
The Mathematica®Journal

Indexing Strings and Rulesets
An Exploration Leading to an Enumeration
Kenneth E. Caviness

An enumeration of strings is developed, in which all strings of
finite length of symbols from any alphabet appear, with no upper
bounds for string length or alphabet size. A bijective indexing
function and its inverse are found for the string enumeration,
allowing iteration through the set of all strings, as well as
identification of arbitrary strings by the associated index. The
method is then extended to sequences of strings and to
sequential substitution system (SSS) rulesets, providing a well-
defined, relatively dense enumeration of all possible valid SSS
rulesets for strings of arbitrary length and any number of
symbols used in rulesets of any length, although in this case the
indexing function is not one-to-one.

‡ Introduction
Enumerations are useful, both theoretically and practically. The existence of a set enumera-
tion guarantees that the set is at most countably infinite. For example, an enumeration of
the rationals proved that there are the same number of fractions as integers, while a proof
that no enumeration of the reals exists showed that the real numbers are uncountable.
More usefully, an enumeration assigns an index to every member of the set under consider-
ation, giving a practical means to consider every case. This makes enumeration a powerful
part of the methodology found in NKS [1]. Given a function Enumeration that returns
the elements of a set in specified order, the following command finds the index of the first
element that passes TestFunction. (The next cell does not evaluate.)

Catch@Do@If@TestFunction@Enumeration@iDD, Throw@iDD,
8i, 1, SampleSize<D; NoneD

Sequential substitution systems are defined by sets of rules (here called “rulesets”), each
consisting of a target string and a replacement string. Given some initial state (which may
also be represented as a string), these rules are applied and the system evolves. But
without a well-defined enumeration of strings and rulesets, any treatment of sequential
substitution systems will be haphazard and may miss important features. In this article
enumeration systems are presented for all strings, for all lists of strings, and for all
sequential substitution system rulesets. These enumerations can be used or modified for
other applications based on rulesets and initial state strings (for example, nonsequential
substitution systems, multiway systems, etc.).

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Sequential substitution systems are defined by sets of rules (here called “rulesets”), each
consisting of a target string and a replacement string. Given some initial state (which may
also be represented as a string), these rules are applied and the system evolves. But
without a well-defined enumeration of strings and rulesets, any treatment of sequential
substitution systems will be haphazard and may miss important features. In this article

sequential substitution system rulesets. These enumerations can be used or modified for
other applications based on rulesets and initial state strings (for example, nonsequential
substitution systems, multiway systems, etc.).

‡ Toward an Exhaustive List of Strings

· Strings of Fixed Length and Fixed Number of Symbols

To generate a list of all possible strings of length three and made up of the characters A
and B, the obvious method would be to think of a binary odometer having three positions,
each able to display an A or a B—or a 0 or a 1. This is the normal increasing order of the
first 23 binary numbers.

IntegerDigitsARangeA0, 23 - 1E, 2, 3E

880, 0, 0<, 80, 0, 1<, 80, 1, 0<, 80, 1, 1<,
81, 0, 0<, 81, 0, 1<, 81, 1, 0<, 81, 1, 1<<

StringJoin@Ò ê. 80 Ø "A", 1 Ø "B"<D & êü %

8AAA, AAB, ABA, ABB, BAA, BAB, BBA, BBB<

We can identify each two-symbol length-three string with the corresponding numbers in
the set 80, 1, …, 7<, providing an index into the sequence of strings, which appear in alpha-
betical order. But suppose we want to include all two-symbol strings, no matter what
length? One possible ordering is the following.

8, A, B, AA, AB, BA, BB, AAA, AAB, ABA, ABB, BAA, BAB,
BBA, BBB, AAAA, AAAB, AABA, AABB, ABAA, ABAB, ABBA,
ABBB, BAAA, BAAB, BABA, BABB, BBAA, BBAB, BBBA, BBBB<

The pattern is: list all length-zero strings, then all length-one strings, then all length-two
strings, then all length-three strings, etc. For a given length, go through the strings as you
would odometer readings, changing the rightmost character most frequently, and others
when the character to the right “rolls over.” Notice that the ordering is not alphabetic; if it
were it would start with 8"", "A", "AA", "AAA", …< and would never get to any
strings that include B. But the order is well defined, with strings sorted first by length,
then alphabetically within each string length group.

2 Kenneth E. Caviness

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

This method can be applied for any specified alphabet size. Below are functions to work
with arbitrary-length strings with alphabet size b, here limited to 26 for the convenience of
using the English alphabet, although the maximum for the function IntegerString is
36. (See [2] for an example of how to construct basically the same enumeration with no
size limitation on the specified alphabet size by avoiding the use of an actual alphabet, list-
ing characters by number only.)

RankStringInBase@b_Integer, s_StringD :=
ModuleA8len = StringLength@sD, chars, digits<,

chars = CharacterRange@"A", "Z"D@@ ;; bDD;
digits = Join@CharacterRange@"0", "9"D,

CharacterRange@"A", "P"DD@@ ;; bDD;
Iblen - 1M ë Hb - 1L +

FromDigits@StringReplace@s, Thread@chars Ø digitsDD,
bDE ê; 2 § b § 26

RankStringInBase@1, s_StringD :=
StringLength@sD ê; s == "" »» Union@Characters@sDD == 8"A"<

UnrankStringInBase@b_Integer, n_IntegerD :=
ModuleA8len, chars, digits<,

chars = CharacterRange@"A", "Z"DP ;; bT;
digits =
Join@CharacterRange@"0", "9"D,

CharacterRange@"A", "P"DDP ;; bT;
len = With@8$MaxExtraPrecision = 100<,

FloorüFullSimplify@Log@b, Hn + 1L Hb - 1LDDD;
StringReplaceA

ToUpperCaseüIntegerStringAn - Iblen - 1M ë Hb - 1L, b, lenE ,

Thread@digits Ø charsDEE ê; 2 § b § 26

UnrankStringInBase@1, n_IntegerD :=
StringJoin@Table@"A", 8n<DD

The single-symbol case is treated separately, simply counting or combining the appropri-
ate number of characters. The more general formulas use as the string index the sum of
the number of possible strings of length shorter than len and the base-b representation of
the desired length string, where b is the alphabet size. Since for b symbols there are b1

strings of length 1, b2 strings of length 2, etc., the number of strings of length less than
len is as follows.

Sum@b^k, 8k, 0, len - 1<D êê TraditionalForm

blen - 1

b - 1

Indexing Strings and Rulesets 3

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

UnrankStringInBase@b, nD generates the string associated with the index number
n in the listing of b-symbol strings, starting with 0. For b = 2, string length less than five,
the indices can run from 0 to I25 - 1M ë H2- 1L- 1.

I25 - 1M ë H2 - 1L

31

UnrankStringInBase@2, ÒD & êü Range@0, 30D

8, A, B, AA, AB, BA, BB, AAA, AAB, ABA, ABB, BAA, BAB,
BBA, BBB, AAAA, AAAB, AABA, AABB, ABAA, ABAB, ABBA,
ABBB, BAAA, BAAB, BABA, BABB, BBAA, BBAB, BBBA, BBBB<

These are all strings of length less than five on an alphabet of two symbols. We use
RankStringInBase@b, sD to return the index of each string.

RankStringInBase@2, ÒD & êü %

80, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30<

RankStringInBase@b, sD and UnrankStringInBase@b, nD are constructed
to act as inverse functions, converting a string s into an integer n and vice versa, subject to
the present limitations that 1 § b § 26 and s be a string of uppercase characters taken
from the first b letters of the English alphabet. UnrankStringInBase@b, nD pro-
duces a unique string s for each non-negative integer n, and RankStringÖ
InBase@b, sD reconstructs the index from the string. (Note that there is no limitation
on string length or the index.)

Choose any string and an allowed (sufficiently large) base b.

RankStringInBase@26, "ABCDEFGHIJKLMNOPQRSTUVWXYZ"D

256 094 574 536 617 744 129 141 650 397 448 476

The inverse function retrieves the string.

UnrankStringInBase@26, %D

ABCDEFGHIJKLMNOPQRSTUVWXYZ

4 Kenneth E. Caviness

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Starting from an index is easier. We can iterate through its values, for example by moving
a slider.

Manipulate@With@8s = UnrankStringInBase@b, nD<,
Textü
Style@Column@8"\nindex: " <> ToStringün, "string: " <> s,

"rank undoes unrank? " <>
ToString@RankStringInBase@b, sD ã nD<D, 16DD,

8n, 0, 1000, 1, Appearance Ø "Labeled"<,
88b, 2<, 1, 26, 1, Appearance Ø "Labeled"<,
SaveDefinitions Ø TrueD

n 0

b 2

index: 0
string:
rank undoes unrank? True

Indexing Strings and Rulesets 5

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Note that UnrankStringInBase could even be used in an infinite loop, iterating
through all strings for a given set of symbols, listing shorter strings before longer ones. In
the following loop, rather than using While@True, D, we stop when the string length ex-
ceeds three.

n = 0; slist = 8<;
While@Hs = UnrankStringInBase@5, nD; StringLength@sD § 3L,

AppendTo@slist, sD; n++D;
Clear@n, sD;
slist

8, A, B, C, D, E, AA, AB, AC, AD, AE, BA, BB, BC, BD, BE, CA, CB,
CC, CD, CE, DA, DB, DC, DD, DE, EA, EB, EC, ED, EE, AAA,
AAB, AAC, AAD, AAE, ABA, ABB, ABC, ABD, ABE, ACA, ACB, ACC,
ACD, ACE, ADA, ADB, ADC, ADD, ADE, AEA, AEB, AEC, AED, AEE,
BAA, BAB, BAC, BAD, BAE, BBA, BBB, BBC, BBD, BBE, BCA, BCB,
BCC, BCD, BCE, BDA, BDB, BDC, BDD, BDE, BEA, BEB, BEC,
BED, BEE, CAA, CAB, CAC, CAD, CAE, CBA, CBB, CBC, CBD,
CBE, CCA, CCB, CCC, CCD, CCE, CDA, CDB, CDC, CDD, CDE,
CEA, CEB, CEC, CED, CEE, DAA, DAB, DAC, DAD, DAE, DBA,
DBB, DBC, DBD, DBE, DCA, DCB, DCC, DCD, DCE, DDA, DDB,
DDC, DDD, DDE, DEA, DEB, DEC, DED, DEE, EAA, EAB, EAC,
EAD, EAE, EBA, EBB, EBC, EBD, EBE, ECA, ECB, ECC, ECD,
ECE, EDA, EDB, EDC, EDD, EDE, EEA, EEB, EEC, EED, EEE<

There are several nice things about these functions. UnrankStringInBase enumer-
ates the b-symbol strings in the specified order (sorted with shorter strings first, alphabeti-
cally within each string length), giving a “standard order” for listing these strings without
omissions. But notice that RankStringInBase and UnrankStringInBase do not
generate this (infinite!) list and look for a match or pick out an element, rather they build
the string from the index or deduce the index from the string, respectively.

· Duplication of Effort

Of course, the particular enumeration order chosen motivates the creation of the rank and
unrank functions. The above method includes all possible strings written using an alpha-
bet of b symbols, and does so in an explainable order. But although by construction it al-
lows all string lengths, whenever the alphabet size is increased all the previous work must
be redone.
Is there a way to list all strings, allowing both string length and alphabet size to grow with-
out upper bound? (For the sake of argument let us assume that the symbols themselves
can be written down in some order, perhaps Unicode order followed by the order in which
new symbols are invented.) What is needed is some way to add to the list without rearrang-
ing or repeating previously listed entries. For inspiration we turn to a similar situation, the
enumeration of the rational numbers.

6 Kenneth E. Caviness

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

‡ Rational Examples

· Cantorʼs Diagonalization

There are ways to create an ordered list of things that grow infinitely in two different
“directions.” One is Georg Cantor’s famous diagonal ordering of the rational numbers
(see Figure 1, below).

1ê1

1ê2

2ê1

1ê3

3ê1

1ê4

4ê1

1ê5

5ê1

ª

º⋯

2ê2 3ê2 4ê2 5ê2 º⋯

2ê3 3ê3 4ê3 5ê3 º⋯

2ê4 3ê4 4ê4 5ê4 º⋯

2ê5 3ê5 4ê5 5ê5 º⋯

ª ª ª ª ¸⋱

Ú Figure 1. Cantorʼs diagonal ordering of the rationals: coloration added to highlight diagonal rows.

Both the numerator and the denominator of the fraction are taken from an infinite (but
countable) set, and rather than trying to treat one infinity first, as in
81 ê 1, 2 ê 1, 3 ê 1, …1 ê 2, 2 ê 2, 3 ê 2, …, 1 ê 3, 2 ê 3, 3 ê 3, … <, this method allows growth
in both directions to continue indefinitely, following a defined pattern while clearly includ-
ing all possible combinations. (See [3] for an alternative route through the array.) Of
course, one drawback of this method as applied to fractions is that equivalent fractions get
counted multiple times. For example 1 ê 1 = 2 ê 2 = 3 ê 3 = …, 1 ê 2 = 2 ê 4 = 3 ê 6 = …,
etc. But the mathematical literature contains many examples of nonrepetitive ways of or-
dering the rationals (e.g., [4, 5, 6, 7, 8]).
None of the nonrepetitive sequences has the simple clarity of the diagonal arrangement. Is
it so bad to have duplicates and then be forced to ignore or drop them later? This is an im-
portant question that will return in various situations. Although a little inelegant, the exis-
tence of duplicates hurts nothing essential, so we will consider nonrepetition a desirable
but not necessary feature.

Indexing Strings and Rulesets 7

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

What is essential then?

1. The list should be unambiguous: it can be generated to any desired number of ele-
ments, and the order can be unambiguously described. Here the fractions are listed
in increasing order first by the sum of numerator and denominator (as colored in
Figure 1), next by numerator.

2. A successor algorithm should exist: from a given fraction n ê d, can the next frac-
tion in the list be found? Yes, if d > 1, the next fraction is Hn+ 1L ê Hd - 1L; if
d = 1, it is 1 ê Hn+ 1L. This means that we do not need to generate the whole list at
once; we can proceed one step at a time, perhaps testing or making some use of
the fractions as they are generated. A small modification to the successor algo-
rithm lets us easily bypass duplicates: if the successor found is not a fraction re-
duced to lowest terms, advance to its successor. This can be implemented in this
way as two-element lists.

Successor@8n_Integer, d_Integer<D :=
If@GCD üü Ò ã 1, Ò, SuccessorüÒD & ü
If@d ã 1, 81, Hn + 1L<, 8Hn + 1L, Hd - 1L<D

Here are the first 25 successors of 81, 1<, shown in fractional form.

FractionBox üüü NestList@Successor, 81, 1<, 25D êê

DisplayForm

:
1

1
,
1

2
,
2

1
,
1

3
,
3

1
,
1

4
,
2

3
,
3

2
,
4

1
,
1

5
,
5

1
,
1

6
,

2

5
,
3

4
,
4

3
,
5

2
,
6

1
,
1

7
,
3

5
,
5

3
,
7

1
,
1

8
,
2

7
,
4

5
,
5

4
,
7

2
>

3. The existence of rank and unrank functions, to convert back and forth between the
list and an ordered list of integers. (Given such functions, the definition for
successor@elementD might be as simple as unrank@rank@elementD+ 1D, if no direct
method of advancing through the enumeration has been found.) For the diagonal or-
dering, we must determine which diagonal we want and then which element. The
fraction n ê d appears on the Hn+ d - 1Lth and is element n on that diagonal. An
easy way to do this is to create a function to generate the nth triangular number
(the total number of entries in the previous diagonals).

Tri@n_D := EvaluateB‚
k=1

n

kF; ? Tri

Global`Tri

Tri@n_D := 1

2
n H1 + nL

8 Kenneth E. Caviness

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Now the ranking function is easy.

RankRational@r_D :=
HTri@Ò + Denominator@rD - 2D + ÒL & ü Numerator@rD

RankRational êü 81 ê 1, 1 ê 2, 2 ê 1, 1 ê 3, 2 ê 2, 3 ê 1, 1 ê 4,
2 ê 3, 3 ê 2, 4 ê 1<

81, 2, 3, 4, 1, 6, 7, 8, 9, 10<

Except for unreduced fractions these are in ascending order, as desired. An unranking func-
tion will facilitate testing for unreduced fractions.

Solve@x ã Tri@nD, nD

::n Ø
1

2
J-1 - 1 + 8 x N>, :n Ø

1

2
J-1 + 1 + 8 x N>>

invTri@x_IntegerD := CeilingB
1

2
J-1 + 1 + 8 x NF

UnrankRational@x_IntegerD := Module@8k, n, d<,
k = invTri@xD;
n = x - Tri@k - 1D;
d = k - n + 1;
If@GCD@n, dD > 1, 0, n ê dDD

H* returns 0 instead of unreduced fractions *L

UnrankRational êü Range@25D

:1,
1

2
, 2,

1

3
, 0, 3,

1

4
,
2

3
,
3

2
, 4,

1

5
,

0, 0, 0, 5,
1

6
,
2

5
,
3

4
,
4

3
,
5

2
, 6,

1

7
, 0,

3

5
, 0>

RankRational êü %

81, 2, 3, 4, 0, 6, 7, 8, 9, 10, 11, 0, 0,
0, 15, 16, 17, 18, 19, 20, 21, 22, 0, 24, 0<

Since this method of listing the rationals includes duplicates, the UnrankRational func-
tion returns 0 instead of a duplicate. However the nonzero fractions returned are unique
and appear in the defined order.
Again, although it would be nice for the mapping or indexing method to be one to one, it
is not necessary.

Indexing Strings and Rulesets 9

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

· Nonrepetitive Indexing of the Rationals

As mentioned above, there are one to one and onto (bijective) mappings between the set
of rationals (either all rationals or the positive rationals) and Z+, the set of positive inte-
gers. One elegant algorithm [4] relies on the fundamental theorem of arithmetic (also
known as the unique prime factorization theorem): any integer greater than 1 can be writ-
ten as a unique product of prime numbers (up to the order of the factors).

showFactorization =
Row@8Ò, " ‡ ", Row@Superscript üüü FactorInteger@ÒD,

"µ"D<D & ;
showFactorization@174 636 000D

174 636 000 ‡ 25 µ 34 µ 53 µ 72 µ 111

If the prime numbers are listed in order, the sequence of exponents provides a unique way
to characterize each positive integer. For the above example the sequence is
85, 4, 3, 2, 1, 0, 0, 0, …<. But the same can be said of all possible numerators and denomi-
nators of rational numbers, and furthermore, when a fraction is reduced to lowest terms no
prime factor will appear in both the numerator and the denominator, a fact that motivates
the following algorithm, in which odd exponents define factors of the numerator and even
exponents define factors of the denominator.

IntegerToRationalByFactorization@n_IntegerD :=

Times üü IÒ1If@EvenQ@Ò2D,-Ò2ê2,HÒ2+1Lê2D & üüü FactorInteger@nDM

IntegerToRationalByFactorizationA25 34 53 72 111E

2200

63

showFactorization êü 82200, 63< êê Column

2200 ‡ 23 µ 52 µ 111

63 ‡ 32 µ 71

10 Kenneth E. Caviness

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Note that even exponents are halved and then used as the exponents of the same prime fac-
tors in the denominator, odd exponents incremented, then halved and similarly used to
specify the numerator. (For an extension to all rationals see [9].) Of course this procedure
is not unique, the treatment of odd and even exponents could just as well be reversed. A
disadvantage of this method of ordering the rationals is the order itself: it preferentially
treats integers (and in general, small denominator fractions) before others.

IntegerToRationalByFactorization êü Range@50D

:1, 2, 3,
1

2
, 5, 6, 7, 4,

1

3
, 10, 11,

3

2
, 13, 14, 15,

1

4
, 17,

2

3
,

19,
5

2
, 21, 22, 23, 12,

1

5
, 26, 9,

7

2
, 29, 30, 31, 8, 33, 34,

35,
1

6
, 37, 38, 39, 20, 41, 42, 43,

11

2
,
5

3
, 46, 47,

3

4
,
1

7
,
2

5
>

The ordering function is well defined, one to one, and onto, but for example, 2/5 is far
later in the list than 5/2, appearing after the integers 47 and 17, respectively. This may not
necessarily be appropriate for some applications.
Another bijective ordering of the rationals, due to Calkin and Wilf [6], is treated here.
This ordering can be expressed in terms of the hyperbinary function, which can be recur-
sively defined as follows.

hb@0D = 1;
hb@n_?OddQD := hb@nD = hb@Hn - 1L ê 2D;
hb@n_?EvenQD := hb@nD = With@8k = n ê 2<, hb@k - 1D + hb@kDD

hb êü Range@0, 25D

81, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5,
2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5<

(The additional hb@nD = in the recursion calls is Mathematica’s standard method (called
memoization) of saving the results of a function call so that it will not need to be recalcu-
lated after the first time. Its effect can be seen by executing ?hb.)

? hb

Global`hb

hb@0D = 1

hb@1D = 1

Indexing Strings and Rulesets 11

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

hb@2D = 2

hb@3D = 1

hb@4D = 3

hb@5D = 2

hb@6D = 3

hb@7D = 1

hb@8D = 4

hb@9D = 3

hb@10D = 5

hb@11D = 2

hb@12D = 5

hb@13D = 3

hb@14D = 4

hb@15D = 1

hb@16D = 5

hb@17D = 4

hb@18D = 7

hb@19D = 3

hb@20D = 8

hb@21D = 5

hb@22D = 7

hb@23D = 2

hb@24D = 7

hb@25D = 5

hb@n_?OddQD := hb@nD = hbA n-1

2
E

12 Kenneth E. Caviness

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

hb@n_?EvenQD := hb@nD = WithA9k =
n

2
=, hb@k - 1D + hb@kDE

Now the ordered list of rationals is obtained by forming ratios of adjacent elements of the
hyperbinary list.

hbQ@n_D := hb@n - 1D ê hb@nD

hbQ êü Range@25D

:1,
1

2
, 2,

1

3
,
3

2
,
2

3
, 3,

1

4
,
4

3
,
3

5
,
5

2
,
2

5
,

5

3
,
3

4
, 4,

1

5
,
5

4
,
4

7
,
7

3
,
3

8
,
8

5
,
5

7
,
7

2
,
2

7
,
7

5
>

Besides containing no duplicate or unreduced fractions, this ordering has the property that
fractions with a small numerator and denominator tend to appear before those with larger
ones. An inverse function can be created using the hyperbinary numbers as a look-up
table, but musings in [10] motivate a more direct approach. Consider the numerator n and
denominator d of the reduced fraction: we begin constructing a sequence of 0s and 1s by
recording a 0 if n < d or a 1 if n > d. Then a new fraction is formed by replacing the
larger (of the numerator and denominator) by their difference, and repeat. Nice features of
this process are:

1. Each fraction so produced is automatically in reduced form.

2. Either the numerator or the denominator of each fraction is smaller than that of the
preceding one.

3. The process will inevitably terminate when n = d = 1.

Now this sequence of binary digits can be interpreted as a unique integer. To recover the
index of the fraction, we use the digit sequence in the reverse of the order in which it was
generated, and prepend a 1 to distinguish shorter digit sequences from sequences with ini-
tial 0s. (This corresponds to counting the number of possible shorter sequences and
adding it to the index—a concept we return to when considering the indexing of the set of
all strings.)

hbQInverse@r : H_Rational _IntegerLD :=
Module@8n = Numerator@rD, d = Denominator@rD, seq = 8<<,
While@n > 1 »» d > 1, If@n < d, seq = 80, seq<; d = d - n,

seq = 81, seq<; n = n - dDD;
FromDigits@Flattenü81, seq<, 2DD

Indexing Strings and Rulesets 13

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

hbQ êü Range@25D

:1,
1

2
, 2,

1

3
,
3

2
,
2

3
, 3,

1

4
,
4

3
,
3

5
,
5

2
,
2

5
,

5

3
,
3

4
, 4,

1

5
,
5

4
,
4

7
,
7

3
,
3

8
,
8

5
,
5

7
,
7

2
,
2

7
,
7

5
>

hbQInverse êü %

81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25<

Another excellent feature of this algorithm is that it lends itself to the creation of a succes-
sor function, such as was possible for the simple diagonal method of ordering fractions.

hbQSuccessor@r : H_Rational _IntegerLD := 1 ê H1 + 2 Floor@rD - rL

NestList@hbQSuccessor, 1, 24D

:1,
1

2
, 2,

1

3
,
3

2
,
2

3
, 3,

1

4
,
4

3
,
3

5
,
5

2
,
2

5
,

5

3
,
3

4
, 4,

1

5
,
5

4
,
4

7
,
7

3
,
3

8
,
8

5
,
5

7
,
7

2
,
2

7
,
7

5
>

‡ One-to-One and Onto Indexing of All Strings?

· First Attempt

How can we do something similar with strings of any length and any alphabet size? Sup-
pose we lay out subsets of strings having m symbols and length n and use the diagonal
method to choose which subset to include next in the set of strings of all lengths and all
number of symbols.

strings@1, 1D strings@2, 1D strings@3, 1D º⋯

strings@1, 2D strings@2, 2D strings@3, 2D º⋯

strings@1, 3D strings@2, 3D strings@3, 3D º⋯

ª ª ª ¸⋱

14 Kenneth E. Caviness

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

In this scenario, strings@2, 3D is the subset of all strings of length three using an al-
phabet of two characters. Each subset is finite (strings@m, nD has mn elements), and
so the diagonal method ensures that we will eventually get to any given subset.
The situation is not analogous to the diagonal listing of fractions, since strings@2, 2D
¹≠ strings@1, 1D, etc. So there are no duplicate subsets to remove.

strings@b_Integer, strlen_IntegerD := StringJoin êü

IIntegerDigitsARangeA0, bstrlen - 1E, b, strlenE ê.

Thread@Range@0, b - 1D Ø
CharacterRange@"A", "Z"D@@ ;; bDDDM ê; b ¥ 2

strings@1, strlen_IntegerD :=
8StringJoinüTable@"A", 8strlen<D<;

strings@0, 0D = 8""<;
InfiniteMatrixForm@a_D :=

ModuleA8rows, cols, b, c, d<, 8rows, cols< = Dimensions@aD;

b = Table@8"º⋯"<, 8rows<D; c = 9TableA"ª", 8cols<E=;

d = 88"¸⋱"<<; MatrixForm@ArrayFlatten@88a, b<, 8c, d<<DDE;

InfiniteMatrixFormü
TableAIfAn + b § 5, strings@b, nD, "ª"E, 8n, 1, 3<, 8b, 1, 3<E

8A< 8A, B< 8A, B, C< º⋯

8AA< 8AA, AB, BA, BB< 8AA, AB, AC, BA, BB, BC, CA, CB, CC< º⋯

8AAA< 8AAA, AAB, ABA, ABB, BAA, BAB, BBA, BBB< ª º⋯

ª ª ª ¸⋱

For completeness we also defined strings@0, 0D as the set containing only the zero-
length string, and will let this be the first element in our overall list of strings of any
length and any number of characters. Now the list of strings of any length and number of
characters, up to the fourth diagonal, is as follows.

stringsUpToDiagonal@d_IntegerD := Module@8strlen, k, n<,
Flatten@8strings@0, 0D,

Table@Table@strings@b, n + 1 - bD, 8b, 1, n<D,
8n, 1, d<D<DD;

stringsUpToDiagonal@4D

8, A, AA, A, B, AAA, AA, AB, BA, BB, A, B,
C, AAAA, AAA, AAB, ABA, ABB, BAA, BAB, BBA, BBB,
AA, AB, AC, BA, BB, BC, CA, CB, CC, A, B, C, D<

Indexing Strings and Rulesets 15

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

We see that there are indeed duplicate strings in our list. In fact, every string list in
the array layout is a subset of its neighbor to the right: strings@n, kD Õ Ö

strings@n, k + 1D. Let us remove the duplicates in the sample above.

testlist = DeleteDuplicates@%D

8, A, AA, B, AAA, AB, BA, BB, C, AAAA, AAB, ABA,
ABB, BAA, BAB, BBA, BBB, AC, BC, CA, CB, CC, D<

· Rank and Unrank Strings of n Symbols?

We could define rank and unrank functions that simply skipped over these duplicates (as
in the simple diagonalization ordering of fractions), but might there not be a way of listing
all strings without duplicates? The list above can be thought of, to a first approximation,
as a list sorted by weight, where the weight of a string is the sum of the weights of its char-
acters and the weights of the characters increase in alphabetical order in some fashion. Sup-
pose we try "A" Ø 1, "B" Ø 2, "C" Ø 3, …. For convenience we again stop at
b = 26, but could just as easily continue through all symbols in some agreed upon order.

StringWeight@s_StringD :=
Total@Characters@sD ê. characterWeightsD;

characterWeights =
Prepend@Thread@CharacterRange@"A", "Z"D Ø Range@26DD, "" Ø 0D

8 Ø 0, A Ø 1, B Ø 2, C Ø 3, D Ø 4, E Ø 5, F Ø 6,
G Ø 7, H Ø 8, I Ø 9, J Ø 10, K Ø 11, L Ø 12, M Ø 13,
N Ø 14, O Ø 15, P Ø 16, Q Ø 17, R Ø 18, S Ø 19,
T Ø 20, U Ø 21, V Ø 22, W Ø 23, X Ø 24, Y Ø 25, Z Ø 26<

16 Kenneth E. Caviness

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Grid@Transposeü8testlist, StringWeight êü testlist<D

0
A 1
AA 2
B 2

AAA 3
AB 3
BA 3
BB 4
C 3

AAAA 4
AAB 4
ABA 4
ABB 5
BAA 4
BAB 5
BBA 5
BBB 6
AC 4
BC 5
CA 4
CB 5
CC 6
D 4

The reason the string weights do not appear in nondecreasing order is because the way the
list was formed does not follow from this simple weighting scheme. In order to create
rank and unrank functions we might figure out some other way to index this list, or we
could index the more easily understood list including duplicates, and just identify and then
ignore duplicates. But suppose instead we start with a weighting scheme and generate a
string from it?
The simple weighting scheme "A" Ø 1, "B" Ø 2, "C" Ø 3, …, together with the defi-
nition of the weight of a string as the sum of the weights of its characters, suggests a string
enumeration that lists strings in increasing order of weight, all strings of weight n appear-
ing before those of weight n+ 1, for any non-negative integer n. For example, the strings
with weights 1 to 4 are shown in this table.

1: A
2: AA B
3: AAA AB BA C
4: AAAA AAB ABA BAA BB AC CA D

The enumeration could simply be the concatenation of these rows into a single list, with
some additional ordering system for arranging the strings within the rows. Clearly any fi-
nite string s has some positive integer weight and will therefore appear somewhere in the

s
at a position dependent on its position within its row (weight group) and the total number
of strings of lesser weight. To clarify these statements and provide an algorithm for the enu-
meration, we turn to the concept of integer compositions.

Indexing Strings and Rulesets 17

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

The enumeration could simply be the concatenation of these rows into a single list, with
some additional ordering system for arranging the strings within the rows. Clearly any fi-

table. It will also become clear that each row is finite, so s will appear in the enumeration
at a position dependent on its position within its row (weight group) and the total number
of strings of lesser weight. To clarify these statements and provide an algorithm for the enu-
meration, we turn to the concept of integer compositions.

· Integer Compositions and Partitions

In number theory, partitions and compositions of a positive integer n are ways of writing n
as a sum of positive integers [11, 12]. Here are the ways of dividing 4 into positive integer
parts.

IntegerPartitions@4D

884<, 83, 1<, 82, 2<, 82, 1, 1<, 81, 1, 1, 1<<

That is to say, 4 can be written as the sum of positive integers in the following ways.

Row@Ò, "+"D & êü IntegerPartitions@4D

84, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1<

In the case of an integer partition, the order is irrelevant. By contrast, permutations of ad-
dends may result in distinct integer compositions.

IntegerCompositions@n_IntegerD :=
Flatten@Permutations êü IntegerPartitions@nD, 1D;

Row@Ò, "+"D & êü IntegerCompositions@4D

84, 3 + 1, 1 + 3, 2 + 2, 2 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2, 1 + 1 + 1 + 1<

Surprisingly enough, the number of compositions of n is a simple formula. By inspection
we get a first clue.

Text@8Ò, Length@IntegerCompositions@ÒDD< & êü Range@7D êê

Transpose êê

TableForm@Ò, TableHeadings Ø
88TextüStyle@"n", ItalicD,

Row@8"number of compositions of ",
Style@"n", ItalicD<D<, None<D &D

n 1 2 3 4 5 6 7
number of compositions of n 1 2 4 8 16 32 64

Hypothesis: the number of integer compositions of n is 2n-1.
This result suggests the existence of a natural method of associating binary numbers and in-
teger compositions.

18 Kenneth E. Caviness

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Any integer composition of a positive integer n (assuming nonzero parts) can be thought
of as a sequence of 1s, interleaved by either commas or plus signs. Since there are n- 1 po-
sitions where two choices can be made (that is, whether to insert , or +), the number of
possible results is 2n-1. For instance, the compositions of 4 shown above can all be repre-
sented as follows.

:1
+
,
1
+
,
1
+
,
1>

An obvious ordering of the compositions is to let 0 and 1 represent a plus sign and a
comma, respectively, so that each composition can be indexed by a binary number. For ex-
ample, there are 24-1 = 8 compositions of 4.

0 = 0002 ó 81,1,1,1< = 81, 1, 1, 1<
1 = 0012 ó 81,1,1+1< = 81, 1, 2<
2 = 0102 ó 81,1+1,1< = 81, 2, 1<
3 = 0112 ó 81,1+1+1< = 81, 3<
4 = 1002 ó 81+1,1,1< = 82, 1, 1<
5 = 1012 ó 81+1,1+1< = 82, 2<
6 = 1102 ó 81+1+1,1< = 83, 1<
7 = 1112 ó 81+1+1+1< = 84<

The next output shows graphically how the bits of the index are used to determine which
integer composition is intended. Each 0 in the binary code is interpreted as the instruction
“insert a comma before the next 1 in the composition” or “end this integer, start the next
as a 1”; each 1 is an instruction to “insert a plus sign before the next 1” or “increment the
last integer in the composition.”

This shows the beginning of the tree of all integer compositions, showing compositions of
n on level n.

0 1

00 01 10 11

000 001 010 011 100 101 110 111

81<

81, 1< 82<

81, 1, 1< 81, 2< 82, 1< 83<

81, 1, 1, 1< 81, 1, 2< 81, 2, 1< 81, 3< 82, 1, 1< 82, 2< 83, 1< 84<

Indexing Strings and Rulesets 19

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

‡ A New String Ordering
This elegant concept immediately gives us an unambiguous order for the set of all strings
as well: we need only let n = 0, 1, 2, … and run through all 2n possibilities for each n, in
all cases letting the integer compositions obtained represent strings using the simple substi-
tutions defined in characterWeights. The following function produces the nth string
of weight w by treating the 0s and 1s of the Hw- 1L-bit binary representation of n as instruc-
tions to either stop or continue incrementing the last digit of the string.

StringN@weight_Integer, n_IntegerD := Module@8t = 1<,
Reap@Scan@If@Ò == 0, Sow@tD; t = 1, t++D &,

IntegerDigits@n, 2, weight - 1DD; Sow@tDDP2, 1T
ê. HReverse êü characterWeightsL êê StringJoinD

Here is the same tree as before, but with the integer compositions translated into strings.
Note that all strings of weight n appear on level n of the tree. Each 0 means “append an A
to the string”; each 1 means “increment the final character of the string.”

0 1

00 01 10 11

000 001 010 011 100 101 110 111

A

AA B

AAA AB BA C

AAAA AAB ABA AC BAA BB CA D

Here then are all the strings of weight 4.

StringN@4, ÒD & êü RangeA0, 24-1 - 1E

8AAAA, AAB, ABA, AC, BAA, BB, CA, D<

20 Kenneth E. Caviness

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Notice that StringN is in fact an unrank function for strings of any specified weight, and
at the same time it provides a way to generate the list of all such strings. And since each
such list is finite, we can join lists of successively greater weighting values to create the
universal list of all strings. (Recall the diagonal ordering of fractions first by the sum of nu-
merator and denominator, then by numerator, in which each diagonal was finite.)

TextüColumnüTableAStringN@w, ÒD & êü RangeA0, 2w-1 - 1E,

8w, 1, 5<E

8A<
8AA, B<
8AAA, AB, BA, C<
8AAAA, AAB, ABA, AC, BAA, BB, CA, D<

8AAAAA, AAAB, AABA, AAC, ABAA, ABB,
ACA, AD, BAAA, BAB, BBA, BC, CAA, CB, DA, E<

Remember that level n consists of all 2n strings (no matter what length) of weight n. In or-
der to index this universal string list, we need to know how many strings there are in the
levels up to and including n.

SumA2k-1, 8k, 1, n<E êê TraditionalForm

2n - 1

If we include the empty string of length zero, there are 2n strings of weight less than or
equal to n. So given an index i, we first find the largest value n such that 2n < i, then pass
i- 2n as the index into the list of strings with weight n+ 1, returning
StringN@n + 1, i - 2nD. (The next cell does not evaluate.)

UnrankString@i_IntegerD :=
With@8n = Floor@Log@2, iDD<, StringN@n + 1, i - 2^nDD;

The above definition is included only for clarity. For increased computational speed we re-
place it by the following functionally equivalent version using BitLength, a function
that returns the number of binary digits needed to express an integer:
BitLength@iD = Floor@Log@2, iDD + 1. (The author is indebted to the reviewers
of [13] for this suggestion.)

UnrankString@i_IntegerD :=
With@8n = BitLength@iD<, StringN@n, i - 2^Hn - 1LDD;

UnrankString@0D = "";

Indexing Strings and Rulesets 21

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

UnrankString êü Range@0, 32D

8, A, AA, B, AAA, AB, BA, C, AAAA, AAB, ABA, AC,
BAA, BB, CA, D, AAAAA, AAAB, AABA, AAC, ABAA, ABB,
ACA, AD, BAAA, BAB, BBA, BC, CAA, CB, DA, E, AAAAAA<

The inverse algorithm goes like this: Note the total string weight w. Insert a 0 between all
letters and then replace the letters "A", "B", …, by strings of increasing numbers of 1s:
"A" Ø "", "B" Ø "1", "C" Ø "11", …. Add the resulting binary number to 2w-1,

the number of strings of weight less than w. But wait, 2w-1 in binary is 1 0â0âº⋯â0
ów

, and all
strings of weight w have been encoded as length w binary numbers, so we can add 2w-1 by
simply prefixing 1 to the binary number found above. This is reminiscent of the Calkin–
Wilf indexing of the rationals, where the index describes a path through the binary tree con-
taining the (positive) rationals.

RankString@s_StringD :=
With@8weight = Characters@sD ê. characterWeights<,
FromDigits@
Flatten@81, Riffle@Table@1, 8Ò<D & êü Hweight - 1L, 0D<D,
2DD;

RankString@""D = 0;

UnrankString êü Range@0, 32D

8, A, AA, B, AAA, AB, BA, C, AAAA, AAB, ABA, AC,
BAA, BB, CA, D, AAAAA, AAAB, AABA, AAC, ABAA, ABB,
ACA, AD, BAAA, BAB, BBA, BC, CAA, CB, DA, E, AAAAAA<

RankString êü %

80, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32<

It appears that RankString functions correctly and gives back the index that generated
each string. Here is a slightly longer test.

Range@0, 10 000D ã
RankString êü UnrankString êü Range@0, 10 000D

True

Of course, no finite test can prove that RankString and UnrankString are indeed in-
verse functions: that claim is based on the unambiguity of the enumeration (strings appear
in order of increasing weight, ordered within weight group by composition index). Theoret-
ical considerations [14] indicate that the set of all (finite-length) words that can be formed
from a countably infinite alphabet is countably infinite. The above enumeration of all
strings is a one-to-one function from the set of all (finite-length) strings onto the set of posi-
tive integers and thus provides a direct demonstration that the set is countably infinite.

22 Kenneth E. Caviness

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Of course, no finite test can prove that RankString and UnrankString are indeed in-
verse functions: that claim is based on the unambiguity of the enumeration (strings appear
in order of increasing weight, ordered within weight group by composition index). Theoret-
ical considerations [14] indicate that the set of all (finite-length) words that can be formed

strings is a one-to-one function from the set of all (finite-length) strings onto the set of posi-
tive integers and thus provides a direct demonstration that the set is countably infinite.
We use the trivial definition of NextString because it is simpler and almost as efficient
as deducing from a given string the next string in the enumeration.

NextString@s_StringD := UnrankString@RankString@sD + 1D

NextString@"AAAA"D

AAB

NestList@NextString, "", 15D

8, A, AA, B, AAA, AB, BA, C, AAAA, AAB, ABA, AC, BAA, BB, CA, D<

In practice it would be faster to iterate on the integer index and convert to the string for
use. To use a different alphabet for this enumeration and those that follow, one need only
change the definition of characterWeights.
To leave the alphabet unspecified (strings represented as lists of integers), one could re-
move the line in RankString and StringN (used by UnrankString) that does the
replacements, but since one is then enumerating integer compositions, more appropriate
names are indicated.

UnrankIntegerComposition@0D = 8<;
UnrankIntegerComposition@i_IntegerD :=
Module@8weight = BitLength@iD, t = 1<,
Reap@Scan@If@Ò == 0, Sow@tD; t = 1, t++D &,

IntegerDigits@i - 2^Hweight - 1L, 2, weight - 1DD; Sow@tDDP
2, 1TD

RankIntegerComposition@8<D = 0;
RankIntegerComposition@weight_ListD :=
FromDigits@
Flatten@81, Riffle@Table@1, 8Ò<D & êü Hweight - 1L, 0D<D, 2D

‡ A New String List Ordering
The string enumeration method described above can be modified to enumerate all lists of
strings: Rather than using binary numbers of length w- 1 to specify whether commas or
pluses are placed between 1s, we can use ternary numbers and let the digits 0, 1, and 2 des-
ignate end-of-string, comma (end-of-character), or plus sign, respectively. This generates
all possible lists of strings of total weight w. Again we must count how many codes are
needed for the cases of weight up to w and add this to the index within the weight w

Indexing Strings and Rulesets 23

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

The string enumeration method described above can be modified to enumerate all lists of
strings: Rather than using binary numbers of length w- 1 to specify whether commas or
pluses are placed between 1s, we can use ternary numbers and let the digits 0, 1, and 2 des-
ignate end-of-string, comma (end-of-character), or plus sign, respectively. This generates
all possible lists of strings of total weight w. Again we must count how many codes are

group. Any application that requires all lists of strings of all possible lengths containing
all possible characters can use this technique.

SumA3k-1, 8k, 1, n<E êê TraditionalForm

1

2
H3n - 1L

Solve@i ã %, nD êê FullSimplify êê TraditionalForm êê

Quiet

::nØ
logH2 i + 1L

logH3L
>>

Here is a Manipulate window showing the steps in converting an index into a string
list.

start 1

index weight offset
index

ternary
digits

string
list

1 0 0 8< 8A<

2 1 0 80< 8A, A<

3 1 1 81< 8AA<

4 1 2 82< 8B<
5 2 0 80, 0< 8A, A, A<

6 2 1 80, 1< 8A, AA<

7 2 2 80, 2< 8A, B<
8 2 3 81, 0< 8AA, A<

9 2 4 81, 1< 8AAA<

10 2 5 81, 2< 8AB<
11 2 6 82, 0< 8B, A<

24 Kenneth E. Caviness

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

We wrap this functionality in the function UnrankStringList. It first identifies the
weight group n indicated by the index i (we will offset to make 1 rather than 0 the first in-
dex) and then subtracts H3n - 1L ê 2 from it: this is the index within the weight group and is
converted into a list of ternary digits. Starting with 881<< (to represent a list containing a
single string containing only character number 1, A), we scan through the list, taking appro-
priate action.

Ë 0 = end-of-string: end the string and start a new one, by appending 81< to ans (a
new string A)

Ë 1 = end-of-character: end the character and start a new one, by appending 1 to the
last part of ans (a new character A)

Ë 2 = increment character: increment the last character of the last string, by adding 1
to the last part of the last part of ans

UnrankStringList@i_IntegerD :=
ModuleA8n, j, maxDigit, ans = 881<<<,

n = IntegerLength@2 i - 1, 3D - 1;
H* Floor@Log@3,2 i-1DD *L

j = Hi - 1L - I3n - 1M ë 2;

Scan@
Switch@Ò,

0, AppendTo@ans, 81<D,
1, AppendTo@ansP-1T, 1D,
2, ansP-1TP-1T++

D &,
IntegerDigits@j, 3, nDD;

maxDigit = Max@FlattenüansD;
StringJoin üüü
Hans ê. HReverse êü characterWeightsP ;; maxDigit + 1TLLE;

Indexing Strings and Rulesets 25

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

We reverse the process to recover the index from the string list: first break strings into
lists of characters and replace each character by its weight, then construct a ternary code
from this list of lists of integers, then add the code found to the number of string lists of
smaller weight with an offset to start the index at 1.

RankStringList@sl_ListD :=
ModuleA8wl, w, code = "", extrabit = 1<,

wl = HCharacters êü slL êê. characterWeights;
w = Total@Flatten@wlDD;
While@wl ¹≠ 881<<,
If@wlP-1TP-1T > 1, code = "2" <> code; wlP-1TP-1T--,
If@wlP-1TP-1T ã 1 && Length@wlP-1TD > 1,
code = "1" <> code; wlP-1T = Most@wlP-1TD,
If@wlP-1T ã 81<, code = "0" <> code;
wl = Drop@wl, -1DDDDD;

FromDigits@code, 3D + I3w-1 - 1M ë 2 + 1E

Here is how they work.

UnrankStringList êü Range@13D

88A<, 8A, A<, 8AA<, 8B<, 8A, A, A<, 8A, AA<,
8A, B<, 8AA, A<, 8AAA<, 8AB<, 8B, A<, 8BA<, 8C<<

RankStringList êü %

81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13<

In this implementation the functions only recognize the uppercase characters A–Z, but as-
suming access to some universal character list (not necessarily finite, just countable), all
lists of all strings of all characters will appear in our list. Here is an example.

RankStringListü
StringSplitü"ALL LISTS OF ALL STRINGS OF ALL CHARACTERS"

3 048 489 333 934 281 697 583 155 222 694 846 219 650 773 952 920 367 Ö
806 711 282 418 052 558 080 535 064 728 674 326 377 083 360 908 188 Ö
239 883 661 093 547 831 090 942 297 357 118 740 028 820 413 634 860 Ö
300 163 055 898 102 115 650 978 443 282 394 869

UnrankStringList@%D

8ALL, LISTS, OF, ALL, STRINGS, OF, ALL, CHARACTERS<

26 Kenneth E. Caviness

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Empty strings will not appear in the lists generated by UnrankStringList, and
should not be included in input for RankStringList. To leave the alphabet unspeci-
fied and identify characters by number (weight) only, it is sufficient to remove the lines
(first and last, respectively) in the definitions of RankStringList and
UnrankStringList that do the replacements based on characterWeights.

‡ A New Ruleset Ordering
Sequential substitution system rulesets can be represented as a list of strings
8s1, s2, s3, s4, …, s2 n<, with an inferred meaning of 8s1 Ø s2, s3 Ø s4, …, s2 n-1 Ø s2 n<, a
finite set of string replacement rules. In an SSS, a state string is first scanned for s1, which
if found is replaced by s2. If no substring matching s1 is found, the second replacement
rule is invoked, and if needed, the third rule, etc. At each step, only the first possible re-
placement of the first matching rule is performed. (For more details concerning sequential
substitution systems, see Chapter 3, Section 6 of A New Kind of Science [1].)
If the string list contains an odd number of strings, we have the option of simply throwing
away the last string, but that would result in many duplicate rulesets, and there may be a
way to use the extra information in the last half rule. One way would be to append a final
empty string and thus create in these cases a final rule string Ø "". In fact, such
“something to nothing” rules, rules that delete a specified substring, are never generated
otherwise by the ternary index algorithm, but should be allowed at any position in the rule-
set. UnrankString only generated the empty string because of a separate rule defined
for the input 0. In the same way, some separate rule or algorithm could be used to insert
empty strings in the string list to allow string Ø "" and "" Ø string rules, creating addi-
tional rulesets with the same total weight. So our simple list of string lists of a given
weight should be extended by the insertion of empty strings—but should they be allowed
at all positions? Let us consider the ramifications of including empty strings for a moment.

Ë As mentioned, “something to nothing” rules simply delete a specified substring.
This occurs when an empty string is in an even position in the string list. For com-
pleteness we need all possible cases of this type.

Ë On the other hand “nothing to something” rules, rules of the form "" Ø string, will
always match at the very beginning of the state string: Look for nothing (we will al-
ways find it) and insert a given string there—this is basically an insertion rule.
(Note that the insertion always occurs at the beginning of the string, but rules such
as "A" Ø "AB" effectively cause later insertions.) Now if included, a “nothing to
something” rule, an initial insertion rule, should always be the last rule of the rule-
set since any following rules would never be invoked. Therefore we only need an
empty string at an odd position in the string list when that is the next-to-last
position.

It is probably more trouble than it is worth to optionally insert empty strings at only the po-
sitions that are “even or next-to-last” in the string list, but these two criteria suggest a sim-
ple way to make sure that at least these cases are included while ruling out many of the un-
wanted cases. Since empty strings never need occur at the beginning of the string list
(unless that is in fact the next-to-last position), we will consider inserting an empty string
as an alternative way of ending the previous string and starting another (with an empty
string inserted between). This will also guarantee that empty strings are not inserted more
frequently than every other position, further reducing their occurrence at undesired posi-
tions. In order to allow a “something to nothing” rule at the end of the ruleset, if the num-
ber of rules is odd we will interpret the final string as such a rule. This method will give
some cases with empty strings at odd positions earlier in the list, but we will drop them,
and they will occur far less often than if all possible empty string insertions were allowed.
It is also trivial to add the new instruction by simply switching to quaternary representa-
tion of the index and letting the digits 0, 1, 2, and 3 designate end-string-insert-empty-
string-and-start-next-string, end-string-and-start-next-string, comma (end-character-and-
start-next-character), a plus sign, respectively. The new instruction forces an immediate
end of the previous string, just as does the end-of-string symbol. This generates almost all
possible useful sequences of strings of (total sequence) weight w, now including empty
strings at all possible positions—except at the beginning of the ruleset. Unfortunately we
will get empty strings at some undesired positions, such as in nonfinal "" Ø string rules,
but disallowing them at consecutive positions is good. In any case, the whole point is that
we at least get all the cases we want to include automatically. Is that true here?

Indexing Strings and Rulesets 27

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

It is probably more trouble than it is worth to optionally insert empty strings at only the po-
sitions that are “even or next-to-last” in the string list, but these two criteria suggest a sim-

wanted cases. Since empty strings never need occur at the beginning of the string list
(unless that is in fact the next-to-last position), we will consider inserting an empty string
as an alternative way of ending the previous string and starting another (with an empty
string inserted between). This will also guarantee that empty strings are not inserted more
frequently than every other position, further reducing their occurrence at undesired posi-
tions. In order to allow a “something to nothing” rule at the end of the ruleset, if the num-
ber of rules is odd we will interpret the final string as such a rule. This method will give
some cases with empty strings at odd positions earlier in the list, but we will drop them,
and they will occur far less often than if all possible empty string insertions were allowed.
It is also trivial to add the new instruction by simply switching to quaternary representa-
tion of the index and letting the digits 0, 1, 2, and 3 designate end-string-insert-empty-
string-and-start-next-string, end-string-and-start-next-string, comma (end-character-and-
start-next-character), or plus sign, respectively. The new instruction forces an immediate
end of the previous string, just as does the end-of-string symbol. This generates almost all
possible useful sequences of strings of (total sequence) weight w, now including empty
strings at all possible positions—except at the beginning of the ruleset. Unfortunately we
will get empty strings at some undesired positions, such as in nonfinal "" Ø string rules,
but disallowing them at consecutive positions is good. In any case, the whole point is that
we at least get all the cases we want to include automatically. Is that true here?

Reset 0 1 2 3

code:
answer: 881<<
strings: 8A<

ruleset: 8A Ø <

28 Kenneth E. Caviness

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Unfortunately not. A little experimentation shows that we easily get “something to noth-
ing” rules both singly and as part of a larger ruleset, but “nothing to something” rules
never appear alone. We need some additional way to optionally insert an empty string in
the next-to-last position. It is enough to add one extra bit that can be appended to the code.

extra bit

Reset 0 1 2 3

code:
answer: 881<<
strings: 8A<

adjusted strings: 8A, <
ruleset: 8A Ø <

This does create more duplicates (such as code 1 with extra bit, code 0 without: both give
8"A" Ø "", "A" Ø ""<), but all the ones we want are there. To create rank and unrank
functions we will need to know how many rulesets there are of weight less than k.

1 + SumA4k-1, 8k, 1, n<E êê Simplify êê TraditionalForm

1

3
H4n + 2L

Solve@i ã %, nD êê FullSimplify êê TraditionalForm êê

Quiet

::nØ
logH3 i - 2L

logH4L
>>

Indexing Strings and Rulesets 29

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Here is the unrank function.

UnrankRuleset@iplusflag_Integer ê; iplusflag > 0D :=
ModuleA8i, extraflag, n, j, quaternaryDigits, maxDigit,

ans = 881<<, strings<,
extraflag = OddQ@iplusflagD;
i = Quotient@iplusflag + 1, 2D;
n = IntegerLength@3 i - 2, 4D - 1;
H* Floor@Log@4,3 i-2DD *L

j = i - I4n + 2M ë 3;

quaternaryDigits = IntegerDigits@j, 4, nD;
Scan@Switch@Ò, 0 , ans = Join@ans, 88<, 81<<D , 1,

AppendTo@ans, 81<D, 2, AppendTo@ansP-1T, 1D, 3,
ansP-1TP-1T++D &, quaternaryDigitsD;

maxDigit = Max@FlattenüansD;
strings = StringJoin üüü

Hans ê.
HReverse êü characterWeightsP ;; maxDigit + 1TLL;

If@extraflag,
strings = Join@Most@stringsD, 8"", Last@stringsD<DD;

If@OddQ@Length@stringsDD,
strings = AppendTo@strings, ""DD;

Rule üüü Partition@strings, 2, 2DE;

Notice that rulesets are grouped by total weight. First come the rulesets of weight 1, 2, and
3.

UnrankRuleset êü Range@2D

88 Ø A<, 8A Ø <<

UnrankRuleset êü Range@3, 10D

88A Ø , Ø A<, 8A Ø , A Ø <, 8A Ø , A Ø <,
8A Ø A<, 8 Ø AA<, 8AA Ø <, 8 Ø B<, 8B Ø <<

UnrankRuleset êü Range@11, 42D

88A Ø , A Ø , Ø A<, 8A Ø , A Ø , A Ø <, 8A Ø , A Ø , A Ø <,
8A Ø , A Ø A<, 8A Ø , Ø AA<, 8A Ø , AA Ø <, 8A Ø , Ø B<,
8A Ø , B Ø <, 8A Ø A, Ø , A Ø <, 8A Ø A, Ø A<, 8A Ø A, Ø A<,
8A Ø A, A Ø <, 8A Ø , AA Ø <, 8A Ø AA<, 8A Ø , B Ø <, 8A Ø B<,
8AA Ø , Ø A<, 8AA Ø , A Ø <, 8AA Ø , A Ø <, 8AA Ø A<, 8 Ø AAA<,
8AAA Ø <, 8 Ø AB<, 8AB Ø <, 8B Ø , Ø A<, 8B Ø , A Ø <,
8B Ø , A Ø <, 8B Ø A<, 8 Ø BA<, 8BA Ø <, 8 Ø C<, 8C Ø <<

30 Kenneth E. Caviness

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Within each weight grouping the rulesets are sorted preferentially to have short strings
and secondarily to have low-weight characters early in the string list.
There are some duplicates, but we will be able to discard them when we have an inverse
function; if the index is different from the one we started with, it is a duplicate. In any
case there will be others to discard as well, rulesets where certain rules will never be in-
voked—functional duplicates of previous rulesets—that can be discarded out of hand with-
out using them. These include:

1. Any case including an identity rule, such as A Ø A. If this rule is ever invoked, it
will continue to be invoked thereafter and no further changes will occur.

2. Any case including a nonfinal rule "" Ø string. This rule prevents subsequent
rules from ever being invoked.

3. Any case with two rules with the same left-hand side, such as 8A Ø B, A Ø C<.
The second rule will never be invoked and the ruleset will thus be a duplicate of a
simpler ruleset.

4. Any case with two rules with left-hand sides s1 and s2, such that s1 is a substring
of s2. The second rule will never be invoked and so this ruleset is an effective
duplicate.

In fact, it can be seen that 2 and 3 are special cases of 4. Of course, it would be preferable
to generate rulesets that do not include such cases, but it is not immediately obvious how
to do so. In any case, much of the redundancy has been eliminated, and what remains is un-
derstood and the redundant rulesets identified and skipped over. We have a clear way of it-
erating through rulesets, although not all of them will be used, and of course, even among
those used there will be many duplicate sequential substitution system graphs (from per-
muting the order of the characters, for instance).

RankRuleset@rs_ListD :=
ModuleA8rl, wl, w, code = "", extrabit = 1<,

rl = Flatten@List üüü rsD;
If@Last@rlD ã "", rl = Most@rlDD;
If@Length@rlD > 1 && rlP-2T == "", extrabit = 0;
rl = Drop@rl, 8-2<DD;

wl = HCharacters êü rlL êê. characterWeights;
w = Total@Flatten@wlDD;
While@wl ¹≠ 881<<,
If@wlP-1TP-1T > 1, code = "3" <> code; wlP-1TP-1T--,
If@wlP-1TP-1T ã 1 && Length@wlP-1TD > 1,
code = "2" <> code; wlP-1T = Most@wlP-1TD,
If@Length@wlD ¥ 2 && wlP-2 ;;T ã 88<, 81<<,
code = "0" <> code; wl = Drop@wl, -2D,
If@wlP-1T ã 81<, code = "1" <> code;
wl = Drop@wl, -1DDDDDD;

2 IFromDigits@code, 4D + I4w-1 + 2M ë 3M + extrabit - 1E

Indexing Strings and Rulesets 31

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

The final line adds the number of rulesets of smaller weights to the reconstructed quater-
nary code, left-shifts the result, adds the extra bit flag at the end, and finally subtracts 1 in
order to start at 1 instead of at 2. Again, other alphabets may be accommodated by adjust-
ing characterWeights, an unspecified alphabet by removing the replacement code.
The following tests the ruleset rank and unrank functions:

RankRuleset@8"ABA" Ø "A", "CAA" Ø "ABC", "" Ø "AB",
"AAB" Ø "A"<D

148 889 211 045 382

UnrankRuleset@%D

8ABA Ø A, CAA Ø ABC, Ø AB, AAB Ø A<

UnrankRuleset êü Range@25D

88 Ø A<, 8A Ø <, 8A Ø , Ø A<, 8A Ø , A Ø <,
8A Ø , A Ø <, 8A Ø A<, 8 Ø AA<, 8AA Ø <, 8 Ø B<, 8B Ø <,
8A Ø , A Ø , Ø A<, 8A Ø , A Ø , A Ø <, 8A Ø , A Ø , A Ø <,
8A Ø , A Ø A<, 8A Ø , Ø AA<, 8A Ø , AA Ø <, 8A Ø , Ø B<,
8A Ø , B Ø <, 8A Ø A, Ø , A Ø <, 8A Ø A, Ø A<, 8A Ø A, Ø A<,
8A Ø A, A Ø <, 8A Ø , AA Ø <, 8A Ø AA<, 8A Ø , B Ø <<

RankRuleset êü %

81, 2, 3, 5, 5, 6, 7, 8, 9, 10, 11, 13, 13,
14, 15, 23, 17, 25, 19, 21, 21, 22, 23, 24, 25<

Now we create an increment function to advance to the next (unique and useful) ruleset.
Initially we only test whether RankRuleset returns the same index, but we already in-
clude the option of additional tests.

NextRuleset@n_IntegerD := Module@8k = 1, nrs<,
While@nrs = UnrankRuleset@n + kD;
RankRuleset@nrsD ¹≠ n + k »» ! UsefulRulesetQ@nrsD, k++D;

nrsD;
NextRuleset@rs_ListD := NextRuleset@RankRuleset@rsDD;

UsefulRulesetQ@rs_ListD = True;

32 Kenneth E. Caviness

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

NestList@NextRuleset, UnrankRulesetü1, 50D

88 Ø A<, 8A Ø <, 8A Ø , Ø A<, 8A Ø , A Ø <, 8A Ø A<, 8 Ø AA<,
8AA Ø <, 8 Ø B<, 8B Ø <, 8A Ø , A Ø , Ø A<, 8A Ø , A Ø , A Ø <,
8A Ø , A Ø A<, 8A Ø , Ø AA<, 8A Ø , Ø B<, 8A Ø A, Ø , A Ø <,
8A Ø A, Ø A<, 8A Ø A, A Ø <, 8A Ø , AA Ø <, 8A Ø AA<, 8A Ø , B Ø <,
8A Ø B<, 8AA Ø , Ø A<, 8AA Ø , A Ø <, 8AA Ø A<, 8 Ø AAA<,
8AAA Ø <, 8 Ø AB<, 8AB Ø <, 8B Ø , Ø A<, 8B Ø , A Ø <, 8B Ø A<,
8 Ø BA<, 8BA Ø <, 8 Ø C<, 8C Ø <, 8A Ø , A Ø , A Ø , Ø A<,
8A Ø , A Ø , A Ø , A Ø <, 8A Ø , A Ø , A Ø A<, 8A Ø , A Ø , Ø AA<,
8A Ø , A Ø , Ø B<, 8A Ø , A Ø A, Ø , A Ø <, 8A Ø , A Ø A, Ø A<,
8A Ø , A Ø A, A Ø <, 8A Ø , A Ø , AA Ø <, 8A Ø , A Ø AA<,
8A Ø , A Ø , B Ø <, 8A Ø , A Ø B<, 8A Ø , AA Ø , Ø A<,
8A Ø , AA Ø , A Ø <, 8A Ø , AA Ø A<, 8A Ø , Ø AAA<<

Here are their indices.

RankRuleset êü %

81, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15,
17, 19, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31,
32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 45, 46,
47, 49, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63<

Here are the duplicates.

Complement@Range@Lastü%D, %D

84, 12, 16, 18, 20, 28, 36, 44, 48, 50, 52, 60<

UnrankRuleset êü %

88A Ø , A Ø <, 8A Ø , A Ø , A Ø <, 8A Ø , AA Ø <,
8A Ø , B Ø <, 8A Ø A, Ø A<, 8AA Ø , A Ø <, 8B Ø , A Ø <,
8A Ø , A Ø , A Ø , A Ø <, 8A Ø , A Ø , AA Ø <,
8A Ø , A Ø , B Ø <, 8A Ø , A Ø A, Ø A<, 8A Ø , AA Ø , A Ø <<

Yes, these are mostly rulesets with final “something to nothing” rules. Well, it is the price
of doing business; the important thing is to include all those needed.

Indexing Strings and Rulesets 33

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Now we restrict the returned values to rulesets that generate different SSSs by discarding
cases with: (1) an identity rule; or (2) two rules with left-hand sides s1 and s2, such that s1
is a substring of s2.

Clear@UsefulRulesetQD;
UsefulRulesetQ@rs_ListD :=
Module@8lhs, max, i, j, dup<,
If@HOr üü HEqual üüü rsLL, dup = True,
If@HLength@rsD ã 1L, dup = False,
lhs = First êü rs;
max = Length@lhsD;
i = 1; j = 2; dup = False;
While@! dup && i < max,
If@Length@StringPosition@lhsPjT, lhsPiTDD > 0,
dup = TrueD;

j++;
If@j > max, i++; j = i + 1DDDD;

! dupD

Now we can use NextRuleset to iterate through all valid rulesets giving useful SSSs.
All problem cases have been eliminated, and all other rulesets will appear somewhere in
the list. Here are the first 50.

NestList@NextRuleset, UnrankRulesetü1, 49D

88 Ø A<, 8A Ø <, 8A Ø , Ø A<, 8 Ø AA<, 8AA Ø <, 8 Ø B<, 8B Ø <,
8A Ø , Ø AA<, 8A Ø , Ø B<, 8A Ø AA<, 8A Ø , B Ø <, 8A Ø B<,
8AA Ø , Ø A<, 8AA Ø , A Ø <, 8AA Ø A<, 8 Ø AAA<, 8AAA Ø <,
8 Ø AB<, 8AB Ø <, 8B Ø , Ø A<, 8B Ø , A Ø <, 8B Ø A<, 8 Ø BA<,
8BA Ø <, 8 Ø C<, 8C Ø <, 8A Ø , Ø AAA<, 8A Ø , Ø AB<,
8A Ø , B Ø , Ø A<, 8A Ø , B Ø A<, 8A Ø , Ø BA<, 8A Ø , Ø C<,
8A Ø AA, Ø A<, 8A Ø AAA<, 8A Ø AB<, 8A Ø B, Ø A<, 8A Ø BA<,
8A Ø , C Ø <, 8A Ø C<, 8AA Ø , A Ø , Ø A<, 8AA Ø , Ø AA<,
8AA Ø , Ø B<, 8AA Ø A, Ø A<, 8AA Ø A, A Ø <, 8AA Ø , B Ø <,
8AA Ø B<, 8AAA Ø , Ø A<, 8AAA Ø , A Ø <, 8AAA Ø A<, 8 Ø AAAA<<

Here are their indices.

RankRuleset êü %

81, 2, 3, 7, 8, 9, 10, 15, 17, 24, 25, 26, 27, 29, 30,
31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 63, 65,
67, 70, 71, 73, 93, 96, 98, 101, 104, 105, 106, 107,
111, 113, 117, 118, 121, 122, 123, 125, 126, 127<

34 Kenneth E. Caviness

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Here are the duplicates and functional duplicates that were skipped.

Complement@Range@Lastü%D, %D

84, 5, 6, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 23,
28, 36, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 66, 68, 69,
72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 100, 102,
103, 108, 109, 110, 112, 114, 115, 116, 119, 120, 124<

UnrankRuleset êü %

88A Ø , A Ø <, 8A Ø , A Ø <, 8A Ø A<, 8A Ø , A Ø , Ø A<,
8A Ø , A Ø , A Ø <, 8A Ø , A Ø , A Ø <, 8A Ø , A Ø A<,
8A Ø , AA Ø <, 8A Ø , B Ø <, 8A Ø A, Ø , A Ø <, 8A Ø A, Ø A<,
8A Ø A, Ø A<, 8A Ø A, A Ø <, 8A Ø , AA Ø <, 8AA Ø , A Ø <,
8B Ø , A Ø <, 8A Ø , A Ø , A Ø , Ø A<, 8A Ø , A Ø , A Ø , A Ø <,
8A Ø , A Ø , A Ø , A Ø <, 8A Ø , A Ø , A Ø A<, 8A Ø , A Ø , Ø AA<,
8A Ø , A Ø , AA Ø <, 8A Ø , A Ø , Ø B<, 8A Ø , A Ø , B Ø <,
8A Ø , A Ø A, Ø , A Ø <, 8A Ø , A Ø A, Ø A<, 8A Ø , A Ø A, Ø A<,
8A Ø , A Ø A, A Ø <, 8A Ø , A Ø , AA Ø <, 8A Ø , A Ø AA<,
8A Ø , A Ø , B Ø <, 8A Ø , A Ø B<, 8A Ø , AA Ø , Ø A<,
8A Ø , AA Ø , A Ø <, 8A Ø , AA Ø , A Ø <, 8A Ø , AA Ø A<,
8A Ø , AAA Ø <, 8A Ø , AB Ø <, 8A Ø , B Ø , A Ø <,
8A Ø , B Ø , A Ø <, 8A Ø , BA Ø <, 8A Ø , C Ø <,
8A Ø A, Ø A, Ø , A Ø <, 8A Ø A, Ø A, Ø A<, 8A Ø A, Ø A, Ø A<,
8A Ø A, Ø A, A Ø <, 8A Ø A, Ø , AA Ø <, 8A Ø A, Ø AA<,
8A Ø A, Ø , B Ø <, 8A Ø A, Ø B<, 8A Ø A, A Ø , Ø A<,
8A Ø A, A Ø , A Ø <, 8A Ø A, A Ø , A Ø <, 8A Ø A, A Ø A<,
8A Ø A, Ø AA<, 8A Ø A, AA Ø <, 8A Ø A, Ø B<, 8A Ø A, B Ø <,
8A Ø AA, Ø , A Ø <, 8A Ø AA, Ø A<, 8A Ø AA, A Ø <, 8A Ø , AAA Ø <,
8A Ø , AB Ø <, 8A Ø B, Ø , A Ø <, 8A Ø B, Ø A<, 8A Ø B, A Ø <,
8A Ø , BA Ø <, 8AA Ø , A Ø , A Ø <, 8AA Ø , A Ø , A Ø <,
8AA Ø , A Ø A<, 8AA Ø , AA Ø <, 8AA Ø , B Ø <, 8AA Ø A, Ø , A Ø <,
8AA Ø A, Ø A<, 8AA Ø , AA Ø <, 8AA Ø AA<, 8AAA Ø , A Ø <<

RankRuleset êü %

85, 5, 6, 11, 13, 13, 14, 23, 25, 19, 21, 21, 22, 23,
29, 37, 43, 45, 45, 46, 47, 55, 49, 57, 51, 53, 53,
54, 55, 56, 57, 58, 59, 61, 61, 62, 95, 97, 69, 69,
103, 105, 75, 77, 77, 78, 79, 87, 81, 89, 83, 85, 85,
86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 99, 101, 102,
103, 109, 109, 110, 119, 121, 115, 117, 119, 120, 125<

Indexing Strings and Rulesets 35

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Some are true duplicates (if the index number changed), the others functional duplicates
containing rules that will never be invoked in creating a sequential substitution system.
This is a manageable situation. Remember, Cantor’s diagonalization contains an infinite
number of duplicates of each fraction! The following table summarizes the numbers of
unique rulesets and useful (functionally distinct) rulesets for several orders of magnitude.
Roughly three-fourths of the generated rulesets are unique, although fewer and fewer of
the unique rulesets will give distinct sequential substitution systems.

Text@
Table@With@8n = 10^k<,

With@8l = DeleteDuplicates@UnrankRuleset êü Range@nDD<,
Flatten@8Ò, Round@100.0 Rest@ÒD ê n, 1D<D & ü
8n, Lengthül, Length@Select@l, UsefulRulesetQDD<

DD, 8k, 1, 6<D êê

TableForm@Ò, TableHeadings Ø
8None, 8Style@"n", ItalicD, "unique", "useful",

"% unique", "% useful"<<, TableAlignments Ø RightD &D

n unique useful % unique % useful
10 9 7 90 70

100 80 37 80 37
1000 766 255 77 26

10 000 7550 1970 76 20
100 000 75 177 8267 75 8

1 000 000 750 588 66 775 75 7

‡ Conclusion
A review of three methods for enumerating the rational numbers motivated the develop-
ment of a bijective enumeration of arbitrary-length strings on a countable alphabet of char-
acters (or equivalently, an enumeration of integer compositions). This in turn was ex-
tended to form an enumeration of all finite-length sequences of finite-length strings, and
an enumeration of all sequential substitution system rulesets. The latter list, although in-
cluding both exact and functional duplicates, is well defined and relatively dense. Rank, un-
rank, and successor functions were discussed.

‡ Acknowledgments
My thanks to the NKS Summer School 2009 staff and in particular to Matthew Szudzik
for encouraging my interest in enumerations and sequential substitution systems, and to
Charles Sarr for his willingness to discuss these ideas at considerable length.

36 Kenneth E. Caviness

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

‡ References
[1] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media, 2002.

[2] T. Rowland. “Enumerating Strings” from The NKS Forum—A Wolfram Web Resource. (Apr
02, 2010) forum.wolframscience.com/showthread.php?s=&threadid=929.

[3] G. Beck. “A Path through the Lattice Points in a Quadrant” from the Wolfram Demonstrations
Project—A Wolfram Web Resource.
www.demonstrations.wolfram.com/APathThroughTheLatticePointsInAQuadrant.

[4] D. Bradley. “Counting the Positive Rationals: A Brief Survey.” (Jun 21, 2010)
arxiv.org/abs/math/0509025.

[5] Y. Sagher, “Counting the Rationals,” American Mathematical Monthly, 96(9), 1989 p. 823.

[6] N. Calkin and H. Wilf, “Recounting the Rationals,” American Mathematical Monthly, 107(4),
2000 pp. 360–363. www.math.upenn.edu/~wilf/reprints.html.

[7] D. Knuth, C. Rupert, A. Smith, and R. Stong, “Recounting the Rationals, Continued,” Ameri-
can Mathematical Monthly, 110(7), 2003 pp. 642–643.

[8] J. Czyz and W. Self, “The Rationals Are Countable: Euclidʼs Proof,” College Mathematics
Journal, 34(5), 2003 pp. 367–369.

[9] M. Szudzik. “Enumerating the Rationals” from the Wolfram Demonstrations Project—A
Wolfram Web Resource. www.demonstrations.wolfram.com/EnumeratingTheRationals.

[10] B. Yorgey, “Recounting the Rationals, Part II,” The Math Less Traveled (blog), (Apr 2, 2010)
www.mathlesstraveled.com/?p=97.

[11] E. Weisstein. “Composition” from Wolfram MathWorld—A Wolfram Web Resource.
www.mathworld.wolfram.com/Composition.html.

[12] S. Heubach and T. Mansour, Combinatorics of Compositions and Words, Boca Raton, FL:
CRC Press, 2009.

[13] K. Caviness. “Universal String Enumeration” from the Wolfram Demonstrations Project—A
Wolfram Web Resource. www.demonstrations.wolfram.com/UniversalStringEnumeration.

[14] R. Kantrowitz, “A Principle of Countability,” Mathematics Magazine, 73(1), 2000 pp. 40–42.

K. E. Caviness, “Indexing Strings and Rulesets,” The Mathematica Journal, 2011.
dx.doi.org/doi:10.3888/tmj.13–6.

About the Author

Ken Caviness teaches physics at Southern Adventist University, a small liberal arts univer-
sity near Chattanooga, Tennessee. He holds a Ph.D. in physics (emphases in relativity and
nuclear physics) from the University of Massachusetts at Lowell, and has taught math and
physics in Rwanda, Texas, and Tennessee. His interests include both computer and human
languages (including the planned language Esperanto). He has used Mathematica since
Version 1, both professionally and for recreational programming.
Kenneth E. Caviness
Physics Department
Southern Adventist University
PO Box 370, Collegedale, TN 37315-0370
caviness@southern.edu

Indexing Strings and Rulesets 37

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

