
The Mathematica® Journal

FacetSurface Representation
Rough-Surface Simulation and the
Visualization of Nonsmooth Arrays of Data
Vallorie J. Peridier

This article considers both the creation of random-looking
irregular surfaces and the triangular-facet visualization and
interpolation of nonsmooth data arrays. This rough-surface
simulation scheme is novel because cellular automata
computations define the surface topology. The companion
triangular-facet surface-plotting method produces a crisp
visualization of nonsmooth data arrays.

‡ Introduction
This article describes both the computation and the visualization of irregular rough sur-
faces.
The rough-surface generation scheme is novel because it uses cellular automaton methods
to define the surface topology. Users of Mathematica, with its built-in cellular automaton
functionality, can employ the algorithm described in this article as a convenient way of de-
vising rough surfaces by manipulating parameters such as the rule number, number of
steps, and initial conditions.
The visualization of nonsmooth data arrays is the second topic considered. A data-interpo-
lation facility, consistent with this alternating-diagonal triangular-facet visualization of the
data array, is also described.
Both capabilities, rough-surface generation and irregular-data visualization and interpo-
lation, can be used independently or together; both are implemented in the package
FacetSurface.m. It is available from
www.mathematica-journal.com/data/uploads/2011/07/FacetSurface.m.

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

‡ Rough Surfaces Generated by Cellular Automata

· Background

ü Current Practice for Numerical Simulation of Rough Surfaces

Before describing this new method for simulating rough surfaces with cellular automata, it
is worthwhile to note the principal alternative approaches. The rather broad topic of rough-
surface simulation is fundamental in studies of wear and friction; two categories of tech-
niques have evolved in this literature. The first, motivated by the early analytical studies
of friction [1], entails the use of probabilistic, statistical, or Monte Carlo methods to dis-
tribute characteristic values over a surface (peak height, peak radius of curvature, etc.) [2,
3]. The second and more recent category employs fractal concepts [4, 5]. There are also hy-
brid approaches that use both statistical and fractal algorithms in tandem [6, 7].
Both the statistical surface-simulation methods and the fractal approaches have a substan-
tial body of literature and their own respective advantages. Probabilistic schemes are physi-
cally intuitive and represent surfaces in a manner consistent with the classical analytical
treatments of friction [1]. However, fractal methods seem to be more in vogue now, owing
in part to the current practice of characterizing empirically studied surfaces using a fractal
dimension [8]. Note that surfaces simulated by fractals have a somewhat homogeneous
quality that may or may not resemble their physical counterpart with the same reported
fractal dimension [9].
In summary, the two prevailing methodologies for simulating irregular surfaces reflect the
modeling traditions and empirical practices of the wear-and-friction literature.

ü This New Cellular Automaton Approach

This new cellular automaton method for simulating rough surfaces was first conceived dur-
ing the author’s participation at the NKS 2008 Summer School. The method is a departure
from the two aforementioned approaches for simulating irregular surfaces: it is neither a
fractal method nor a probabilistic scheme and it is not envisaged as a contribution to the lit-
erature of wear and friction.
This cellular automaton scheme for simulating rough surfaces is simple in concept: a grid
of numbers, generated by accumulating a two-dimensional cellular automaton evolution,
is used to define a three-dimensional surface. A variety of effects arise by varying computa-
tion parameters such as the cellular automaton rule number, the initial condition, or the
number of evolution steps. Although the simulated surfaces appear random, they are deter-
ministic constructions, and a specific combination of parameters always produces the
same rough surface.

2 Vallorie J. Peridier

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

For Mathematica programmers, this cellular automaton scheme offers a flexible strategy
to simulate rough surfaces using only built-in functions. The example rough surfaces
shown here are visualized using an “alternating-diagonal triangular-facet” method, which
is considered separately below.

· Generating Rough Surfaces

This loads the package.

<< FacetSurface.m

The function FacetSurfaceGridData (defined in FacetSurface.m) generates the
“elevation data” that defines a rough surface. This function in turn uses the built-in com-
mands Nest and CellularAutomaton to accumulate steps of a two-dimensional,
two-state, totalistic, nine-neighbor, cellular automaton evolution. The following example
shows a surface defined by the two-dimensional totalistic cellular automaton rule 450 on a
21×15 grid and accumulating five steps of the evolution from the default initial condi-
tions.

With@8nsteps = 5, nx = 21, ny = 15, rulenumber = 450<,
VisualizeFacetSurface@
FacetSurfaceGridData@rulenumber, nsteps, ICDim Ø 8ny, nx<D,
ImageSize Ø 8300<DD

5

10

15

20

5

10

15
1
2
3
4
5

Ú Figure 1. A sample irregular surface generated with rule 450.

The FacetSurfaceGridData function uses the built-in CellularAutomaton com-
mand, which may be unfamiliar to some readers. Consequently, to explain the options and
operation of the FacetSurfaceGridData function, we next consider the basics of
two-dimensional cellular automaton computation.

FacetSurface Representation 3

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

ü Basic Idea: Two-Dimensional Cellular Automaton Accumulations

First, we deconstruct the phrase “accumulate steps of a two-dimensional, two-state, totalis-
tic, nine-neighbor, cellular automaton evolution.”

1. “A two-dimensional cellular automaton evolution” means that a two-dimensional
array of “cells” is computed (in an “evolution”) for a prescribed number of steps.
Each node in this two-dimensional array is a distinct cell.

2. The “two-state” qualifier means that each cell can embody only one of exactly two
states at any given step of the evolution. The CellularAutomaton function,
by convention, labels these two cellular automaton states 0 and 1.

3. At each step in the evolution, each cell’s value (0 or 1) in the grid is updated, in par-
allel, to a new value (0 or 1), using a cell-by-cell update protocol called the
“cellular automaton rule.”

4. The phrase “totalistic, nine-neighbor” specifies the type of update rule employed;
here, it means that the sum of a given cell’s nine-cell neighborhood (the 3×3 block
of cells centered on the evaluation cell) is looked up in a table to determine the
state of the middle cell in the next step.

So, the computation of a single step of a totalistic cellular automaton evolution consists
of—for each cell—summing the states of that cell’s neighboring cells and using this sum
to look up the cell’s next state from a table. The look-up table is obtained from the cellular
automaton rule number. Figure 1 above was generated using two-state totalistic nine-neigh-
bor rule 450, and this is the rule’s corresponding look-up table.

With@8rulenumber = 450<,
Framed@
Textü
TableForm@
8Prepend@Range@9, 0, -1D,

"If the sum of a 3µ3 cell block is: "D,
Prepend@IntegerDigits@rulenumber, 2, 10D,
"then the center cell becomes:"D<DDD

If the sum of a 3µ3 cell block is: 9 8 7 6 5 4 3 2 1 0
then the center cell becomes: 0 1 1 1 0 0 0 0 1 0

Ú Figure 2. Totalistic, nine-neighbor, 2-state cellular automaton transformation table for rule 450.

The interpretation of the above table is, for example: if all nine cells in a 3×3 block are in
state 1, then their sum is 9 and the center cell would be set to 0; if all but one of these nine
cells are in state 1, their sum is 8 and the center cell would be set to state 1; and so on.
The rule-decomposition convention illustrated in Figure 2 is a powerful device, because it
provides both a succinct description of the look-up table and a means of enumerating all
of the possible rules. For example, consider nine-neighbor, two-state, totalistic rules. This
class of look-up table needs 10 entries (0, 1, …, 9) and there are 2 possibilities (0, 1) for
each entry, so there are 210 possible look-up tables, and the rules for these tables are num-
bered 0, 1, 2, …, 1023. This convention for enumerating cellular automaton transforma-
tion rules is due to Wolfram [10].

4 Vallorie J. Peridier

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

bered 0, 1, 2, …, 1023. This convention for enumerating cellular automaton transforma-
tion rules is due to Wolfram [10].
Now let us visualize the underlying cellular automaton evolution that was used to generate
the specific surface shown in Figure 1 above.

With@8nsteps = 5, nx = 21, ny = 15, rulenumber = 450<,
SeedRandom@RandomSeed ê. Options@FacetSurfaceGridDataDD;
Framed@GraphicsGrid@
Partition@
ArrayPlot@Ò, Mesh Ø True, ImageSize Ø 8100, 100<D & êü
CellularAutomaton@ 8rulenumber, 82, 1<, 81, 1<<,
RandomInteger@81<, 8ny, nx<D, nstepsD, 3, 3D,

ImageSize Ø 8300<DDD

Ú Figure 3. These individual cellular automaton evolution steps are summed, cell by cell, to give the
elevations for the surface depicted in Figure 1. Here, the cells in state “1” are black, cells in state
“0” are white, and the evolution protocol is the totalistic nine-neighbor rule 450.

If the images in Figure 3 are “stacked” together by summing corresponding cells, the result-
ing array of numbers corresponds to the irregular-surface elevations used in the visualiza-
tion of Figure 1. This is what is meant by “an accumulation” of a cellular automaton
evolution.
One might reasonably ask if it would be possible to deduce, based on the rule number,
exactly what sort of rough surface would be produced. A related question is whether one
could predict the seemingly random evolution of rule 450 (shown in Figure 3) from an
analytical deconstruction of rule 450’s look-up table, shown in Figure 2. Although cellular
automaton evolutions are deterministic, one cannot in general predict the evolution of an
arbitrary rule from a systematic analysis of the rule’s protocol. Consequently, Wolfram
has argued that the only certain means of assessing the behavior of a particular rule/initial-
condition combination is to run the computation and visualize the result [11].

FacetSurface Representation 5

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

ü Surface Variations

Since cellular automaton evolutions are deterministic, the random-looking surfaces pro-
duced with VisualizeFacetSurface can be reproduced identically, each time, for
the same set of input parameters. Topological variations arise with changes to any of the
following:

Ë the number of computation steps (typically, 3–20 are used in this article);

Ë the size or shape of the grid;

Ë the initial conditions;

Ë the cellular automaton rule (there are 1024 possibilities).

To illustrate the effect of varying these parameters, consider the four possible surfaces pro-
duced for exactly two rule numbers and two initial conditions, with all other parameters
held constant. Each row in Figure 4 corresponds to a specific rule number and each col-
umn corresponds to a specific initial condition.

GraphicsGrid@
Partition@
VisualizeFacetSurface@

FacetSurfaceGridData@Ò@@1DD, 5, SemiRandomIC Ø Ò@@2DDD,
Ticks Ø NoneD & êü Tuples@888, 480<, 8True, False<<D,

2D,
ImageSize Ø 8300<D

Ú Figure 4. Each column represents the same initial condition and each row the same rule number
(row 1: rule 8, row 2: rule 480). All other parameters are the same for all four surfaces.

For more details about the implementation and the options for FacetSurfaceÖ
GridData, see the package FacetSurface.m. We now turn to visualizing irregular
surfaces.

6 Vallorie J. Peridier

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

For more details about the implementation and the options for FacetSurfaceÖ
GridData, see the package FacetSurface.m. We now turn to visualizing irregular
surfaces.

‡ Plotting Nonsmooth Data Arrays

· Motivating Triangular-Facet Visualization

It is useful to visualize a data array as a three-dimensional surface, and normally the Mathe-
matica function ListPlot3D is exactly the tool to use. The following example com-
pares ListPlot3D and VisualizeFacetSurface for a regular data array.

Block@8ny = 15, nx = 21, data<,
data = Table@5 Sin@2 j 2 p ê nyD Cos@i 2 p ê nxD, 8j, 0, ny<,

8i, 0, nx<D;
GraphicsGrid@
88ListPlot3D@Ò, PlotLabel Ø

Style@"ListPlot3D", FontFamily Ø "Courier"D,
InterpolationOrder Ø 2, ImageSize Ø 8200<,
BoxRatios Ø 8nx, ny, 10<D,

VisualizeFacetSurface@Ò,
PlotLabel Ø Style@"VisualizeFacetSurface",

FontFamily Ø "Courier"D, ImageSize Ø 8400<D<< &@
dataD, ImageSize Ø 8350, 200<DD

Ú Figure 5. Comparing ListPlot3D and VisualizeFacetSurface on a smooth data array.

ListPlot3D employs interpolation schemes to give a smooth surface appearance,
which is a desirable treatment for regular data (although the rendering of the
VisualizeFacetSurface image is considerably faster).

FacetSurface Representation 7

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Let us repeat this visualization comparison with nonsmooth (random) data.

Block@8ny = 15, nx = 21, order = 1, data<,
data = RandomInteger@80, 5<, 8ny, nx<D;
GraphicsGrid@88ListPlot3D@Ò,

InterpolationOrder Ø order,
BoxRatios Ø 8nx, ny, 5<,
PlotLabel Ø
Row@8Style@"ListPlot3D", FontFamily Ø "Courier"D,

", \ninterpolation order = ", order<D,
ImageSize Ø 8300<D,

VisualizeFacetSurface@Ò,
PlotLabel Ø Style@"VisualizeFacetSurface\n",

FontFamily Ø "Courier"D, ImageSize Ø 8500<D<< &@
dataD, ImageSize Ø 8450, 250<DD

Ú Figure 6. Comparing ListPlot3D and VisualizeFacetSurface on an array of irregular data.

Figure 6 suggests that the triangular-facet visualization of nonsmooth data (VisualÖ
izeFacetSurface) has a crisper appearance. This is because ListPlot3D, even
with a low-order interpolation method (InterpolationOrder Ø 1), gives a visualiza-
tion with cusps and curvatures that are artifacts of interpolation.

· How VisualizeFacetSurface Works

ListPlot3D and VisualizeFacetSurface employ the same conventions for visu-
alizing a data array (say, zi, j) as a surface:

Ë the column position j is treated as the node’s horizontal x j displacement;

Ë the row position i is treated as the node’s vertical yi displacement;

8 Vallorie J. Peridier

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Ë the data array value zi, j is interpreted as the node’s elevation.

On the other hand, VisualizeFacetSurface visualizes the data using flat triangular
facets arranged in an alternating-diagonal pattern. To achieve this effect, we use the follow-
ing pattern of alternating diagonals, imposed on the x j-yi nodal grid, as shown in Figure 7.

Options@DiagonalizationGraphicD = 8ImageSize Ø 8300, 200<<;
DiagonalizationGraphic@My_, Nx_, opts___RuleD :=

Module@8 dd<,
dd = Table@8i, j<, 8j, My<, 8i, Nx<D;

Graphics@888PointSize@MediumD, Point@ÒD< & êü dd<,
8Dashing@1 ê 100D, Line@ÒD< & êü dd,
8Dashing@1 ê 100D, Line@ÒD< & êü Transpose@ddD,
Flatten@8Table@8Red, Line@88jj, ii<, 8jj + 1, ii + 1<<D<,

8jj, 1, Nx - 1, 1<, 8ii, Mod@jj, 2, 1D, My - 1, 2<D,
Table@8Blue, Line@88jj + 1, ii<, 8jj, ii + 1<<D<,
8ii, 1, My - 1, 1<, 8jj, Mod@ii - 1, 2, 1D, Nx - 1, 2<D<,

2D<,
PlotRange Ø 883 ê 4, Nx + 1 ê 4<, 83 ê 4, My + 1 ê 4<<,
FrameTicks Ø None, Frame Ø True,
ImageSize Ø
HImageSize ê. 8opts< ê.

Options@DiagonalizationGraphicDLDD;

DiagonalizationGraphic@7, 11D

Ú Figure 7. The diagonalization convention for VisualizeFacetSurface and
TriangulatedInterpolation.

This diagonalization specifies a set of triangular facets that in turn articulate the zi, j data as
if it were a continuous surface. The (interior) nodes of Figure 7 correspond to vertex
points Ix j, yi, zi, jM that are common to either four or eight triangular facets.

In summary, the VisualizeFacetSurface function visualizes an array zi, j using alter-
nating-diagonal triangular facets. To further interpolate points, using array zi, j, in a man-
ner consistent with this visualization, we next consider the function TrianguÖ
latedInterpolation.

FacetSurface Representation 9

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

In summary, the VisualizeFacetSurface function visualizes an array zi, j using alter-
nating-diagonal triangular facets. To further interpolate points, using array zi, j, in a man-
ner consistent with this visualization, we next consider the function TrianguÖ
latedInterpolation.

· TriangulatedInterpolation

TriangulatedInterpolation is a function for interpolating the data zi, j at non-
nodal points Hx*, y*L in a way that is consistent with VisualizeFacetSurface.

The interpolation nodes have horizontal and vertical offsets x j, yi that are in effect
(integer) array indices, with x j = j and yi = i . However, an arbitrary interpolation point
Hx*, y*L normally entails noninteger quantities and thus falls between four nearest-neigh-
bor node points, given by x j § x* § x j+1 and yi § y* § yi+1.

Figure 8 illustrates the conventions used in the definition of the TrianguÖ
latedInterpolation function, including the counterclockwise numbering of the
four nodes 1, 2, 3, 4 surrounding the interpolation point Hx*, y*L, beginning with node Hi,
jL, and the quantities X and Y , which correspond to the x and y distances of the interpola-
tion point Hx*, y*L from node 1.

Options@InterpolationGraphicD =
8ImageSeparation Ø 2, ImageSize Ø Medium, TextSize Ø 10<;

InterpolationGraphic@opts___RuleD := ModuleA

8oddpts, oddoutline, odddiagonal, oddfield, oddX,
oddY, evenpts, evenoutline, evendiagonal, evenX,
evenY, evenfield, pts, tpts, imagesep, tsize<,

tsize =
HTextSize ê. 8opts< ê. Options@InterpolationGraphicDL;

imagesep =
8HImageSeparation ê. 8opts< ê.

Options@InterpolationGraphicDL, 0<;
evenpts = 881, 1<, 82, 1<, 82, 2<, 81, 2<<;
evenfield = 81.7, 1.4<;
oddpts = HÒ + imagesepL & êü evenpts;
oddfield = evenfield + imagesep;
evenX =
8Dashed, Arrow@88Ò@@1DD, Ò@@2DD + 1 ê 10<,

8evenfield@@1DD, Ò@@2DD + 1 ê 10<<D< & @

evenpts@@1DDD;
evenY =
8Dashed, Arrow@88Ò@@1DD + 1 ê 10, Ò@@2DD<,

8Ò@@1DD + 1 ê 10, evenfield@@2DD<<D< & @

evenpts@@1DDD;
oddX =

10 Vallorie J. Peridier

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

8Dashed, Arrow@ 88Ò@@1DD, Ò@@2DD + 1 ê 10<,
8oddfield@@1DD, Ò@@2DD + 1 ê 10<<D< & @oddpts@@1DDD;

oddY =
8Dashed, Arrow@88Ò@@1DD + 1 ê 10, Ò@@2DD<,

8Ò@@1DD + 1 ê 10, oddfield@@2DD<<D< & @oddpts@@1DDD;
8evenoutline, oddoutline< =
Line@Append@Ò, Ò@@1DDDD & êü 8evenpts, oddpts<;
evendiagonal =
8Thick, Red, Line@8evenpts@@1DD, evenpts@@3DD<D<;

odddiagonal =
8Thick, Blue, Line@8oddpts@@2DD, oddpts@@4DD<D<;

pts = 88PointSize@MediumD, Point@Join@evenpts, oddptsDD<,
8PointSize@MediumD, Point@8evenfield, oddfield<D<<;

tpts = 9

Text@TextüStyle@"1", tsize + 1D, Ò - 80, 1 ê 20<, 80, 1<D & êü
8evenpts@@1DD, oddpts@@1DD<,

Text@TextüStyle@"2", tsize + 1D, Ò - 80, 1 ê 20<,
80, 1<D & êü 8evenpts@@2DD, oddpts@@2DD<,

Text@TextüStyle@"3", tsize + 1D, Ò + 80, 1 ê 20<,
80, -1<D & êü 8evenpts@@3DD, oddpts@@3DD<,

Text@TextüStyle@" 4", tsize + 1D, Ò + 80, 1 ê 20<,
80, -1<D & êü 8evenpts@@4DD, oddpts@@4DD<,

Text@TextüStyle@" y""i", tsize, ItalicD, Ò - 81 ê 3, 0<,
8-1, 0<D & êü 8evenpts@@1DD, oddpts@@1DD<,

TextATextüStyleAStyle@"y", ItalicDStyle@"i",ItalicD+1,

tsizeE, Ò - 81 ê 3, 0<, 8-1, 0<E & êü

8evenpts@@4DD, oddpts@@4DD<,
Text@TextüStyle@Subscript@" x", "j"D, tsize, ItalicD,

Ò - 80, 1 ê 4<, 8-1, 0<D & êü
8evenpts@@1DD, oddpts@@1DD<,

TextATextüStyleAStyle@" x", ItalicDStyle@"j",ItalicD+1,

tsizeE, Ò - 80, 1 ê 4<, 8-1, 0<E & êü

8evenpts@@2DD, oddpts@@2DD<,
TextA

TextüStyleARowA9"H", Style@"x", ItalicD"*",

", ", Style@"y", ItalicD"*", "L"=E, tsize + 1E,

Ò + 81 ê 10, 0<, 8-1, 0<E & êü 8evenfield, oddfield<,

Text@TextüStyle@"X", tsize + 1, ItalicD,
8evenfield@@1DD, evenpts@@1, 2DD + 1 ê 10<, 8-1, 0<D,

Text@TextüStyle@"Y", tsize + 1, ItalicD,
8evenpts@@1, 1DD + 1 ê 10, evenfield@@2DD<, 80, -1<D,

Text@TextüStyle@"X", tsize + 1, ItalicD,
8oddfield@@1DD, oddpts@@1, 2DD + 1 ê 10<, 8-1, 0<D,

Text@TextüStyle@"Y", tsize + 1, ItalicD,
8oddpts@@1, 1DD + 1 ê 10, oddfield@@2DD<, 80, -1<D,

Text@

FacetSurface Representation 11

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Style@
TextüRow@8" case: ", Style@"i", ItalicD,

" + ", Style@"j", ItalicD, " even"<D, tsize + 1D,
8Hevenpts@@1, 1DD + evenpts@@2, 1DDL ê 2,
evenpts@@1, 2DD - 1 ê 2<, 80, 0<D,

Text@
Style@
TextüRow@8" case: ", Style@"i", ItalicD,

" + ", Style@"j", ItalicD, " odd"<D, tsize + 1D,
8Hoddpts@@1, 1DD + oddpts@@2, 1DDL ê 2,
oddpts@@1, 2DD - 1 ê 2<, 80, 0<D=;

Graphics@8evenoutline, oddoutline, evendiagonal,
odddiagonal, pts, tpts,
evenX, evenY, oddX, oddY<,

ImageSize Ø
1.5 HImageSize ê. 8opts< ê.

Options@InterpolationGraphicDLDE;

InterpolationGraphic@ImageSize Ø 8250<, TextSize Ø 9D

1 12 2

3 34 4

yi yi

yi+1 yi+1

x j x jx j+1 x j+1

Hx*, y*L Hx*, y*L

X

Y

X

Y

case: i + j even case: i + j odd

Ú Figure 8. The four possible interpolation triangles for field point Hx*, y*L.

The principal complication in alternating-diagonal triangulated-facet interpolation is identi-
fying the appropriate interpolation triangle, because once this is determined, the interpola-
tion is readily computed from this triangle’s three nodal vertices using basic geometry. Fig-
ure 8 illustrates that there are four different cases, depending on which diagonal is drawn
and whether or not the point lies above or below the diagonal. The four cases are:

1. i+ j even

a. Hx*, y*L below the diagonal: nodes 1, 2, and 3 are used to interpolate;

b. Hx*, y*L above the diagonal: nodes 1, 3, and 4 are used to interpolate;

12 Vallorie J. Peridier

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

2. i+ j odd

a. Hx*, y*L below the diagonal: nodes 1, 2, and 4 are used to interpolate;

b. Hx*, y*L above the diagonal: nodes 2, 3, and 4 are used to interpolate.

These are the core ideas implemented in TriangulatedInterpolation. To illus-
trate the function call, in Figure 9 a circle is drawn on the random-data surface visualized
in Figure 6.

Block@8ny = 15, nx = 21, order = 1, data, circlepts, r0,
x0, y0<,

data = RandomInteger@80, 5<, 8ny, nx<D;
8x0, y0< = HÒ + 1L ê 2 & êü 8nx, ny<; r0 = Min@x0, y0D ê 2;
circlepts =
Table@8x = Hx0 + Hr0 + drL Cos@qDL,

y = Hy0 + Hr0 + drL Sin@qDL,
TriangulatedInterpolation@8x, y<, dataD<,

8dr, 0, 2 ê 5, 1 ê 40<, 8q, 0, 2 p, p ê 120<D;
Show@8VisualizeFacetSurface@data,

PlotLabel Ø "an interpolated circle",
ImageSize Ø 8200<D,

Graphics3D@Line@circleptsDD<DD

an interpolated circle

5
10

15
20

5

10

15
0
2
4

Ú Figure 9. Drawing a circle on a rough surface using the TriangulatedInterpolation
function.

‡ Summary
This article describes two related capabilities implemented in Mathematica.

The first is a new method to simulate irregular surfaces that uses totalistic cellular au-
tomata computations to generate the surface-elevation data. The method is compactly im-
plemented with built-in Mathematica functions. By varying the computation parameters,
singly or in combination, one may achieve a variety of effects. Surfaces generated by cellu-
lar automata are less homogeneous in character compared to surfaces simulated by either
statistical or fractal methods.

FacetSurface Representation 13

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

The first is a new method to simulate irregular surfaces that uses totalistic cellular au-
tomata computations to generate the surface-elevation data. The method is compactly im-
plemented with built-in Mathematica functions. By varying the computation parameters,
singly or in combination, one may achieve a variety of effects. Surfaces generated by cellu-
lar automata are less homogeneous in character compared to surfaces simulated by either
statistical or fractal methods.
The second capability relates to the visualization and interpolation of irregular-data ar-
rays, using an alternating-diagonal triangular-facet representation. This basic visualization
scheme provides a crisp articulation of rough surfaces. A corresponding interpolation pro-
cedure provides a consistent treatment of non-nodal field points.

‡ Acknowledgments
These algorithms were conceived during the author’s participation at the NKS 2008 Sum-
mer School in Burlington, Vermont, sponsored by Wolfram Research. The author is grate-
ful for the experiences she gained there.

‡ References
[1] J. A. Greenwood and J. B. P. Williamson, “Contact of Nominally Flat Surfaces,” Proceedings

of the Royal Society A, 295, 1966 pp. 300–319. doi:10.1098/rspa.1966.0242.

[2] N. Patir, “A Numerical Procedure for Random Generation of Rough Surfaces,” Wear, 47(2),
1978 pp. 263–277. doi:10.1016/0043-1648(78)90157-6.

[3] M. S. Hong and K. F. Ehmann, “Three-Dimensional Surface Characterization by Two-Dimen-
sional Autoregressive Models,” Journal of Tribology, 117(3), 1995 pp. 385–393.
doi:10.1115/1.2831263.

[4] H. Sofuoglu and A. Ozer, “Thermomechanical Analysis of Elastoplastic Medium in Sliding
Contact with Fractal Surface,” Tribology International, 41(8), 2008 pp. 783–796.
doi:10.1016/j.triboint.2008.01.010.

[5] D. Goerke and K. Wilner, “Normal Contact of Fractal Surfaces—Experimental and Numerical
Investigations,” Wear, 264(7–8), 2008 pp. 589–598. doi:10.1016/j.wear.2007.05.004.

[6] Y. H. Jang, “Distribution of Three-Dimensional Islands from Two-Dimensional Line Segment
Length Distribution,” Wear, 257(1–2), 2004 pp. 131–137. doi:10.1016/j.wear.2003.10.020.

[7] M. Zou, B. Yu, Y. Feng, and X. Peng, “A Monte Carlo Method for Simulating Fractal Sur-
faces,” Physica A, 386(1), 2007 pp. 176–186. doi:10.1016/j.physa.2007.07.058.

[8] D. Blackmore and J. G. Zhou, “A General Fractal Distribution Function for Rough Surface Pro-
files,” SIAM Journal of Applied Mathematics, 56(6), 1996 pp. 1694–1719.
doi:10.1137/S0036139995283122.

[9] V. Bakolas, “Numerical Generation of Arbitrarily Oriented Non-Gaussian Three-Dimensional
Rough Surfaces,” Wear, 254(5–6), 2003 pp. 546–554. doi:10.1016/S0043-1648(03)00133-9.

[10] S. Wolfram, “Universality and Complexity in Cellular Automata,” Physica D, 10, 1984
pp. 1–35. www.stephenwolfram.com/publications/articles/ca/84-universality.

[11] S. Wolfram, A New Kind of Science, Champaign, Illinois: Wolfram Media, Inc., 2002.

V. J. Peridier, “FacetSurface Representation,” The Mathematica Journal, 2011.
dx.doi.org/doi:10.3888/tmj.13–11.

14 Vallorie J. Peridier

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

About the Author

Vallorie J. Peridier is interested in NKS methodologies, especially as applied to engineer-
ing mathematics. She has been on the faculty of Temple University since 1989.
Vallorie J. Peridier
College of Engineering
Temple University
1947 N. 12th Street, Philadelphia, PA 19122
peridier@temple.edu

FacetSurface Representation 15

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

