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Fisher first introduced the Fisher linear discriminant back in 
1938. After the popularization of the support vector machine 
(SVM) and the kernel trick it became inevitable that the Fisher 
linear discriminant would be kernelized. Sebastian Mika 
accomplished this task as part of his Ph.D. in 2002 and the 
kernelized Fisher discriminant (KFD) now forms part of the large-
scale machine-learning tool Shogun. In this article we introduce 
the package MathKFD. We apply MathKFD to synthetic datasets 
to demonstrate nonlinear classification via kernels. We also test 
performance on datasets from the machine-learning literature. 
The construction of MathKFD follows closely in style the 
construction of MathSVM by Nilsson and colleagues. We hope 
these two packages and others of the same ilk will eventually be 
integrated to form a kernel-based machine-learning environment 
for Mathematica.

‡ Introduction
A  two-class  machine-learning  problem  requires  learning  how  to  discriminate  between
data points xi in sample space X belonging to classes yi œ 8+1, -1<, when given only a set
of  examples  8xi, yi<  from  each  class.  The  currently  popular  support  vector  machine  [1]
solves  this  problem  through  the  construction  of  a  hyperplane  w.x + b  that  separates  the
data points xi, in the sense that all the xi of a given class are on the same side of the plane.
In  SVMs the  separating plane  is  chosen to  maximize  the  distances  from it  to  the  closest
data points.
The  original  multidimensional  machine-learning  algorithm  [2]  solves  the  same  problem
by maximizing between-class to within-class scatter ratio. In this article we describe Fish-
er’s technique and how the introduction of a kernel allows nonlinear classifiers. We build
a Kernelized Fisher Discriminant package, MathKFD, and explore its classification capabil-
ities using synthetic and real datasets. 
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‡ Linear Fisher Discrimination
We follow [3] and [4] in our construction of a Fisher linear discriminant as the vector w
that maximizes:

(1)J HwL =
wT SB w

wT SW w
,

where the between-class and within-class scatter matrices are defined by:

(2)SB = ‚
c

Nc Hmc - mL Hmc - mLT and SW = ‚
c
‚
iœc

Hxi - mcL Hxi - mcLT ,

where m is the mean of the xi and mc is the mean of the xi within class c.

To understand the meaning of a scatter matrix, we need a test dataset; the usual choice is
two sets of normally distributed points with an elliptical shape. The two elliptical sets are
rotated  and  translated  away  from  each  other  and  then  adjusted  to  have  zero  combined
mean. These commands generate two elliptical datasets. The positive (blue) and negative
(purple) datasets are used for training a Fisher discriminant.

EllipsePoint@D := Module@8<, t = RandomReal@80, Pi<D;
r = RandomReal@NormalDistribution@0, 0.5DD;
82 r Cos@tD, r Sin@tD<D;

Xn = Table@EllipsePoint@D - 81, 1<, 81000<D;
rm = RotationMatrix@Pi ê 3D;
Xp = Table@rm.EllipsePoint@D + 81, 1<, 81000<D;
mu = Mean@Join@Xn, XpDD;
Xn = Map@Ò - mu &, XnD;
Xp = Map@Ò - mu &, XpD;
X = Join@Xn, XpD;
ListPlot@8Xn, Xp<, PlotRange Ø 88-5, 5<, 8-5, 5<<,
AspectRatio Ø 1D
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Now we can compute the between-class and within-class scatter matrices for these two-di-
mensional datasets and plot their action on a potential projection discriminant. The Fisher
linear discriminant is the vector that maximizes the scatter ratio and the Fisher separating
plane is perpendicular to the Fisher discriminant. These commands generate scatter matri-
ces and plot their action on all unit vectors.

Mv@v_D := Outer@Times, v, vD;
Action@m_, v_D := H2 ê Length@XDL v.m.v;
u@t_D := 8Cos@tD, Sin@tD<;
Sb = Length@XnD Mv@Mean@XnD - Mean@XDD +

Length@XpD Mv@Mean@XpD - Mean@XDD;
Sw = Apply@Plus, Map@Mv, Map@Ò - Mean@XnD &, XnDDD +

Apply@Plus, Map@Mv, Map@Ò - Mean@XpD &, XpDDD;
PolarPoints@m_D := Table@Action@m, u@tDD u@tD,

8t, 0, 2 Pi, 0.01<D;
SbPoints = Table@Action@Sb, u@tDD u@tD, 8t, 0, 2 Pi, 0.01<D;
SwPoints = Table@Action@Sw, u@tDD u@tD, 8t, 0, 2 Pi, 0.01<D;
SrPoints = Table@HAction@Sb, u@tDD ê Action@Sw, u@tDDL u@tD,

8t, 0, 2 Pi, 0.01<D;
8mr, mt< =

FindMaximum@Action@Sb, u@thetaDD ê Action@Sw, u@thetaDD,
8theta, 0<D;

mt = theta ê. mt;
BestProjector = Table@r u@mtD, 8r, -2 mr, 2 mr, 0.01<D;
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BestSeparator = Table@r u@mt + Pi ê 2D, 8r, -2 mr, 2 mr, 0.01<D;
ListPlot@8Xn, Xp, SbPoints, SwPoints, SrPoints,

BestProjector, BestSeparator<,
PlotRange Ø 88-5, 5<, 8-5, 5<<, AspectRatio Ø 1D
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Ú Listing 1. A Mathematica script for generating scatter matrices and plotting their action on all unit 
vectors.

Curves  show  the  action  of  the  scatter  matrices  on  unit  vectors  (gold:  between,  green:
within,  blue:  between  or  within).  The  purple  line  is  the  Fisher  projection  vector  and  the
brown line is the Fisher linear discriminator.

‡ Fisher Discrimination with Kernels
Often, in the real world, a linear discriminant is not complex enough to separate datasets ef-
fectively. To deal with nonlinear separations, we consider a mapping F from sample space
X  into a feature space F.  Assuming that the Fisher linear discriminant w  in F  can be ex-
pressed as a linear combination of sample points in F, we require:

(3)w = ‚
i=1

l

ai F HxiL.
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In terms of a, the objective function JH aL now reads

(4)J HaL =
aT SBF a

aT SWF a
.

The between-class scatter is now given by:

(5)SBF = HM1 - M2L HM1 - M2L
T with HMiL j =

1

li
‚
k=1

li
< FIx jM, FIxki M > ,

where Mi  is a vector of length l = l1 + l2  and < FIx jM, FHxkL > represents the inner product
between data points in the new feature space F.
The within-class scatter is given by:

(6)SWF = K1HI - 1l1L K1
T + K2HI - 1l2L K2

T with Ki = A < FIx jM, FIxki M >E ,

where 1li  is a matrix with all entries set to 1li  and Ki is a matrix of inner products in feature

space of dimensions l ä li. Derivations for SBF and SWF  can be found in [3, 4, 5], but the im-
portant  point  to  note  is  that  the  vector  notation now applies  in  the  space  spanned by the
data vectors in Rl  and an explicit  form for F  is  not required. The scatter matrices can be
computed through the inner products K jk = < FIx jM, FHxkL >,  and a new test data point x
from X can be projected onto w in F (for future classification) via the computation

(7)< w, F HxL >= ‚
i=1

l

ai < F HxiL, F HxL > .

The ai  projection coefficients are computed from training sets by maximizing JHaL in (4).
However, the scatter matrices now have dimensions lä l, so the naive technique employed
in  the  2ä2 case  of  the  previous  section  will  not  work.  To maximize  JHaL,  we  must  now
find the leading eigenvector of

(8)A = ISWF + l IM-1 SBF .

l I  is a regularizing diagonal term introduced to improve the numerical stability of the in-
verse computation. See [3, 4, 5] for details.
Fisher  discrimination  is  now  cast  into  a  setting  whereby  the  nature  of  the  classification
(linear  or  nonlinear)  is  entirely  governed  through  the  specification  of  KHx, yL =
< FHxL, FHyL >. The mapping K : X ä X Ø R is called the kernel and can be constructed to

suit the problem at hand without specifying F.

A training algorithm for data X  with class labels y is implemented in the MathKFD pack-
age that accompanies this article. It is available from 
www.mathematica-journal.com/data/uploads/2011/07/Murrell.zip.
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Needs@"MathKFD`"D;
? TrainKFD

8a,b<=TrainKFD@K,X,yD trains a Fisher discriminant in feature space
Hkernel K, training data X, training labels yL. The multiplier vector
a is computed by maximizing the ratio HaTB aLêHaTW aL where B
is the between-class scatter and W is the within-class scatter
in the feature space induced by the kernel K. A Mahalonobis
bias b = Hm+s- + m- s+L ê Hs+ + s-L is also calculated. Returns
the multiplier vector and the bias as 8a,b< so that subsequent
classification of a single data point x can be achieved through a.x - b.

Projection onto the Fisher discriminating vector and various scoring and visualization func-
tions are also provided in the MathKFD  package. In the next section we make use of the
package to create nonlinear Fisher discriminants for synthetic datasets.

‡ Using Kernels on Synthetic Datasets
In many pattern-recognition problems, the training data requires a nonlinear separating sur-
face [6]. For each specific problem, we could devise some appropriate transformation FHxL
from input  space  X  (the  domain  of  the  original  data)  to  feature  space  F.  The function F
must be chosen so that a hyperplane in F  corresponds to some desirable class of surfaces
in X. How does the analyst choose F? The Fisher formulation in the previous section tells
us  that  we  need  not  construct  F  explicitly,  but  only  require  an  inner  product  or  kernel,
KIxi, x jM. The traditional inner product given by KIxi, x jM = xi.x j  delivers the linear Fisher
discriminant. If X itself happens to be a dot product space, then two popular nonlinear ker-
nels  are  the  degree-d  polynomial  KIxi, x jM = I1+ xi.x jM

d  and  the  radial  basis  function

KIxi, x jM = e-gHxi-x jL.Hxi-x jL.  These two nonlinear kernels and the standard linear kernel are
provided  in  the  MathSVM  package  by  [1]  and  are  available  in  MathKFD  in  exactly  the
same format. To find out more about machine learning with kernels see [7].

· A Nonlinear Example in R2 Using a Polynomial Kernel

Let  us  now use  MathKFD  to  solve  a  nonlinear  classification  problem.  We use  the  polar
shapes, a folium and an astroid, to construct two classes of observations. Each observation
is  characterized by a two-dimensional  feature vector  and a class  assignment.  The classes
have been selected so that they are not linearly trainable, but may be trainable via a nonlin-
ear kernel. In all the plots that follow, the positive samples are in blue while the negative
samples are rendered in purple.
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FoliumPoint@D :=
Module@8t, r<,
t = H2 RandomInteger@D - 1L

RandomReal@NormalDistribution@Pi ê 4, 0.2DD;
r = RandomReal@NormalDistribution@0.5, 0.2DD

H4 Cos@tD Sin@tD Sin@tDL;
8r Cos@tD, r Sin@tD<D;

AstroidPoint@D :=
Module@8t, r<,
t = RandomReal@UniformDistribution@80, 2 Pi<DD;
r = RandomReal@NormalDistribution@0.0, 0.2DD;
8r Sin@tD Abs@Sin@tDD, r Cos@tD Abs@Cos@tDD<D;

n = 500;
rm = RotationMatrix@-Pi ê 4D;
X = Join@Table@FoliumPoint@D.rm, 8n ê 2<D,

Table@HAstroidPoint@D + 81, 0<L.rm, 8n ê 2<DD;
y = Join@Table@1, 8n ê 2<D, Table@-1, 8n ê 2<DD;
XTest = Join@Table@FoliumPoint@D.rm, 8n ê 2<D,

Table@HAstroidPoint@D + 81, 0<L.rm, 8n ê 2<DD;
yTest = Join@Table@1, 8n ê 2<D, Table@-1, 8n ê 2<DD;
DataPlotKFD@X, y, XTest, yTestD
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The task at hand is then to construct a Fisher discriminant from the training set and use it
to  classify  the  test  set.  We  select  a  nonlinear  kernel  and  train  a  kernelized  Fisher
discriminant.  Then,  because  our  data  originated  in  R2,  we  are  able  to  view  the  Fisher
discriminating curve.
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kf = PolynomialKernel@Ò1, Ò2, 3D &;
8a, b< = TrainKFD@kf, X, yD;
ContourPlotKFD@kf, X, y, a, b, XTest, yTestD
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In  general,  our  datasets  are  not  in  R2  and  we  will  not  be  able  to  view  separation
boundaries  in  sample  space.  However,  we can always  view the  performance of  the  clas-
sifier  by  generating  a  histogram  of  projections  onto  the  Fisher  discriminator  in  feature
space.  MathKFD  provides  a  bar  chart  function  showing  Fisher  classification  histograms
on a testing dataset. The Mahalonobis classification boundary is marked with an up arrow.
In  addition  to  the  histograms,  BarChartKFD  reports  on  the  number  of  features  per
sample, the kernel used, the number of positive and negative samples in the training and
testing data,  and three simple success statistics achieved by the classification.  Sensitivity
measures  the  classification  success  rate  for  positive  test  samples,  specificity  measures
the success rate for negative test  samples,  and accuracy measures the success rate for all
test samples. 
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BarChartKFD@kf, X, y, a, b, XTest, yTest,
"KDF Classification"D

· A Nonlinear Example in R3 with Polynomial and RBF Kernel

In the following nonlinear example, borrowed and adapted from [1], the MathKFD pack-
age requires a polynomial kernel of degree 16 to find a reasonable separating surface for
the training data. However, one or two of the positive samples are still classified negative. 
The following commands generate two classes of data in 3D that are separable via a poly-
nomial surface. The positive class is a normal distribution about the origin and shifted up
the  y  axis.  The  negative  class  is  a  quadratic  in  the  x-y  plane  with  each  point  rotated
randomly about the y axis. The data is generated and a Fisher discriminant is trained and
plotted together with the training data in 3D.
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len = 500;
Xp = Map@Ò + 80, 0.1, 0< &,

RandomReal@NormalDistribution@0, 0.03D, 8len ê 2, 3<DD;
Xn = TableA

9RandomReal@NormalDistribution@i ê len - 1 ê 4, 0.02DD,

RandomRealANormalDistributionAH2 i ê len - 1 ê 2L2 - 1 ê 6,

0.01EE, 0=.

RotationMatrix@RandomReal@80, 2 Pi<D, 80, 1, 0<D,
8i, len ê 2<E;

X = Join@Xp, XnD;
y = Join@Table@1, 8len ê 2<D, Table@-1, 8len ê 2<DD;
kf = PolynomialKernel@Ò1, Ò2, 16D &;
8a, b< = TrainKFD@kf, X, yD;
ContourPlot3DKFD@kf, X, y, a, b, X, yD

The same data is used to train and display a radial basis discriminant. The radial basis ker-
nel with parameter g = 2 performs much better, separating the training set completely. 
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kf = RBFKernel@Ò1, Ò2, 2D &;
8a, b< = TrainKFD@kf, X, yD;
ContourPlot3DKFD@kf, X, y, a, b, X, yD

‡ Shot Boundary Detection
In 2006, TRECVID [8] completed a second two-year cycle devoted to automatic segmen-
tation  of  digital  video,  commonly  referred  to  as  the  shot  boundary  detection  problem.
Researchers  around  the  globe  competed  to  produce  the  best  possible  shot  boundary
detector. See [9] for the prime example. Support vector machines have played their part in
this machine-learning contest [10]. In this section we use the MathKFD package to create
a  shot  boundary  classifier.  The  training  and  testing  datasets  used  here  have  been  cu-
rated  from  the  digital  video  sets  used  to  test  TRECVID  submissions.  The  result  here  is
the  Fisher  projection  on  test  data  for  shot  boundary  KFD  showing  the  performance  of
the discriminator.
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sbTrain = ReadList@"sbTrain.txt", Table@Number, 8193<D,
WordSeparators Ø 8"\r", " "<D;

sbTest = ReadList@"sbTest.txt", Table@Number, 8193<D,
WordSeparators Ø 8"\r", " "<D;

8y, X< = 8Map@First, sbTrainD, Map@Rest, sbTrainD<;
8yt, Xt< = 8Map@First, sbTestD, Map@Rest, sbTestD<;
kf = IdentityKernel@Ò1, Ò2D &;
8a, b< = TrainKFD@kf, X, yD;
BarChartKFD@kf, X, y, a, b, Xt, yt,
"Shot Boundary Detection"D

Ú Figure 1. The Fisher projection on test data for shot boundary KFD showing the performance of 
the discriminator.

As  can  be  seen,  the  shot  boundary  detection  data  has  been  well  curated.  Researchers  at
KDDI R&D Laboratories  were  responsible  for  frame-based  features  [11].  We have  used
their  data  to  compute  feature  differences  across  known  shot  boundaries  for  our  positive
+1 and feature differences at points where shot boundaries are known to be absent for our
negative  -1  class.  The  shot  boundary  training  and  testing  sets  used  here  have  been  in-
cluded with the MathKFD distribution.

‡ Splice Site Recognition
The kernel formulation comes into its own when feature vectors are not Euclidean. Classifi-
cation  problems  from  bioinformatics  usually  involve  string  data.  There  is  no  natural

for  bioinformatics  provide  a  similarity  measure.  In  this  section  we  attempt  to  create  a
useful kernel for a bioinformatics problem via the EditDistance procedure.
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The kernel formulation comes into its own when feature vectors are not Euclidean. Classifi-

ordering of samples. However, the various alignment algorithms that have been developed
for  bioinformatics  provide  a  similarity  measure.  In  this  section  we  attempt  to  create  a
useful kernel for a bioinformatics problem via the EditDistance procedure.
Splice sites are locations within a gene that mark exon-intron boundaries. Exons are those
sections  within  the  gene  that  code  for  protein,  whereas  introns  do  not  code  for  protein.
Splice sites are either of type donor (if they mark an exon to intron boundary) or of type
acceptor  (if  they  mark  an  intron  to  exon  boundary).  Donor  sites  occur  at  a  GT  dimer,
whereas  acceptor  sites  occur  at  an  AG  dimer.  Not  all  occurrences  of  these  two  dimers
enforce a splice. In fact very few of them do. For a splice to occur, certain motifs must be
present upstream and downstream from the dimer. A full discussion of the splice site recog-
nition problem is given in [12] and the datasets have been made publicly available.
The dataset for acceptor sites consists of DNA strings of length 60 centered around the AG
dimer.  For  each  sample  there  are  30  nucleotides  upstream of  the  AG  and  28  nucleotides
downstream. The samples have been classified +1 for a true acceptor site and -1 for a de-
coy acceptor site. We use a small subset of the acceptor sites to train a Fisher discriminant
with a Mathematica implementation of the locality-improved polynomial string kernel.
The  locality-improved  polynomial  string  kernel  is  obtained  by  comparing  two  strings
within a window of length 2 w+ 1 centered at position p.

(9)Wp Hs, t, d, wL = 1-
1

2 w+ 1
d Isp-w.. p+w, tp-w.. p+wM

d

,

where d  is the edit distance; Mathematica’s built in function EditDistance  is used to
count  mismatches  within  the  window.  To  complete  the  kernel  computation,  the  window
now slides along the length of the strings and a weighted contribution from each position
is accumulated;

(10)K Hs, t, d, wL = ‚
p=w+1

n-w

K
n

2
-

n

2
- p O Wp Hs, t, d, wL,

where n is the length of the strings, and window size w and degree d are parameters of the
kernel.  This  locality-improved  string  kernel  (implemented  in  MathKFD  as  LocalÖ
StringKernel) is used here to train and test an acceptor site classifier.
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accTrain = ReadList@"accTrain.txt", 8Number, Word<,
WordSeparators Ø 8"\r", " "<D;

8y, X< = 8Map@First, accTrainD, Map@Rest, accTrainD<;
accTest = ReadList@"accTest.txt", 8Number, Word<,

WordSeparators Ø 8"\r", " "<D;
8yt, Xt< = 8Map@First, accTestD, Map@Rest, accTestD<;
kf = LocalStringKernel@Ò1, Ò2, 2, 3D &;
8a, b< = TrainKFD@kf, X, yD;
BarChartKFD@kf, X, y, a, b, Xt, yt,
"Acceptor Splice Site Classifier"D

Our Fisher classifier with a localized string kernel achieves a 92% accuracy. In [12] the au-
thors  claim a  98.5% accuracy  statistic.  This  is  to  be  expected  since  we only  use  a  small
proportion of their training data here (200 training samples in our experiment as opposed
to  5722  training  samples  in  their  experiments).  MathKFD  using  the  LocalStringÖ
Kernel struggles with large training and testing sets. A fast alignment routine may allevi-
ate matters.

‡ Conclusion
In  this  article,  we  have  demonstrated  the  utility  of  the  MathKFD  package  for  solving
pattern-recognition  problems,  both  synthetic  and  real.  This  package  complements  the
recently  published MathSVM  package and thus  contributes  to  Mathematica’s  capabilities
as  a  machine-learning  platform.  However,  there  is  still  a  long  way  to  go.  Suggested
directions for future development include:

Ë Adaption of the QPSolve function based on [13] from MathSVM [1] to also solve
the optimization problem for the kernel Fisher discriminant.
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Ë Development of a ReducedKFD function that must select a subset of the current
training set to create a new training set with equal (or nearly equal) discriminating
powers. Unlike the SVM, KFD suffers from the fact that all samples in the train-
ing set are used to classify, hence the need for an approximate training subset.

Ë Development  of  Mathematica  interfaces  to  industrial  strength  machine-learning
systems such as libSVM [14].

The  high-level  programming  language  and  symbolic  capabilities  of  Mathematica  could
make it the platform of choice for bioinformatics work. We hope a strong and stable ma-
chine-learning environment will go some way to realizing this dream.
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