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Solving Kepler’s Problem
Jan Vrbik

We demonstrate how the equation for the location of a satellite 
orbiting a large primary can be solved with the help of 
quaternions. We also treat the issue of orbit determination, given 
(1) a location and a velocity of the satellite; (2) two observations 
of its location; and (3) three or more values of its position.

‡ Quaternions
We define a quaternion as a symbolic sum of a scalar, say A, and a three-dimensional vec-
tor a, collectively denoted AÅ⊕ a. We add and subtract quaternions component by compo-
nent; multiplication (denoted by Î) of two quaternions is done by

(1)HAÅ⊕ aLÎHBÅ⊕ bL ª HA B- a × bLÅ⊕ HA b+ B a- aäbL,

where  a ÿ b  and  aäb  are  the  dot  and  cross  products,  respectively.  One  can  easily  verify
that this multiplication is associative (multiplication of three or more quaternions is mean-
ingful  without  parentheses),  but  it  is  clearly  noncommutative  (changing  the  order  of
quaternions in a product will, in general, yield a different answer). Taking a quaternion’s
conjugate changes the sign of its vector part, thus: AÅ⊕ a ª AÅ⊕ H-aL. Based on the corre-
sponding  Taylor  expansion,  we  can  easily  construct  functions  of  quaternion  arguments,
such as, for example,

(2)expHAÅ⊕ aL = eA cosHaLÅ⊕ eA sinHaL à,

where  a  is  the  magnitude  of  a  and  à ª 1
a a  is  the  corresponding unit  vector.  (In  general,

the answer for expHA Å⊕aL is the same as it would be for a complex argument, with à assum-
ing the role of i.)

· 3D Rotations

One can easily verify that rotating a vector r with respect to a (whose direction and magni-
tude represent the axis and angle of rotation, respectively) is achieved by

(3)expK
a

2
O Î r ÎexpK

a

2
O,
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where  both  r  and  a  are  shorthand  for  the  corresponding  pure-vector  quaternions  (i.e.,
0Å⊕ r  and 0Å⊕a,  respectively).  This  enables us to easily find any composition of  two or
more rotations by simply multiplying the corresponding quaternions.
Here are routines for multiplying two quaternions, taking a conjugate, and evaluating (2),
respectively.

SetAttributes@SmallCircle, FlatD;
8A_, a_<Î8B_, b_< :=
8A B - a.b, A b + B a - aäb< êê TrigReduce êê Simplify

8A_, a_< := 8A, -a<

qexp@8A_, a_<D := ModuleB:r = a.a êê PowerExpand>,

Exp@AD 8Cos@rD, Sin@rD a ê r<F

Next, i, j, and k are unit vectors in the direction of x, y, and z, respectively.

i = 80, 81, 0, 0<<; j = 80, 80, 1, 0<<;
k = 80, 80, 0, 1<<;

The following multiplication finds the composition of a 90° rotation around x followed by
a 90° rotation around y.

qexpBi
p

4
FÎ qexpBj

p

4
F

:
1

2
, :

1

2
,
1

2
, -

1

2
>>

The result is a 2 arccosJ 12 N = 120 ° rotation around the H1, 1, -1L direction.

A general 3D rotation can be also parametrized by three Euler angles y, q, and f, thus:

(4)exp k
y

2
Î exp i

q

2
Î exp k

f

2
,

and visualized as a composition of three rotations (around z, x, and z again, by the angles
y, q, and f respectively, and in that order).

‡ Satellite in Orbit
It is well known [1] that the equation for establishing a satellite’s location (relative to the
primary’s center), as a function of time t, reads

(5)r.. +m
r

r3
= 0,

where m is a the sum of the two masses (primary’s and satellite’s) multiplied by the gravita-
tional constant and r is the magnitude of r.
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where m is a the sum of the two masses (primary’s and satellite’s) multiplied by the gravita-
tional constant and r is the magnitude of r.

One can conveniently solve this equation [2] by introducing a new dependent (quaternion)
variable U such that

(6)r = U Îi ÎU

and a new independent (scalar) variable w (called the eccentric anomaly) via

(7)
dt

dw
= U ÎU

a

m
,

where t is the (regular) time, a is a positive constant (we choose its value to equal the or-
bit’s semimajor axis), and UÎU is a scalar (equal to the magnitude of r).

The  resulting  so-called  Kustaanheimo–Stiefel  equation  (which  we  do  not  need  to  quote
here) is solved by the following quaternion function of t.

U =
a

1 + b2
qexpBk

w@tD

2
F - b qexpB-k

w@tD

2
F ;

The orbit’s eccentricity is 2 b
1+b2

. In terms of (6), this is the usual ellipse in the x-y plane.

ParametricPlotATakeAIUÎiÎUM@@2DD, 2E ê. 8a Ø 1, b Ø .3<,

8w@tD, 0, 2 p<E

-1.5 -1.0 -0.5

-0.5

0.5
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The previous solution can be further rotated by three Euler angles.

U = UÎqexpBk
y

2
FÎqexpBi

q

2
FÎqexpBk

f

2
F;

The following two lines prove that we have thus solved (5).

R = UÎiÎU; r = IUÎUM@@1DD; w'@tD :=
m

a
ì r

V = D@R, tD; D@V, tD + m
R

r3
êê Simplify

80, 80, 0, 0<<

At the same time, this solution is fully general, capable of describing any elliptical orbit.

Since U Î U = a J1- 2 b
1+ b2

cos wN,  (7) can be easily integrated, yielding the so-called Ke-

pler equation:

(8)t =
a3

m
w-

2 b

1+ b2
sin w -

a3

m
w0 -

2 b

1+ b2
sin w0 ,

where w0 is the value of w at t = 0.

‡ Orbit Determination

· Given Initial Values

Suppose that we are given the location and velocity of a satellite at time t = 0 (the initial
conditions).  The  corresponding  orbital  elements  can  then  be  computed  by  the  following
program.

initial@m_, r_, v_D :=

ModuleB:rm = r.r , vm = v.v , rv = r.v, cp = räv, a,

e, w, f, q, y>,

a =
2

rm
-
vm2

m

-1

; e = K1 -
rm

a
O
2
+
rv2

m a
;

w = ArcTanB1 -
rm

a
,

rv

m a
F;

; ;
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q = ArcCosB
cp@@3DD

cp.cp
F; f = ArcTan@-cp@@2DD, cp@@1DDD;

y = ArcTan@8Cos@fD, Sin@fD, 0<.r,
8-Cos@qD Sin@fD, Cos@qD Cos@fD, Sin@qD<.rD

- ArcTanBCos@wD - e, 1 - e2 Sin@wDF;

:a,
1 - 1 - e2

e
, Mod@w, 2 pD, Mod@f, 2 pD, q, Mod@y, 2 pD>F

Thus,  for  example,  having  an  Earth-like  primary  with  m = 5  (we  use  10,000  km  as  our
unit  distance  and  1  hour  as  a  unit  of  time),  and  a  satellite  currently  at  80.42, 0.39, 0.16<
with velocity 81.12, -0.96, 0.21<, we find the values of its orbital elements.

initial@5, 81.42, 0.39, 0.16<, 81.12, -0.96, 0.21<D

81.10352, 0.356492, 2.14254, 1.10291, 2.99604, 4.48837<

ü Solving Keplerʼs Equation

To  find  the  location  and  the  velocity  of  the  satellite  some  time  (say  20  hours)  later,  we
first need to solve (8) for w, knowing that, at t = 0, the value of w was 2.14254. 

findw@T_D := ModuleB8a, b, w0, f, q, y, m = 5<,

8a, b, w0, f, q, y< = initial@m, 81.42, 0.39, 0.16<,
81.12, -0.96, 0.21<D;

w ê.

FindRootB

T ã
a3

m
w -

2 b

1 + b2
Sin@wD -

a3

m
w0 -

2 b

1 + b2
Sin@w0D ,

:w, w0 + T
m

a3
>FF

This tells us (as a byproduct) that over six full orbits will be completed during that time. 

findw@20D

2 p

6.4358
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The new location and velocity can then be computed.

locationvelocity@T_D :=
MatrixForm@
8R@@2DD, V@@2DD< ê. w@tD Ø Mod@findw@TD, 2 pD ê. m Ø 5 ê.
Thread@8a, b, w0, f, q, y< ->

initial@5, 81.42, 0.39, 0.16<, 81.12, -0.96, 0.21<DDD

locationvelocity@20D

K
1.72829 -0.0804599 0.231437
0.274259 -1.05426 0.105581

O

Note that by setting T  to zero, the above procedure returns the original location and veloc-
ity, thus checking its correctness.

locationvelocity@0D

K
1.42 0.39 0.16
1.12 -0.96 0.21

O

· Given Two Locations

Establishing values of the orbital elements when two locations and the corresponding time
interval are given (these are called boundary conditions) is slightly more difficult and not
fully analytic (some numerical root-finding is necessary), but is in general more accurate. 

boundary@r1_, r2_, ti_D :=

ModuleB:m1 = r1.r1 , m2 = r2.r2 , rdr = r1.r2,

rcr = r1är2, m = 5, aux, a, e, w1, w2, f, q, y>,

FindRootB:a H1 - e Cos@w1DL ã m1, a H1 - e Cos@w2DL ã m2,

a2 HCos@w1D - eL HCos@w2D - eL + a2 I1 - e2M Sin@w1D Sin@w2D ã rdr,

a3

m
Hw2 - w1 - e HSin@w2D - Sin@w1DLL ã ti>,

::a,
m1 + m2

2
>, 8e, 0.5<, 8w1, 0<,

:w2, ti
8 m

Hm1 + m2L3
>>F ê. Rule Ø Set;

aux = Sign@Sin@w2 - w1D - 2 e HSin@w2D - Sin@w1DLD;

;

;
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q = ArcCosBrcr@@3DD aux í rcr.rcr F;

f = ArcTan@-rcr@@2DD aux, rcr@@1DD auxD;
y = ArcTan@8Cos@fD, Sin@fD, 0<.r1,

8-Cos@qD Sin@fD, Cos@qD Cos@fD, Sin@qD<.r1D

- ArcTanBCos@w1D - e, 1 - e2 Sin@w1DF;

:a, 1 - 1 - e2 ì e, w1, w2, f, q, y>F

This gives the solution in terms of a, b, w1, and w2, and the three Euler angles.

sol = boundary@81.42, 0.39, .16<, 81.74, -0.13, 0.24<, 0.5D

81.10867, 0.353776, 2.13461,
2.78208, 1.07145, 2.99176, -1.8183<

We can verify its correctness.

R@@2DD ê. Thread@8a, b, w@tD, w2, f, q, y< -> solD

81.42, 0.39, 0.16<

R@@2DD ê. Thread@8a, b, w1, w@tD, f, q, y< Ø solD

81.74, -0.13, 0.24<

· Given Three or More Positions

This  is  the  classical  problem,  where  we  know  the  observer’s  location  and  the  direction
toward the satellite (given by two spherical angles Q and F—astronomers call this the satel-
lite’s  position)  at  several  (at  least  three)  distinct  times.  There  are  many  techniques  of
various  degrees  of  sophistication for  computing the  orbital  elements  based on such data;
here we can demonstrate only the simplest, brute-force approach.

Corresponding  to  each  observation,  the  “theoretical”  direction  (a  unit  3D  vector)  to  the
satellite is computed as a function of its (as yet unspecified) orbital elements. This is then
subtracted  from  the  observed  direction  (converted  into  a  unit  vector),  and  the  sum  of
squares of the three components of this difference is cumulatively totaled for all observa-
tions.  Similarly,  differences  between the  actual  and “theoretical”  time based on Kepler’s
equation are computed at each observation. Then, the sum of squares of consecutive differ-
ences of these quantities, each also divided by the corresponding time interval for proper
scaling, is added to the previous total. All we need to do then is to minimize the resulting
quantity,  thereby  reducing  the  discrepancy  between  the  observed  and  theoretical  values
to near 0.
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The function cts converts two spherical angles to a unit vector.

convert@8Q_, F_<D :=
8Sin@QD 8Cos@FD, Sin@FD<, Cos@QD< êê Flatten

The following routine does the rest.

classical@d_, L_, T_D :=

ModuleB8k = Length@dD, ss, m = 5<, ss = SumBTotalB

convert@d@@iDDD -
R@@2DD - L@@iDD

L@@iDD.L@@iDD + r2 - 2 L@@iDD.R@@2DD

ê.

w@tD Ø wi

2

F, 8i, k<F

+

SumB

1 -
a3

m
wi -

2 b

1 + b2
Sin@wiD -

a3

m
wi+1 -

2 b

1 + b2
Sin@wi+1D ì

HT@@iDD - T@@i + 1DDL

2

, 8i, k - 1<F;

NMinimize@8ss, 0 < a, 0 < b < 1, 0 < q < p, 0 < f < 2 p,
0 < y < 2 p<,

Flatten@8a, b, Table@wi, 8i, k<D, f, q, y<D,

Method Ø "RandomSearch"DF

The first  argument  of  classical,  d,  is  a  list  of  the  observed satellite’s  directions;  the
second argument, L, is a list of the corresponding observer’s locations; and the last argu-
ment, T, is a list of times at which these observations were taken.
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Here is an example.

classical@881.53, -1.83<, 82.48, 0.61<, 81.31, -0.31<,
82.32, -1.37<<,

880.06, 0.83, 0.06<, 8-0.56, -0.72, 0.66<,
8-0.56, -0.30, -0.22<, 8-0.11, 0.70, 0.97<<,
80, 0.040, 0.083, 0.129<D

80.0000846782, 8a Ø 0.792469, b Ø 0.222936,
w1 Ø -0.0637888, w2 Ø 0.156087, w3 Ø 0.38647,
w4 Ø 0.618407, f Ø 1.31936, q Ø 0.574827, y Ø 2.80292<<

The final sum of squares is roughly 10-4, reflecting the fact that our input values had only
a two-digit accuracy. This is clearly not a typical situation (astronomical observations tend
to  be  substantially  more  precise);  nevertheless,  it  is  of  some  interest  to  note  that  when
such inaccurate data is used, the resulting orbital elements may be up to 50% off the mark.
Things improve dramatically when we reach a typical “medieval” accuracy of three digits
(the  resulting  error  is  usually  not  more  than  1–2%);  with  five  or  more  digits  we  can
normally expect the answers to have a comparable (five digit or better) accuracy, and the
resulting sum of squares to be smaller than 10-10.

‡ Further Challenges
In  this  article,  we  have  discussed  the  motion  of  a  satellite  not  perturbed  by  any  extra
forces, save the gravitational pull of a perfectly round primary. We know that in the real
world there are always additional forces due to

Ë other celestial bodies (the remaining planets, when the “satellite” is the Earth; the
Sun, when the “satellite” is the Moon orbiting the Earth, etc.),

Ë the Earth not having a perfectly round shape (the so called “oblateness” perturba-
tions, most relevant for artificial satellites),

Ë other, less important forces: atmospheric drag, tidal forces, Kepler shear (being hit
by co-orbiting small objects), radiation pressure, and so on.

To incorporate such forces in our solution is more difficult and will be left to a follow-up
article.
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