
The Mathematica® Journal

Simulation of Evolutionary
Dynamics in Finite
Populations
Bernhard Voelkl

In finite populations, evolutionary dynamics can no longer be
described by deterministic differential equations, but require a
stochastic formulation [1]. We show how Mathematica can be
used to both simulate and visualize evolutionary processes in
limited populations. The Moran process is introduced as the
basic stochastic model of an evolutionary process in finite
populations. This model is extended to mixed populations with
relative fitness differences. We combine population ecology with
game theoretic ideas, simulating evolutionary games in well-
mixed and structured populations.

‡ The Moran Process
The Moran process is a simple stochastic model to study selection in finite populations
[2]. We consider a population of constant size with two types of individuals, type 1 and
type 0. At each time step a single individual is allowed to reproduce a clone of the same
type. Furthermore, to keep the population size constant, one individual must die. The
Moran process is a birth-death update process. Individuals for reproduction and elimina-
tion are chosen randomly. If both random choices fall on the same individual, the individ-
ual will be replaced by its own identical offspring and the population remains unchanged.
The variable i denotes the number of type 1 individuals in the population of size n. The
number of type 0 individuals is therefore n- i. The Moran process is defined on the state
space i = 0, …, n. The probability of choosing a type 1 individual is given by i ê n and the
probability of choosing a type 0 individual is Hn- iL ê n.

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

If a type 0 individual is chosen for reproduction and a type 1 individual for elimination, i
decreases by one. If a type 1 individual is chosen for reproduction and a type 0 individual
for elimination, i increases by one. In all other cases the populations of types 1 and 0
remain unchanged. The according probabilities for these events are given by:

(1)
pi,i-1 = iHn- iL ë n2 ,
pi,i+1 = iHn- iL ë n2,
pi,i = 1- pi,i-1 - pi,i+1.

As p0, 1 = 0 and pn, n-1 = 0, p0,0 = 1 and pn, n = 1. The states i = 0 and i = n are therefore
absorbing states: when the process has reached such a state it cannot change anymore.
Although both types of individuals reproduce at the same rate, one type will always
replace the other. Given no time constraints, the coexistence of both types is impossible.
The probability that a population with i type 1 individuals will end up in state i = n is
given by xi = i ê n.

· Simulation of a Moran Process

To visualize evolutionary dynamics, we represent populations as graphs where each
vertex represents an individual. This requires the package Combinatorica.
The function initial@n, iD constructs a list of length n that represents the initial
population with i individuals of type 1 and n- i individuals of type 0.
The function update@popD randomly selects two elements 8repro, elim< of the
list pop and replaces the value of elim (the individual chosen for elimination) by the
value of repro (the individual chosen for reproduction).
The function moran@n, iD starts with an initial condition of i type 1 individuals and
n- i type 0 individuals. In each round, one individual is chosen for reproduction and one
for elimination. This update process is repeated until the population reaches one of the
two absorbing states.

The function showpop@popD plots a graph without edges where pop is taken as a list of
vertex weights. The VertexRenderingFunction is used to color the vertices accord-
ing to their type as represented by their vertex weights.

Now we simulate the Moran process for a population size of n = 40 individuals and i = 15
type 1 individuals in the initial condition. The Manipulate function lets us see the
evolution of the population. The Manipulate will work immediately without the need
to evaluate it.

2 Bernhard Voelkl

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Manipulate@
showpop@evolutionPuTD,
88u, 1<, 1, Dynamic@Length@evolutionDD, 1,
Appearance Ø "Labeled"<,

AutorunSequencing Ø 81<,
SynchronousInitialization Ø False,
Initialization ß H

QuietüGet@"Combinatorica`"D;

initial@n_, i_D := Join@Table@1, 8i<D, Table@0, 8n - i<DD;

update@pop_ListD := Module@8repro, elim<,
8repro, elim< = RandomInteger@81, Length@popD<, 2D;
ReplacePart@pop, elim Ø popPreproTDD;

moran@n_, i_D := NestWhileList@update, initial@n, iD,
n > Total@ÒD > 0 &D;

showpop@pop_D := Module@8g<,
g = Combinatorica`SetVertexWeights@

Combinatorica`CompleteGraph@Length@popDD, popD;
GraphPlot@g, EdgeRenderingFunction Ø None,
VertexRenderingFunction Ø
H8If@Combinatorica`GetVertexWeights@gDPÒ2T ã 0,

Hue@0, 0.8, 0.7D, Hue@0.7, 0.8, 0.7DD,
PointSize@0.08D, Point@ÒD< &L, ImageSize Ø 280DD;

evolution = moran@40, 15D;

If@u > Length@evolutionD, u = Length@evolutionDD
LD

Simulation of Evolutionary Dynamics in Finite Populations 3

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

u 1

‡ The Moran Process with Relative Fitness
Now we consider the case when the two types, 1 and 0, have different fitness. Fitness deter-
mines the rate at which they reproduce. If we set the fitness of type 0 to 1 and the fitness
of type 1 to r, then the probability that type 1 is chosen for reproduction is given by
p1 = r i ê Hr i+ n- iL and the probability that type 0 is chosen is given by
p0 = Hn- iL ê Hr i+ n- iL. The probabilities for being chosen for elimination remain un-
changed. The fixation probability for i type 1 individuals is given by:

(2)xi =
1- 1 ê ri

1- 1 ê rn
.

Because the probability of being chosen for reproduction depends now on the continuous
variable r, the simulation is modified. In updateRel@pop, rD we evaluate the number
of type 1 individuals that is equivalent to the total of the list pop. Thereafter we evaluate
reprod, the probability with which a type 1 individual is chosen for reproduction. Fi-
nally we randomly select one element of list pop and replace it by 1 with probability
reprod and by 0 with probability 1 - reprod.
The function moranRel@n, i, rD simulates a Moran process in a mixed population of
size n with i individuals with relative fitness r and n- i individuals with relative fitness 1.

4 Bernhard Voelkl

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

In showpopRel@pop, rD, the VertexRenderingFunction is used to color the
vertices according to their type and to alter the point size of the vertices proportional to
the square root of their relative fitness r.
Here we simulate the Moran process for a population size of n = 30 and i = 15 type 1 indi-
viduals with relative fitness 0.5.

Manipulate@
showpopRel@evolution2PuT, 0.5D,
88u, 1<, 1, Dynamic@Length@evolution2DD, 1,
Appearance Ø "Labeled"<,

AutorunSequencing Ø 81<,
SynchronousInitialization Ø False,
Initialization ß H

QuietüGet@"Combinatorica`"D;

initial@n_, i_D := Join@Table@1, 8i<D, Table@0, 8n - i<DD;

updateRel@pop_List, r_D :=
Module@8j, reprod, elimPos<,
j = Total@popD;
reprod = r j ê Hr j + Length@popD - jL;
elimPos = RandomInteger@81, Length@popD<D;
ReplacePart@pop,
elimPos Ø RandomChoice@81 - reprod, reprod< Ø 80, 1<DDD;

moranRel@n_, i_, r_D :=
NestWhileList@updateRel@Ò, rD &, initial@n, iD,
n > Total@ÒD > 0 &D;

showpopRel@pop_, r_D :=
Module@8g<,
g = Combinatorica`SetVertexWeights@

Combinatorica`CompleteGraph@Length@popDD, popD;
GraphPlot@g, EdgeRenderingFunction Ø None,
VertexRenderingFunction Ø
HFlatten@

8If@Combinatorica`GetVertexWeights@gDPÒ2T ã 0,
8Hue@0, 0.8, 0.7D, PointSize@0.08D<,
8Hue@0.7, 0.8, 0.7D, PointSize@0.08 Sqrt@rDD<D,

Point@ÒD<D &L, ImageSize Ø 280DD;

evolution2 = moranRel@30, 15, 0.5D;

If@u > Length@evolution2D, u = Length@evolution2DD
LD

Simulation of Evolutionary Dynamics in Finite Populations 5

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

u 1

Simulating the evolution of populations of different sizes and with different values for the
relative fitness, r, we can see how both parameters can influence selection strength. Figure
1 shows that for a population size of n = 100 individuals, even small fitness differences
have a strong effect on the fixation probability of the respective types, while for a small
population of n = 10 individuals, fitness differences must be much larger to lead to the
same fixation probabilities.

0.9 1.0 1.1 1.2
r

0.2

0.4

0.6

0.8

1.0
p

Ú Figure 1. Fixation probabilities, p, for a type of relative fitness, r, with an initial abundance of 50%
in populations of n = 10 (green), 50 (blue), and 100 (red) individuals. Points indicate estimates
based on running moranRel 1000 times for r-values of 0.8 to 1.2 in increments of 0.02. Solid
lines show expected fixation probabilities based on equation (2).

6 Bernhard Voelkl

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

‡ Evolutionary Games
We consider a population with two types of individuals, where individuals interact with
each other at regular rates. Whenever two individuals interact with each other, they
receive payoffs from this interaction according to the payoff matrix:

(3)
1 0

1
0

a b
c d

As the probability that two individuals of specified type interact depends on the relative
frequencies of the types given by i for type 1 and n- i for type 0, the expected payoffs for
type 1 and type 0 are:

(4)

FH1L i =
a Hi- 1L+ b Hn- 1L

n- 1
,

FH0L i =
c i+ d Hn- i- 1L

n- 1
.

Payoffs contribute to the fitness of the individuals by

(5)
fH1L i = 1-w+w FH1L i,
fH0L i = 1-w+w FH0L i,

where ri = fH1L i ê fH0L i. The parameter w is a measure for the strength of selection. If w = 1,
fitness is completely determined by the payoff; if w = 0, fitness is independent of the pay-
off. When studying evolutionary processes, biologists usually assume that lifetime fitness
of an individual is determined by many variables, thus any single gene will only have a
weak effect on selection. A selective strength w between 0.01 and 0.05 is often suggested
to study evolution under weak selection.

To start the simulation we choose a population size n and define population as an
empty list. The number of type 1 individuals, i, is chosen randomly from the interval
@1, n- 1D. We create a list strategies of length n and set i randomly chosen elements
to 1 while the remaining elements are 0. (The randomization of the positions is not neces-
sary right now, as it will not influence the outcome, but it will become important later on.)
This list represents our population and is equivalent to the list pop in the previous section.
For our model of selection we introduce a death-birth update process. This means that in
every round a randomly chosen individual will be eliminated and the vacated space will
be taken over by a new individual. The probability that this new individual will be of type
1 is proportional to the overall fitness of the type 1 individuals in the neighborhood of
elim. Fitness is evaluated after elimination, thus the effective population size ne
equals n- 1.

Simulation of Evolutionary Dynamics in Finite Populations 7

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

The function fitness@strategies, elim, nD takes the list strategies,
deletes the entry at position elim, and evaluates the relative fitness of type 1 according to
equations (4) and (5). In this case the payoffs a- d are chosen so that the game represents
a prisoner’s dilemma and we set the selection strength w to 0.05.

As in the previous section, we repeat the update process with updateGame until one of
the two absorbing states is reached. In each round we randomly choose one individual for
elimination. Thereafter we request a random number. If this random number is below the
limit evaluated by the function fitness, the eliminated individual is replaced by a type
1 individual, otherwise by a type 0 individual.
In showGame@r, strategiesD, VertexRenderingFunction is used to color
the vertices according to their type as indicated by the vertex weight list strategies
and to alter the point size of the vertices in proportion to their relative fitness, where i is
the number of type 1 individuals in strategies and r ê i is the relative fitness for type 1.
The Manipulate function lets us see the evolution of the population.

Manipulate@
showGame üü populationPuT,
88u, 1<, 1, Dynamic@Length@populationDD, 1,
Appearance Ø "Labeled"<,

AutorunSequencing Ø 81<,
SynchronousInitialization Ø False,
Initialization ß H

QuietüGet@"Combinatorica`"D;

updateGame@pop_, n_D :=
Module@8elim<, elim = RandomInteger@81, n<D;
If@Random@D § fitness@popP2T, elim, nD,
ReplacePart@pop, 82, elim< Ø 1D,
ReplacePart@pop, 82, elim< Ø 0DD

D;

fitness@strategies_, elim_, n_D :=
Module@8i, f1, f0, a, b, c, d, w<,
i = Total@Delete@strategies, elimDD;
f1 = 1 - w + w Ha i Hi - 1L + b i Hn - 1 - iLL ê Hn - 1L;
f0 =
1 - w + w Hc i Hn - 1 - iL + d Hn - 1 - iL Hn - 2 - iLL ê Hn - 1L;

f1 ê Hf1 + f0L êê. 8a Ø 5, b Ø 0, c Ø 3, d Ø 1, w Ø 0.05<
D;

population = Module@8n = 16, strategies, r<,
strategies = ReplacePart@Table@0, 8n<D,

Partition@RandomSample@Range@nD,
RandomInteger@81, n - 1<DD, 1D Ø 1D;

r = fitness@strategies, RandomInteger@81, n<D, nD;
NestWhileList@updateGame@Ò, nD &, 8r, strategies<,
Total@Ò@@2DDD > 0 && Total@Ò@@2DDD < n &D

D;

8 Bernhard Voelkl

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

showGame@r_, strategies_D := Module@8gr, n<,
n = Length@strategiesD;
gr = Combinatorica`CompleteGraph@nD;
GraphPlot@gr, EdgeRenderingFunction Ø None,
VertexRenderingFunction Ø
HJoin@If@strategiesPÒ2T ã 0,

8Hue@0, 0.8, 0.7D,
PointSize@
0.3 Sqrt@H1 - rL ê Hn - Total@strategiesDLDD<,

8Hue@0.7, 0.8, 0.7D,
PointSize@0.3 Sqrt@r ê Total@strategiesDDD<D,

8Point@ÒD<D &L, ImageSize Ø 280D
D;

If@u > Length@populationD, u = Length@populationDD
LD

u 1

Simulation of Evolutionary Dynamics in Finite Populations 9

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

‡ Evolutionary Games in Structured Populations
So far we have considered the case of well-mixed populations. That means that each indi-
vidual interacts with all other individuals equally often. While this is a convenient assump-
tion for modeling, anthropologists studying human organizations and biologists studying
animal social behavior have repeatedly emphasized the fact that human and animal soci-
eties are rarely well-mixed, but structured; that is, individuals usually interact only with a
small subset—a neighborhood—of the population [3, 4]. We can incorporate information
about the structure of a population by assigning weights to the edges of the graph, where
the edge weight is proportional to the probability that these two individuals interact with
each other [5].
We study the evolution of cooperation in a small, heterogeneous population. Individuals
can be either of type COOP (cooperator) or DEF (defector). When two cooperating individ-
uals interact, each individual gains a benefit b from the mutual cooperative act, but also
has to pay some costs c. If a cooperator interacts with a defector, the cooperator has to pay
the costs c, but the defector gets the benefit b without paying any costs. If two defectors
meet they get nothing, but they also have no costs. This leads to the payoff matrix

(6)
Coop Def

Coop
Def

b- c -c
b 0

· Simulation of Games in Structured Populations

As an example we take the sociomatrix of a group of nine chimpanzees (Pan
troglodytes) [6]. Entries in am represent frequencies of directed grooming actions within
dyads of apes.
As in the previous section, we assume a death-birth update process. In each round a
randomly chosen individual is eliminated, but now only the neighborhood of this indi-
vidual—that is, those individuals that interacted with the eliminated individual—compete
for the vacated space [7]. The likelihood that a vacated space is filled with a type COOP
individual is proportional to the fitness of its COOP neighbors and their interaction
strength with the vacated space. The fitness of the neighbors is derived from the payoffs
these individuals gain from interactions with their neighbors.

The function probcoop evaluates the probability with which the eliminated individual at
position elim will be replaced by an individual of type COOP. First we calculate
benefits, the benefits that individuals in the neighborhood of elim receive from the in-
teractions with their neighbors. Thereafter we calculate costs, the costs that individuals
in the neighborhood of elim have to pay. The list nhstrat gives the strategies of the
neighbors of elim, where 1 stands for a type COOP individual and 0 for a type DEF indi-
vidual; benefitsCOOP sums up the benefits of only those individuals in the neighbor-
hood of elim that are of type COOP, while benefitsDEF is the sum of benefits for the
DEF individuals in the neighborhood of elim. Equivalently we calculate the costs for
COOP elim costsCOOP
have no costs. The variables nCOOP and nDEF give the numbers of cooperators and defec-
tors in the neighborhood of elim. The relative fitness of COOP is evaluated according to
equations (4) and (5). By setting c to 1, we need only one parameter value: the b ê c ratio,
which characterizes the payoff matrix. As in the previous example, we assume weak selec-
tion and set the selection strength w to 0.05.

10 Bernhard Voelkl

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

The function probcoop evaluates the probability with which the eliminated individual at
position elim will be replaced by an individual of type COOP. First we calculate
benefits, the benefits that individuals in the neighborhood of elim receive from the in-
teractions with their neighbors. Thereafter we calculate costs, the costs that individuals
in the neighborhood of elim have to pay. The list nhstrat gives the strategies of the
neighbors of elim, where 1 stands for a type COOP individual and 0 for a type DEF indi-
vidual; benefitsCOOP sums up the benefits of only those individuals in the neighbor-
hood of elim that are of type COOP, while benefitsDEF is the sum of benefits for the

COOP individuals in the neighborhood of elim as costsCOOP. Type DEF individuals
have no costs. The variables nCOOP and nDEF give the numbers of cooperators and defec-
tors in the neighborhood of elim. The relative fitness of COOP is evaluated according to
equations (4) and (5). By setting c to 1, we need only one parameter value: the b ê c ratio,
which characterizes the payoff matrix. As in the previous example, we assume weak selec-
tion and set the selection strength w to 0.05.
To visualize evolutionary dynamics in the population, we introduce the function allfit,
which gives the relative fitness for all individuals in the population. This function is not
necessary to simulate the evolutionary process, because in each round all that is needed is
the local information of the neighborhood around the eliminated individual. Especially for
large and weakly connected populations, allfit performs a lot of superfluous compu-
tations. We include allfit only for visualization purposes, but not when repeating the
simulation many times to estimate fixation probabilities.
Here we simulate the evolution of a population with a population structure given by the ad-
jacency matrix sociomatrix. Entries in the adjacency matrix are frequencies of dyadic
interactions per round; neigborhood is a list of length n, where the ith element is a list
giving the neighborhood of individual i. The initial number of type COOP individuals,
initialcooperators, is chosen randomly from the interval @1, n- 1D and values of
1 for type COOP and 0 for type DEF are randomly allocated to the population list
strategies. Strategies are updated until the population reaches an absorbing state, as
described in the previous section. At each round we attach a list with two elements to
structuredPopulation, containing a list with the square root of the relative fitness
for all individuals and a list with vertex weights, denoting the individuals’ type.

In showGame2 we use "CircularEmbedding" as the plot method, because this is
the most common visualization in the social sciences for groups of small size. The
EdgeRenderingFunction is used to visualize the strength of connections between
the individuals: the thickness of the line is proportional to the edge weight in the adja-
cency matrix am.
Here is a visualization of the evolution of a mixed, heterogeneous population of coop-
erators and defectors. Defectors are indicated by red vertices; cooperators are colored
blue. Interaction frequencies are indicated by the thickness of the connecting lines.

Simulation of Evolutionary Dynamics in Finite Populations 11

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Manipulate@
showGame2 üü structuredPopulationPuT,
88u, 1<, 1, Dynamic@Length@structuredPopulationDD,
1, Appearance Ø "Labeled"<,

AutorunSequencing Ø 81<,
SynchronousInitialization Ø False,
Initialization ß H

QuietüGet@"Combinatorica`"D;

probcoop@elim_, strategies_, neighborhood_,
sociomatrix_, n_D :=

Module@8benefits, costs, nhstrat, benefitsCOOP,
benefitsDEF, costsCOOP, nCOOP, nDEF, fCOOP, fDEF,
c, b, w<,

benefits = Apply@Plus,
Table@strategies, 8Length@neighborhoodPelimTD<D
Transpose@sociomatrixDPneighborhoodPelimTT , 2D;

costs = Apply@Plus, sociomatrixPneighborhoodPelimTT,
2D;

nhstrat = strategiesPneighborhoodPelimTT;
benefitsCOOP = Total@benefits nhstratD;
benefitsDEF = Total@benefitsD - benefitsCOOP;
costsCOOP = Total@costs nhstratD;
nCOOP = Total@nhstratD;
nDEF = Length@nhstratD - nCOOP;
fCOOP = nCOOP H1 - wL + w HbenefitsCOOP b - costsCOOP cL;
fDEF = nDEF H1 - wL + w benefitsDEF b;
fCOOP ê HfCOOP + fDEFL ê. 8c Ø 1, b Ø 10, w -> 0.05<

D;

allfit@sociomatrix_, strategies_, n_D := Module@8w, b<,
H1 - wL +

w
Hb Total@sociomatrix Transpose@Table@strategies,

8n<DDD - Total@Transpose@sociomatrixDDL ê
Total@Flatten@sociomatrixDD êê. 8w Ø 0.05, b Ø 40<

D;

updateGame2@pop_ListD :=
Module@8elim, strategies = popP2T, neighborhood = popP3T,

sociomatrix = popP4T, n = popP5T<,
elim = RandomInteger@81, n<D;
If@Random@D § probcoop@elim, strategies,

neighborhood, sociomatrix, nD,
ReplacePart@pop, 82, elim< Ø 1D,
ReplacePart@pop, 82, elim< Ø 0DD

D;

12 Bernhard Voelkl

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

createPopulation@D :=
Module@8sociomatrix, neighborhood, initialcooperators,

strategies, n<,

sociomatrix = 880, 0, 238, 22, 160, 68, 219, 0, 109<,
80, 0, 265, 85, 317, 26, 129, 10, 43<,
8238, 265, 0, 54, 49, 125, 73, 40, 33<,
822, 85, 54, 0, 59, 97, 48, 0, 8<,
8160, 317, 49, 59, 0, 105, 65, 12, 97<,
868, 26, 125, 97, 105, 0, 157, 183, 76<,
8219, 129, 73, 48, 65, 157, 0, 56, 5<,
80, 10, 40, 0, 12, 183, 56, 0, 15<,
8109, 43, 33, 8, 97, 76, 5, 15, 0<<;

n = Length@sociomatrixD;
neighborhood =
Table@Flatten@Position@sociomatrixPiT, x_?HÒ ¹≠ 0 &LDD,
8i, n<D;

initialcooperators = RandomInteger@81, n - 1<D;
strategies = ReplacePart@Table@0, 8n<D,

Partition@RandomSample@Range@nD,
initialcooperatorsD, 1D Ø 1D;

NestWhileList@updateGame2,
8Sqrt@allfit@sociomatrix, strategies, nDD,
strategies, neighborhood, sociomatrix, n<,

Total@Ò@@2DDD > 0 && Total@Ò@@2DDD < n &D
D;

showGame2@fitnesslist_, strategylist_, neighborhood_,
sociomatrix_, n_D := Module@8gr<,
gr = Combinatorica`FromAdjacencyMatrix@

sociomatrix ê Plus üü Flatten@sociomatrixD êê. 0 Ø ¶,
Combinatorica`EdgeWeight, Type Ø DirectedD;

gr = Combinatorica`SetVertexWeights@gr, fitnesslistD;
GraphPlot@gr, Method -> "CircularEmbedding",
MultiedgeStyle Ø 0.01, DirectedEdges Ø True,
EdgeRenderingFunction Ø
H8GrayLevel@0.5D,

Thickness@0.3 Combinatorica`GetEdgeWeights@grDP
Position@gr, Ò2DP1, 2TTD, Line@ÒD< &L,

VertexRenderingFunction Ø
H8If@strategylistPÒ3T ã 1, Hue@0, 0.8, 0.7D,

Hue@0.7, 0.8, 0.7DD,
PointSize@0.1 Combinatorica`GetVertexWeights@grDP

Ò3TD, Point@ÒD< &L, ImageSize Ø 240D
D;

structuredPopulation = createPopulation@D;
If@u > Length@structuredPopulationD,
u = Length@structuredPopulationDD

LD

Simulation of Evolutionary Dynamics in Finite Populations 13

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

u 1

In sparse graphs the fixation probability for cooperation is higher than in fully connected
graphs. Ohtsuki and collaborators [7] have demonstrated that there exists a simple rule for
the emergence of cooperation on regular or scale-free graphs: a single cooperator has a
higher fixation probability than expected for a neutral type (with r = 1) if the benefit/cost
ratio is larger than the average vertex degree, b ê c > k.

0.0 0.2 0.4 0.6 0.8 1.0
nêi

0.2

0.4

0.6

0.8

1.0
p

14 Bernhard Voelkl

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

grid k=4 grid k=8 complete

Ú Figure 2. (a) Fixation probability p of cooperation in relation to the proportion of cooperators in the
initial condition n ê i for 25 individuals in a grid graph with k = 4 (blue), a grid graph with k = 8
(brown), and a complete graph (red).

‡ Conclusion
Cooperation has been described at all levels of biological organization, from molecules
and cells to groups and populations, and in taxa as diverse as the myxomycota, arthro-
pods, and vertebrates. But, already when outlining his concept of evolution by means of
natural selection, Charles Darwin identified cooperative behavior as a special difficulty, po-
tentially fatal to his whole theory [8]. Cooperation means that one individual experiences
costs (by spending time and energy or accepting additional risks) for a mutual benefit.
When two individuals cooperate, their mutual benefits from the cooperative interaction
might be higher than their shared costs. However, cooperators are always vulnerable to be-
ing exploited by selfish partners who take the benefits but refuse to share the costs. Much
theoretical and empirical work on cooperation has focused on identifying conditions under
which cooperation can be evolutionarily stable against exploitation. So far five different
mechanisms have been proposed as candidate facilitators for cooperation: group selection,
kin selection, direct reciprocity, indirect reciprocity, and network reciprocity [9]. All these
theoretical propositions seem able to solve one of the biggest enigmas of modern evolution-
ary biology, but which of these mechanisms works is still unresolved, given the parameter
values and noise of real world populations. Attempts to answer this question will require
both formal modeling and numeric simulations incorporating empirical data.

‡ References
[1] M. A. Nowak, Evolutionary Dynamics: Exploring the Equations of Life, Cambridge MA: The

Belknap Press of Harvard University Press, 2006.

[2] P. A. P. Moran, The Statistical Processes of Evolutionary Theory, Oxford: Clarendon Press,
1962.

[3] F. C. Santos, J. M. Pacheco, and T. Leanerts, “Evolutionary Dynamics of Social Dilemmas in
Structured Heterogeneous Populations,” Proceedings of the National Academy of Sciences
(USA), 103(9), 2006 pp. 3490–3494. doi:10.1073/pnas.0508201103.

Simulation of Evolutionary Dynamics in Finite Populations 15

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

[4] R. Axelrod, The Evolution of Cooperation, New York: Basic Books, 1984.

[5] B. Voelkl and R. Noë, “The Influence of Social Structure on the Propagation of Social Informa-
tion in Artificial Primate Groups: A Graph-Based Simulation Approach,” Journal of Theoreti-
cal Biology, 252(1), 2008 pp. 77–86. doi:10.1016/j.jtbi.2008.02.002.

[6] T. Nishida and K. Hosaka, “Coalition Strategies among Adult Male Chimpanzees of the
Mahale Mountains, Tanzania,” in Great Ape Societies (W. C. McGrew, L. F. Marchant, and
T. Nishida, eds.), Cambridge: Cambridge University Press, 1996 pp. 114-134.

[7] H. Ohtsuki, C. Hauert, E. Lieberman, and M. A. Nowak, “A Simple Rule for the Evolution of
Cooperation on Graphs and Social Networks,” Nature, 441, 2006 pp. 502–505.
doi:10.1038/nature04605.

[8] C. Darwin, On the Origin of Species by Means of Natural Selection, London: J. Murray, 1859.

[9] M. A. Nowak, “Five Rules for the Evolution of Cooperation,” Science, 314, 2006
pp. 1560–1563. doi:10.1126/science.1133755.

B. Voelkl, “Simulation of Evolutionary Dynamics in Finite Populations,” The Mathematica Journal, 2011.
dx.doi.org/doi:10.3888/tmj.13–8.

‡ Acknowledgments
I want to thank one anonymous reviewer for improving the program. This research has
received funding from the European Community’s Sixth Framework Programme
(FP6/2002-2006) under contract n. 28696.

About the Author

Bernhard Voelkl started his career at the Centre National pour la Recherche Scientifique
(CNRS) in Strasbourg at the Département Ecologie, Physiologie et Ethologie and is now a
research fellow at the Center for Integrative Life Sciences in Berlin. As part of the re-
search initiative GEBACO, “Towards the Genetic Basis of Cooperation,” he investigated
the preconditions necessary for the evolution of cooperative behavior in animals. He uses
Mathematica for formal modeling, simulation studies, and statistical data analysis.
Bernhard Voelkl
Center for Integrative Life Sciences and
Institute for Theoretical Biology, Humboldt University
Invalidenstrasse 43, 10115 Berlin, Germany
bernhard.voelkl@c-strasbourg.fr

16 Bernhard Voelkl

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

