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Simulation of Evolutionary 
Dynamics in Finite 
Populations
Bernhard Voelkl

In finite populations, evolutionary dynamics can no longer be 
described by deterministic differential equations, but require a 
stochastic formulation [1]. We show how Mathematica can be 
used to both simulate and visualize evolutionary processes in 
limited populations. The Moran process is introduced as the 
basic stochastic model of an evolutionary process in finite 
populations. This model is extended to mixed populations with 
relative fitness differences. We combine population ecology with 
game theoretic ideas, simulating evolutionary games in well-
mixed and structured populations.

‡ The Moran Process
The  Moran  process  is  a  simple  stochastic  model  to  study  selection  in  finite  populations
[2].  We consider  a  population of  constant  size  with  two types  of  individuals,  type 1  and
type 0. At each time step a single individual is allowed to reproduce a clone of the same
type.  Furthermore,  to  keep  the  population  size  constant,  one  individual  must  die.  The
Moran process  is  a  birth-death update  process.  Individuals  for  reproduction and elimina-
tion are chosen randomly. If both random choices fall on the same individual, the individ-
ual will be replaced by its own identical offspring and the population remains unchanged.
The variable  i  denotes  the  number  of  type 1  individuals  in  the  population of  size  n.  The
number of type 0 individuals is therefore n- i. The Moran process is defined on the state
space i = 0, …, n. The probability of choosing a type 1 individual is given by i ê n and the
probability of choosing a type 0 individual is Hn- iL ê n.
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If a type 0 individual is chosen for reproduction and a type 1 individual for elimination, i
decreases by one. If a type 1 individual is chosen for reproduction and a type 0 individual
for  elimination,  i  increases  by  one.  In  all  other  cases  the  populations  of  types  1  and  0
remain unchanged. The according probabilities for these events are given by:

(1)
pi,i-1 = iHn- iL ë n2 ,
pi,i+1 = iHn- iL ë n2,
pi,i = 1- pi,i-1 - pi,i+1.

As p0, 1 = 0 and pn, n-1 = 0, p0,0 = 1 and pn, n = 1. The states i = 0 and i = n are therefore
absorbing  states:  when  the  process  has  reached  such  a  state  it  cannot  change  anymore.
Although  both  types  of  individuals  reproduce  at  the  same  rate,  one  type  will  always
replace the other.  Given no time constraints,  the coexistence of both types is  impossible.
The  probability  that  a  population  with  i  type  1  individuals  will  end  up  in  state  i = n  is
given by xi = i ê n.

· Simulation of a Moran Process

To  visualize  evolutionary  dynamics,  we  represent  populations  as  graphs  where  each
vertex represents an individual. This requires the package Combinatorica.
The  function  initial@n, iD  constructs  a  list  of  length  n  that  represents  the  initial
population with i individuals of type 1 and n- i individuals of type 0.
The  function  update@popD  randomly  selects  two  elements  8repro, elim<  of  the
list  pop  and  replaces  the  value  of  elim  (the  individual  chosen  for  elimination)  by  the
value of repro (the individual chosen for reproduction).
The  function  moran@n, iD  starts  with  an  initial  condition  of  i  type  1  individuals  and
n- i type 0 individuals. In each round, one individual is chosen for reproduction and one
for  elimination.  This  update  process  is  repeated  until  the  population  reaches  one  of  the
two absorbing states.

The function showpop@popD plots a graph without edges where pop is taken as a list of
vertex weights. The VertexRenderingFunction is used to color the vertices accord-
ing to their type as represented by their vertex weights.

Now we simulate the Moran process for a population size of n = 40 individuals and i = 15
type  1  individuals  in  the  initial  condition.  The  Manipulate  function  lets  us  see  the
evolution of  the population.  The Manipulate  will  work immediately without  the need
to evaluate it.

2 Bernhard Voelkl

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.



Manipulate@
showpop@evolutionPuTD,
88u, 1<, 1, Dynamic@Length@evolutionDD, 1,
Appearance Ø "Labeled"<,

AutorunSequencing Ø 81<,
SynchronousInitialization Ø False,
Initialization ß H

QuietüGet@"Combinatorica`"D;

initial@n_, i_D := Join@Table@1, 8i<D, Table@0, 8n - i<DD;

update@pop_ListD := Module@8repro, elim<,
8repro, elim< = RandomInteger@81, Length@popD<, 2D;
ReplacePart@pop, elim Ø popPreproTDD;

moran@n_, i_D := NestWhileList@update, initial@n, iD,
n > Total@ÒD > 0 &D;

showpop@pop_D := Module@8g<,
g = Combinatorica`SetVertexWeights@

Combinatorica`CompleteGraph@Length@popDD, popD;
GraphPlot@g, EdgeRenderingFunction Ø None,
VertexRenderingFunction Ø
H8If@Combinatorica`GetVertexWeights@gDPÒ2T ã 0,

Hue@0, 0.8, 0.7D, Hue@0.7, 0.8, 0.7DD,
PointSize@0.08D, Point@ÒD< &L, ImageSize Ø 280DD;

evolution = moran@40, 15D;

If@u > Length@evolutionD, u = Length@evolutionDD
LD
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‡ The Moran Process with Relative Fitness
Now we consider the case when the two types, 1 and 0, have different fitness. Fitness deter-
mines the rate at which they reproduce. If we set the fitness of type 0 to 1 and the fitness
of  type  1  to  r,  then  the  probability  that  type  1  is  chosen  for  reproduction  is  given  by
p1 = r i ê Hr i+ n- iL  and  the  probability  that  type  0  is  chosen  is  given  by
p0 = Hn- iL ê Hr i+ n- iL.  The  probabilities  for  being  chosen  for  elimination  remain  un-
changed. The fixation probability for i type 1 individuals is given by:

(2)xi =
1- 1 ê ri

1- 1 ê rn
.

Because the probability of being chosen for reproduction depends now on the continuous
variable r, the simulation is modified. In updateRel@pop, rD we evaluate the number
of type 1 individuals that is equivalent to the total of the list pop. Thereafter we evaluate
reprod,  the  probability  with  which  a  type  1  individual  is  chosen  for  reproduction.  Fi-
nally  we  randomly  select  one  element  of  list  pop  and  replace  it  by  1  with  probability
reprod and by 0 with probability 1 - reprod. 
The function moranRel@n, i, rD simulates a Moran process in a mixed population of
size n with i individuals with relative fitness r and n- i individuals with relative fitness 1.
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In  showpopRel@pop, rD,  the  VertexRenderingFunction  is  used  to  color  the
vertices  according  to  their  type  and  to  alter  the  point  size  of  the  vertices  proportional  to
the square root of their relative fitness r. 
Here we simulate the Moran process for a population size of n = 30 and i = 15 type 1 indi-
viduals with relative fitness 0.5.

Manipulate@
showpopRel@evolution2PuT, 0.5D,
88u, 1<, 1, Dynamic@Length@evolution2DD, 1,
Appearance Ø "Labeled"<,

AutorunSequencing Ø 81<,
SynchronousInitialization Ø False,
Initialization ß H

QuietüGet@"Combinatorica`"D;

initial@n_, i_D := Join@Table@1, 8i<D, Table@0, 8n - i<DD;

updateRel@pop_List, r_D :=
Module@8j, reprod, elimPos<,
j = Total@popD;
reprod = r j ê Hr j + Length@popD - jL;
elimPos = RandomInteger@81, Length@popD<D;
ReplacePart@pop,
elimPos Ø RandomChoice@81 - reprod, reprod< Ø 80, 1<DDD;

moranRel@n_, i_, r_D :=
NestWhileList@updateRel@Ò, rD &, initial@n, iD,
n > Total@ÒD > 0 &D;

showpopRel@pop_, r_D :=
Module@8g<,
g = Combinatorica`SetVertexWeights@

Combinatorica`CompleteGraph@Length@popDD, popD;
GraphPlot@g, EdgeRenderingFunction Ø None,
VertexRenderingFunction Ø
HFlatten@

8If@Combinatorica`GetVertexWeights@gDPÒ2T ã 0,
8Hue@0, 0.8, 0.7D, PointSize@0.08D<,
8Hue@0.7, 0.8, 0.7D, PointSize@0.08 Sqrt@rDD<D,

Point@ÒD<D &L, ImageSize Ø 280DD;

evolution2 = moranRel@30, 15, 0.5D;

If@u > Length@evolution2D, u = Length@evolution2DD
LD
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Simulating the evolution of populations of different sizes and with different values for the
relative fitness, r, we can see how both parameters can influence selection strength. Figure
1  shows  that  for  a  population  size  of  n = 100  individuals,  even  small  fitness  differences
have a strong effect  on the fixation probability of  the respective types,  while  for  a  small
population  of  n = 10  individuals,  fitness  differences  must  be  much  larger  to  lead  to  the
same fixation probabilities.
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Ú Figure 1. Fixation probabilities, p, for a type of relative fitness, r, with an initial abundance of 50% 
in populations of n = 10 (green), 50 (blue), and 100 (red) individuals. Points indicate estimates 
based on running moranRel 1000 times for r-values of 0.8 to 1.2 in increments of 0.02. Solid 
lines show expected fixation probabilities based on equation (2).
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‡ Evolutionary Games
We consider  a  population  with  two  types  of  individuals,  where  individuals  interact  with
each  other  at  regular  rates.  Whenever  two  individuals  interact  with  each  other,  they
receive payoffs from this interaction according to the payoff matrix:

(3)
1 0

1
0

a b
c d

As the  probability  that  two individuals  of  specified  type  interact  depends  on  the  relative
frequencies of the types given by i for type 1 and n- i for type 0, the expected payoffs for
type 1 and type 0 are:

(4)

FH1L i =
a Hi- 1L+ b Hn- 1L

n- 1
,

FH0L i =
c i+ d Hn- i- 1L

n- 1
.

Payoffs contribute to the fitness of the individuals by

(5)
fH1L i = 1-w+w FH1L i,
fH0L i = 1-w+w FH0L i,

where ri = fH1L i ê fH0L i. The parameter w is a measure for the strength of selection. If w = 1,
fitness is completely determined by the payoff; if w = 0, fitness is independent of the pay-
off. When studying evolutionary processes, biologists usually assume that lifetime fitness
of  an  individual  is  determined by  many variables,  thus  any single  gene  will  only  have  a
weak effect on selection. A selective strength w between 0.01 and 0.05 is often suggested
to study evolution under weak selection. 

To  start  the  simulation  we  choose  a  population  size  n  and  define  population  as  an
empty  list.  The  number  of  type  1  individuals,  i,  is  chosen  randomly  from  the  interval
@1, n- 1D. We create a list strategies of length n and set i randomly chosen elements
to 1 while the remaining elements are 0. (The randomization of the positions is not neces-
sary right now, as it will not influence the outcome, but it will become important later on.)
This list represents our population and is equivalent to the list pop in the previous section.
For our model of selection we introduce a death-birth update process. This means that in
every  round a  randomly chosen individual  will  be  eliminated and the  vacated space  will
be taken over by a new individual. The probability that this new individual will be of type
1  is  proportional  to  the  overall  fitness  of  the  type  1  individuals  in  the  neighborhood  of
elim.  Fitness  is  evaluated  after  elimination,  thus  the  effective  population  size  ne
equals n- 1.
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The  function  fitness@strategies, elim, nD  takes  the  list  strategies,
deletes the entry at position elim, and evaluates the relative fitness of type 1 according to
equations (4) and (5). In this case the payoffs a- d are chosen so that the game represents
a prisoner’s dilemma and we set the selection strength w to 0.05.

As in the previous section, we repeat the update process with updateGame until one of
the two absorbing states is reached. In each round we randomly choose one individual for
elimination. Thereafter we request a random number. If this random number is below the
limit evaluated by the function fitness, the eliminated individual is replaced by a type
1 individual, otherwise by a type 0 individual.
In  showGame@r, strategiesD,  VertexRenderingFunction  is  used  to  color
the  vertices  according  to  their  type  as  indicated  by  the  vertex  weight  list  strategies
and to alter the point size of the vertices in proportion to their relative fitness, where i  is
the number of type 1 individuals in strategies and r ê i is the relative fitness for type 1.
The Manipulate function lets us see the evolution of the population.

Manipulate@
showGame üü populationPuT,
88u, 1<, 1, Dynamic@Length@populationDD, 1,
Appearance Ø "Labeled"<,

AutorunSequencing Ø 81<,
SynchronousInitialization Ø False,
Initialization ß H

QuietüGet@"Combinatorica`"D;

updateGame@pop_, n_D :=
Module@8elim<, elim = RandomInteger@81, n<D;
If@Random@D § fitness@popP2T, elim, nD,
ReplacePart@pop, 82, elim< Ø 1D,
ReplacePart@pop, 82, elim< Ø 0DD

D;

fitness@strategies_, elim_, n_D :=
Module@8i, f1, f0, a, b, c, d, w<,
i = Total@Delete@strategies, elimDD;
f1 = 1 - w + w Ha i Hi - 1L + b i Hn - 1 - iLL ê Hn - 1L;
f0 =
1 - w + w Hc i Hn - 1 - iL + d Hn - 1 - iL Hn - 2 - iLL ê Hn - 1L;

f1 ê Hf1 + f0L êê. 8a Ø 5, b Ø 0, c Ø 3, d Ø 1, w Ø 0.05<
D;

population = Module@8n = 16, strategies, r<,
strategies = ReplacePart@Table@0, 8n<D,

Partition@RandomSample@Range@nD,
RandomInteger@81, n - 1<DD, 1D Ø 1D;

r = fitness@strategies, RandomInteger@81, n<D, nD;
NestWhileList@updateGame@Ò, nD &, 8r, strategies<,
Total@Ò@@2DDD > 0 && Total@Ò@@2DDD < n &D

D;
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showGame@r_, strategies_D := Module@8gr, n<,
n = Length@strategiesD;
gr = Combinatorica`CompleteGraph@nD;
GraphPlot@gr, EdgeRenderingFunction Ø None,
VertexRenderingFunction Ø
HJoin@If@strategiesPÒ2T ã 0,

8Hue@0, 0.8, 0.7D,
PointSize@
0.3 Sqrt@H1 - rL ê Hn - Total@strategiesDLDD<,

8Hue@0.7, 0.8, 0.7D,
PointSize@0.3 Sqrt@r ê Total@strategiesDDD<D,

8Point@ÒD<D &L, ImageSize Ø 280D
D;

If@u > Length@populationD, u = Length@populationDD
LD

u 1
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‡ Evolutionary Games in Structured Populations
So far we have considered the case of well-mixed populations. That means that each indi-
vidual interacts with all other individuals equally often. While this is a convenient assump-
tion  for  modeling,  anthropologists  studying  human organizations  and  biologists  studying
animal social  behavior have repeatedly emphasized the fact  that  human and animal soci-
eties are rarely well-mixed, but structured; that is, individuals usually interact only with a
small subset—a neighborhood—of the population [3, 4]. We can incorporate information
about the structure of a population by assigning weights to the edges of the graph, where
the edge weight is proportional to the probability that these two individuals interact with
each other [5].
We study the  evolution  of  cooperation  in  a  small,  heterogeneous  population.  Individuals
can be either of type COOP (cooperator) or DEF (defector). When two cooperating individ-
uals  interact,  each  individual  gains  a  benefit  b  from the  mutual  cooperative  act,  but  also
has to pay some costs c. If a cooperator interacts with a defector, the cooperator has to pay
the costs c,  but the defector gets the benefit  b  without paying any costs.  If  two defectors
meet they get nothing, but they also have no costs. This leads to the payoff matrix

(6)
Coop Def

Coop
Def

b- c -c
b 0

· Simulation of Games in Structured Populations

As  an  example  we  take  the  sociomatrix  of  a  group  of  nine  chimpanzees  (Pan
troglodytes)  [6].  Entries  in  am  represent  frequencies of  directed grooming actions within
dyads of apes.
As  in  the  previous  section,  we  assume  a  death-birth  update  process.  In  each  round  a
randomly  chosen  individual  is  eliminated,  but  now  only  the  neighborhood  of  this  indi-
vidual—that is, those individuals that interacted with the eliminated individual—compete
for the vacated space [7].  The likelihood that  a vacated space is  filled with a type COOP
individual  is  proportional  to  the  fitness  of  its  COOP  neighbors  and  their  interaction
strength with the vacated space.  The fitness of the neighbors is  derived from the payoffs
these individuals gain from interactions with their neighbors.

The function probcoop evaluates the probability with which the eliminated individual at
position  elim  will  be  replaced  by  an  individual  of  type  COOP.  First  we  calculate
benefits, the benefits that individuals in the neighborhood of elim receive from the in-
teractions with their neighbors. Thereafter we calculate costs, the costs that individuals
in the neighborhood of  elim  have to pay.  The list  nhstrat  gives the strategies of  the
neighbors of elim, where 1 stands for a type COOP individual and 0 for a type DEF indi-
vidual; benefitsCOOP  sums up the benefits of only those individuals in the neighbor-
hood of elim that are of type COOP, while benefitsDEF is the sum of benefits for the
DEF  individuals  in  the  neighborhood  of  elim.  Equivalently  we  calculate  the  costs  for
COOP elim costsCOOP
have no costs. The variables nCOOP and nDEF give the numbers of cooperators and defec-
tors in the neighborhood of elim. The relative fitness of COOP is evaluated according to
equations (4) and (5). By setting c to 1, we need only one parameter value: the b ê c ratio,
which characterizes the payoff matrix. As in the previous example, we assume weak selec-
tion and set the selection strength w to 0.05.
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The function probcoop evaluates the probability with which the eliminated individual at
position  elim  will  be  replaced  by  an  individual  of  type  COOP.  First  we  calculate
benefits, the benefits that individuals in the neighborhood of elim receive from the in-
teractions with their neighbors. Thereafter we calculate costs, the costs that individuals
in the neighborhood of  elim  have to pay.  The list  nhstrat  gives the strategies of  the
neighbors of elim, where 1 stands for a type COOP individual and 0 for a type DEF indi-
vidual; benefitsCOOP  sums up the benefits of only those individuals in the neighbor-
hood of elim that are of type COOP, while benefitsDEF is the sum of benefits for the

COOP  individuals  in  the  neighborhood  of  elim  as  costsCOOP.  Type  DEF individuals
have no costs. The variables nCOOP and nDEF give the numbers of cooperators and defec-
tors in the neighborhood of elim. The relative fitness of COOP is evaluated according to
equations (4) and (5). By setting c to 1, we need only one parameter value: the b ê c ratio,
which characterizes the payoff matrix. As in the previous example, we assume weak selec-
tion and set the selection strength w to 0.05.
To visualize evolutionary dynamics in the population, we introduce the function allfit,
which gives  the  relative fitness  for  all  individuals  in  the  population.  This  function is  not
necessary to simulate the evolutionary process, because in each round all that is needed is
the local information of the neighborhood around the eliminated individual. Especially for
large  and weakly  connected  populations,  allfit  performs a  lot  of  superfluous  compu-
tations.  We include allfit  only for  visualization purposes,  but  not  when repeating the
simulation many times to estimate fixation probabilities. 
Here we simulate the evolution of a population with a population structure given by the ad-
jacency matrix sociomatrix. Entries in the adjacency matrix are frequencies of dyadic
interactions per round; neigborhood is a list of length n, where the ith  element is a list
giving  the  neighborhood  of  individual  i.  The  initial  number  of  type  COOP  individuals,
initialcooperators,  is  chosen randomly from the interval @1, n- 1D  and values of
1  for  type  COOP  and  0  for  type  DEF  are  randomly  allocated  to  the  population  list
strategies.  Strategies are updated until  the population reaches an absorbing state,  as
described  in  the  previous  section.  At  each  round  we  attach  a  list  with  two  elements  to
structuredPopulation, containing a list with the square root of the relative fitness
for all individuals and a list with vertex weights, denoting the individuals’ type.

In  showGame2  we  use  "CircularEmbedding"  as  the  plot  method,  because  this  is
the  most  common  visualization  in  the  social  sciences  for  groups  of  small  size.  The
EdgeRenderingFunction  is  used  to  visualize  the  strength  of  connections  between
the  individuals:  the  thickness  of  the  line  is  proportional  to  the  edge  weight  in  the  adja-
cency matrix am.
Here  is  a  visualization  of  the  evolution  of  a  mixed,  heterogeneous  population  of  coop-
erators  and  defectors.  Defectors  are  indicated  by  red  vertices;  cooperators  are  colored
blue. Interaction frequencies are indicated by the thickness of the connecting lines.
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Manipulate@
showGame2 üü structuredPopulationPuT,
88u, 1<, 1, Dynamic@Length@structuredPopulationDD,
1, Appearance Ø "Labeled"<,

AutorunSequencing Ø 81<,
SynchronousInitialization Ø False,
Initialization ß H

QuietüGet@"Combinatorica`"D;

probcoop@elim_, strategies_, neighborhood_,
sociomatrix_, n_D :=

Module@8benefits, costs, nhstrat, benefitsCOOP,
benefitsDEF, costsCOOP, nCOOP, nDEF, fCOOP, fDEF,
c, b, w<,

benefits = Apply@Plus,
Table@strategies, 8Length@neighborhoodPelimTD<D
Transpose@sociomatrixDPneighborhoodPelimTT , 2D;

costs = Apply@Plus, sociomatrixPneighborhoodPelimTT,
2D;

nhstrat = strategiesPneighborhoodPelimTT;
benefitsCOOP = Total@benefits nhstratD;
benefitsDEF = Total@benefitsD - benefitsCOOP;
costsCOOP = Total@costs nhstratD;
nCOOP = Total@nhstratD;
nDEF = Length@nhstratD - nCOOP;
fCOOP = nCOOP H1 - wL + w HbenefitsCOOP b - costsCOOP cL;
fDEF = nDEF H1 - wL + w benefitsDEF b;
fCOOP ê HfCOOP + fDEFL ê. 8c Ø 1, b Ø 10, w -> 0.05<

D;

allfit@sociomatrix_, strategies_, n_D := Module@8w, b<,
H1 - wL +

w
Hb Total@sociomatrix Transpose@Table@strategies,

8n<DDD - Total@Transpose@sociomatrixDDL ê
Total@Flatten@sociomatrixDD êê. 8w Ø 0.05, b Ø 40<

D;

updateGame2@pop_ListD :=
Module@8elim, strategies = popP2T, neighborhood = popP3T,

sociomatrix = popP4T, n = popP5T<,
elim = RandomInteger@81, n<D;
If@Random@D § probcoop@elim, strategies,

neighborhood, sociomatrix, nD,
ReplacePart@pop, 82, elim< Ø 1D,
ReplacePart@pop, 82, elim< Ø 0DD

D;
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createPopulation@D :=
Module@8sociomatrix, neighborhood, initialcooperators,

strategies, n<,

sociomatrix = 880, 0, 238, 22, 160, 68, 219, 0, 109<,
80, 0, 265, 85, 317, 26, 129, 10, 43<,
8238, 265, 0, 54, 49, 125, 73, 40, 33<,
822, 85, 54, 0, 59, 97, 48, 0, 8<,
8160, 317, 49, 59, 0, 105, 65, 12, 97<,
868, 26, 125, 97, 105, 0, 157, 183, 76<,
8219, 129, 73, 48, 65, 157, 0, 56, 5<,
80, 10, 40, 0, 12, 183, 56, 0, 15<,
8109, 43, 33, 8, 97, 76, 5, 15, 0<<;

n = Length@sociomatrixD;
neighborhood =
Table@Flatten@Position@sociomatrixPiT, x_?HÒ ¹≠ 0 &LDD,
8i, n<D;

initialcooperators = RandomInteger@81, n - 1<D;
strategies = ReplacePart@Table@0, 8n<D,

Partition@RandomSample@Range@nD,
initialcooperatorsD, 1D Ø 1D;

NestWhileList@updateGame2,
8Sqrt@allfit@sociomatrix, strategies, nDD,
strategies, neighborhood, sociomatrix, n<,

Total@Ò@@2DDD > 0 && Total@Ò@@2DDD < n &D
D;

showGame2@fitnesslist_, strategylist_, neighborhood_,
sociomatrix_, n_D := Module@8gr<,
gr = Combinatorica`FromAdjacencyMatrix@

sociomatrix ê Plus üü Flatten@sociomatrixD êê. 0 Ø ¶,
Combinatorica`EdgeWeight, Type Ø DirectedD;

gr = Combinatorica`SetVertexWeights@gr, fitnesslistD;
GraphPlot@gr, Method -> "CircularEmbedding",
MultiedgeStyle Ø 0.01, DirectedEdges Ø True,
EdgeRenderingFunction Ø
H8GrayLevel@0.5D,

Thickness@0.3 Combinatorica`GetEdgeWeights@grDP
Position@gr, Ò2DP1, 2TTD, Line@ÒD< &L,

VertexRenderingFunction Ø
H8If@strategylistPÒ3T ã 1, Hue@0, 0.8, 0.7D,

Hue@0.7, 0.8, 0.7DD,
PointSize@0.1 Combinatorica`GetVertexWeights@grDP

Ò3TD, Point@ÒD< &L, ImageSize Ø 240D
D;

structuredPopulation = createPopulation@D;
If@u > Length@structuredPopulationD,
u = Length@structuredPopulationDD

LD
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In sparse graphs the fixation probability for cooperation is higher than in fully connected
graphs. Ohtsuki and collaborators [7] have demonstrated that there exists a simple rule for
the  emergence  of  cooperation  on  regular  or  scale-free  graphs:  a  single  cooperator  has  a
higher fixation probability than expected for a neutral type (with r = 1) if the benefit/cost
ratio is larger than the average vertex degree, b ê c > k. 
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grid k=4 grid k=8 complete

Ú Figure 2. (a) Fixation probability p of cooperation in relation to the proportion of cooperators in the 
initial condition n ê i for 25 individuals in a grid graph with k = 4 (blue), a grid graph with k = 8 
(brown), and a complete graph (red). 

‡ Conclusion
Cooperation  has  been  described  at  all  levels  of  biological  organization,  from  molecules
and  cells  to  groups  and  populations,  and  in  taxa  as  diverse  as  the  myxomycota,  arthro-
pods,  and vertebrates.  But,  already when outlining his  concept  of  evolution by means of
natural selection, Charles Darwin identified cooperative behavior as a special difficulty, po-
tentially fatal to his whole theory [8]. Cooperation means that one individual experiences
costs  (by  spending  time  and  energy  or  accepting  additional  risks)  for  a  mutual  benefit.
When  two  individuals  cooperate,  their  mutual  benefits  from  the  cooperative  interaction
might be higher than their shared costs. However, cooperators are always vulnerable to be-
ing exploited by selfish partners who take the benefits but refuse to share the costs. Much
theoretical and empirical work on cooperation has focused on identifying conditions under
which  cooperation  can  be  evolutionarily  stable  against  exploitation.  So  far  five  different
mechanisms have been proposed as candidate facilitators for cooperation: group selection,
kin selection, direct reciprocity, indirect reciprocity, and network reciprocity [9]. All these
theoretical propositions seem able to solve one of the biggest enigmas of modern evolution-
ary biology, but which of these mechanisms works is still unresolved, given the parameter
values and noise of real world populations. Attempts to answer this question will require
both formal modeling and numeric simulations incorporating empirical data.
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