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Substitutions and Replacements in 
Mechanism Prototyping 
Case Studies with LinkageDesigner

Gábor Erdos 
In  parameterized  mechanism design,  there  are  two contradicting  require-
ments:  keep  the  governing  equation  as  general  as  possible  (everything  in
symbolic form), but be able to quickly look at (or simulate) the mechanism
and see how it moves at every stage of the design process (which requires
numeric  representation).  Handling  symbolic  and  numerical  representa-
tions  together  is  a  basic  paradigm of  symbolic  manipulator  programs  like
Mathematica.  The  solutions  developed  for  this  paradigm  can  be  used  for
enhancing  the  flexibility  of  a  mechanism  prototyping  application  package
written  in  Mathematica.  This  article  shows  some  examples  of  mechanism
modeling  with  the  LinkageDesigner  application  package  that  uses  this
bundled  symbolic  and  numeric  representation.  The  bridge  between  the
two  representations  is  substitution,  enabling  a  one-way  route  from  sym-
bolic to numeric representation. A historical parabola-drawing mechanism
and the spirograph will  be used as examples.  Besides the power of substi-
tution,  replacement  is  also  widely  used  in  LinkageDesigner.  This  simple
tool  can be handy in solving problems like the inverse kinematic  problem
(IKP). Two examples will be considered: the IKP of a 6R robot and a par-
allel mechanism with three degrees of freedom.

‡ Introduction
Parameterized  mechanism  modeling  appeals  to  designers  because  it  can  greatly
simplify  the  design  process.  Mechanism design  is  an  iterative  process;  since  the
specifications  are  continually  changing,  the  mechanism  should  adopt  them.
Parametrized mechanism models can support the evolution of a design if changes
in  the  specification  can  be  achieved  with  small  adaptations  of  the  parameters.
The  theory  of  computer-aided  mechanism  modeling  distinguishes  two  main
techniques: augmented and embedded. The first approach models the configura-
tion  of  the  mechanism  by  a  vector  of  Cartesian  coordinates  that  describes  the
locations  and  orientations  of  the  links  relative  to  the  reference  frame.  In  the
embedded  approach,  generalized~or  joint~coordinates  are  used  to  specify  the
postures  of  the  links.  Both  modeling  techniques  can  handle  parameterized
mechanisms to some extent; however, the selected modeling technique naturally
influences  the  data  model  of  the  mechanism,  the  type  of  solver  employed,  and
also the type of problems that can be effectively addressed.

In the augmented technique, the topology of the mechanism is flattened because
the position and orientation of every link is maintained relative to the global ref-
erence  frame.  The  topology  of  every  mechanism can  be  modeled  with  a  simple
tree, having the ground link in the root and all the moving links connected to the
root. Every link of the mechanism is defined with six coordinates (or in the case
of  a  planar  mechanism,  with  three  coordinates).  The physical  constraints  of  the
mechanism (joints) are modeled with a set of constraint equations. The different
types  of  constraints  are  modeled  with  a  specific  number  of  constraint  equations
(e.g.,  a  hinge  imposes  five  constraint  equations)  [1].  Redundant  constraint
equations  are  created  if  the  mechanism  contains  loops.  For  example,  a  loop-
closing  rotational  joint  might  impose  @5, 4, …, 0D  independent  constraint
equations  depending  on  the  actual  configuration  of  the  mechanism.  The
topology  of  the  links  is  not  taken  into  consideration  because  the  constraint
equations  are  usually  not  all  independent.  This  implies  that  the  mechanism
cannot  be  solved  with  an  ordinary  root-finding  algorithm  like  FindRoot,  so  it
requires  a  special  solver.  This  special  solver  is  inherently  numerical  [2];
therefore,  a  parametrized  mechanism~where  the  constraint  equations  are
generated with the parameters~should be converted to numerical terms before a
posture can be calculated. 
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In the augmented technique, the topology of the mechanism is flattened because
the position and orientation of every link is maintained relative to the global ref-
erence  frame.  The  topology  of  every  mechanism can  be  modeled  with  a  simple
tree, having the ground link in the root and all the moving links connected to the
root. Every link of the mechanism is defined with six coordinates (or in the case
of  a  planar  mechanism,  with  three  coordinates).  The physical  constraints  of  the
mechanism (joints) are modeled with a set of constraint equations. The different
types  of  constraints  are  modeled  with  a  specific  number  of  constraint  equations
(e.g.,  a  hinge  imposes  five  constraint  equations)  [1].  Redundant  constraint
equations  are  created  if  the  mechanism  contains  loops.  For  example,  a  loop-
closing  rotational  joint  might  impose  @5, 4, …, 0D  independent  constraint
equations  depending  on  the  actual  configuration  of  the  mechanism.  The
topology  of  the  links  is  not  taken  into  consideration  because  the  constraint
equations  are  usually  not  all  independent.  This  implies  that  the  mechanism
cannot  be  solved  with  an  ordinary  root-finding  algorithm  like  FindRoot,  so  it
requires  a  special  solver.  This  special  solver  is  inherently  numerical  [2];
therefore,  a  parametrized  mechanism~where  the  constraint  equations  are
generated with the parameters~should be converted to numerical terms before a
posture can be calculated. 

The big disadvantage of the augmented method is that it requires a special solver
even  in  the  case  of  kinematic  modeling.  However,  if  we  could  eliminate  the
redundant  constraint  equations  before  solving  them,  a  simple  solver  like
FindRoot  could  be  employed.  One  natural  solution  would  be  to  let  the  user
resolve  the  problem.  This  way  the  independent  constraint  equations  can  be
further  processed~even  solved  in  closed  form  if  there  is  a  solution;  therefore,
they are better suited for parametrized mechanism modeling. 

LinkageDesigner  uses  the  embedded  notation.  In  this  method  the  topology
matches the kinematic graph of the mechanism. The kinematic graph is an undi-
rected  graph  where  the  nodes  represent  links  and  the  edges  the  joints  between
the links. To describe the configuration of a mechanism, the relative transforma-
tion between the connected links is attached to the edges of the kinematic graph.
The  independent  variables  of  these  transformations  are  the  driving  variables
of the mechanism. If the kinematic graph has a loop, the loop-closing kinematic
pair is treated differently. Instead of the relative transformation, the set of inde-
pendent constraint equations is attached to the edges of the graph. Because em-
bedded notation always works with the minimal number of constraint equations
and does not require a special solver, it can effectively support the design process
even in the case of a complicated multi-looped mechanism.

The parameterized mechanism allows the designer to handle a family of mecha-
nisms  together.  By  substituting  the  parameters  with  numerical  values,  a  specific
instance of the family is obtained. The following sections present examples mod-
eled with the LinkageDesigner  application package,  where we can see that  build-
ing a bridge between the generic and specific representation of a family of mecha-
nisms  can  be  implemented  with  a  simple  approach  using  substitution  and
replacements. 

‡ Parabola-Drawing Mechanism
Even  the  ancient  Greek  mathematicians  and  engineers  invented  different  kinds
of  curve-drawing mechanisms to  help  them solve  different  design problems.  All

Substitutions and Replacements in Mechanism Prototyping 253

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.



Even  the  ancient  Greek  mathematicians  and  engineers  invented  different  kinds
of  curve-drawing mechanisms to  help  them solve  different  design problems.  All
of  these  linkages  incorporate  one  special  feature  of  the  curves  that  became  the
working  principle  of  the  mechanism.  The  following  parabola-drawing  mecha-
nism, described in [3], is probably one of the latest inventions in this field. After
the  appearance  of  personal  computers,  these  mechanisms  were  no  longer  used.
The mechanism is based on the following corollary. 

Corollary 1. Let g be the line perpendicular to the axis t of the parabola (see Fig-
ure 1) and p be the distance from the focus to the directrix of the parabola. If the distance
of g from the vertex of the parabola is OB0 = 2 p, then for an arbitrary point P on the
parabola, the angle POB is 90°, where B is the intersection of the lines e and g, with e
parallel to t. 

Figure 1. Parabola construction.

Corollary  1  implies  the  working  principle  of  the  parabola-drawing  mechanism:
if  a  right-angled  triangle  is  rotated  in  the  vertex  of  the  parabola,  the  third  side
of the triangle touches the points of the parabola.  The mechanism should natu-
rally  be  designed  in  such  a  way  that  the  side  BP  of  the  triangle  (see  Figure  1)
should  move  up  and  down along  line  g  and  its  size  should  be  able  to  shrink  or
grow. The designed mechanism is shown in Figure 2.
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Figure 2. Parabola-drawing mechanism.

The mechanism definition  is  not  presented  here;  only  the  predefined  linkage  is
used. As mentioned in the Introduction, LinkageDesigner  employs the embedded
mechanism modeling method.  This  implies  that  constraint  equations are gener-
ated  only  for  loop-closing  kinematic  pairs.  To  investigate  the  equations,  load
LinkageDesigner and the LinkageData of the parabola-drawing mechanism.

In[2]:=  LinkageDesigner`

In[3]:= Get"parabola.ld"
Out[3]= LinkageData,8

The  defined  mechanism  contains  two  loops,  displayed  with  red  dotted  lines  in
Figure 2. The loop-closing constraint equations constrain the joint variables that
were independent before. The independent joint variables of the mechanism are
stored  in  the  $DrivingVariables  record  of  the  LinkageData,  while  the  im-
plicitly  defined  (or  constrained)  joint  variables  are  stored  in  the  $Derived
ParametersB  record.  Both  records  store  the  variable  names  and  their  actual
substitution values. The $DerivedParametersB record also stores the constraint
equations to be solved. 

Here are the generated constraint equations of the mechanism.

In[4]:= TableFormRationalize
Simplifyparabola"$DerivedParametersB"All, 2, 3

Out[4]//TableForm= 

q1  0.785398
q2  4.24264

x  q2 Cosq1 0

q2 Sinq1 y

q4  4.24264

q5  0.785398

q4 Cosq1 q2 Sinq1
Cosq1 Cosq5 1  Sinq1 Sinq5

These are the driving variables of the mechanism.

In[5]:= parabola"$DrivingVariables"  Rationalize
Out[5]= y  3, x  3
The  parametric  representation  of  the  constraint  equation  makes  it  simple  to
calculate the new posture of the mechanism. If new substitution values of the inde-
pendent parameters (in this case x  and y ) are assigned, they are substituted into
the  constraint  equations,  which  become  definite  and  then  are  solved  for  the
dependent  variables.  This  iterative  substitution-solving  process  is  implemented
in  the  AnimateLinkage  function  to  generate  an  animation  of  the  mechanism
if its independent variables are interpolated between the specified limit values. 
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The  parametric  representation  of  the  constraint  equation  makes  it  simple  to
calculate the new posture of the mechanism. If new substitution values of the inde-
pendent parameters (in this case x  and y ) are assigned, they are substituted into
the  constraint  equations,  which  become  definite  and  then  are  solved  for  the
dependent  variables.  This  iterative  substitution-solving  process  is  implemented
in  the  AnimateLinkage  function  to  generate  an  animation  of  the  mechanism
if its independent variables are interpolated between the specified limit values. 

The mechanism draws a parabola if the x driving variable (i.e., corresponding to
the translational position of the Carriage) is set to a fixed value and the y driving
variable is interpolated within an interval. The y driving variable corresponds to
the translational position of the Ruler (see Figure 2). 

In[6]:= AnimateLinkageparabola, y  4.0, x  3.0, y  0,
Resolution 10, MaxIterations 500, AccuracyGoal 8,

LinkMarkers "Drawcar", MarkerSize 1,
TracePoints "Drawcar", 0, 0, 1, Axes  True,
FaceGrids 0, 0, 1, ViewPoint 0, 0, 10,
Ticks Automatic, Automatic, None

Out[6]=

‡ Spirograph
The  spirograph  is  a  very  simple  mechanism  consisting  of  two  rigid  bodies  that
are  connected  by  a  rolling  constraint.  The  rolling  constraint  is  a  higher-order
constraint  because  the  general  constraint  definition  requires  geometric  data
of  the  kinematic  pair  (rolling  curve  definitions),  unlike  the  lower-order  con-
straints  (e.g.,  a  hinge  or  translational  joint),  where  a  marker’s  location  fully
defines the joint. However, if the rolling curves are circles, the higher-order joint
could  be  easily  substituted  with  two  rotational  joints  because  the  rolling
constraints between circles are very simple. 
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Figure 3. Spirograph mechanism.

In  this  example,  a  spirograph  having  an  inner  and  outer  planet  wheels  is  built.
Both wheels have the same radius r and roll on the same ring of radius R. To sub-
stitute  the  rolling  constraint,  a  virtual  body  is  also  introduced  (called  the  Arm)
that is responsible for rotating the centers of the wheels on circles. This way the
rolling  constraint  is  substituted  with  two  rotational  joints~the  first  rotates  the
Arm around the origin of the Ring, while the second rotates the wheels attached
to the arms at distances R - r and R + r s from the origin. The joint variables rep-
resenting the two rotational  joints  are not independent because the rolling con-
straint  makes  them  dependent  on  each  other.  This  dependency  is  incorporated
into  the  mechanism during  its  definition.  Because  the  definition  of  this  mecha-
nism is very short, it is included below.

Create the LinkageData of the mechanism with two geometrical parameters. 

In[7]:= spiro  CreateLinkage"spiro",
WorkbenchName  "Ring", SimpleParameters  R  10, r  5;

Define the rotational joint between Ring and the virtual link Arm.

In[8]:= DefineKinematicPairTospiro, "Rotational",

q, "Ring", MakeHomogeneousMatrix0, 0, 0,
"Arm", MakeHomogeneousMatrix0, 0, 0;

Define the rotational joint between Arm and OuterWheel.

In[9]:= DefineKinematicPairTospiro, "Rotational",

out, "Arm", MakeHomogeneousMatrixR  r, 0, 0,
"OuterWheel", MakeHomogeneousMatrix0, 0, 0;

Define the rotational joint between Arm and InnerWheel.

In[10]:= DefineKinematicPairTospiro, "Rotational",

in, "Arm", MakeHomogeneousMatrixR  r, 0, 0,
"InnerWheel", MakeHomogeneousMatrix0, 0, 0;

So far the mechanism has three degrees of freedom: the three independent joint
variables.  The  rolling  constraint  can  be  incorporated  in  such  a  way  that  the
rotational joint variables out and in depend on the radii of the Wheel and the
Ring,  and  the  joint  variables  q  of  the  hinge  joint  between  Ring  and  Arm.
LinkageDesigner  provides the function ReplaceDrivingVariables  to allow such
transactions. 
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So far the mechanism has three degrees of freedom: the three independent joint
variables.  The  rolling  constraint  can  be  incorporated  in  such  a  way  that  the
rotational joint variables out and in depend on the radii of the Wheel and the
Ring,  and  the  joint  variables  q  of  the  hinge  joint  between  Ring  and  Arm.
LinkageDesigner  provides the function ReplaceDrivingVariables  to allow such
transactions. 

ReplaceDrivingVariables[linkage,new,old,opts] moves the old driving 
variables into $DerivedParametersA and adds the new driving variables to 
$DrivingVariables.

Introduce the rolling constraint of the mechanism.

In[11]:= spiro  ReplaceDrivingVariablesspiro,
  0, q  , out  Rr, in  Rr

ReplaceDrivingVariables::dofchg :
Warning The number of driving variables are changed from 3 to

1 This might cause error in the D.O.F. calculations

Out[11]= LinkageData,7

Attach geometry to the Ring, InnerWheel, and OuterWheel links.

In[12]:= spiro"$LinkGeometry", "Ring" 
Graphics3DOpacity0.5, Cylinder0, 0, 0, 0, 0, 1, R;

spiro"$LinkGeometry", "OuterWheel" 
Graphics3DSurfaceColorBlue, LinkShape0, r, r, 0.1;

spiro"$LinkGeometry", "InnerWheel" 
Graphics3DSurfaceColorYellow, LinkShape0, r, r, 0.1;

The spirograph mechanism is fully defined, having one degree of freedom, which
is represented in the   driving variable.  The variables out  and in  became ex-
plicitly  derived  parameters  as  a  result  of  the  ReplaceDrivingVariables
function.  The  spirograph  mechanism  describes  a  family  of  similar  mechanisms
differing  only  in  the  substitution  value  of  the  geometric  parameters.  To  select
one mechanism from the family, set a new numerical value to the parameter that
will be substituted in the numerical calculations. 
Set the radii of Ring and the Wheels with 8R Ø 2, r Ø 1<.

In[15]:= SetSimpleParametersTospiro, R  2, r  1,
MaxIterations  150, AccuracyGoal  8;

Animate the linkage.
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In[16]:= AnimateLinkagespiro,   0,   2 , Resolution 30,

LinkMarkers "InnerWheel", MakeHomogeneousMatrixr, 0, 0,
MakeHomogeneousMatrixr, 0, 0,

"OuterWheel", MakeHomogeneousMatrixr, 0, 0,
MakeHomogeneousMatrixr, 0, 0,

MarkerSize 1,
TracePoints "InnerWheel", r, 0, 1, r, 0, 1,

"OuterWheel", r, 0, 1, r, 0, 1,
TraceStyle Thickness0.01, Red, ViewPoint  0, 0, 10,
Axes  True, FaceGrids 0, 0, 1,
Ticks Automatic, Automatic, None

Out[16]=

‡ Inverse Kinematics with Replacements
The solution of the IKP is one of the most challenging problems in manipulator
design.  The  problem  is  formulated  as  follows:  given  the  desired  position  and
orientation  of  the  tool  relative  to  the  reference  coordinate  frame,  calculate  the
set of joint angles that moves the tool into this posture. Numerous solution tech-
niques have been developed that  range from numerical  solutions to closed form
solutions.  For  a  summary  of  the  existing  techniques,  consult  any  standard  text-
book on robotics [4, 5]. In this section, a shortcut solution will be presented that
enables  the  designer  to  quickly  solve  the  inverse  kinematic  equation.  This
solution is based on simple replacements of the driving variables and utilizes the
same  ReplaceDrivingVariables  function  that  was  employed  in  the  previous
section.
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· Serial Manipulator

The 6R manipulator shown in Figure 4 is generated with the presented Denavit
and  Hartenberg  (D-H)  parameters.  The  manipulator  is  an  open  chain
mechanism;  therefore,  the  embedded  method  does  not  generate  constraint
equations.  The  manipulator  has  six  degrees  of  freedom  that  are  represented  by
the driving variables q1, q2, …. In the inverse problem, we would like to “drive”
the  mechanism by commanding the  tool  with  regard to  the  Cartesian  reference
frame.  This  leads to the idea that  if  the position and orientation of  the tool  are
parameterized,  these  parameters  could  become  the  new  driving  values  of  the
mechanism and the old ones should be constrained with equations containing the
new  driving  variables.  This  way  of  setting  the  substitution  value  for  the  new
driving  variables  and  then  solving  the  constraint  equations  of  the  IKP  would
result  in  the  substitutional  values  of  the  joint  variables,  which  in  turn  are
substituted  into  the  homogeneous  transformation,  and  the  new  posture  of  the
mechanism is calculated. 
To follow this process, the mechanism definition is not presented here; the pre-
defined  mechanism  will  be  loaded,  and  only  the  replacement  procedure  is
discussed in detail.

 

a d A Q

1 a1 d1 90 ° Q1
2 a2 d2 180 ° Q2
3 0 d3 90 ° Q3
4 0 d4 90 ° Q4
5 0 0 90 ° Q5
6 0 d6 0 Q6

Figure 4. 6R manipulator.

Load the LinkageData of the 6R manipulator.

In[17]:= Get"manipulator.ld"
Out[17]= LinkageData,8

In order to solve the IKP, the equation should first be defined. In this example,
the local reference frame of link6 (see Figure 4) is  considered as the tool frame.
This selection is arbitrary, but the method would work for any other tool frame.
The new driving variables are the position vector of the origin and the Euler an-
gles  of  the  orientation  of  this  frame,  denoted  by  {x,y,z,,,}.  To  generate
the constraint equation, the homogeneous transformation matrix of link6 is cal-
culated with respect to the world reference frame Ground.
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In order to solve the IKP, the equation should first be defined. In this example,
the local reference frame of link6 (see Figure 4) is  considered as the tool frame.
This selection is arbitrary, but the method would work for any other tool frame.
The new driving variables are the position vector of the origin and the Euler an-
gles  of  the  orientation  of  this  frame,  denoted  by  {x,y,z,,,}.  To  generate
the constraint equation, the homogeneous transformation matrix of link6 is cal-
culated with respect to the world reference frame Ground.

Retrieve the transformation matrix of LLRF6.

In[18]:= mx  GetLLRFMatrixmanipulator, "link6",
ReferenceFrame  "Ground", SubstituteParameters  False;

Extract  the  position  vector  of  the  origin  from  mx  and  make  it  equal  to  the
8x, z, y< vector.

In[19]:= eq1  MapThreadEqual, Dropmx.0, 0, 0, 1, 1, x, y, z;
The orientation of a frame is coded in the 3 µ 3 rotation matrix part of the homo-
geneous matrix.  The rotation matrix  is  an orthonormal 3 µ 3 matrix  that  can be
represented with three independent parameters. In the literature there are many
rotation  matrix  representations  such  as  Euler  angles,  Euler  parameters,
Rodriguez parameters, and roll-yaw-pitch. These are equivalent representations;
therefore, we could pick any of them to use as driving variables in the IKP. From
a  technical  point  of  view,  the  Rodriguez  parameters  are  the  easiest  to  calculate
from a  given  rotation  matrix.  Therefore,  the  generation  of  the  constraint  equa-
tion for the orientation of the tool is done in three steps.

1. Select the rotation matrix representation (e.g.,  Euler angles) and define
the rotation matrix using the parameters of the selected representation.
This matrix is called rotmx1.

2. Extract  the  rotation  matrix  from  the  tool  matrix.  This  matrix  is  called
rotmx2.

3. Extract  the  Rodriguez  parameters  from  rotmx1  and  rotmx2  and  make
them equal. 

Define the ExtractRodriguezParameters function.

In[20]:= ExtractRodriguezParametersAmx_?MatrixQ : ModuleVmx, ret,
Vmx  Amx  TransposeAmx;
ret  Vmx3, 2, Vmx1, 3, Vmx2, 1;
Returnret


Define the rotation matrix  with the new driving variables  8f, q, y<  based on the
Euler angles parametrization.
In[21]:= rotmx1  RotationMatrixLD0, 0, 1, .

RotationMatrixLD1, 0, 0, .RotationMatrixLD0, 0, 1, ;
Extract the rotation matrix from the LLRF6 homogeneous matrix.

In[22]:= rotmx2  ExtractRotationMatrixmx;
Create the constraint equation for the orientation of the tool. 

In[23]:= eq2  ThreadExtractRodriguezParametersrotmx1
ExtractRodriguezParametersrotmx2;
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Replace the old driving variables of the manipulator with the parameter, specify-
ing the position and orientation of the tool. 

In[24]:= manipINV  Appendmanipulator,
"$DerivedParametersB", "inv", 1  0.2, 2  0.2, 3  1.57,

4  0.3, 5  0.1, 6  0.1, SimplifyJoineq1, eq2
manipINV"$DrivingVariables"  x  135., y  20,

z  800 ,   0. °,   0. °,   0. °
Out[24]= LinkageData,7

Out[25]= x  135., y  20, z  800,   0.,   0.,   0.
In[26]:= SetDrivingVariablesTomanipINV,

x   200, y  200, z  700,   90. °,   0. °,   0. °,
MaxIterations  1500, AccuracyGoal  3

Out[26]= LinkageData,7

Generate a substitution list for the manipulator’s parameter, as the IKP parame-
ters are interpolated along a path.

In[27]:= sub  GetLinkageRulesmanipINV, 
  0. °,   0. °,

  0. °, x   200., y  200., z  700.,
  0. °,   90. °,   0. °, x   200.,

y  200., z  700.,
  0. °,   90. °,   0. °, x  200.,
y  200., z  700.,

  90. °,   90. °,   0. °, x  200.,
y  200., z  700.,

  90. °,   90. °,   0. °, x  200.,

y  200., z  700.,
  90. °,   90. °,   90. °, x  200.,

y  200., z  700.,
  90. °,   90. °,   90. °, x  200.,

y  200., z  700.,
  90. °,   90. °,   90. °, x   200.,

y  200., z  700.,
Resolution  35, MaxIterations  5000,

SubstituteParameters  True, AccuracyGoal  3;
Plug in the calculated joint variables of the original (direct manipulator) to visu-
ally  check  the  result  of  the  calculation  (to  minimize  the  size  of  the  notebook,
only every tenth interpolation point is used in the animation). 
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In[28]:= AnimateLinkagemanipulator, Partitionsub, 10All, 1,
Resolution None, LinkMarkers "Ground", "link6",
MarkerSize 150, TracePoints "link6",
FaceGrids 0, 1, 0, 1, 0, 0, 0, 0, 1, Axes  True

Out[28]=

Plot the axis interpolation as the tool follows the prescribed path.
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In[29]:= ShowGraphicsArrayWith
ls  ListLinePlot . sub,

GridLines  Automatic,
PlotStyle  Thickness0.01, Hue0.1,
PlotLabel  ,
DisplayFunction  Identity & 

1, 2, 3, 4, 5, 6, Partitionls, 2




Out[29]=
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· Parallel Manipulator

Unlike serial manipulators, parallel manipulators contain loops in their kinematic
graph;  therefore,  during  the  modeling  phase,  constraint  equations  are  created.
The process presented for the serial manipulator that quickly calculated the IKP
could  be  applied  to  this  case  in  exactly  the  same  way.  The  manipulator  is
patented  by  NASA (U.S.  Patent  No.  5,816,105).  The  mechanism has  three  de-
grees of freedom with three loops in the kinematic graph (see Figure 5).
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Figure 5. NASA Parallel manipulator.

The mechanism definition is not presented here; the predefined mechanism will
be loaded and only the replacement procedure is discussed in detail.
In[30]:= Get"nasa.ld";
Here is the list of defined constraint equations.

In[31]:= TableFormRationalize
Simplifynasa"$DerivedParametersB"All, 2, 3

Out[31]//TableForm= 

q1  1.57254
q3  701766.

CosA Cosq1 CosC SinA Sinq1
Cosq1 Cosq3 SinA 

CosA CosC Cosq3 Sinq1 
SinC Sinq1 Sinq3 1

q2  12.5664

q4  1.56905

CosA CosB Cosq4 SinB Sinq4
Cosq2 CosA Cosq4 SinB 

CosB Sinq4 1  Cosq4 SinA Sinq2
q5  669528.

q6  398590.

p61 Cosq6  p72 Cosq3  q4  q6
p61 Cosq3  q4  q5  q6

p72  p61 Sinq6  p72 Sinq3  q4  q6
p61 Sinq3  q4  q5  q6

Here are the simple geometric parameters of the mechanism.

In[32]:= nasa"$SimpleParameters"
Out[32]= r  10, p11  3, p12  6, p31  5, p32  5, p41  1, p42  5,

p51  1, p52  1, p61  10, p71  1, p72  4, p73  1, p91  15
The IKP in this case takes only the position of the end-effector as input because
the mechanism has only three degrees of freedom and cannot specify the position
and orientation together. The output of the IKP is the values of the independent
joint  variables,  which  is  the  rotational  joint  defined  on  motor  3  of  the  Work-
bench link in Figure 5. To define the IKP, the homogeneous transformation ma-
trix of the tool marker should be calculated. 
Get the homogeneous transformation matrix of EndEffector.
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In[33]:= mx  GetLLRFMatrixnasa, "EndEffector",
ReferenceFrame  "Ground", SubstituteParameters  False;

Unlike  the  serial  manipulator,  the  parameters  presented  in  the  transformation
matrix are not all independent because some of them are already constrained by
the  loop-closing  constraint  equations  as  listed  in  the  $DerivedParametersB
record. Fortunately, this does not cause a problem because the ReplaceDriving
Variables  function  appends  the  constraint  equations  of  the  IKP  to  the
$DerivedParametersB  record.  In  the  case  of  changing independent  parameters
(stored in the $DrivingVariables and $SimpleParameters records), the solver
lumps  together  all  constraint  equations  and  solves  them.  Thus  all  constraints
imposed either by loop-closing or IKP are satisfied.

Calculate the constraint equation of the IKP.

In[34]:= eq  ThreadExtractTranslationVectormx X, Y, Z;
Replace the driving variables with the parameters of the IKP (8X , Y , Z<).

In[35]:= nasaINV  nasa;

nasaINV"$DerivedParametersB" 
Appendnasa"$DerivedParametersB",
"inv", C  0.0017, B  0.0017, A  0.0017, eq;

nasaINV"$DrivingVariables"  X  10, Y  1.5, Z  10;
SetDrivingVariablesTonasaINV, X  10, Y  1.5, Z  10,
MaxIterations  150, AccuracyGoal  8

Out[38]= LinkageData,7

Generate a substitution list  for the mechanism’s parameters as the IKP parame-
ters are interpolated along a path.

In[39]:= sub  GetLinkageRulesnasaINV,
X  0, Y  5., Z  10., X  10., Y  5., X  0,
Y  5., Z  20., X  10., Y  5., X  0., Z  10.,
X  10., Y  5, Resolution  20, MaxIterations  1500,

SubstituteParameters  True, AccuracyGoal  5;
Plug in  the calculated joint  variables  of  the original  (direct  mechanism) to  visu-
ally  check  the  result  of  the  calculation  (to  minimize  the  size  of  the  notebook,
only every tenth interpolation point is used in the animation).
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In[40]:= AnimateLinkagelinkage, Partitionsub, 10All, 1,
Resolution None, LinkMarkers "1", "3", MarkerSize  2,
Boxed True, FaceGrids 0, 0, 1, 0, 1, 0, 1, 0, 0,
Axes  True, TracePoints "EndEffector", 0, 0, 0

Out[40]=

Plot the axis interpolation as EndEffector follows the prescribed path.
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In[41]:= ShowGraphicsArrayWith
ls  ListLinePlot . sub,

GridLines  Automatic,
PlotStyle  Thickness0.01, Hue0.1,
PlotLabel  ,
DisplayFunction  Identity &  A, B, C,

Partitionls, 1




Out[41]=
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‡ Conclusion
The embedded method works with a minimal set of constraint equations that are
automatically  generated.  It  represents  the  mechanism  as  a  graph  that  enables
measuring  the  relative  transformation  of  two  arbitrary  points  or  frames  of  the
mechanism. These two features make this method very attractive for use in mech-
anism  prototyping  because  any  design  equation  can  be  easily  generated  in  a
parameterized  form that  could  be  further  processed  by  Mathematica  to  arrive  at
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The embedded method works with a minimal set of constraint equations that are
automatically  generated.  It  represents  the  mechanism  as  a  graph  that  enables
measuring  the  relative  transformation  of  two  arbitrary  points  or  frames  of  the
mechanism. These two features make this method very attractive for use in mech-
anism  prototyping  because  any  design  equation  can  be  easily  generated  in  a
parameterized  form that  could  be  further  processed  by  Mathematica  to  arrive  at
the  optimized  substitution  values  of  the  parameters.  Once  the  design  is  defined
and optimized, the mathematical model of the resulting mechanism is defined as
a  set  of  parameterized  transformations  and  constraints  and  a  list  of  substitution
values of the parameters. 
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