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FacetSurface Representation
Rough-Surface Simulation and the 
Visualization of Nonsmooth Arrays of Data
Vallorie J. Peridier

This article considers both the creation of random-looking 
irregular surfaces and the triangular-facet visualization and 
interpolation of nonsmooth data arrays. This rough-surface 
simulation scheme is novel because cellular automata 
computations define the surface topology. The companion 
triangular-facet surface-plotting method produces a crisp 
visualization of nonsmooth data arrays.

‡ Introduction
This  article  describes  both  the  computation  and  the  visualization  of  irregular  rough  sur-
faces. 
The rough-surface generation scheme is novel because it uses cellular automaton methods
to define the surface topology. Users of Mathematica, with its built-in cellular automaton
functionality, can employ the algorithm described in this article as a convenient way of de-
vising  rough  surfaces  by  manipulating  parameters  such  as  the  rule  number,  number  of
steps, and initial conditions.
The visualization of nonsmooth data arrays is the second topic considered. A data-interpo-
lation facility, consistent with this alternating-diagonal triangular-facet visualization of the
data array, is also described. 
Both  capabilities,  rough-surface  generation  and  irregular-data  visualization  and  interpo-
lation,  can  be  used  independently  or  together;  both  are  implemented  in  the  package
FacetSurface.m. It is available from 
www.mathematica-journal.com/data/uploads/2011/07/FacetSurface.m.

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.



‡ Rough Surfaces Generated by Cellular Automata

· Background

ü Current Practice for Numerical Simulation of Rough Surfaces

Before describing this new method for simulating rough surfaces with cellular automata, it
is worthwhile to note the principal alternative approaches. The rather broad topic of rough-
surface simulation is fundamental in studies of wear and friction; two categories of tech-
niques have evolved in this  literature.  The first,  motivated by the early analytical  studies
of friction [1],  entails the use of probabilistic,  statistical,  or Monte Carlo methods to dis-
tribute characteristic values over a surface (peak height, peak radius of curvature, etc.) [2,
3]. The second and more recent category employs fractal concepts [4, 5]. There are also hy-
brid approaches that use both statistical and fractal algorithms in tandem [6, 7].
Both the statistical surface-simulation methods and the fractal approaches have a substan-
tial body of literature and their own respective advantages. Probabilistic schemes are physi-
cally  intuitive  and  represent  surfaces  in  a  manner  consistent  with  the  classical  analytical
treatments of friction [1]. However, fractal methods seem to be more in vogue now, owing
in part to the current practice of characterizing empirically studied surfaces using a fractal
dimension  [8].  Note  that  surfaces  simulated  by  fractals  have  a  somewhat  homogeneous
quality  that  may  or  may  not  resemble  their  physical  counterpart  with  the  same  reported
fractal dimension [9].
In summary, the two prevailing methodologies for simulating irregular surfaces reflect the
modeling traditions and empirical practices of the wear-and-friction literature.

ü This New Cellular Automaton Approach

This new cellular automaton method for simulating rough surfaces was first conceived dur-
ing the author’s participation at the NKS 2008 Summer School. The method is a departure
from the two aforementioned approaches  for  simulating irregular  surfaces:  it  is  neither  a
fractal method nor a probabilistic scheme and it is not envisaged as a contribution to the lit-
erature of wear and friction.
This cellular automaton scheme for simulating rough surfaces is simple in concept: a grid
of  numbers,  generated  by  accumulating  a  two-dimensional  cellular  automaton  evolution,
is used to define a three-dimensional surface. A variety of effects arise by varying computa-
tion  parameters  such  as  the  cellular  automaton  rule  number,  the  initial  condition,  or  the
number of evolution steps. Although the simulated surfaces appear random, they are deter-
ministic  constructions,  and  a  specific  combination  of  parameters  always  produces  the
same rough surface.
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For  Mathematica  programmers,  this  cellular  automaton scheme offers  a  flexible  strategy
to  simulate  rough  surfaces  using  only  built-in  functions.  The  example  rough  surfaces
shown here are visualized using an “alternating-diagonal triangular-facet” method, which
is considered separately below.

· Generating Rough Surfaces

This loads the package.

<< FacetSurface.m

The  function  FacetSurfaceGridData  (defined  in  FacetSurface.m)  generates  the
“elevation data” that defines a rough surface. This function in turn uses the built-in com-
mands  Nest  and  CellularAutomaton  to  accumulate  steps  of  a  two-dimensional,
two-state,  totalistic,  nine-neighbor,  cellular  automaton  evolution.  The  following  example
shows a surface defined by the two-dimensional totalistic cellular automaton rule 450 on a
21×15  grid  and  accumulating  five  steps  of  the  evolution  from  the  default  initial  condi-
tions. 

With@8nsteps = 5, nx = 21, ny = 15, rulenumber = 450<,
VisualizeFacetSurface@
FacetSurfaceGridData@rulenumber, nsteps, ICDim Ø 8ny, nx<D,
ImageSize Ø 8300<DD
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Ú Figure 1. A sample irregular surface generated with rule 450.

The FacetSurfaceGridData function uses the built-in CellularAutomaton com-
mand, which may be unfamiliar to some readers. Consequently, to explain the options and
operation  of  the  FacetSurfaceGridData  function,  we  next  consider  the  basics  of
two-dimensional cellular automaton computation.
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ü Basic Idea: Two-Dimensional Cellular Automaton Accumulations

First, we deconstruct the phrase “accumulate steps of a two-dimensional, two-state, totalis-
tic, nine-neighbor, cellular automaton evolution.”

1. “A two-dimensional  cellular  automaton evolution”  means  that  a  two-dimensional
array of “cells” is computed (in an “evolution”) for a prescribed number of steps.
Each node in this two-dimensional array is a distinct cell.

2. The “two-state” qualifier means that each cell can embody only one of exactly two
states  at  any  given  step  of  the  evolution.  The  CellularAutomaton  function,
by convention, labels these two cellular automaton states 0 and 1.

3. At each step in the evolution, each cell’s value (0 or 1) in the grid is updated, in par-
allel,  to  a  new  value  (0  or  1),  using  a  cell-by-cell  update  protocol  called  the
“cellular automaton rule.”

4. The phrase “totalistic, nine-neighbor” specifies the type of update rule employed;
here, it means that the sum of a given cell’s nine-cell neighborhood (the 3×3 block
of  cells  centered  on  the  evaluation  cell)  is  looked  up  in  a  table  to  determine  the
state of the middle cell in the next step.

So,  the  computation  of  a  single  step  of  a  totalistic  cellular  automaton  evolution  consists
of—for each cell—summing the states of that cell’s neighboring cells and using this sum
to look up the cell’s next state from a table. The look-up table is obtained from the cellular
automaton rule number. Figure 1 above was generated using two-state totalistic nine-neigh-
bor rule 450, and this is the rule’s corresponding look-up table.

With@8rulenumber = 450<,
Framed@
Textü
TableForm@
8Prepend@Range@9, 0, -1D,

"If the sum of a 3µ3 cell block is: "D,
Prepend@IntegerDigits@rulenumber, 2, 10D,
"then the center cell becomes:"D<DDD

If the sum of a 3µ3 cell block is: 9 8 7 6 5 4 3 2 1 0
then the center cell becomes: 0 1 1 1 0 0 0 0 1 0

Ú Figure 2. Totalistic, nine-neighbor, 2-state cellular automaton transformation table for rule 450.

The interpretation of the above table is, for example: if all nine cells in a 3×3 block are in
state 1, then their sum is 9 and the center cell would be set to 0; if all but one of these nine
cells are in state 1, their sum is 8 and the center cell would be set to state 1; and so on.
The rule-decomposition convention illustrated in Figure 2 is a powerful device, because it
provides both a succinct description of the look-up table and a means of enumerating all
of the possible rules. For example, consider nine-neighbor, two-state, totalistic rules. This
class of look-up table needs 10 entries (0, 1, …, 9) and there are 2 possibilities (0, 1) for
each entry, so there are 210  possible look-up tables, and the rules for these tables are num-
bered 0,  1,  2,  …,  1023.  This  convention for  enumerating cellular  automaton transforma-
tion rules is due to Wolfram [10].
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bered 0,  1,  2,  …,  1023.  This  convention for  enumerating cellular  automaton transforma-
tion rules is due to Wolfram [10].
Now let us visualize the underlying cellular automaton evolution that was used to generate
the specific surface shown in Figure 1 above.

With@8nsteps = 5, nx = 21, ny = 15, rulenumber = 450<,
SeedRandom@RandomSeed ê. Options@FacetSurfaceGridDataDD;
Framed@GraphicsGrid@
Partition@
ArrayPlot@Ò, Mesh Ø True, ImageSize Ø 8100, 100<D & êü
CellularAutomaton@ 8rulenumber, 82, 1<, 81, 1<<,
RandomInteger@81<, 8ny, nx<D, nstepsD, 3, 3D,

ImageSize Ø 8300<DDD

Ú Figure 3. These individual cellular automaton evolution steps are summed, cell by cell, to give the 
elevations for the surface depicted in Figure 1. Here, the cells in state “1” are black, cells in state 
“0” are white, and the evolution protocol is the totalistic nine-neighbor rule 450.

If the images in Figure 3 are “stacked” together by summing corresponding cells, the result-
ing array of numbers corresponds to the irregular-surface elevations used in the visualiza-
tion  of  Figure  1.  This  is  what  is  meant  by  “an  accumulation”  of  a  cellular  automaton
evolution.
One  might  reasonably  ask  if  it  would  be  possible  to  deduce,  based  on  the  rule  number,
exactly what sort of rough surface would be produced. A related question is whether one
could  predict  the  seemingly  random  evolution  of  rule  450  (shown  in  Figure  3)  from  an
analytical deconstruction of rule 450’s look-up table, shown in Figure 2. Although cellular
automaton evolutions are deterministic,  one cannot in general predict the evolution of an
arbitrary  rule  from  a  systematic  analysis  of  the  rule’s  protocol.  Consequently,  Wolfram
has argued that the only certain means of assessing the behavior of a particular rule/initial-
condition combination is to run the computation and visualize the result [11].
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ü Surface Variations

Since  cellular  automaton  evolutions  are  deterministic,  the  random-looking  surfaces  pro-
duced  with  VisualizeFacetSurface  can  be  reproduced  identically,  each  time,  for
the same set of input parameters. Topological variations arise with changes to any of the
following: 

Ë the number of computation steps (typically, 3–20 are used in this article);

Ë the size or shape of the grid;

Ë the initial conditions;

Ë the cellular automaton rule (there are 1024 possibilities).

To illustrate the effect of varying these parameters, consider the four possible surfaces pro-
duced for  exactly  two rule  numbers  and two initial  conditions,  with  all  other  parameters
held constant.  Each row in Figure 4 corresponds to a specific rule number and each col-
umn corresponds to a specific initial condition.

GraphicsGrid@
Partition@
VisualizeFacetSurface@

FacetSurfaceGridData@Ò@@1DD, 5, SemiRandomIC Ø Ò@@2DDD,
Ticks Ø NoneD & êü Tuples@888, 480<, 8True, False<<D,

2D,
ImageSize Ø 8300<D

Ú Figure 4. Each column represents the same initial condition and each row the same rule number 
(row 1: rule 8, row 2: rule 480). All other parameters are the same for all four surfaces.

For  more  details  about  the  implementation  and  the  options  for  FacetSurfaceÖ
GridData,  see  the  package  FacetSurface.m.  We  now  turn  to  visualizing  irregular
surfaces.
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For  more  details  about  the  implementation  and  the  options  for  FacetSurfaceÖ
GridData,  see  the  package  FacetSurface.m.  We  now  turn  to  visualizing  irregular
surfaces.

‡ Plotting Nonsmooth Data Arrays

· Motivating Triangular-Facet Visualization

It is useful to visualize a data array as a three-dimensional surface, and normally the Mathe-
matica  function  ListPlot3D  is  exactly  the  tool  to  use.  The  following  example  com-
pares ListPlot3D and VisualizeFacetSurface for a regular data array.

Block@8ny = 15, nx = 21, data<,
data = Table@5 Sin@2 j 2 p ê nyD Cos@i 2 p ê nxD, 8j, 0, ny<,

8i, 0, nx<D;
GraphicsGrid@
88ListPlot3D@Ò, PlotLabel Ø

Style@"ListPlot3D", FontFamily Ø "Courier"D,
InterpolationOrder Ø 2, ImageSize Ø 8200<,
BoxRatios Ø 8nx, ny, 10<D,

VisualizeFacetSurface@Ò,
PlotLabel Ø Style@"VisualizeFacetSurface",

FontFamily Ø "Courier"D, ImageSize Ø 8400<D<< &@
dataD, ImageSize Ø 8350, 200<DD

Ú Figure 5. Comparing ListPlot3D and VisualizeFacetSurface on a smooth data array.

ListPlot3D  employs  interpolation  schemes  to  give  a  smooth  surface  appearance,
which  is  a  desirable  treatment  for  regular  data  (although  the  rendering  of  the
VisualizeFacetSurface image is considerably faster).
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Let us repeat this visualization comparison with nonsmooth (random) data.

Block@8ny = 15, nx = 21, order = 1, data<,
data = RandomInteger@80, 5<, 8ny, nx<D;
GraphicsGrid@88ListPlot3D@Ò,

InterpolationOrder Ø order,
BoxRatios Ø 8nx, ny, 5<,
PlotLabel Ø
Row@8Style@"ListPlot3D", FontFamily Ø "Courier"D,

", \ninterpolation order = ", order<D,
ImageSize Ø 8300<D,

VisualizeFacetSurface@Ò,
PlotLabel Ø Style@"VisualizeFacetSurface\n",

FontFamily Ø "Courier"D, ImageSize Ø 8500<D<< &@
dataD, ImageSize Ø 8450, 250<DD

Ú Figure 6. Comparing ListPlot3D and VisualizeFacetSurface on an array of irregular data.

Figure  6  suggests  that  the  triangular-facet  visualization  of  nonsmooth  data  (VisualÖ
izeFacetSurface)  has  a  crisper  appearance.  This  is  because  ListPlot3D,  even
with a low-order interpolation method (InterpolationOrder Ø 1), gives a visualiza-
tion with cusps and curvatures that are artifacts of interpolation.

· How VisualizeFacetSurface Works

ListPlot3D and VisualizeFacetSurface employ the same conventions for visu-
alizing a data array (say, zi, j) as a surface:

Ë the column position j is treated as the node’s horizontal x j displacement; 

Ë the row position i is treated as the node’s vertical yi displacement; 
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Ë the data array value zi, j is interpreted as the node’s elevation.

On the other hand, VisualizeFacetSurface visualizes the data using flat triangular
facets arranged in an alternating-diagonal pattern. To achieve this effect, we use the follow-
ing pattern of alternating diagonals, imposed on the x j-yi nodal grid, as shown in Figure 7.

Options@DiagonalizationGraphicD = 8ImageSize Ø 8300, 200<<;
DiagonalizationGraphic@My_, Nx_, opts___RuleD :=

Module@8 dd<,
dd = Table@8i, j<, 8j, My<, 8i, Nx<D;

Graphics@888PointSize@MediumD, Point@ÒD< & êü dd<,
8Dashing@1 ê 100D, Line@ÒD< & êü dd,
8Dashing@1 ê 100D, Line@ÒD< & êü Transpose@ddD,
Flatten@8Table@8Red, Line@88jj, ii<, 8jj + 1, ii + 1<<D<,

8jj, 1, Nx - 1, 1<, 8ii, Mod@jj, 2, 1D, My - 1, 2<D,
Table@8Blue, Line@88jj + 1, ii<, 8jj, ii + 1<<D<,
8ii, 1, My - 1, 1<, 8jj, Mod@ii - 1, 2, 1D, Nx - 1, 2<D<,

2D<,
PlotRange Ø 883 ê 4, Nx + 1 ê 4<, 83 ê 4, My + 1 ê 4<<,
FrameTicks Ø None, Frame Ø True,
ImageSize Ø
HImageSize ê. 8opts< ê.

Options@DiagonalizationGraphicDLDD;

DiagonalizationGraphic@7, 11D

Ú Figure 7. The diagonalization convention for VisualizeFacetSurface and 
TriangulatedInterpolation.

This diagonalization specifies a set of triangular facets that in turn articulate the zi, j data as
if  it  were  a  continuous  surface.  The  (interior)  nodes  of  Figure  7  correspond  to  vertex
points Ix j, yi, zi, jM that are common to either four or eight triangular facets.

In summary, the VisualizeFacetSurface function visualizes an array zi, j using alter-
nating-diagonal triangular facets.  To further interpolate points,  using array zi, j,  in a man-
ner  consistent  with  this  visualization,  we  next  consider  the  function  TrianguÖ
latedInterpolation.
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In summary, the VisualizeFacetSurface function visualizes an array zi, j using alter-
nating-diagonal triangular facets.  To further interpolate points,  using array zi, j,  in a man-
ner  consistent  with  this  visualization,  we  next  consider  the  function  TrianguÖ
latedInterpolation.

· TriangulatedInterpolation 

TriangulatedInterpolation  is  a  function  for  interpolating  the  data  zi, j  at  non-
nodal points Hx*, y*L in a way that is consistent with VisualizeFacetSurface.

The  interpolation  nodes  have  horizontal  and  vertical  offsets  x j,  yi  that  are  in  effect
(integer)  array  indices,  with  x j = j  and  yi = i .  However,  an  arbitrary  interpolation  point
Hx*, y*L  normally  entails  noninteger  quantities  and  thus  falls  between  four  nearest-neigh-
bor node points, given by x j § x* § x j+1 and yi § y* § yi+1.

Figure  8  illustrates  the  conventions  used  in  the  definition  of  the  TrianguÖ
latedInterpolation  function,  including  the  counterclockwise  numbering  of  the
four nodes 1,  2,  3,  4 surrounding the interpolation point  Hx*, y*L,  beginning with node Hi,
jL, and the quantities X  and Y , which correspond to the x and y distances of the interpola-
tion point Hx*, y*L from node 1.

Options@InterpolationGraphicD =
8ImageSeparation Ø 2, ImageSize Ø Medium, TextSize Ø 10<;

InterpolationGraphic@opts___RuleD := ModuleA

8oddpts, oddoutline, odddiagonal, oddfield, oddX,
oddY, evenpts, evenoutline, evendiagonal, evenX,
evenY, evenfield, pts, tpts, imagesep, tsize<,

tsize =
HTextSize ê. 8opts< ê. Options@InterpolationGraphicDL;

imagesep =
8HImageSeparation ê. 8opts< ê.

Options@InterpolationGraphicDL, 0<;
evenpts = 881, 1<, 82, 1<, 82, 2<, 81, 2<<;
evenfield = 81.7, 1.4<;
oddpts = HÒ + imagesepL & êü evenpts;
oddfield = evenfield + imagesep;
evenX =
8Dashed, Arrow@88Ò@@1DD, Ò@@2DD + 1 ê 10<,

8evenfield@@1DD, Ò@@2DD + 1 ê 10<<D< & @

evenpts@@1DDD;
evenY =
8Dashed, Arrow@88Ò@@1DD + 1 ê 10, Ò@@2DD<,

8Ò@@1DD + 1 ê 10, evenfield@@2DD<<D< & @

evenpts@@1DDD;
oddX =
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8Dashed, Arrow@ 88Ò@@1DD, Ò@@2DD + 1 ê 10<,
8oddfield@@1DD, Ò@@2DD + 1 ê 10<<D< & @oddpts@@1DDD;

oddY =
8Dashed, Arrow@88Ò@@1DD + 1 ê 10, Ò@@2DD<,

8Ò@@1DD + 1 ê 10, oddfield@@2DD<<D< & @oddpts@@1DDD;
8evenoutline, oddoutline< =
Line@Append@Ò, Ò@@1DDDD & êü 8evenpts, oddpts<;
evendiagonal =
8Thick, Red, Line@8evenpts@@1DD, evenpts@@3DD<D<;

odddiagonal =
8Thick, Blue, Line@8oddpts@@2DD, oddpts@@4DD<D<;

pts = 88PointSize@MediumD, Point@Join@evenpts, oddptsDD<,
8PointSize@MediumD, Point@8evenfield, oddfield<D<<;

tpts = 9

Text@TextüStyle@"1", tsize + 1D, Ò - 80, 1 ê 20<, 80, 1<D & êü
8evenpts@@1DD, oddpts@@1DD<,

Text@TextüStyle@"2", tsize + 1D, Ò - 80, 1 ê 20<,
80, 1<D & êü 8evenpts@@2DD, oddpts@@2DD<,

Text@TextüStyle@"3", tsize + 1D, Ò + 80, 1 ê 20<,
80, -1<D & êü 8evenpts@@3DD, oddpts@@3DD<,

Text@TextüStyle@" 4", tsize + 1D, Ò + 80, 1 ê 20<,
80, -1<D & êü 8evenpts@@4DD, oddpts@@4DD<,

Text@TextüStyle@" y""i", tsize, ItalicD, Ò - 81 ê 3, 0<,
8-1, 0<D & êü 8evenpts@@1DD, oddpts@@1DD<,

TextATextüStyleAStyle@"y", ItalicDStyle@"i",ItalicD+1,

tsizeE, Ò - 81 ê 3, 0<, 8-1, 0<E & êü

8evenpts@@4DD, oddpts@@4DD<,
Text@TextüStyle@Subscript@" x", "j"D, tsize, ItalicD,

Ò - 80, 1 ê 4<, 8-1, 0<D & êü
8evenpts@@1DD, oddpts@@1DD<,

TextATextüStyleAStyle@" x", ItalicDStyle@"j",ItalicD+1,

tsizeE, Ò - 80, 1 ê 4<, 8-1, 0<E & êü

8evenpts@@2DD, oddpts@@2DD<,
TextA

TextüStyleARowA9"H", Style@"x", ItalicD"*",

", ", Style@"y", ItalicD"*", "L"=E, tsize + 1E,

Ò + 81 ê 10, 0<, 8-1, 0<E & êü 8evenfield, oddfield<,

Text@TextüStyle@"X", tsize + 1, ItalicD,
8evenfield@@1DD, evenpts@@1, 2DD + 1 ê 10<, 8-1, 0<D,

Text@TextüStyle@"Y", tsize + 1, ItalicD,
8evenpts@@1, 1DD + 1 ê 10, evenfield@@2DD<, 80, -1<D,

Text@TextüStyle@"X", tsize + 1, ItalicD,
8oddfield@@1DD, oddpts@@1, 2DD + 1 ê 10<, 8-1, 0<D,

Text@TextüStyle@"Y", tsize + 1, ItalicD,
8oddpts@@1, 1DD + 1 ê 10, oddfield@@2DD<, 80, -1<D,

Text@
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Style@
TextüRow@8" case: ", Style@"i", ItalicD,

" + ", Style@"j", ItalicD, " even"<D, tsize + 1D,
8Hevenpts@@1, 1DD + evenpts@@2, 1DDL ê 2,
evenpts@@1, 2DD - 1 ê 2<, 80, 0<D,

Text@
Style@
TextüRow@8" case: ", Style@"i", ItalicD,

" + ", Style@"j", ItalicD, " odd"<D, tsize + 1D,
8Hoddpts@@1, 1DD + oddpts@@2, 1DDL ê 2,
oddpts@@1, 2DD - 1 ê 2<, 80, 0<D=;

Graphics@8evenoutline, oddoutline, evendiagonal,
odddiagonal, pts, tpts,
evenX, evenY, oddX, oddY<,

ImageSize Ø
1.5 HImageSize ê. 8opts< ê.

Options@InterpolationGraphicDLDE;

InterpolationGraphic@ImageSize Ø 8250<, TextSize Ø 9D

1 12 2

3 34 4

yi yi

yi+1 yi+1

x j x jx j+1 x j+1

Hx*, y*L Hx*, y*L

X

Y

X

Y

case: i + j even case: i + j odd

Ú Figure 8. The four possible interpolation triangles for field point Hx*, y*L.

The principal complication in alternating-diagonal triangulated-facet interpolation is identi-
fying the appropriate interpolation triangle, because once this is determined, the interpola-
tion is readily computed from this triangle’s three nodal vertices using basic geometry. Fig-
ure 8 illustrates that there are four different cases, depending on which diagonal is drawn
and whether or not the point lies above or below the diagonal. The four cases are:

1. i+ j even

a. Hx*, y*L below the diagonal: nodes 1, 2, and 3 are used to interpolate;

b. Hx*, y*L above the diagonal: nodes 1, 3, and 4 are used to interpolate;
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2. i+ j odd

a. Hx*, y*L below the diagonal: nodes 1, 2, and 4 are used to interpolate;

b. Hx*, y*L above the diagonal: nodes 2, 3, and 4 are used to interpolate.

These  are  the  core  ideas  implemented  in  TriangulatedInterpolation.  To  illus-
trate the function call, in Figure 9 a circle is drawn on the random-data surface visualized
in Figure 6.

Block@8ny = 15, nx = 21, order = 1, data, circlepts, r0,
x0, y0<,

data = RandomInteger@80, 5<, 8ny, nx<D;
8x0, y0< = HÒ + 1L ê 2 & êü 8nx, ny<; r0 = Min@x0, y0D ê 2;
circlepts =
Table@8x = Hx0 + Hr0 + drL Cos@qDL,

y = Hy0 + Hr0 + drL Sin@qDL,
TriangulatedInterpolation@8x, y<, dataD<,

8dr, 0, 2 ê 5, 1 ê 40<, 8q, 0, 2 p, p ê 120<D;
Show@8VisualizeFacetSurface@data,

PlotLabel Ø "an interpolated circle",
ImageSize Ø 8200<D,

Graphics3D@Line@circleptsDD<DD

an interpolated circle
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Ú Figure 9. Drawing a circle on a rough surface using the TriangulatedInterpolation 
function.

‡ Summary
This article describes two related capabilities implemented in Mathematica.

The  first  is  a  new  method  to  simulate  irregular  surfaces  that  uses  totalistic  cellular  au-
tomata computations to generate the surface-elevation data. The method is compactly im-
plemented  with  built-in  Mathematica  functions.  By  varying  the  computation  parameters,
singly or in combination, one may achieve a variety of effects. Surfaces generated by cellu-
lar automata are less homogeneous in character compared to surfaces simulated by either
statistical or fractal methods.
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The  first  is  a  new  method  to  simulate  irregular  surfaces  that  uses  totalistic  cellular  au-
tomata computations to generate the surface-elevation data. The method is compactly im-
plemented  with  built-in  Mathematica  functions.  By  varying  the  computation  parameters,
singly or in combination, one may achieve a variety of effects. Surfaces generated by cellu-
lar automata are less homogeneous in character compared to surfaces simulated by either
statistical or fractal methods.
The  second  capability  relates  to  the  visualization  and  interpolation  of  irregular-data  ar-
rays, using an alternating-diagonal triangular-facet representation. This basic visualization
scheme provides a crisp articulation of rough surfaces. A corresponding interpolation pro-
cedure provides a consistent treatment of non-nodal field points.
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