
The Mathematica® Journal

A Study of Super-Nonlinear 
Motion of a Simple Pendulum
Haiduke Sarafian

Two identically charged simple pendulums are allowed to swing 
in a vertical plane, acted upon by gravity and their mutual 
electrostatic interactive repulsive forces. We show that the 
inclusion of the electrostatic interaction makes the movement of 
the pendulums highly nonlinear. To describe the motion, we 
quantify the relevant time-dependent kinematic and dynamic 
quantities. Our analysis also includes an extended study of 
equal and oppositely charged pendulums. Motivated by the 
outcomes of the calculation, the author manufactured a real-life 
replica of the study demonstrating the features of the interactive 
pendulums; a photograph of the replica is included.

‡ Introduction and Motivation
The  motion  of  a  simple  pendulum  under  the  pull  of  gravity  has  been  studied  for  ages.
Most standard science and engineering texts have chapters devoted to the analysis of this
problem. However, a thorough literature search reveals that the description of the motion
of  one  such  pendulum  when  perturbed  by  exotic  forces  is  much  less  extensive.  Among
many feasible potential scenarios of perturbing the motion of a pendulum in a controlled
and quantifiable manner is to cross-pollinate mechanics with electrostatics using a pair of
charged pendulums. Based on the results of this analysis, one may argue that the answers
to  the  “what-if”  scenarios  of  this  project  would  have  remained  unresolved  before  the
advent of the Mathematica era. 
This article uses the familiar laws of Newtonian mechanics and electrostatic interactions,
as  introduced to  students  in  college  science  and engineering  courses.  Hence,  the  physics
of  this  article,  its  mathematical  analysis,  and  the  included  Mathematica  programs  might
appeal to a wide range of readers.
To simplify the analysis and to stress the important aspects of the physics of the project,
we consider a symmetrical situation, with two identical pendulums.
This is the problem: Consider two identical simple pendulums. Assume each pendulum is
composed of a point-mass m, electric charge q, and string length {. Swing the pendulums
symmetrically  about  the  vertical  reference  line  that  passes  through  their  common  pivot
and  hold  them  horizontal.  Drop  them  simultaneously  and  let  them  swing  under  gravity.
Then analyze the motion of each pendulum in terms of the parameters m, q, and {.
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This is the problem: Consider two identical simple pendulums. Assume each pendulum is
composed of a point-mass m, electric charge q, and string length {. Swing the pendulums
symmetrically  about  the  vertical  reference  line  that  passes  through  their  common  pivot
and  hold  them  horizontal.  Drop  them  simultaneously  and  let  them  swing  under  gravity.
Then analyze the motion of each pendulum in terms of the parameters m, q, and {.

‡ General Strategy
Figure 1 (left) is a sketch of the problem. It shows the pendulums at an instant where each
line makes an angle  q  with  the  vertical  reference position.  One strategy of  analyzing the
problem is to identify the forces acting on each mass. Later we consider the alternate en-
ergy approach. Because of the symmetry of the assembly, it  suffices to consider just one
of the point-like masses, say the one on the right. In addition to mechanical forces such as

weight w
Ø

 and tension T
Ø

, we include the electrostatic repulsive force F
Ø

c. The imposed sym-

metry confines the orientation of the F
Ø

c to the horizontal plane. The analysis in this article
can  easily  be  extended  to  study  more  challenging  asymmetrical  cases.  Having  identified
the forces acting on the mass (the free-body diagram), we can apply Newton’s laws of mo-

tion. Our strategy is to consider the components of Newton’s second law Fnet
Ø

= m a
Ø

 along
the x and y axes, which gives two separate equations of motion. However, because of the
geometrical  constraints  (i.e.,  the  mass  is  connected  to  the  pivot  with  an  unstretchable
string), the coordinates of the mass xHtL  and yHtL  are interrelated. This correlation reduces
the  number  of  independent  equations  of  motion  from  two  to  one.  Solving  the  resulting
equation yields the time-dependence of one of the coordinates.  The relation between xHtL
and yHtL then gives the other coordinate, thus leading to the entire kinematics and dynam-
ics of the problem. The details follow.

Ú Figure 1. (left) The schematic of a pair of charged pendulums with relevant forces: weight (w), ten-
sion (T), and the electrostatic repulsion (Fc). (right) Digital photo of the actual replica of the study; 
details are given at the end of the article in the Conclusion. 
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‡ Analysis

We  begin  with  Newton’s  second  law,  Fnet
Ø

= m a
Ø

.  Because  of  the  planar  motion  of  the
mass,  we  project  this  equation  along  the  horizontal  and  vertical  directions.  This  gives

HFnetLx
Ø

= m ax
Ø

 and  HFnetLy
Ø

= m ay
Ø

.  There  are  advantages  to  confining  the  motion  of  the
mass  within  the  first  quadrant;  we  select  the  downward  direction  as  the  positive  y  axis.
These two equations yield

(1)Fc - T sin q = m x
..
,

(2)m g- T cos q = m y
..
,

where g is the acceleration of gravity, T  is the tension in the line, and Fc =
k q2

4 x2
 is the elec-

trostatic force, with q being the charge and x the horizontal coordinate of the mass. The ac-
celerations of the mass along the x and y axes are x

..
 and y

..
. According to standard notation,

x° ª d
dt x, and so on. We rearrange these equations and find their ratio:

(3)
T sin q

T cos q
=

Fc -m x
..

m g-m y
.. .

Since, according to Figure 1, tan q = x
y , equation (3) yields

(4)g- y
..
=

y

x

Fc

m
- x
..

.

Because  the  length  of  the  string  is  constant,  we  write  x2 + y2 = {2,  which  gives

y = + {2 - x2 . Differentiating the latter twice with respect to time yields

(5)-y
..
= Bx x

..
+ x° 2 + Hx x° L2 I{2 - x2M-1F I{2 - x2M-

1
2 .

Substituting equation (5) into equation (4) and simplifying the result gives

(6){2 x2 x
..
+

x3 {2

{2 - x2
x° 2 + g x3 {2 - x2 -

k q2

4 m
I{2 - x2M = 0.
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Define  a  dimensionless  variable  x = x
{ ,  which  gives  x

°
= x°

{  and  x
..
= x

..

{ .  Substituting  these
into equation (6) yields

(7)x2 x
..
+

x3

1- x2
x
° 2
+ a x3 1- x2 - b I1- x2M = 0,

where the two auxiliary constant parameters are a =
g
{  and b =

k q2

4m {3 .  The parameter a  is
purely  mechanical  while  b  is  influenced  by  both  mechanics  and  electrostatics.  For
pendulums charged with equal and opposite charges and those with no charge, the counter
equations of equation (7) are, respectively,

(8)x2 x
..
+

x3

1- x2
x
° 2
+ a x3 1- x2 + b I1- x2M = 0,

(9)x
..
+

x

1- x2
x
° 2
+ a x 1- x2 = 0.

Equations  (7),  (8),  and  (9)  are  second-order  and  highly  nonlinear  differential  equations.
For  a  set  of  chosen practical  values  of  a  and b  we apply DSolve;  Mathematica  fails  to
produce  symbolic  solutions.  We  then  apply  NDSolve  along  with  the  relevant  initial
conditions, namely, xHt = 0L = { and x° Ht = 0L = 0. The solutions are shown in Figure 2. 

values = 9{ Ø 1.0, m Ø 5 µ 10-3, q Ø 2 µ 10-6, k Ø 9 µ 109, g Ø 9.8=;

8a, b< = :
g

{
,

k q2

4 m {3
> ê. values

89.8, 1.8<

eqns@n_D :=

x@tD2 x''@tD +
x@tD3

1 - x@tD2
x'@tD2 + a x@tD3 1 - x@tD2 +

n b I1 - x@tD2M ê. values

soleqns =

TableANDSolveA9eqns@nD ã 0, xA1 µ 10-8E ã NA1 - 10-7, 10E,

x'A1 µ 10-8E ã 0=, x@tD,

9t, 1 µ 10-6, If@n ã -1, 3.0, If@n ã 0, 0.6, 0.55DD=E,

8n, -1, 1<E;
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ShowATableAPlotAEvaluate@x@tD ê. soleqnsPmTD,

9t, 1 µ 10-6, If@m ã 1, 3.0, 0.6D=, AxesLabel Ø 8t, "x"<,

PlotStyle Ø 8Thickness@0.004D, GrayLevel@0.15 mD,
If@m ã 1, Dashing@81, 0.0001<D,
Dashing@80.01, 0.001< mDD<,

PlotRange Ø 8Automatic, 80, 1<<E, 8m, 1, 3<EE

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.2

0.4

0.6

0.8

1.0
x

Ú Figure 2. The solid, long-dashed, and short-dashed curves plot x (i.e., the x coordinate of the 
mass versus time t) for the repulsive, attractive, and uncharged pendulums, respectively. 

As  one  would  intuitively  expect,  in  the  absence  of  energy  loss  (such  as  friction  at  the
pivot),  the  electrostatic  repulsive  force  between  the  two  identically  charged  pendulums
would  have  two  distinct  impacts.  First,  it  should  set  the  pendulums  in  steady  repetitive
oscillations.  Second,  it  prevents  the  pendulums  from  touching  one  another.  Both  effects
are  clearly  illustrated  by  the  solid  curve  of  Figure  2.  More  specifically,  the  minimum
ordinate  of  the  first  cycle  is  the  separation  distance  between  the  instantly  halted  pen-
dulums.  For  oppositely  charged  pendulums,  the  attractive  electrostatic  force  causes  the
pendulums to pull together more strongly than they would otherwise. For the latter as well
as the uncharged case, the two pendulums touch one another along the vertical line, x = 0.
The abscissas of the long-dashed and short-dashed curves in Figure 2 are the fingerprints
of these scenarios. The abscissa of the former is less than the latter due to the attraction of
the electrostatic force. 
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Having identified the horizontal coordinate of the pendulum, we evaluate y = + {2 - x2 .
Figure 3 displays the pair 8xHtL, yHtL<. 

ShowB

PlotB:Evaluate@x@tD ê. soleqnsP1TD,

1 - Hx@tD ê. soleqnsP1TL2 >, 9t, 1 µ 10-6, 1.2=,

AxesLabel Ø 8t, Row@8x@tD, ", ", y@tD<D<,
PlotStyle Ø 888Thickness @0.004D, GrayLevel@0D<<,

8Thickness @0.004D, GrayLevel@0.5D<<F,

GridLines Ø 8Range@0, 1.2, 0.1D, Automatic<F

0.2 0.4 0.6 0.8 1.0 1.2
t

0.2

0.4

0.6

0.8

1.0
xHtL, yHtL

Ú Figure 3. The plot of the coordinates of the pendulum 8xHtL, yHtL< versus t for the repulsive electro-
static force. The black and gray curves are xHtL and yHtL, respectively.

The  curves  in  Figure  3  show  the  features  of  the  coordinates  of  the  pendulum  that  one
would intuitively expect. The black xHtL and gray yHtL curves are completely out of phase.
The pendulum begins from its horizontal extreme xHt = 0L = 1 (the black curve) while its
vertical  coordinate  begins  from  its  zero  height  extreme  yHt = 0L = 0  (the  gray  curve).
When  the  pendulum  falls,  it  approaches  the  vertical  reference  position.  At  the  instant
when  it  is  closest  to  the  other  pendulum  (the  minimum  of  the  black  curve),  its  distance
from the vertical position reaches its maximum (the tip of the gray curve).
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To  confirm  that  our  computation  sets  the  pendulum  in  a  circular  path,  we  apply
ParametricPlot to graph its traversed path.

ParametricPlotB

FlattenB:Evaluate@x@tD ê. soleqnsP1TD,

EvaluateB- 1 - Hx@tD ê. soleqnsP1TL2 F>F, 9t, 1 µ 10-6, 0.8=,

AxesLabel Ø 8x@mD, y@mD<, PlotRange Ø 880, 1<, 80, -1.0<<,
GridLines Ø Automatic,
PlotStyle Ø 8Thickness@0.004D, GrayLevel@0D<,

ImageSize Ø 250F

0.2 0.4 0.6 0.8 1.0
xHmL

-1.0

-0.8

-0.6

-0.4

-0.2

0.0
yHmL

Ú Figure 4. The circular path traversed by the pendulum.

Note that 8xHtL, yHtL< are given numerically, not analytically. Even so, Mathematica lets us
evaluate  the  time  derivatives  related  to  kinematic  quantities,  such  as  9x° HtL, x

..
HtL=  and

9y° HtL, y
..
HtL=. We display these in Figure 5. 

8xcoordinate, xspeed, xacc< =
Table@D@x@tD ê. soleqnsP1T, 8t, n<D, 8n, 0, 2<D;

8ycoordinate, yspeed, yacc< =

TableBDB 1 - Hx@tD ê. soleqnsP1TL2 , 8t, n<F, 8n, 0, 2<F;
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ColumnB::

PlotB8xcoordinate, 0.5 xspeed, 0.03 xacc<, 8t, 0.001, 3.0<,

PlotStyle Ø 88Thickness@0.004D, GrayLevel@0D<,
8Thickness @0.004D, GrayLevel@0D, Dashing@80.01<D<,
8Thickness@0.004D, GrayLevel@0D, Dashing@80.02<D<<,

AxesLabel Ø :t, RowB:x, ", ", x°, ", ", x
".."

>F>,

PlotRange Ø All, ImageSize Ø 275F,

PlotB8ycoordinate, 0.5 yspeed, 0.08 yacc<, 8t, 0.01, 1.2<,

PlotStyle Ø 88Thickness@0.004D, GrayLevel@0D<,
8Thickness @0.004D, GrayLevel@0D, Dashing@80.01<D<,
8Thickness@0.004D, GrayLevel@0D, Dashing@80.02<D<<,

AxesLabel Ø :t, RowB:y, ", ", y°, ", ", y
".."

>F>,

PlotRange Ø All, ImageSize Ø 275F>>F

:

0.5 1.0 1.5 2.0 2.5 3.0
t
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-0.5

0.5
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x, x° , x
..

,

0.2 0.4 0.6 0.8 1.0 1.2
t
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y, y° , y
..

>

Ú Figure 5. In both graphs, the solid, short-dashed, and long-dashed curves correspond to position 
coordinates and their associated speed and acceleration, respectively. For the sake of clarity, in 
the left graph x°  and x.. are scaled down by a factor of 0.5 and 0.03, respectively. In the right graph, 
y°  and y.. are scaled down by a factor of 0.5 and 0.08, respectively. 

Graphically speaking, speed is the slope of the position with respect to time; acceleration
is  the  slope  of  the  speed  with  respect  to  time.  A  close  inspection  of  the  depicted  plots
underlines  the  graphical  interrelationships  of  the  corresponding  quantities.  The  author
speculates  the  “noise”  in  the  y

..
HtL  signal  (the  long-dashed  curve)  originated  from  the

second-order  numerical  derivative  procedure.  The  double-hump  of  y
..
HtL  would  have  re-

mained undetected had it not been depicted graphically.
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second-order  numerical  derivative  procedure.  The  double-hump  of  y
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HtL  would  have  re-
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‡ An Alternative Approach Using Polar Coordinates
Since  each  individual  mass  swings  along  a  circular  path,  this  suggests  that  the  problem
might be more efficiently analyzed in polar coordinates. 

Earlier,  we  introduced  a  dimensionless  variable  x = x
{ .  According  to  Figure  1,  x = sin q.

We then evaluate x
.
= q

°
cos q and x

..
= q
..

cos q - q
° 2

sin q. Substituting these into equation (7)
and simplifying yields the equation of motion in the polar coordinate system, 

(10)q
..
+ a sin q - b

cos q

sin2 q
= 0.

Replacing  b  by  -b  or  0  results  in  counterparts  of  equations  (8)  and  (9),  respectively.  In
the  absence  of  electric  charge,  b = 0  and  equation  (10)  describes  the  motion  of  an
uncharged simple pendulum. For small angles, sin q > q  and the corresponding linearized
equation assumes a  textbook form:  q

..
+

g
{ q = 0.  For  a  charged pendulum b ¹≠ 0 and,  irre-

spective of the oscillation amplitude, equation (10) describes the motion of a highly super-
nonlinear  pendulum.  As  in  the  previous  section,  applying  DSolve  fails  to  generate
symbolic output, so again we use the same set of initial conditions and solve the equation
numerically. The solution of the equation of motion in the polar coordinate system should
match the Cartesian results. As shown in Figure 6, the agreement is perfect.

eqnsq@n_D := q''@tD + a Sin@q@tDD + n b
Cos@q@tDD

Sin@q@tDD2

soleqnsq =

TableBNDSolveB:eqnsq@nD ã 0, qA1 µ 10-8E ã
p

2
,

q'A1 µ 10-8E ã 0>, q@tD, 9t, 1 µ 10-8, 3.0=F, 8n, -1, 0<F;
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ShowBPlotB:
180

p
Evaluate@q@tD ê. soleqnsqP1TD,

180

p
EvaluateBArcTanB

x@tD ê. soleqnsP1T

1 - Hx@tD ê. soleqnsP1TL2
FF>,

9t, 1 µ 10-8, 3.0=, AxesLabel Ø 8t, Row@8q, " HdegL"<D<,

PlotStyle Ø 88Thickness@0.015D, GrayLevel@0.7D<,
88Thickness@0.004D, GrayLevel@0D<<<,

PlotRange Ø 8Automatic, 80, 90<<FF

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

20

40

60

80

q HdegL

Ú Figure 6. The solid and gray curves show the solutions of equations (7) and (10), respectively. 

It is instructive to visually quantify the impact of the super-nonlinearity of the motion. In
Figure 7, we plot the angular positions of the charged and the uncharged cases. For the un-
charged  pendulum,  for  the  sake  of  comparison  only,  we  assume the  pendulum oscillates
without colliding with the other uncharged pendulum. According to Figure 7,  the impact
of nonlinearity is twofold: (1) it decreases the oscillation amplitudes; and (2) it slows the
oscillations. The second property is shown by a time-delayed phase shift. 
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ShowBPlotB:
180

p
Evaluate@q@tD ê. soleqnsqP2TD,

180

p
EvaluateBArcTanB

x@tD ê. soleqnsP1T

1 - Hx@tD ê. soleqnsP1TL2
FF>,

9t, 1 µ 10-8, 3.0=, AxesLabel Ø 8t, Row@8q, " HdegL"<D<,

PlotStyle Ø 88Thickness@0.01D, GrayLevel@0.7D<,
88Thickness@0.004D, GrayLevel@0D<<<,

PlotRange Ø 8Automatic, 8-90, 90<<FF

0.5 1.0 1.5 2.0 2.5 3.0
t

-50

50

q HdegL

Ú Figure 7. The black and gray curves represent the angular positions of the charged and un-
charged pendulums, respectively. 

Knowing  the  value  of  qHtL,  we  evaluate  related  physical  quantities  such  as  the  angular
speed w ª q

°
HtL and angular acceleration a ª q

..
HtL. Here again we emphasize the usefulness

of Mathematica: it enables us to differentiate a nonanalytic function. Figure 8 displays the
:qHtL, q

°
HtL, q

..
HtL> for b ¹≠ 0. 

repulsive = 8qcoordinate, qspeed, qacc< =
Table@D@q@tD ê. soleqnsqP1T, 8t, n<D, 8n, 0, 2<D;
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PlotB:
180

p
qcoordinate,

180

p
0.4 qspeed,

180

p
0.02 qacc>,

8t, 0.001, 3.0<,
PlotStyle Ø 88Thickness@0.004D, GrayLevel@0D<,

8Thickness@0.004D, GrayLevel@0D, Dashing@80.01<D<,
8Thickness@0.004D, GrayLevel@0D, Dashing@80.02<D<<,

AxesLabel Ø :t, RowB:q, ", ", q
°
, ", ", q

".."
>F>,

PlotRange Ø AllF

0.5 1.0 1.5 2.0 2.5 3.0
t

-50

50

q, q
°
, q
..

Ú Figure 8. The solid, short-dashed, and long-dashed curves correspond to qHtL, q
°
HtL, and q

..
HtL for 

b ¹≠ 0, respectively.

As we mentioned in the previous section, graphically, the angular speed and the angular ac-
celeration  are  to  be  interpreted  as  the  slope  of  the  angular  position  with  respect  to  time
and the slope of the angular speed with respect to time, respectively. The short-dashed and
long-dashed curves depicted in Figure 8 agree with these interpretations. 

‡ Phase Diagrams

In  the section Analysis,  we evaluated a  set  of  kinematic  quantities  such as  qHtL,  q
°
HtL,  and

q
..
HtL  to  describe  the  oscillations  of  the  masses.  Now,  by  suppressing  the  time  variable,  t,

we apply ParametricPlot and graph subsets of these quantities, namely 9q, q
°
=, :q, q

..
>,

:q
°
, q
..
>,  and  :q, q

°
, q
..
>.  We also  display  the  same sets  for  the  uncharged  pendulums.  These

are all shown in Figure 9.
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neutral = 8qcoordinate, qspeed, qacc< =
Table@D@q@tD ê. soleqnsqP2T, 8t, n<D, 8n, 0, 2<D;

s12 =
ShowA9ParametricPlotAFlatten@8neutralP1T, neutralP2T<D,

9t, 1 µ 10-8, 3=,

PlotStyle Ø 8Thickness@0.004D, GrayLevel@0D<E,

ParametricPlotAFlatten@8repulsiveP1T, repulsiveP2T<D,

9t, 1 µ 10-8, 3=,

PlotStyle Ø 8Thickness@0.004D, GrayLevel@0D,
Dashing@80.02<D<E=, ImageSize Ø 250,

AxesLabel Ø 9q, q
°
=, AspectRatio Ø 1E;

s13 =

ShowB9ParametricPlotAFlatten@8neutralP1T, neutralP3T<D,

9t, 1 µ 10-8, 3=,

PlotStyle Ø 8Thickness@0.004D, GrayLevel@0D<E,

ParametricPlotAFlatten@8repulsiveP1T, repulsiveP3T<D,

9t, 1 µ 10-8, 3=,

PlotStyle Ø 8Thickness@0.004D, GrayLevel@0D,
Dashing@80.02<D<E=, ImageSize Ø 250, PlotRange Ø All,

AxesLabel Ø :q, q
".."

>, AspectRatio Ø 1F;

s23 =

ShowB9ParametricPlotAFlatten@8neutralP2T, neutralP3T<D,

9t, 1 µ 10-8, 3=,

PlotStyle Ø 8Thickness@0.004D, GrayLevel@0D<E,

ParametricPlotA

Flatten@8repulsiveP2T, 0.4 repulsiveP3T<D,
9t, 1 µ 10-8, 3=,

PlotStyle Ø 8Thickness@0.004D, GrayLevel@0D,
Dashing@80.02<D<E=, ImageSize Ø 250, PlotRange Ø All,

AxesLabel Ø :q
°
, q

".."
>, AspectRatio Ø 1F;

A Study of Super-Nonlinear Motion of a Simple Pendulum 13

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.



s3D123 =

ShowB

9ParametricPlot3DA

Flatten@8neutralP1T, neutralP2T, 0.4 neutralP3T<D,
9t, 1 µ 10-8, 3=,

PlotStyle Ø 8Thickness@0.004D, GrayLevel@0D<E,

ParametricPlot3DA

Flatten@8repulsiveP1T, repulsiveP2T, 0.4 repulsiveP3T<D,
9t, 1 µ 10-8, 3=,

PlotStyle Ø 8Thickness@0.004D, GrayLevel@0D,
Dashing@80.02<D<E=, ImageSize Ø 250, PlotRange Ø All,
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Ú Figure 9. The solid and the dashed curves are the “phase diagrams” of the uncharged and the 
charged pendulums, respectively.

With the exception of the top-left graph, a traditional phase diagram, the other three dia-
grams have seldom, if ever, been discussed in literature. These three graphs are examples
demonstrating how Mathematica can be deployed to explore fresh ideas. Their descriptive
interpretations  are  explicit;  they  are  useful  graphs  assisting  our  understanding  of  the
physics of the problem. One of the objectives of this article is to demonstrate the impact
of  the  electrostatic  interactions  of  the  charged  pendulums  on  the  oscillations  of  the
masses. The two scenarios are distinguished from one another by the presence of electric
charge. Hence, to avoid the auxiliary potential side effects, such as mechanical collisions
of  the  uncharged  masses,  we  assume  the  uncharged  pendulums  pass  through  each  other
when they meet. Therefore, the solid curve in the top-left plot of Figure 9 is symmetrically
extended to the q < 0 domain. The charged and the uncharged pendulums begin from the
same  horizontal  position,  q = p ê 2.  Their  respective  angular  position  q  and  the  angular
speed  q

°
 change  accordingly.  Beyond  q = p ê 2,  the  super-nonlinearity  of  the  oscillations

causes  these  two  curves  to  diverge.  In  addition,  the  abscissa  of  the  dashed  curve  is  the
smallest separation angle of the charged pendulums. 
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‡ Conclusion
The analysis of the characteristics of perturbed motion of a simple pendulum as presented
in  this  article  illustrates  the  features  of  nonlinear  dynamics  and  its  interface  with
mechanics and electrostatics. The author’s extensive search of the literature indicated that
this analysis is new. The proposed project accomplishes several instructional and research-
oriented  objectives.  The  author  applied  the  basic  principles  of  mechanics  that  are  being
taught in introductory physics and engineering courses and laid the foundation one step at
a time to develop the equations describing the physics of the problem. A quick review of
the  article  will  convince  the  reader  that  the  concept  of  the  project  is  not  hard  to  grasp;
however,  its  detailed  analysis  leading  to  a  quantifiable  understanding  hinges  upon  the
solutions  of  the  challenging  equations  of  motion.  Without  Mathematica’s  powerful  and
flexible  tools,  such  as  NDSolve,  as  well  as  its  numerical  and  especially  its  graphics
utilities,  the  analysis  of  this  project,  the  super-nonlinear  motion  of  the  pendulum,  might
have remained unnoticed.
Throughout  the  article,  with  its  analysis  and  the  accompanying  Mathematica  programs,
the  author  encourages  the  reader  to  examine  features  of  extended  challenging  scenarios.
The article thus suggests a road map for explorations of problems in physics and extends
the  scope  of  the  current  status  of  nonlinear  dynamics.  For  instance,  in  most  texts  the
nonlinear motion of a simple pendulum is limited to the analysis of “the large amplitude
oscillations” of an uncharged, mechanical pendulum. This article extends consideration to
additional nonmechanical perturbation forces.

To  make  the  project  as  comprehensive  as  possible,  the  author  built  a  real-life  replica  of
the study. For practical reasons, two 0.4 caliber cylindrical neodymium magnets are used
to mimic the effects of the electrostatic repulsive forces; a digital photo of the replica is in-
cluded in Figure 1 (right). 
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