676, -8.0662, -8.0668,
-8.0669<;

r050 = 8-8.0722, -8.0728, -8.0727, -8.0736, -8.0741,
-8.0723<;

r075 = 8-8.0815, -8.0799, -8.0818, -8.0778, -8.0795,
-8.0813<;

It is now easy to find the resulting intercept.

reg = Flatten@8Table@8.025, r025@@iDD<, 8i, 6<D,
Table@8.05, r050@@iDD<, 8i, 6<D,

Table@8.075, r075@@iDD<, 8i, 6<D<, 1D;
LinearModelFitAreg, 9x, x2=, xE@"ParameterTable"D

Estimate Standard Error t Statistic P-Value

1 -8.06225 0.0018372 -4388.33 3.11069µ 10-47

x -0.160667 0.0834494 -1.92532 0.0733643
x2 -1.06667 0.825935 -1.29147 0.216089

This yields the value of -8.0622± 0.0018 for the corresponding intercept. This is in rea-
sonable  agreement,  in  view  of  the  nodal  error,  with  the  exact  value  of  -8.0700  atomic
units.

This visualizes the regression fit.

ShowA

ListPlot@reg, PlotRange Ø 880, .08<, 8-8.084, -8.062<<D,
PlotA-8.06225 - 0.160667 q - 1.06667 q2, 8q, 0, .11<EE

0.02 0.04 0.06 0.08
-8.080

-8.075

-8.070

-8.065
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In a follow-up article, we will show how this procedure can be extended to estimate other
significant molecular properties, including geometry and polarizability, etc. and how to op-
timize  parameters  of  a  trial  function,  to  make  the  Monte  Carlo  method  more  “self-suffi-
cient.”
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