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Indexing Strings and Rulesets
An Exploration Leading to an Enumeration
Kenneth E. Caviness

An enumeration of strings is developed, in which all strings of 
finite length of symbols from any alphabet appear, with no upper 
bounds for string length or alphabet size. A bijective indexing 
function and its inverse are found for the string enumeration, 
allowing iteration through the set of all strings, as well as 
identification of arbitrary strings by the associated index. The 
method is then extended to sequences of strings and to 
sequential substitution system (SSS) rulesets, providing a well-
defined, relatively dense enumeration of all possible valid SSS 
rulesets for strings of arbitrary length and any number of 
symbols used in rulesets of any length, although in this case the 
indexing function is not one-to-one.

‡ Introduction
Enumerations are useful, both theoretically and practically. The existence of a set enumera-
tion guarantees that the set is at most countably infinite. For example, an enumeration of
the rationals proved that there are the same number of fractions as integers, while a proof
that  no  enumeration  of  the  reals  exists  showed  that  the  real  numbers  are  uncountable.
More usefully, an enumeration assigns an index to every member of the set under consider-
ation, giving a practical means to consider every case. This makes enumeration a powerful
part of the methodology found in NKS [1]. Given a function Enumeration that returns
the elements of a set in specified order, the following command finds the index of the first
element that passes TestFunction. (The next cell does not evaluate.)

Catch@Do@If@TestFunction@Enumeration@iDD, Throw@iDD,
8i, 1, SampleSize<D; NoneD

Sequential  substitution systems are defined by sets  of  rules (here called “rulesets”),  each
consisting of a target string and a replacement string. Given some initial state (which may
also  be  represented  as  a  string),  these  rules  are  applied  and  the  system  evolves.  But
without  a  well-defined  enumeration  of  strings  and  rulesets,  any  treatment  of  sequential
substitution  systems  will  be  haphazard  and  may  miss  important  features.  In  this  article
enumeration  systems  are  presented  for  all  strings,  for  all  lists  of  strings,  and  for  all
sequential  substitution  system  rulesets.  These  enumerations  can  be  used  or  modified  for
other  applications  based  on  rulesets  and  initial  state  strings  (for  example,  nonsequential
substitution systems, multiway systems, etc.).
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‡ Toward an Exhaustive List of Strings

· Strings of Fixed Length and Fixed Number of Symbols

To generate a  list  of  all  possible  strings of  length three and made up of  the characters  A
and B, the obvious method would be to think of a binary odometer having three positions,
each able to display an A or a B—or a 0 or a 1. This is the normal increasing order of the
first 23 binary numbers.

IntegerDigitsARangeA0, 23 - 1E, 2, 3E

880, 0, 0<, 80, 0, 1<, 80, 1, 0<, 80, 1, 1<,
81, 0, 0<, 81, 0, 1<, 81, 1, 0<, 81, 1, 1<<

StringJoin@Ò ê. 80 Ø "A", 1 Ø "B"<D & êü %

8AAA, AAB, ABA, ABB, BAA, BAB, BBA, BBB<

We can  identify  each  two-symbol  length-three  string  with  the  corresponding  numbers  in
the set 80, 1, …, 7<, providing an index into the sequence of strings, which appear in alpha-
betical  order.  But  suppose  we  want  to  include  all  two-symbol  strings,  no  matter  what
length? One possible ordering is the following.

8, A, B, AA, AB, BA, BB, AAA, AAB, ABA, ABB, BAA, BAB,
BBA, BBB, AAAA, AAAB, AABA, AABB, ABAA, ABAB, ABBA,
ABBB, BAAA, BAAB, BABA, BABB, BBAA, BBAB, BBBA, BBBB<

The pattern is:  list  all  length-zero strings,  then all  length-one strings,  then all  length-two
strings, then all length-three strings, etc. For a given length, go through the strings as you
would  odometer  readings,  changing  the  rightmost  character  most  frequently,  and  others
when the character to the right “rolls over.” Notice that the ordering is not alphabetic; if it
were  it  would  start  with  8"", "A", "AA", "AAA", …<  and  would  never  get  to  any
strings  that  include  B.  But  the  order  is  well  defined,  with  strings  sorted  first  by  length,
then alphabetically within each string length group.
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This method can be applied for any specified alphabet size. Below are functions to work
with arbitrary-length strings with alphabet size b, here limited to 26 for the convenience of
using the English alphabet, although the maximum for the function IntegerString is
36.  (See [2]  for  an example of  how to construct  basically the same enumeration with no
size limitation on the specified alphabet size by avoiding the use of an actual alphabet, list-
ing characters by number only.)

RankStringInBase@b_Integer, s_StringD :=
ModuleA8len = StringLength@sD, chars, digits<,

chars = CharacterRange@"A", "Z"D@@ ;; bDD;
digits = Join@CharacterRange@"0", "9"D,

CharacterRange@"A", "P"DD@@ ;; bDD;
Iblen - 1M ë Hb - 1L +

FromDigits@StringReplace@s, Thread@chars Ø digitsDD,
bDE ê; 2 § b § 26

RankStringInBase@1, s_StringD :=
StringLength@sD ê; s == "" »» Union@Characters@sDD == 8"A"<

UnrankStringInBase@b_Integer, n_IntegerD :=
ModuleA8len, chars, digits<,

chars = CharacterRange@"A", "Z"DP ;; bT;
digits =
Join@CharacterRange@"0", "9"D,

CharacterRange@"A", "P"DDP ;; bT;
len = With@8$MaxExtraPrecision = 100<,

FloorüFullSimplify@Log@b, Hn + 1L Hb - 1LDDD;
StringReplaceA

ToUpperCaseüIntegerStringAn - Iblen - 1M ë Hb - 1L, b, lenE ,

Thread@digits Ø charsDEE ê; 2 § b § 26

UnrankStringInBase@1, n_IntegerD :=
StringJoin@Table@"A", 8n<DD

The single-symbol case is treated separately, simply counting or combining the appropri-
ate  number  of  characters.  The  more  general  formulas  use  as  the  string  index  the  sum of
the number of possible strings of length shorter than len and the base-b representation of
the  desired  length  string,  where  b  is  the  alphabet  size.  Since  for  b  symbols  there  are  b1

strings  of  length  1,  b2  strings  of  length  2,  etc.,  the  number  of  strings  of  length  less  than
len is as follows.

Sum@b^k, 8k, 0, len - 1<D êê TraditionalForm

blen - 1

b - 1
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UnrankStringInBase@b, nD  generates the string associated with the index number
n in the listing of b-symbol strings, starting with 0. For b = 2, string length less than five,
the indices can run from 0 to I25 - 1M ë H2- 1L- 1.

I25 - 1M ë H2 - 1L

31

UnrankStringInBase@2, ÒD & êü Range@0, 30D

8, A, B, AA, AB, BA, BB, AAA, AAB, ABA, ABB, BAA, BAB,
BBA, BBB, AAAA, AAAB, AABA, AABB, ABAA, ABAB, ABBA,
ABBB, BAAA, BAAB, BABA, BABB, BBAA, BBAB, BBBA, BBBB<

These  are  all  strings  of  length  less  than  five  on  an  alphabet  of  two  symbols.  We  use
RankStringInBase@b, sD to return the index of each string.

RankStringInBase@2, ÒD & êü %

80, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30<

RankStringInBase@b, sD  and  UnrankStringInBase@b, nD  are  constructed
to act as inverse functions, converting a string s into an integer n and vice versa, subject to
the  present  limitations  that  1 § b § 26  and  s  be  a  string  of  uppercase  characters  taken
from  the  first  b  letters  of  the  English  alphabet.  UnrankStringInBase@b, nD  pro-
duces  a  unique  string  s  for  each  non-negative  integer  n,  and  RankStringÖ
InBase@b, sD  reconstructs  the  index from the string.  (Note  that  there  is  no limitation
on string length or the index.)

Choose any string and an allowed (sufficiently large) base b.

RankStringInBase@26, "ABCDEFGHIJKLMNOPQRSTUVWXYZ"D

256 094 574 536 617 744 129 141 650 397 448 476

The inverse function retrieves the string.

UnrankStringInBase@26, %D

ABCDEFGHIJKLMNOPQRSTUVWXYZ
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Starting from an index is easier. We can iterate through its values, for example by moving
a slider.

Manipulate@With@8s = UnrankStringInBase@b, nD<,
Textü
Style@Column@8"\nindex: " <> ToStringün, "string: " <> s,

"rank undoes unrank? " <>
ToString@RankStringInBase@b, sD ã nD<D, 16DD,

8n, 0, 1000, 1, Appearance Ø "Labeled"<,
88b, 2<, 1, 26, 1, Appearance Ø "Labeled"<,
SaveDefinitions Ø TrueD

n 0

b 2

index: 0
string:
rank undoes unrank? True
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Note  that  UnrankStringInBase  could  even  be  used  in  an  infinite  loop,  iterating
through all strings for a given set of symbols, listing shorter strings before longer ones. In
the following loop, rather than using While@True, D, we stop when the string length ex-
ceeds three.

n = 0; slist = 8<;
While@Hs = UnrankStringInBase@5, nD; StringLength@sD § 3L,

AppendTo@slist, sD; n++D;
Clear@n, sD;
slist

8, A, B, C, D, E, AA, AB, AC, AD, AE, BA, BB, BC, BD, BE, CA, CB,
CC, CD, CE, DA, DB, DC, DD, DE, EA, EB, EC, ED, EE, AAA,
AAB, AAC, AAD, AAE, ABA, ABB, ABC, ABD, ABE, ACA, ACB, ACC,
ACD, ACE, ADA, ADB, ADC, ADD, ADE, AEA, AEB, AEC, AED, AEE,
BAA, BAB, BAC, BAD, BAE, BBA, BBB, BBC, BBD, BBE, BCA, BCB,
BCC, BCD, BCE, BDA, BDB, BDC, BDD, BDE, BEA, BEB, BEC,
BED, BEE, CAA, CAB, CAC, CAD, CAE, CBA, CBB, CBC, CBD,
CBE, CCA, CCB, CCC, CCD, CCE, CDA, CDB, CDC, CDD, CDE,
CEA, CEB, CEC, CED, CEE, DAA, DAB, DAC, DAD, DAE, DBA,
DBB, DBC, DBD, DBE, DCA, DCB, DCC, DCD, DCE, DDA, DDB,
DDC, DDD, DDE, DEA, DEB, DEC, DED, DEE, EAA, EAB, EAC,
EAD, EAE, EBA, EBB, EBC, EBD, EBE, ECA, ECB, ECC, ECD,
ECE, EDA, EDB, EDC, EDD, EDE, EEA, EEB, EEC, EED, EEE<

There  are  several  nice  things  about  these  functions.  UnrankStringInBase  enumer-
ates the b-symbol strings in the specified order (sorted with shorter strings first, alphabeti-
cally within each string length), giving a “standard order” for listing these strings without
omissions.  But notice that  RankStringInBase  and UnrankStringInBase  do not
generate this (infinite!) list and look for a match or pick out an element, rather they build
the string from the index or deduce the index from the string, respectively. 

· Duplication of Effort

Of course, the particular enumeration order chosen motivates the creation of the rank and
unrank functions.  The above method includes all  possible strings written using an alpha-
bet of b symbols, and does so in an explainable order. But although by construction it al-
lows all string lengths, whenever the alphabet size is increased all the previous work must
be redone.
Is there a way to list all strings, allowing both string length and alphabet size to grow with-
out  upper  bound?  (For  the  sake  of  argument  let  us  assume  that  the  symbols  themselves
can be written down in some order, perhaps Unicode order followed by the order in which
new symbols are invented.) What is needed is some way to add to the list without rearrang-
ing or repeating previously listed entries. For inspiration we turn to a similar situation, the
enumeration of the rational numbers.
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‡ Rational Examples

· Cantorʼs Diagonalization

There  are  ways  to  create  an  ordered  list  of  things  that  grow  infinitely  in  two  different
“directions.”  One  is  Georg  Cantor’s  famous  diagonal  ordering  of  the  rational  numbers
(see Figure 1, below).

1ê1

1ê2

2ê1

1ê3

3ê1

1ê4

4ê1

1ê5

5ê1

ª

º⋯

2ê2 3ê2 4ê2 5ê2 º⋯

2ê3 3ê3 4ê3 5ê3 º⋯

2ê4 3ê4 4ê4 5ê4 º⋯

2ê5 3ê5 4ê5 5ê5 º⋯

ª ª ª ª ¸⋱

Ú Figure 1. Cantorʼs diagonal ordering of the rationals: coloration added to highlight diagonal rows.

Both  the  numerator  and  the  denominator  of  the  fraction  are  taken  from  an  infinite  (but
countable)  set,  and  rather  than  trying  to  treat  one  infinity  first,  as  in
81 ê 1, 2 ê 1, 3 ê 1, …1 ê 2, 2 ê 2, 3 ê 2, …, 1 ê 3, 2 ê 3, 3 ê 3, … <,  this  method  allows  growth
in both directions to continue indefinitely, following a defined pattern while clearly includ-
ing  all  possible  combinations.  (See  [3]  for  an  alternative  route  through  the  array.)  Of
course, one drawback of this method as applied to fractions is that equivalent fractions get
counted  multiple  times.  For  example  1 ê 1 = 2 ê 2 = 3 ê 3 = …, 1 ê 2 = 2 ê 4 = 3 ê 6 = …,
etc. But the mathematical literature contains many examples of nonrepetitive ways of or-
dering the rationals (e.g., [4, 5, 6, 7, 8]).
None of the nonrepetitive sequences has the simple clarity of the diagonal arrangement. Is
it so bad to have duplicates and then be forced to ignore or drop them later? This is an im-
portant question that will return in various situations. Although a little inelegant, the exis-
tence  of  duplicates  hurts  nothing  essential,  so  we  will  consider  nonrepetition  a  desirable
but not necessary feature.
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What is essential then?

1. The list should be unambiguous: it can be generated to any desired number of ele-
ments, and the order can be unambiguously described. Here the fractions are listed
in increasing order  first  by the sum of  numerator  and denominator  (as  colored in
Figure 1), next by numerator.

2. A successor algorithm should exist: from a given fraction n ê d,  can the next frac-
tion  in  the  list  be  found?  Yes,  if  d > 1,  the  next  fraction  is  Hn+ 1L ê Hd - 1L;  if
d = 1, it is 1 ê Hn+ 1L. This means that we do not need to generate the whole list at
once;  we  can  proceed  one  step  at  a  time,  perhaps  testing  or  making  some use  of
the  fractions  as  they  are  generated.  A  small  modification  to  the  successor  algo-
rithm lets  us  easily  bypass  duplicates:  if  the  successor  found is  not  a  fraction re-
duced to lowest  terms,  advance to  its  successor.  This  can be implemented in  this
way as two-element lists.

Successor@8n_Integer, d_Integer<D :=
If@GCD üü Ò ã 1, Ò, SuccessorüÒD & ü
If@d ã 1, 81, Hn + 1L<, 8Hn + 1L, Hd - 1L<D

Here are the first 25 successors of 81, 1<, shown in fractional form.

FractionBox üüü NestList@Successor, 81, 1<, 25D êê

DisplayForm

:
1

1
,
1

2
,
2

1
,
1

3
,
3

1
,
1

4
,
2

3
,
3

2
,
4

1
,
1

5
,
5

1
,
1

6
,

2

5
,
3

4
,
4

3
,
5

2
,
6

1
,
1

7
,
3

5
,
5

3
,
7

1
,
1

8
,
2

7
,
4

5
,
5

4
,
7

2
>

3. The existence of rank and unrank functions, to convert back and forth between the
list  and  an  ordered  list  of  integers.  (Given  such  functions,  the  definition  for
successor@elementD  might  be  as  simple  as  unrank@rank@elementD+ 1D,  if  no  direct
method of advancing through the enumeration has been found.) For the diagonal or-
dering, we must determine which diagonal we want and then which element. The
fraction  n ê d  appears  on  the  Hn+ d - 1Lth  and  is  element  n  on  that  diagonal.  An
easy  way  to  do  this  is  to  create  a  function  to  generate  the  nth  triangular  number
(the total number of entries in the previous diagonals).

Tri@n_D := EvaluateB‚
k=1

n

kF; ? Tri

Global`Tri

Tri@n_D := 1

2
n H1 + nL
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Now the ranking function is easy.

RankRational@r_D :=
HTri@Ò + Denominator@rD - 2D + ÒL & ü Numerator@rD

RankRational êü 81 ê 1, 1 ê 2, 2 ê 1, 1 ê 3, 2 ê 2, 3 ê 1, 1 ê 4,
2 ê 3, 3 ê 2, 4 ê 1<

81, 2, 3, 4, 1, 6, 7, 8, 9, 10<

Except for unreduced fractions these are in ascending order, as desired. An unranking func-
tion will facilitate testing for unreduced fractions.

Solve@x ã Tri@nD, nD

::n Ø
1

2
J-1 - 1 + 8 x N>, :n Ø

1

2
J-1 + 1 + 8 x N>>

invTri@x_IntegerD := CeilingB
1

2
J-1 + 1 + 8 x NF

UnrankRational@x_IntegerD := Module@8k, n, d<,
k = invTri@xD;
n = x - Tri@k - 1D;
d = k - n + 1;
If@GCD@n, dD > 1, 0, n ê dDD

H* returns 0 instead of unreduced fractions *L

UnrankRational êü Range@25D

:1,
1

2
, 2,

1

3
, 0, 3,

1

4
,
2

3
,
3

2
, 4,

1

5
,

0, 0, 0, 5,
1

6
,
2

5
,
3

4
,
4

3
,
5

2
, 6,

1

7
, 0,

3

5
, 0>

RankRational êü %

81, 2, 3, 4, 0, 6, 7, 8, 9, 10, 11, 0, 0,
0, 15, 16, 17, 18, 19, 20, 21, 22, 0, 24, 0<

Since this method of listing the rationals includes duplicates, the UnrankRational func-
tion  returns  0  instead  of  a  duplicate.  However  the  nonzero  fractions  returned  are  unique
and appear in the defined order.
Again, although it would be nice for the mapping or indexing method to be one to one, it
is not necessary.
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· Nonrepetitive Indexing of the Rationals

As mentioned above, there are one to one and onto (bijective) mappings between the set
of rationals (either all  rationals or the positive rationals) and Z+,  the set of positive inte-
gers.  One  elegant  algorithm  [4]  relies  on  the  fundamental  theorem  of  arithmetic  (also
known as the unique prime factorization theorem): any integer greater than 1 can be writ-
ten as a unique product of prime numbers (up to the order of the factors).

showFactorization =
Row@8Ò, " ‡ ", Row@Superscript üüü FactorInteger@ÒD,

"µ"D<D & ;
showFactorization@174 636 000D

174 636 000 ‡ 25 µ 34 µ 53 µ 72 µ 111

If the prime numbers are listed in order, the sequence of exponents provides a unique way
to  characterize  each  positive  integer.  For  the  above  example  the  sequence  is
85, 4, 3, 2, 1, 0, 0, 0, …<. But the same can be said of all possible numerators and denomi-
nators of rational numbers, and furthermore, when a fraction is reduced to lowest terms no
prime factor will appear in both the numerator and the denominator, a fact that motivates
the following algorithm, in which odd exponents define factors of the numerator and even
exponents define factors of the denominator.

IntegerToRationalByFactorization@n_IntegerD :=

Times üü IÒ1If@EvenQ@Ò2D,-Ò2ê2,HÒ2+1Lê2D & üüü FactorInteger@nDM

IntegerToRationalByFactorizationA25 34 53 72 111E

2200

63

showFactorization êü 82200, 63< êê Column

2200 ‡ 23 µ 52 µ 111

63 ‡ 32 µ 71
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Note that even exponents are halved and then used as the exponents of the same prime fac-
tors  in  the  denominator,  odd  exponents  incremented,  then  halved  and  similarly  used  to
specify the numerator. (For an extension to all rationals see [9].) Of course this procedure
is not unique, the treatment of odd and even exponents could just as well be reversed. A
disadvantage  of  this  method  of  ordering  the  rationals  is  the  order  itself:  it  preferentially
treats integers (and in general, small denominator fractions) before others.

IntegerToRationalByFactorization êü Range@50D

:1, 2, 3,
1

2
, 5, 6, 7, 4,

1

3
, 10, 11,

3

2
, 13, 14, 15,

1

4
, 17,

2

3
,

19,
5

2
, 21, 22, 23, 12,

1

5
, 26, 9,

7

2
, 29, 30, 31, 8, 33, 34,

35,
1

6
, 37, 38, 39, 20, 41, 42, 43,

11

2
,
5

3
, 46, 47,

3

4
,
1

7
,
2

5
>

The  ordering  function  is  well  defined,  one  to  one,  and  onto,  but  for  example,  2/5  is  far
later in the list than 5/2, appearing after the integers 47 and 17, respectively. This may not
necessarily be appropriate for some applications.
Another  bijective  ordering  of  the  rationals,  due  to  Calkin  and  Wilf  [6],  is  treated  here.
This ordering can be expressed in terms of the hyperbinary function, which can be recur-
sively defined as follows.

hb@0D = 1;
hb@n_?OddQD := hb@nD = hb@Hn - 1L ê 2D;
hb@n_?EvenQD := hb@nD = With@8k = n ê 2<, hb@k - 1D + hb@kDD

hb êü Range@0, 25D

81, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5,
2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5<

(The additional hb@nD = in the recursion calls is Mathematica’s standard method (called
memoization) of saving the results of a function call so that it will not need to be recalcu-
lated after the first time. Its effect can be seen by executing ?hb.)

? hb

Global`hb

hb@0D = 1

hb@1D = 1
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hb@2D = 2

hb@3D = 1

hb@4D = 3

hb@5D = 2

hb@6D = 3

hb@7D = 1

hb@8D = 4

hb@9D = 3

hb@10D = 5

hb@11D = 2

hb@12D = 5

hb@13D = 3

hb@14D = 4

hb@15D = 1

hb@16D = 5

hb@17D = 4

hb@18D = 7

hb@19D = 3

hb@20D = 8

hb@21D = 5

hb@22D = 7

hb@23D = 2

hb@24D = 7

hb@25D = 5

hb@n_?OddQD := hb@nD = hbA n-1

2
E
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hb@n_?EvenQD := hb@nD = WithA9k =
n

2
=, hb@k - 1D + hb@kDE

Now the ordered list of rationals is obtained by forming ratios of adjacent elements of the
hyperbinary list.

hbQ@n_D := hb@n - 1D ê hb@nD

hbQ êü Range@25D

:1,
1

2
, 2,

1

3
,
3

2
,
2

3
, 3,

1

4
,
4

3
,
3

5
,
5

2
,
2

5
,

5

3
,
3

4
, 4,

1

5
,
5

4
,
4

7
,
7

3
,
3

8
,
8

5
,
5

7
,
7

2
,
2

7
,
7

5
>

Besides containing no duplicate or unreduced fractions, this ordering has the property that
fractions with a small numerator and denominator tend to appear before those with larger
ones.  An  inverse  function  can  be  created  using  the  hyperbinary  numbers  as  a  look-up
table, but musings in [10] motivate a more direct approach. Consider the numerator n and
denominator d  of the reduced fraction: we begin constructing a sequence of 0s and 1s by
recording  a  0  if  n < d  or  a  1  if  n > d.  Then  a  new  fraction  is  formed  by  replacing  the
larger (of the numerator and denominator) by their difference, and repeat. Nice features of
this process are:

1. Each fraction so produced is automatically in reduced form.

2. Either the numerator or the denominator of each fraction is smaller than that of the
preceding one.

3. The process will inevitably terminate when n = d = 1.

Now this sequence of binary digits can be interpreted as a unique integer. To recover the
index of the fraction, we use the digit sequence in the reverse of the order in which it was
generated, and prepend a 1 to distinguish shorter digit sequences from sequences with ini-
tial  0s.  (This  corresponds  to  counting  the  number  of  possible  shorter  sequences  and
adding it to the index—a concept we return to when considering the indexing of the set of
all strings.)

hbQInverse@r : H_Rational _IntegerLD :=
Module@8n = Numerator@rD, d = Denominator@rD, seq = 8<<,
While@n > 1 »» d > 1, If@n < d, seq = 80, seq<; d = d - n,

seq = 81, seq<; n = n - dDD;
FromDigits@Flattenü81, seq<, 2DD
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hbQ êü Range@25D

:1,
1

2
, 2,

1

3
,
3

2
,
2

3
, 3,

1

4
,
4

3
,
3

5
,
5

2
,
2

5
,

5

3
,
3

4
, 4,

1

5
,
5

4
,
4

7
,
7

3
,
3

8
,
8

5
,
5

7
,
7

2
,
2

7
,
7

5
>

hbQInverse êü %

81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25<

Another excellent feature of this algorithm is that it lends itself to the creation of a succes-
sor function, such as was possible for the simple diagonal method of ordering fractions.

hbQSuccessor@r : H_Rational _IntegerLD := 1 ê H1 + 2 Floor@rD - rL

NestList@hbQSuccessor, 1, 24D

:1,
1

2
, 2,

1

3
,
3

2
,
2

3
, 3,

1

4
,
4

3
,
3

5
,
5

2
,
2

5
,

5

3
,
3

4
, 4,

1

5
,
5

4
,
4

7
,
7

3
,
3

8
,
8

5
,
5

7
,
7

2
,
2

7
,
7

5
>

‡ One-to-One and Onto Indexing of All Strings?

· First Attempt

How can we do something similar with strings of any length and any alphabet size? Sup-
pose  we  lay  out  subsets  of  strings  having  m  symbols  and  length  n  and  use  the  diagonal
method to choose which subset to include next in the set  of strings of all  lengths and all
number of symbols.

strings@1, 1D strings@2, 1D strings@3, 1D º⋯

strings@1, 2D strings@2, 2D strings@3, 2D º⋯

strings@1, 3D strings@2, 3D strings@3, 3D º⋯

ª ª ª ¸⋱
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In this scenario, strings@2, 3D is the subset of all strings of length three using an al-
phabet of two characters. Each subset is finite (strings@m, nD  has mn  elements), and
so the diagonal method ensures that we will eventually get to any given subset.
The situation is not analogous to the diagonal listing of fractions, since strings@2, 2D
¹≠ strings@1, 1D, etc. So there are no duplicate subsets to remove.

strings@b_Integer, strlen_IntegerD := StringJoin êü

IIntegerDigitsARangeA0, bstrlen - 1E, b, strlenE ê.

Thread@Range@0, b - 1D Ø
CharacterRange@"A", "Z"D@@ ;; bDDDM ê; b ¥ 2

strings@1, strlen_IntegerD :=
8StringJoinüTable@"A", 8strlen<D<;

strings@0, 0D = 8""<;
InfiniteMatrixForm@a_D :=

ModuleA8rows, cols, b, c, d<, 8rows, cols< = Dimensions@aD;

b = Table@8"º⋯"<, 8rows<D; c = 9TableA"ª", 8cols<E=;

d = 88"¸⋱"<<; MatrixForm@ArrayFlatten@88a, b<, 8c, d<<DDE;

InfiniteMatrixFormü
TableAIfAn + b § 5, strings@b, nD, "ª"E, 8n, 1, 3<, 8b, 1, 3<E

8A< 8A, B< 8A, B, C< º⋯

8AA< 8AA, AB, BA, BB< 8AA, AB, AC, BA, BB, BC, CA, CB, CC< º⋯

8AAA< 8AAA, AAB, ABA, ABB, BAA, BAB, BBA, BBB< ª º⋯

ª ª ª ¸⋱

For completeness we also defined strings@0, 0D  as the set containing only the zero-
length  string,  and  will  let  this  be  the  first  element  in  our  overall  list  of  strings  of  any
length and any number of characters. Now the list of strings of any length and number of
characters, up to the fourth diagonal, is as follows.

stringsUpToDiagonal@d_IntegerD := Module@8strlen, k, n<,
Flatten@8strings@0, 0D,

Table@Table@strings@b, n + 1 - bD, 8b, 1, n<D,
8n, 1, d<D<DD;

stringsUpToDiagonal@4D

8, A, AA, A, B, AAA, AA, AB, BA, BB, A, B,
C, AAAA, AAA, AAB, ABA, ABB, BAA, BAB, BBA, BBB,
AA, AB, AC, BA, BB, BC, CA, CB, CC, A, B, C, D<
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We  see  that  there  are  indeed  duplicate  strings  in  our  list.  In  fact,  every  string  list  in
the  array  layout  is  a  subset  of  its  neighbor  to  the  right:  strings@n, kD Õ Ö

strings@n, k + 1D. Let us remove the duplicates in the sample above.

testlist = DeleteDuplicates@%D

8, A, AA, B, AAA, AB, BA, BB, C, AAAA, AAB, ABA,
ABB, BAA, BAB, BBA, BBB, AC, BC, CA, CB, CC, D<

· Rank and Unrank Strings of n Symbols?

We could define rank and unrank functions that simply skipped over these duplicates (as
in the simple diagonalization ordering of fractions), but might there not be a way of listing
all  strings without duplicates? The list  above can be thought of,  to a first  approximation,
as a list sorted by weight, where the weight of a string is the sum of the weights of its char-
acters and the weights of the characters increase in alphabetical order in some fashion. Sup-
pose  we  try  "A" Ø 1, "B" Ø 2, "C" Ø 3, ….  For  convenience  we  again  stop  at
b = 26, but could just as easily continue through all symbols in some agreed upon order.

StringWeight@s_StringD :=
Total@Characters@sD ê. characterWeightsD;

characterWeights =
Prepend@Thread@CharacterRange@"A", "Z"D Ø Range@26DD, "" Ø 0D

8 Ø 0, A Ø 1, B Ø 2, C Ø 3, D Ø 4, E Ø 5, F Ø 6,
G Ø 7, H Ø 8, I Ø 9, J Ø 10, K Ø 11, L Ø 12, M Ø 13,
N Ø 14, O Ø 15, P Ø 16, Q Ø 17, R Ø 18, S Ø 19,
T Ø 20, U Ø 21, V Ø 22, W Ø 23, X Ø 24, Y Ø 25, Z Ø 26<
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Grid@Transposeü8testlist, StringWeight êü testlist<D

0
A 1
AA 2
B 2

AAA 3
AB 3
BA 3
BB 4
C 3

AAAA 4
AAB 4
ABA 4
ABB 5
BAA 4
BAB 5
BBA 5
BBB 6
AC 4
BC 5
CA 4
CB 5
CC 6
D 4

The reason the string weights do not appear in nondecreasing order is because the way the
list  was  formed  does  not  follow  from  this  simple  weighting  scheme.  In  order  to  create
rank  and  unrank  functions  we  might  figure  out  some  other  way  to  index  this  list,  or  we
could index the more easily understood list including duplicates, and just identify and then
ignore  duplicates.  But  suppose  instead  we start  with  a  weighting  scheme and generate  a
string from it?
The simple weighting scheme "A" Ø 1, "B" Ø 2, "C" Ø 3, …, together with the defi-
nition of the weight of a string as the sum of the weights of its characters, suggests a string
enumeration that lists strings in increasing order of weight, all strings of weight n appear-
ing before those of weight n+ 1, for any non-negative integer n. For example, the strings
with weights 1 to 4 are shown in this table.

1: A
2: AA B
3: AAA AB BA C
4: AAAA AAB ABA BAA BB AC CA D

The enumeration could simply be the concatenation of these rows into a single list,  with
some additional ordering system for arranging the strings within the rows. Clearly any fi-
nite string s has some positive integer weight and will therefore appear somewhere in the

s
at a position dependent on its position within its row (weight group) and the total number
of strings of lesser weight. To clarify these statements and provide an algorithm for the enu-
meration, we turn to the concept of integer compositions.
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The enumeration could simply be the concatenation of these rows into a single list,  with
some additional ordering system for arranging the strings within the rows. Clearly any fi-

table. It will also become clear that each row is finite, so s will appear in the enumeration
at a position dependent on its position within its row (weight group) and the total number
of strings of lesser weight. To clarify these statements and provide an algorithm for the enu-
meration, we turn to the concept of integer compositions.

· Integer Compositions and Partitions

In number theory, partitions and compositions of a positive integer n are ways of writing n
as a sum of positive integers [11, 12]. Here are the ways of dividing 4 into positive integer
parts.

IntegerPartitions@4D

884<, 83, 1<, 82, 2<, 82, 1, 1<, 81, 1, 1, 1<<

That is to say, 4 can be written as the sum of positive integers in the following ways.

Row@Ò, "+"D & êü IntegerPartitions@4D

84, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1<

In the case of an integer partition, the order is irrelevant. By contrast, permutations of ad-
dends may result in distinct integer compositions.

IntegerCompositions@n_IntegerD :=
Flatten@Permutations êü IntegerPartitions@nD, 1D;

Row@Ò, "+"D & êü IntegerCompositions@4D

84, 3 + 1, 1 + 3, 2 + 2, 2 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2, 1 + 1 + 1 + 1<

Surprisingly enough, the number of compositions of n is a simple formula. By inspection
we get a first clue.

Text@8Ò, Length@IntegerCompositions@ÒDD< & êü Range@7D êê

Transpose êê

TableForm@Ò, TableHeadings Ø
88TextüStyle@"n", ItalicD,

Row@8"number of compositions of ",
Style@"n", ItalicD<D<, None<D &D

n 1 2 3 4 5 6 7
number of compositions of n 1 2 4 8 16 32 64

Hypothesis: the number of integer compositions of n is 2n-1.
This result suggests the existence of a natural method of associating binary numbers and in-
teger compositions.
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Any integer composition of a positive integer n  (assuming nonzero parts) can be thought
of as a sequence of 1s, interleaved by either commas or plus signs. Since there are n- 1 po-
sitions where two choices can be made (that is,  whether to insert  ,  or +),  the number of
possible results is 2n-1. For instance, the compositions of 4 shown above can all be repre-
sented as follows.

:1
+
,
1
+
,
1
+
,
1>

An  obvious  ordering  of  the  compositions  is  to  let  0  and  1  represent  a  plus  sign  and  a
comma, respectively, so that each composition can be indexed by a binary number. For ex-
ample, there are 24-1 = 8 compositions of 4.

0 = 0002 ó 81,1,1,1< = 81, 1, 1, 1<
1 = 0012 ó 81,1,1+1< = 81, 1, 2<
2 = 0102 ó 81,1+1,1< = 81, 2, 1<
3 = 0112 ó 81,1+1+1< = 81, 3<
4 = 1002 ó 81+1,1,1< = 82, 1, 1<
5 = 1012 ó 81+1,1+1< = 82, 2<
6 = 1102 ó 81+1+1,1< = 83, 1<
7 = 1112 ó 81+1+1+1< = 84<

The next output shows graphically how the bits of the index are used to determine which
integer composition is intended. Each 0 in the binary code is interpreted as the instruction
“insert a comma before the next 1 in the composition” or “end this integer, start the next
as a 1”; each 1 is an instruction to “insert a plus sign before the next 1” or “increment the
last integer in the composition.”

This shows the beginning of the tree of all integer compositions, showing compositions of
n on level n.

0 1

00 01 10 11

000 001 010 011 100 101 110 111

81<

81, 1< 82<

81, 1, 1< 81, 2< 82, 1< 83<

81, 1, 1, 1< 81, 1, 2< 81, 2, 1< 81, 3< 82, 1, 1< 82, 2< 83, 1< 84<
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‡ A New String Ordering
This elegant concept immediately gives us an unambiguous order for the set of all strings
as well: we need only let n = 0, 1, 2, … and run through all 2n  possibilities for each n, in
all cases letting the integer compositions obtained represent strings using the simple substi-
tutions defined in characterWeights. The following function produces the nth  string
of weight w by treating the 0s and 1s of the Hw- 1L-bit binary representation of n as instruc-
tions to either stop or continue incrementing the last digit of the string.

StringN@weight_Integer, n_IntegerD := Module@8t = 1<,
Reap@Scan@If@Ò == 0, Sow@tD; t = 1, t++D &,

IntegerDigits@n, 2, weight - 1DD; Sow@tDDP2, 1T
ê. HReverse êü characterWeightsL êê StringJoinD

Here is the same tree as before,  but with the integer compositions translated into strings.
Note that all strings of weight n appear on level n of the tree. Each 0 means “append an A
to the string”; each 1 means “increment the final character of the string.”

0 1

00 01 10 11

000 001 010 011 100 101 110 111

A

AA B

AAA AB BA C

AAAA AAB ABA AC BAA BB CA D

Here then are all the strings of weight 4.

StringN@4, ÒD & êü RangeA0, 24-1 - 1E

8AAAA, AAB, ABA, AC, BAA, BB, CA, D<
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Notice that StringN is in fact an unrank function for strings of any specified weight, and
at the same time it provides a way to generate the list of all such strings. And since each
such list  is  finite,  we can join lists  of  successively greater  weighting values to create the
universal list of all strings. (Recall the diagonal ordering of fractions first by the sum of nu-
merator and denominator, then by numerator, in which each diagonal was finite.)

TextüColumnüTableAStringN@w, ÒD & êü RangeA0, 2w-1 - 1E,

8w, 1, 5<E

8A<
8AA, B<
8AAA, AB, BA, C<
8AAAA, AAB, ABA, AC, BAA, BB, CA, D<

8AAAAA, AAAB, AABA, AAC, ABAA, ABB,
ACA, AD, BAAA, BAB, BBA, BC, CAA, CB, DA, E<

Remember that level n consists of all 2n strings (no matter what length) of weight n. In or-
der to index this universal string list, we need to know how many strings there are in the
levels up to and including n.

SumA2k-1, 8k, 1, n<E êê TraditionalForm

2n - 1

If  we include the  empty string of  length  zero,  there  are  2n  strings  of  weight  less  than or
equal to n. So given an index i, we first find the largest value n such that 2n < i, then pass
i- 2n  as  the  index  into  the  list  of  strings  with  weight  n+ 1,  returning
StringN@n + 1, i - 2nD. (The next cell does not evaluate.)

UnrankString@i_IntegerD :=
With@8n = Floor@Log@2, iDD<, StringN@n + 1, i - 2^nDD;

The above definition is included only for clarity. For increased computational speed we re-
place  it  by  the  following  functionally  equivalent  version  using  BitLength,  a  function
that  returns  the  number  of  binary  digits  needed  to  express  an  integer:
BitLength@iD = Floor@Log@2, iDD + 1.  (The author is indebted to the reviewers
of [13] for this suggestion.)

UnrankString@i_IntegerD :=
With@8n = BitLength@iD<, StringN@n, i - 2^Hn - 1LDD;

UnrankString@0D = "";
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UnrankString êü Range@0, 32D

8, A, AA, B, AAA, AB, BA, C, AAAA, AAB, ABA, AC,
BAA, BB, CA, D, AAAAA, AAAB, AABA, AAC, ABAA, ABB,
ACA, AD, BAAA, BAB, BBA, BC, CAA, CB, DA, E, AAAAAA<

The inverse algorithm goes like this: Note the total string weight w. Insert a 0 between all
letters and then replace the letters "A", "B", …, by strings of increasing numbers of 1s:
"A" Ø "", "B" Ø "1", "C" Ø "11", ….  Add  the  resulting  binary  number  to  2w-1,

the number of strings of weight less than w. But wait, 2w-1  in binary is 1 0â0âº⋯â0
ów

, and all
strings of weight w have been encoded as length w binary numbers, so we can add 2w-1 by
simply prefixing 1  to the binary number found above. This is reminiscent of the Calkin–
Wilf indexing of the rationals, where the index describes a path through the binary tree con-
taining the (positive) rationals.

RankString@s_StringD :=
With@8weight = Characters@sD ê. characterWeights<,
FromDigits@
Flatten@81, Riffle@Table@1, 8Ò<D & êü Hweight - 1L, 0D<D,
2DD;

RankString@""D = 0;

UnrankString êü Range@0, 32D

8, A, AA, B, AAA, AB, BA, C, AAAA, AAB, ABA, AC,
BAA, BB, CA, D, AAAAA, AAAB, AABA, AAC, ABAA, ABB,
ACA, AD, BAAA, BAB, BBA, BC, CAA, CB, DA, E, AAAAAA<

RankString êü %

80, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32<

It appears that RankString functions correctly and gives back the index that generated
each string. Here is a slightly longer test.

Range@0, 10 000D ã
RankString êü UnrankString êü Range@0, 10 000D

True

Of course, no finite test can prove that RankString and UnrankString are indeed in-
verse functions: that claim is based on the unambiguity of the enumeration (strings appear
in order of increasing weight, ordered within weight group by composition index). Theoret-
ical considerations [14] indicate that the set of all (finite-length) words that can be formed
from  a  countably  infinite  alphabet  is  countably  infinite.  The  above  enumeration  of  all
strings is a one-to-one function from the set of all (finite-length) strings onto the set of posi-
tive integers and thus provides a direct demonstration that the set is countably infinite.
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Of course, no finite test can prove that RankString and UnrankString are indeed in-
verse functions: that claim is based on the unambiguity of the enumeration (strings appear
in order of increasing weight, ordered within weight group by composition index). Theoret-
ical considerations [14] indicate that the set of all (finite-length) words that can be formed

strings is a one-to-one function from the set of all (finite-length) strings onto the set of posi-
tive integers and thus provides a direct demonstration that the set is countably infinite.
We use the trivial definition of NextString because it is simpler and almost as efficient
as deducing from a given string the next string in the enumeration.

NextString@s_StringD := UnrankString@RankString@sD + 1D

NextString@"AAAA"D

AAB

NestList@NextString, "", 15D

8, A, AA, B, AAA, AB, BA, C, AAAA, AAB, ABA, AC, BAA, BB, CA, D<

In practice it  would be faster  to  iterate  on the integer  index and convert  to  the string for
use. To use a different alphabet for this enumeration and those that follow, one need only
change the definition of characterWeights.
To  leave  the  alphabet  unspecified  (strings  represented  as  lists  of  integers),  one  could  re-
move the line in RankString and StringN (used by UnrankString) that does the
replacements,  but  since  one  is  then  enumerating  integer  compositions,  more  appropriate
names are indicated.

UnrankIntegerComposition@0D = 8<;
UnrankIntegerComposition@i_IntegerD :=
Module@8weight = BitLength@iD, t = 1<,
Reap@Scan@If@Ò == 0, Sow@tD; t = 1, t++D &,

IntegerDigits@i - 2^Hweight - 1L, 2, weight - 1DD; Sow@tDDP
2, 1TD

RankIntegerComposition@8<D = 0;
RankIntegerComposition@weight_ListD :=
FromDigits@
Flatten@81, Riffle@Table@1, 8Ò<D & êü Hweight - 1L, 0D<D, 2D

‡ A New String List Ordering
The string enumeration method described above can be modified to enumerate all lists of
strings:  Rather than using binary numbers of length w- 1 to specify whether commas or
pluses are placed between 1s, we can use ternary numbers and let the digits 0, 1, and 2 des-
ignate end-of-string,  comma (end-of-character),  or plus sign,  respectively.  This generates
all  possible  lists  of  strings  of  total  weight  w.  Again we must  count  how many codes  are
needed  for  the  cases  of  weight  up  to  w  and  add  this  to  the  index  within  the  weight  w
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The string enumeration method described above can be modified to enumerate all lists of
strings:  Rather than using binary numbers of length w- 1 to specify whether commas or
pluses are placed between 1s, we can use ternary numbers and let the digits 0, 1, and 2 des-
ignate end-of-string,  comma (end-of-character),  or plus sign,  respectively.  This generates
all  possible  lists  of  strings  of  total  weight  w.  Again we must  count  how many codes  are

group.  Any application  that  requires  all  lists  of  strings  of  all  possible  lengths  containing
all possible characters can use this technique.

SumA3k-1, 8k, 1, n<E êê TraditionalForm

1

2
H3n - 1L

Solve@i ã %, nD êê FullSimplify êê TraditionalForm êê

Quiet

::nØ
logH2 i + 1L

logH3L
>>

Here  is  a  Manipulate  window showing  the  steps  in  converting  an  index  into  a  string
list.

start 1

index weight offset
index

ternary
digits

string
list

1 0 0 8< 8A<

2 1 0 80< 8A, A<

3 1 1 81< 8AA<

4 1 2 82< 8B<
5 2 0 80, 0< 8A, A, A<

6 2 1 80, 1< 8A, AA<

7 2 2 80, 2< 8A, B<
8 2 3 81, 0< 8AA, A<

9 2 4 81, 1< 8AAA<

10 2 5 81, 2< 8AB<
11 2 6 82, 0< 8B, A<
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We  wrap  this  functionality  in  the  function  UnrankStringList.  It  first  identifies  the
weight group n indicated by the index i (we will offset to make 1 rather than 0 the first in-
dex) and then subtracts H3n - 1L ê 2 from it: this is the index within the weight group and is
converted into a list of ternary digits. Starting with 881<< (to represent a list containing a
single string containing only character number 1, A), we scan through the list, taking appro-
priate action.

Ë 0 = end-of-string: end the string and start a new one, by appending 81< to ans (a
new string A)

Ë 1 = end-of-character: end the character and start a new one, by appending 1 to the
last part of ans (a new character A)

Ë 2 = increment character: increment the last character of the last string, by adding 1
to the last part of the last part of ans

UnrankStringList@i_IntegerD :=
ModuleA8n, j, maxDigit, ans = 881<<<,

n = IntegerLength@2 i - 1, 3D - 1;
H* Floor@Log@3,2 i-1DD *L

j = Hi - 1L - I3n - 1M ë 2;

Scan@
Switch@Ò,

0, AppendTo@ans, 81<D,
1, AppendTo@ansP-1T, 1D,
2, ansP-1TP-1T++

D &,
IntegerDigits@j, 3, nDD;

maxDigit = Max@FlattenüansD;
StringJoin üüü
Hans ê. HReverse êü characterWeightsP ;; maxDigit + 1TLLE;
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We  reverse  the  process  to  recover  the  index  from  the  string  list:  first  break  strings  into
lists of characters and replace each character by its weight,  then construct a ternary code
from this list of lists of integers, then add the code found to the number of string lists of
smaller weight with an offset to start the index at 1.

RankStringList@sl_ListD :=
ModuleA8wl, w, code = "", extrabit = 1<,

wl = HCharacters êü slL êê. characterWeights;
w = Total@Flatten@wlDD;
While@wl ¹≠ 881<<,
If@wlP-1TP-1T > 1, code = "2" <> code; wlP-1TP-1T--,
If@wlP-1TP-1T ã 1 && Length@wlP-1TD > 1,
code = "1" <> code; wlP-1T = Most@wlP-1TD,
If@wlP-1T ã 81<, code = "0" <> code;
wl = Drop@wl, -1DDDDD;

FromDigits@code, 3D + I3w-1 - 1M ë 2 + 1E

Here is how they work.

UnrankStringList êü Range@13D

88A<, 8A, A<, 8AA<, 8B<, 8A, A, A<, 8A, AA<,
8A, B<, 8AA, A<, 8AAA<, 8AB<, 8B, A<, 8BA<, 8C<<

RankStringList êü %

81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13<

In this implementation the functions only recognize the uppercase characters A–Z, but as-
suming access  to  some universal  character  list  (not  necessarily  finite,  just  countable),  all
lists of all strings of all characters will appear in our list. Here is an example.

RankStringListü
StringSplitü"ALL LISTS OF ALL STRINGS OF ALL CHARACTERS"

3 048 489 333 934 281 697 583 155 222 694 846 219 650 773 952 920 367 Ö
806 711 282 418 052 558 080 535 064 728 674 326 377 083 360 908 188 Ö
239 883 661 093 547 831 090 942 297 357 118 740 028 820 413 634 860 Ö
300 163 055 898 102 115 650 978 443 282 394 869

UnrankStringList@%D

8ALL, LISTS, OF, ALL, STRINGS, OF, ALL, CHARACTERS<
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Empty  strings  will  not  appear  in  the  lists  generated  by  UnrankStringList,  and
should  not  be  included in  input  for  RankStringList.  To  leave  the  alphabet  unspeci-
fied  and identify  characters  by  number  (weight)  only,  it  is  sufficient  to  remove the  lines
(first  and  last,  respectively)  in  the  definitions  of  RankStringList  and
UnrankStringList that do the replacements based on characterWeights. 

‡ A New Ruleset Ordering
Sequential  substitution  system  rulesets  can  be  represented  as  a  list  of  strings
8s1, s2, s3, s4, …, s2 n<,  with an inferred meaning of 8s1 Ø s2, s3 Ø s4, …, s2 n-1 Ø s2 n<,  a
finite set of string replacement rules. In an SSS, a state string is first scanned for s1, which
if  found  is  replaced  by  s2.  If  no  substring  matching  s1  is  found,  the  second  replacement
rule is invoked, and if needed, the third rule, etc. At each step, only the first possible re-
placement of the first matching rule is performed. (For more details concerning sequential
substitution systems, see Chapter 3, Section 6 of A New Kind of Science [1].)
If the string list contains an odd number of strings, we have the option of simply throwing
away the last string, but that would result in many duplicate rulesets, and there may be a
way to use the extra information in the last half rule. One way would be to append a final
empty  string  and  thus  create  in  these  cases  a  final  rule  string Ø "".  In  fact,  such
“something to  nothing”  rules,  rules  that  delete  a  specified  substring,  are  never  generated
otherwise by the ternary index algorithm, but should be allowed at any position in the rule-
set.  UnrankString  only generated the empty string because of a separate rule defined
for the input 0. In the same way, some separate rule or algorithm could be used to insert
empty  strings  in  the  string  list  to  allow  string Ø ""  and  "" Ø string  rules,  creating  addi-
tional  rulesets  with  the  same  total  weight.  So  our  simple  list  of  string  lists  of  a  given
weight should be extended by the insertion of empty strings—but should they be allowed
at all positions? Let us consider the ramifications of including empty strings for a moment.

Ë As  mentioned,  “something  to  nothing”  rules  simply  delete  a  specified  substring.
This occurs when an empty string is in an even position in the string list. For com-
pleteness we need all possible cases of this type.

Ë On the other hand “nothing to something” rules, rules of the form "" Ø string, will
always match at the very beginning of the state string: Look for nothing (we will al-
ways  find  it)  and  insert  a  given  string  there—this  is  basically  an  insertion  rule.
(Note that the insertion always occurs at the beginning of the string, but rules such
as "A" Ø "AB" effectively cause later insertions.) Now if included, a “nothing to
something” rule, an initial insertion rule, should always be the last rule of the rule-
set since any following rules would never be invoked. Therefore we only need an
empty  string  at  an  odd  position  in  the  string  list  when  that  is  the  next-to-last
position.

It is probably more trouble than it is worth to optionally insert empty strings at only the po-
sitions that are “even or next-to-last” in the string list, but these two criteria suggest a sim-
ple way to make sure that at least these cases are included while ruling out many of the un-
wanted  cases.  Since  empty  strings  never  need  occur  at  the  beginning  of  the  string  list
(unless that is in fact the next-to-last position), we will consider inserting an empty string
as  an  alternative  way  of  ending  the  previous  string  and  starting  another  (with  an  empty
string inserted between). This will also guarantee that empty strings are not inserted more
frequently  than every other  position,  further  reducing their  occurrence at  undesired posi-
tions. In order to allow a “something to nothing” rule at the end of the ruleset, if the num-
ber of rules is odd we will interpret the final string as such a rule. This method will give
some cases with empty strings at odd positions earlier in the list,  but we will  drop them,
and they will occur far less often than if all possible empty string insertions were allowed.
It  is  also trivial to add the new instruction by simply switching to quaternary representa-
tion  of  the  index  and  letting  the  digits  0,  1,  2,  and  3  designate  end-string-insert-empty-
string-and-start-next-string,  end-string-and-start-next-string,  comma  (end-character-and-
start-next-character),  a  plus  sign,  respectively.  The  new  instruction  forces  an  immediate
end of the previous string, just as does the end-of-string symbol. This generates almost all
possible  useful  sequences  of  strings  of  (total  sequence)  weight  w,  now  including  empty
strings at all possible positions—except at the beginning of the ruleset. Unfortunately we
will  get  empty strings at  some undesired positions,  such as in nonfinal  "" Ø string  rules,
but disallowing them at consecutive positions is good. In any case, the whole point is that
we at least get all the cases we want to include automatically. Is that true here?
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It is probably more trouble than it is worth to optionally insert empty strings at only the po-
sitions that are “even or next-to-last” in the string list, but these two criteria suggest a sim-

wanted  cases.  Since  empty  strings  never  need  occur  at  the  beginning  of  the  string  list
(unless that is in fact the next-to-last position), we will consider inserting an empty string
as  an  alternative  way  of  ending  the  previous  string  and  starting  another  (with  an  empty
string inserted between). This will also guarantee that empty strings are not inserted more
frequently  than every other  position,  further  reducing their  occurrence at  undesired posi-
tions. In order to allow a “something to nothing” rule at the end of the ruleset, if the num-
ber of rules is odd we will interpret the final string as such a rule. This method will give
some cases with empty strings at odd positions earlier in the list,  but we will  drop them,
and they will occur far less often than if all possible empty string insertions were allowed.
It  is  also trivial to add the new instruction by simply switching to quaternary representa-
tion  of  the  index  and  letting  the  digits  0,  1,  2,  and  3  designate  end-string-insert-empty-
string-and-start-next-string,  end-string-and-start-next-string,  comma  (end-character-and-
start-next-character),  or  plus  sign,  respectively.  The new instruction forces  an immediate
end of the previous string, just as does the end-of-string symbol. This generates almost all
possible  useful  sequences  of  strings  of  (total  sequence)  weight  w,  now  including  empty
strings at all possible positions—except at the beginning of the ruleset. Unfortunately we
will  get  empty strings at  some undesired positions,  such as in nonfinal  "" Ø string  rules,
but disallowing them at consecutive positions is good. In any case, the whole point is that
we at least get all the cases we want to include automatically. Is that true here?

Reset 0 1 2 3

code:
answer: 881<<
strings: 8A<

ruleset: 8A Ø <
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Unfortunately not.  A little experimentation shows that we easily get  “something to noth-
ing”  rules  both  singly  and  as  part  of  a  larger  ruleset,  but  “nothing  to  something”  rules
never appear alone. We need some additional way to optionally insert an empty string in
the next-to-last position. It is enough to add one extra bit that can be appended to the code.

extra bit

Reset 0 1 2 3

code:
answer: 881<<
strings: 8A<

adjusted strings: 8A, <
ruleset: 8A Ø <

This does create more duplicates (such as code 1 with extra bit, code 0 without: both give
8"A" Ø "", "A" Ø ""<), but all the ones we want are there. To create rank and unrank
functions we will need to know how many rulesets there are of weight less than k.

1 + SumA4k-1, 8k, 1, n<E êê Simplify êê TraditionalForm

1

3
H4n + 2L

Solve@i ã %, nD êê FullSimplify êê TraditionalForm êê

Quiet

::nØ
logH3 i - 2L

logH4L
>>
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Here is the unrank function.

UnrankRuleset@iplusflag_Integer ê; iplusflag > 0D :=
ModuleA8i, extraflag, n, j, quaternaryDigits, maxDigit,

ans = 881<<, strings<,
extraflag = OddQ@iplusflagD;
i = Quotient@iplusflag + 1, 2D;
n = IntegerLength@3 i - 2, 4D - 1;
H* Floor@Log@4,3 i-2DD *L

j = i - I4n + 2M ë 3;

quaternaryDigits = IntegerDigits@j, 4, nD;
Scan@Switch@Ò, 0 , ans = Join@ans, 88<, 81<<D , 1,

AppendTo@ans, 81<D, 2, AppendTo@ansP-1T, 1D, 3,
ansP-1TP-1T++D &, quaternaryDigitsD;

maxDigit = Max@FlattenüansD;
strings = StringJoin üüü

Hans ê.
HReverse êü characterWeightsP ;; maxDigit + 1TLL;

If@extraflag,
strings = Join@Most@stringsD, 8"", Last@stringsD<DD;

If@OddQ@Length@stringsDD,
strings = AppendTo@strings, ""DD;

Rule üüü Partition@strings, 2, 2DE;

Notice that rulesets are grouped by total weight. First come the rulesets of weight 1, 2, and
3.

UnrankRuleset êü Range@2D

88 Ø A<, 8A Ø <<

UnrankRuleset êü Range@3, 10D

88A Ø , Ø A<, 8A Ø , A Ø <, 8A Ø , A Ø <,
8A Ø A<, 8 Ø AA<, 8AA Ø <, 8 Ø B<, 8B Ø <<

UnrankRuleset êü Range@11, 42D

88A Ø , A Ø , Ø A<, 8A Ø , A Ø , A Ø <, 8A Ø , A Ø , A Ø <,
8A Ø , A Ø A<, 8A Ø , Ø AA<, 8A Ø , AA Ø <, 8A Ø , Ø B<,
8A Ø , B Ø <, 8A Ø A, Ø , A Ø <, 8A Ø A, Ø A<, 8A Ø A, Ø A<,
8A Ø A, A Ø <, 8A Ø , AA Ø <, 8A Ø AA<, 8A Ø , B Ø <, 8A Ø B<,
8AA Ø , Ø A<, 8AA Ø , A Ø <, 8AA Ø , A Ø <, 8AA Ø A<, 8 Ø AAA<,
8AAA Ø <, 8 Ø AB<, 8AB Ø <, 8B Ø , Ø A<, 8B Ø , A Ø <,
8B Ø , A Ø <, 8B Ø A<, 8 Ø BA<, 8BA Ø <, 8 Ø C<, 8C Ø <<
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Within  each  weight  grouping  the  rulesets  are  sorted  preferentially  to  have  short  strings
and secondarily to have low-weight characters early in the string list.
There are some duplicates, but we will be able to discard them when we have an inverse
function;  if  the  index  is  different  from  the  one  we  started  with,  it  is  a  duplicate.  In  any
case there will  be others to discard as well,  rulesets where certain rules will  never be in-
voked—functional duplicates of previous rulesets—that can be discarded out of hand with-
out using them. These include:

1. Any case including an identity rule, such as A Ø A. If this rule is ever invoked, it
will continue to be invoked thereafter and no further changes will occur.

2. Any  case  including  a  nonfinal  rule  "" Ø string.  This  rule  prevents  subsequent
rules from ever being invoked.

3. Any  case  with  two  rules  with  the  same  left-hand  side,  such  as  8A Ø B, A Ø C<.
The second rule will never be invoked and the ruleset will thus be a duplicate of a
simpler ruleset.

4. Any case with two rules with left-hand sides s1  and s2,  such that s1  is a substring
of  s2.  The  second  rule  will  never  be  invoked  and  so  this  ruleset  is  an  effective
duplicate.

In fact, it can be seen that 2 and 3 are special cases of 4. Of course, it would be preferable
to generate rulesets that do not include such cases, but it is not immediately obvious how
to do so. In any case, much of the redundancy has been eliminated, and what remains is un-
derstood and the redundant rulesets identified and skipped over. We have a clear way of it-
erating through rulesets, although not all of them will be used, and of course, even among
those used there will  be many duplicate sequential  substitution system graphs (from per-
muting the order of the characters, for instance).

RankRuleset@rs_ListD :=
ModuleA8rl, wl, w, code = "", extrabit = 1<,

rl = Flatten@List üüü rsD;
If@Last@rlD ã "", rl = Most@rlDD;
If@Length@rlD > 1 && rlP-2T == "", extrabit = 0;
rl = Drop@rl, 8-2<DD;

wl = HCharacters êü rlL êê. characterWeights;
w = Total@Flatten@wlDD;
While@wl ¹≠ 881<<,
If@wlP-1TP-1T > 1, code = "3" <> code; wlP-1TP-1T--,
If@wlP-1TP-1T ã 1 && Length@wlP-1TD > 1,
code = "2" <> code; wlP-1T = Most@wlP-1TD,
If@Length@wlD ¥ 2 && wlP-2 ;;T ã 88<, 81<<,
code = "0" <> code; wl = Drop@wl, -2D,
If@wlP-1T ã 81<, code = "1" <> code;
wl = Drop@wl, -1DDDDDD;

2 IFromDigits@code, 4D + I4w-1 + 2M ë 3M + extrabit - 1E
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The final line adds the number of rulesets of smaller weights to the reconstructed quater-
nary code, left-shifts the result, adds the extra bit flag at the end, and finally subtracts 1 in
order to start at 1 instead of at 2. Again, other alphabets may be accommodated by adjust-
ing characterWeights, an unspecified alphabet by removing the replacement code.
The following tests the ruleset rank and unrank functions:

RankRuleset@8"ABA" Ø "A", "CAA" Ø "ABC", "" Ø "AB",
"AAB" Ø "A"<D

148 889 211 045 382

UnrankRuleset@%D

8ABA Ø A, CAA Ø ABC, Ø AB, AAB Ø A<

UnrankRuleset êü Range@25D

88 Ø A<, 8A Ø <, 8A Ø , Ø A<, 8A Ø , A Ø <,
8A Ø , A Ø <, 8A Ø A<, 8 Ø AA<, 8AA Ø <, 8 Ø B<, 8B Ø <,
8A Ø , A Ø , Ø A<, 8A Ø , A Ø , A Ø <, 8A Ø , A Ø , A Ø <,
8A Ø , A Ø A<, 8A Ø , Ø AA<, 8A Ø , AA Ø <, 8A Ø , Ø B<,
8A Ø , B Ø <, 8A Ø A, Ø , A Ø <, 8A Ø A, Ø A<, 8A Ø A, Ø A<,
8A Ø A, A Ø <, 8A Ø , AA Ø <, 8A Ø AA<, 8A Ø , B Ø <<

RankRuleset êü %

81, 2, 3, 5, 5, 6, 7, 8, 9, 10, 11, 13, 13,
14, 15, 23, 17, 25, 19, 21, 21, 22, 23, 24, 25<

Now we create an increment function to advance to the next (unique and useful)  ruleset.
Initially we only test whether RankRuleset returns the same index, but we already in-
clude the option of additional tests.

NextRuleset@n_IntegerD := Module@8k = 1, nrs<,
While@nrs = UnrankRuleset@n + kD;
RankRuleset@nrsD ¹≠ n + k »» ! UsefulRulesetQ@nrsD, k++D;

nrsD;
NextRuleset@rs_ListD := NextRuleset@RankRuleset@rsDD;

UsefulRulesetQ@rs_ListD = True;
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NestList@NextRuleset, UnrankRulesetü1, 50D

88 Ø A<, 8A Ø <, 8A Ø , Ø A<, 8A Ø , A Ø <, 8A Ø A<, 8 Ø AA<,
8AA Ø <, 8 Ø B<, 8B Ø <, 8A Ø , A Ø , Ø A<, 8A Ø , A Ø , A Ø <,
8A Ø , A Ø A<, 8A Ø , Ø AA<, 8A Ø , Ø B<, 8A Ø A, Ø , A Ø <,
8A Ø A, Ø A<, 8A Ø A, A Ø <, 8A Ø , AA Ø <, 8A Ø AA<, 8A Ø , B Ø <,
8A Ø B<, 8AA Ø , Ø A<, 8AA Ø , A Ø <, 8AA Ø A<, 8 Ø AAA<,
8AAA Ø <, 8 Ø AB<, 8AB Ø <, 8B Ø , Ø A<, 8B Ø , A Ø <, 8B Ø A<,
8 Ø BA<, 8BA Ø <, 8 Ø C<, 8C Ø <, 8A Ø , A Ø , A Ø , Ø A<,
8A Ø , A Ø , A Ø , A Ø <, 8A Ø , A Ø , A Ø A<, 8A Ø , A Ø , Ø AA<,
8A Ø , A Ø , Ø B<, 8A Ø , A Ø A, Ø , A Ø <, 8A Ø , A Ø A, Ø A<,
8A Ø , A Ø A, A Ø <, 8A Ø , A Ø , AA Ø <, 8A Ø , A Ø AA<,
8A Ø , A Ø , B Ø <, 8A Ø , A Ø B<, 8A Ø , AA Ø , Ø A<,
8A Ø , AA Ø , A Ø <, 8A Ø , AA Ø A<, 8A Ø , Ø AAA<<

Here are their indices.

RankRuleset êü %

81, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15,
17, 19, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31,
32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 45, 46,
47, 49, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63<

Here are the duplicates.

Complement@Range@Lastü%D, %D

84, 12, 16, 18, 20, 28, 36, 44, 48, 50, 52, 60<

UnrankRuleset êü %

88A Ø , A Ø <, 8A Ø , A Ø , A Ø <, 8A Ø , AA Ø <,
8A Ø , B Ø <, 8A Ø A, Ø A<, 8AA Ø , A Ø <, 8B Ø , A Ø <,
8A Ø , A Ø , A Ø , A Ø <, 8A Ø , A Ø , AA Ø <,
8A Ø , A Ø , B Ø <, 8A Ø , A Ø A, Ø A<, 8A Ø , AA Ø , A Ø <<

Yes, these are mostly rulesets with final “something to nothing” rules. Well, it is the price
of doing business; the important thing is to include all those needed.
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Now we restrict the returned values to rulesets that generate different SSSs by discarding
cases with: (1) an identity rule; or (2) two rules with left-hand sides s1  and s2, such that s1
is a substring of s2.

Clear@UsefulRulesetQD;
UsefulRulesetQ@rs_ListD :=
Module@8lhs, max, i, j, dup<,
If@HOr üü HEqual üüü rsLL, dup = True,
If@HLength@rsD ã 1L, dup = False,
lhs = First êü rs;
max = Length@lhsD;
i = 1; j = 2; dup = False;
While@! dup && i < max,
If@Length@StringPosition@lhsPjT, lhsPiTDD > 0,
dup = TrueD;

j++;
If@j > max, i++; j = i + 1DDDD;

! dupD

Now we can use NextRuleset  to iterate through all valid rulesets giving useful SSSs.
All  problem cases have been eliminated, and all  other rulesets will  appear somewhere in
the list. Here are the first 50.

NestList@NextRuleset, UnrankRulesetü1, 49D

88 Ø A<, 8A Ø <, 8A Ø , Ø A<, 8 Ø AA<, 8AA Ø <, 8 Ø B<, 8B Ø <,
8A Ø , Ø AA<, 8A Ø , Ø B<, 8A Ø AA<, 8A Ø , B Ø <, 8A Ø B<,
8AA Ø , Ø A<, 8AA Ø , A Ø <, 8AA Ø A<, 8 Ø AAA<, 8AAA Ø <,
8 Ø AB<, 8AB Ø <, 8B Ø , Ø A<, 8B Ø , A Ø <, 8B Ø A<, 8 Ø BA<,
8BA Ø <, 8 Ø C<, 8C Ø <, 8A Ø , Ø AAA<, 8A Ø , Ø AB<,
8A Ø , B Ø , Ø A<, 8A Ø , B Ø A<, 8A Ø , Ø BA<, 8A Ø , Ø C<,
8A Ø AA, Ø A<, 8A Ø AAA<, 8A Ø AB<, 8A Ø B, Ø A<, 8A Ø BA<,
8A Ø , C Ø <, 8A Ø C<, 8AA Ø , A Ø , Ø A<, 8AA Ø , Ø AA<,
8AA Ø , Ø B<, 8AA Ø A, Ø A<, 8AA Ø A, A Ø <, 8AA Ø , B Ø <,
8AA Ø B<, 8AAA Ø , Ø A<, 8AAA Ø , A Ø <, 8AAA Ø A<, 8 Ø AAAA<<

Here are their indices.

RankRuleset êü %

81, 2, 3, 7, 8, 9, 10, 15, 17, 24, 25, 26, 27, 29, 30,
31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 63, 65,
67, 70, 71, 73, 93, 96, 98, 101, 104, 105, 106, 107,
111, 113, 117, 118, 121, 122, 123, 125, 126, 127<
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Here are the duplicates and functional duplicates that were skipped.

Complement@Range@Lastü%D, %D

84, 5, 6, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 23,
28, 36, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 66, 68, 69,
72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 100, 102,
103, 108, 109, 110, 112, 114, 115, 116, 119, 120, 124<

UnrankRuleset êü %

88A Ø , A Ø <, 8A Ø , A Ø <, 8A Ø A<, 8A Ø , A Ø , Ø A<,
8A Ø , A Ø , A Ø <, 8A Ø , A Ø , A Ø <, 8A Ø , A Ø A<,
8A Ø , AA Ø <, 8A Ø , B Ø <, 8A Ø A, Ø , A Ø <, 8A Ø A, Ø A<,
8A Ø A, Ø A<, 8A Ø A, A Ø <, 8A Ø , AA Ø <, 8AA Ø , A Ø <,
8B Ø , A Ø <, 8A Ø , A Ø , A Ø , Ø A<, 8A Ø , A Ø , A Ø , A Ø <,
8A Ø , A Ø , A Ø , A Ø <, 8A Ø , A Ø , A Ø A<, 8A Ø , A Ø , Ø AA<,
8A Ø , A Ø , AA Ø <, 8A Ø , A Ø , Ø B<, 8A Ø , A Ø , B Ø <,
8A Ø , A Ø A, Ø , A Ø <, 8A Ø , A Ø A, Ø A<, 8A Ø , A Ø A, Ø A<,
8A Ø , A Ø A, A Ø <, 8A Ø , A Ø , AA Ø <, 8A Ø , A Ø AA<,
8A Ø , A Ø , B Ø <, 8A Ø , A Ø B<, 8A Ø , AA Ø , Ø A<,
8A Ø , AA Ø , A Ø <, 8A Ø , AA Ø , A Ø <, 8A Ø , AA Ø A<,
8A Ø , AAA Ø <, 8A Ø , AB Ø <, 8A Ø , B Ø , A Ø <,
8A Ø , B Ø , A Ø <, 8A Ø , BA Ø <, 8A Ø , C Ø <,
8A Ø A, Ø A, Ø , A Ø <, 8A Ø A, Ø A, Ø A<, 8A Ø A, Ø A, Ø A<,
8A Ø A, Ø A, A Ø <, 8A Ø A, Ø , AA Ø <, 8A Ø A, Ø AA<,
8A Ø A, Ø , B Ø <, 8A Ø A, Ø B<, 8A Ø A, A Ø , Ø A<,
8A Ø A, A Ø , A Ø <, 8A Ø A, A Ø , A Ø <, 8A Ø A, A Ø A<,
8A Ø A, Ø AA<, 8A Ø A, AA Ø <, 8A Ø A, Ø B<, 8A Ø A, B Ø <,
8A Ø AA, Ø , A Ø <, 8A Ø AA, Ø A<, 8A Ø AA, A Ø <, 8A Ø , AAA Ø <,
8A Ø , AB Ø <, 8A Ø B, Ø , A Ø <, 8A Ø B, Ø A<, 8A Ø B, A Ø <,
8A Ø , BA Ø <, 8AA Ø , A Ø , A Ø <, 8AA Ø , A Ø , A Ø <,
8AA Ø , A Ø A<, 8AA Ø , AA Ø <, 8AA Ø , B Ø <, 8AA Ø A, Ø , A Ø <,
8AA Ø A, Ø A<, 8AA Ø , AA Ø <, 8AA Ø AA<, 8AAA Ø , A Ø <<

RankRuleset êü %

85, 5, 6, 11, 13, 13, 14, 23, 25, 19, 21, 21, 22, 23,
29, 37, 43, 45, 45, 46, 47, 55, 49, 57, 51, 53, 53,
54, 55, 56, 57, 58, 59, 61, 61, 62, 95, 97, 69, 69,
103, 105, 75, 77, 77, 78, 79, 87, 81, 89, 83, 85, 85,
86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 99, 101, 102,
103, 109, 109, 110, 119, 121, 115, 117, 119, 120, 125<
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Some are  true  duplicates  (if  the  index number  changed),  the  others  functional  duplicates
containing  rules  that  will  never  be  invoked  in  creating  a  sequential  substitution  system.
This  is  a  manageable  situation.  Remember,  Cantor’s  diagonalization  contains  an  infinite
number  of  duplicates  of  each  fraction!  The  following  table  summarizes  the  numbers  of
unique rulesets and useful (functionally distinct) rulesets for several orders of magnitude.
Roughly  three-fourths  of  the  generated  rulesets  are  unique,  although  fewer  and  fewer  of
the unique rulesets will give distinct sequential substitution systems.

Text@
Table@With@8n = 10^k<,

With@8l = DeleteDuplicates@UnrankRuleset êü Range@nDD<,
Flatten@8Ò, Round@100.0 Rest@ÒD ê n, 1D<D & ü
8n, Lengthül, Length@Select@l, UsefulRulesetQDD<

DD, 8k, 1, 6<D êê

TableForm@Ò, TableHeadings Ø
8None, 8Style@"n", ItalicD, "unique", "useful",

"% unique", "% useful"<<, TableAlignments Ø RightD &D

n unique useful % unique % useful
10 9 7 90 70

100 80 37 80 37
1000 766 255 77 26

10 000 7550 1970 76 20
100 000 75 177 8267 75 8

1 000 000 750 588 66 775 75 7

‡ Conclusion
A review of  three  methods for  enumerating the  rational  numbers  motivated the  develop-
ment of a bijective enumeration of arbitrary-length strings on a countable alphabet of char-
acters  (or  equivalently,  an  enumeration  of  integer  compositions).  This  in  turn  was  ex-
tended to  form an enumeration of  all  finite-length sequences of  finite-length strings,  and
an enumeration of  all  sequential  substitution system rulesets.  The latter  list,  although in-
cluding both exact and functional duplicates, is well defined and relatively dense. Rank, un-
rank, and successor functions were discussed.

‡ Acknowledgments
My thanks  to  the  NKS Summer School  2009 staff  and in  particular  to  Matthew Szudzik
for  encouraging  my  interest  in  enumerations  and  sequential  substitution  systems,  and  to
Charles Sarr for his willingness to discuss these ideas at considerable length.

36 Kenneth E. Caviness

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.



‡ References
[1] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media, 2002.

[2] T.  Rowland.  “Enumerating  Strings”  from The NKS Forum—A Wolfram Web Resource.  (Apr
02, 2010) forum.wolframscience.com/showthread.php?s=&threadid=929.

[3] G. Beck. “A Path through the Lattice Points in a Quadrant” from the Wolfram Demonstrations
Project—A Wolfram Web Resource.
www.demonstrations.wolfram.com/APathThroughTheLatticePointsInAQuadrant.

[4] D. Bradley. “Counting the Positive Rationals: A Brief Survey.” (Jun 21, 2010)
arxiv.org/abs/math/0509025.

[5] Y. Sagher, “Counting the Rationals,” American Mathematical Monthly, 96(9), 1989 p. 823.

[6] N.  Calkin  and H.  Wilf,  “Recounting  the Rationals,”  American Mathematical  Monthly,  107(4),
2000 pp. 360–363. www.math.upenn.edu/~wilf/reprints.html.

[7] D. Knuth, C. Rupert, A. Smith, and R. Stong, “Recounting the Rationals, Continued,” Ameri-
can Mathematical Monthly, 110(7), 2003 pp. 642–643.

[8] J.  Czyz  and  W.  Self,  “The  Rationals  Are  Countable:  Euclidʼs  Proof,”  College  Mathematics
Journal, 34(5), 2003 pp. 367–369.

[9] M.  Szudzik.  “Enumerating  the  Rationals”  from  the  Wolfram  Demonstrations  Project—A
Wolfram Web Resource. www.demonstrations.wolfram.com/EnumeratingTheRationals.

[10] B. Yorgey, “Recounting the Rationals, Part II,” The Math Less Traveled (blog), (Apr 2, 2010)
www.mathlesstraveled.com/?p=97.

[11] E. Weisstein. “Composition” from Wolfram MathWorld—A Wolfram Web Resource.
www.mathworld.wolfram.com/Composition.html.

[12] S.  Heubach  and  T.  Mansour,  Combinatorics  of  Compositions  and  Words,  Boca  Raton,  FL:
CRC Press, 2009.

[13] K.  Caviness.  “Universal  String  Enumeration”  from  the  Wolfram  Demonstrations  Project—A
Wolfram Web Resource. www.demonstrations.wolfram.com/UniversalStringEnumeration.

[14] R. Kantrowitz, “A Principle of Countability,” Mathematics Magazine, 73(1), 2000 pp. 40–42.

K. E. Caviness, “Indexing Strings and Rulesets,” The Mathematica Journal, 2011. 
dx.doi.org/doi:10.3888/tmj.13–6.

About the Author

Ken Caviness teaches physics at Southern Adventist University, a small liberal arts univer-
sity near Chattanooga, Tennessee. He holds a Ph.D. in physics (emphases in relativity and
nuclear physics) from the University of Massachusetts at Lowell, and has taught math and
physics in Rwanda, Texas, and Tennessee. His interests include both computer and human
languages  (including  the  planned  language  Esperanto).  He  has  used  Mathematica  since
Version 1, both professionally and for recreational programming.
Kenneth E. Caviness
Physics Department
Southern Adventist University 
PO Box 370, Collegedale, TN 37315-0370
caviness@southern.edu

Indexing Strings and Rulesets 37

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.




