
The Mathematica®Journal

Substitutions and Replacements in
Mechanism Prototyping
Case Studies with LinkageDesigner

Gábor Erdos
In parameterized mechanism design, there are two contradicting require-
ments: keep the governing equation as general as possible (everything in
symbolic form), but be able to quickly look at (or simulate) the mechanism
and see how it moves at every stage of the design process (which requires
numeric representation). Handling symbolic and numerical representa-
tions together is a basic paradigm of symbolic manipulator programs like
Mathematica. The solutions developed for this paradigm can be used for
enhancing the flexibility of a mechanism prototyping application package
written in Mathematica. This article shows some examples of mechanism
modeling with the LinkageDesigner application package that uses this
bundled symbolic and numeric representation. The bridge between the
two representations is substitution, enabling a one-way route from sym-
bolic to numeric representation. A historical parabola-drawing mechanism
and the spirograph will be used as examples. Besides the power of substi-
tution, replacement is also widely used in LinkageDesigner. This simple
tool can be handy in solving problems like the inverse kinematic problem
(IKP). Two examples will be considered: the IKP of a 6R robot and a par-
allel mechanism with three degrees of freedom.

‡ Introduction
Parameterized mechanism modeling appeals to designers because it can greatly
simplify the design process. Mechanism design is an iterative process; since the
specifications are continually changing, the mechanism should adopt them.
Parametrized mechanism models can support the evolution of a design if changes
in the specification can be achieved with small adaptations of the parameters.
The theory of computer-aided mechanism modeling distinguishes two main
techniques: augmented and embedded. The first approach models the configura-
tion of the mechanism by a vector of Cartesian coordinates that describes the
locations and orientations of the links relative to the reference frame. In the
embedded approach, generalized~or joint~coordinates are used to specify the
postures of the links. Both modeling techniques can handle parameterized
mechanisms to some extent; however, the selected modeling technique naturally
influences the data model of the mechanism, the type of solver employed, and
also the type of problems that can be effectively addressed.

In the augmented technique, the topology of the mechanism is flattened because
the position and orientation of every link is maintained relative to the global ref-
erence frame. The topology of every mechanism can be modeled with a simple
tree, having the ground link in the root and all the moving links connected to the
root. Every link of the mechanism is defined with six coordinates (or in the case
of a planar mechanism, with three coordinates). The physical constraints of the
mechanism (joints) are modeled with a set of constraint equations. The different
types of constraints are modeled with a specific number of constraint equations
(e.g., a hinge imposes five constraint equations) [1]. Redundant constraint
equations are created if the mechanism contains loops. For example, a loop-
closing rotational joint might impose @5, 4, …, 0D independent constraint
equations depending on the actual configuration of the mechanism. The
topology of the links is not taken into consideration because the constraint
equations are usually not all independent. This implies that the mechanism
cannot be solved with an ordinary root-finding algorithm like FindRoot, so it
requires a special solver. This special solver is inherently numerical [2];
therefore, a parametrized mechanism~where the constraint equations are
generated with the parameters~should be converted to numerical terms before a
posture can be calculated.

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In the augmented technique, the topology of the mechanism is flattened because
the position and orientation of every link is maintained relative to the global ref-
erence frame. The topology of every mechanism can be modeled with a simple
tree, having the ground link in the root and all the moving links connected to the
root. Every link of the mechanism is defined with six coordinates (or in the case
of a planar mechanism, with three coordinates). The physical constraints of the
mechanism (joints) are modeled with a set of constraint equations. The different
types of constraints are modeled with a specific number of constraint equations
(e.g., a hinge imposes five constraint equations) [1]. Redundant constraint
equations are created if the mechanism contains loops. For example, a loop-
closing rotational joint might impose @5, 4, …, 0D independent constraint
equations depending on the actual configuration of the mechanism. The
topology of the links is not taken into consideration because the constraint
equations are usually not all independent. This implies that the mechanism
cannot be solved with an ordinary root-finding algorithm like FindRoot, so it
requires a special solver. This special solver is inherently numerical [2];
therefore, a parametrized mechanism~where the constraint equations are
generated with the parameters~should be converted to numerical terms before a
posture can be calculated.

The big disadvantage of the augmented method is that it requires a special solver
even in the case of kinematic modeling. However, if we could eliminate the
redundant constraint equations before solving them, a simple solver like
FindRoot could be employed. One natural solution would be to let the user
resolve the problem. This way the independent constraint equations can be
further processed~even solved in closed form if there is a solution; therefore,
they are better suited for parametrized mechanism modeling.

LinkageDesigner uses the embedded notation. In this method the topology
matches the kinematic graph of the mechanism. The kinematic graph is an undi-
rected graph where the nodes represent links and the edges the joints between
the links. To describe the configuration of a mechanism, the relative transforma-
tion between the connected links is attached to the edges of the kinematic graph.
The independent variables of these transformations are the driving variables
of the mechanism. If the kinematic graph has a loop, the loop-closing kinematic
pair is treated differently. Instead of the relative transformation, the set of inde-
pendent constraint equations is attached to the edges of the graph. Because em-
bedded notation always works with the minimal number of constraint equations
and does not require a special solver, it can effectively support the design process
even in the case of a complicated multi-looped mechanism.

The parameterized mechanism allows the designer to handle a family of mecha-
nisms together. By substituting the parameters with numerical values, a specific
instance of the family is obtained. The following sections present examples mod-
eled with the LinkageDesigner application package, where we can see that build-
ing a bridge between the generic and specific representation of a family of mecha-
nisms can be implemented with a simple approach using substitution and
replacements.

‡ Parabola-Drawing Mechanism
Even the ancient Greek mathematicians and engineers invented different kinds
of curve-drawing mechanisms to help them solve different design problems. All

Substitutions and Replacements in Mechanism Prototyping 253

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

Even the ancient Greek mathematicians and engineers invented different kinds
of curve-drawing mechanisms to help them solve different design problems. All
of these linkages incorporate one special feature of the curves that became the
working principle of the mechanism. The following parabola-drawing mecha-
nism, described in [3], is probably one of the latest inventions in this field. After
the appearance of personal computers, these mechanisms were no longer used.
The mechanism is based on the following corollary.

Corollary 1. Let g be the line perpendicular to the axis t of the parabola (see Fig-
ure 1) and p be the distance from the focus to the directrix of the parabola. If the distance
of g from the vertex of the parabola is OB0 = 2 p, then for an arbitrary point P on the
parabola, the angle POB is 90°, where B is the intersection of the lines e and g, with e
parallel to t.

Figure 1. Parabola construction.

Corollary 1 implies the working principle of the parabola-drawing mechanism:
if a right-angled triangle is rotated in the vertex of the parabola, the third side
of the triangle touches the points of the parabola. The mechanism should natu-
rally be designed in such a way that the side BP of the triangle (see Figure 1)
should move up and down along line g and its size should be able to shrink or
grow. The designed mechanism is shown in Figure 2.

254 Gábor Erdos

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

Figure 2. Parabola-drawing mechanism.

The mechanism definition is not presented here; only the predefined linkage is
used. As mentioned in the Introduction, LinkageDesigner employs the embedded
mechanism modeling method. This implies that constraint equations are gener-
ated only for loop-closing kinematic pairs. To investigate the equations, load
LinkageDesigner and the LinkageData of the parabola-drawing mechanism.

In[2]:=  LinkageDesigner`

In[3]:= Get"parabola.ld"
Out[3]= LinkageData,8

The defined mechanism contains two loops, displayed with red dotted lines in
Figure 2. The loop-closing constraint equations constrain the joint variables that
were independent before. The independent joint variables of the mechanism are
stored in the $DrivingVariables record of the LinkageData, while the im-
plicitly defined (or constrained) joint variables are stored in the $Derived
ParametersB record. Both records store the variable names and their actual
substitution values. The $DerivedParametersB record also stores the constraint
equations to be solved.

Here are the generated constraint equations of the mechanism.

In[4]:= TableFormRationalize
Simplifyparabola"$DerivedParametersB"All, 2, 3

Out[4]//TableForm=

q1  0.785398
q2  4.24264

x  q2 Cosq1 0

q2 Sinq1 y

q4  4.24264

q5  0.785398

q4 Cosq1 q2 Sinq1
Cosq1 Cosq5 1  Sinq1 Sinq5

These are the driving variables of the mechanism.

In[5]:= parabola"$DrivingVariables"  Rationalize
Out[5]= y  3, x  3
The parametric representation of the constraint equation makes it simple to
calculate the new posture of the mechanism. If new substitution values of the inde-
pendent parameters (in this case x and y) are assigned, they are substituted into
the constraint equations, which become definite and then are solved for the
dependent variables. This iterative substitution-solving process is implemented
in the AnimateLinkage function to generate an animation of the mechanism
if its independent variables are interpolated between the specified limit values.

Substitutions and Replacements in Mechanism Prototyping 255

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

The parametric representation of the constraint equation makes it simple to
calculate the new posture of the mechanism. If new substitution values of the inde-
pendent parameters (in this case x and y) are assigned, they are substituted into
the constraint equations, which become definite and then are solved for the
dependent variables. This iterative substitution-solving process is implemented
in the AnimateLinkage function to generate an animation of the mechanism
if its independent variables are interpolated between the specified limit values.

The mechanism draws a parabola if the x driving variable (i.e., corresponding to
the translational position of the Carriage) is set to a fixed value and the y driving
variable is interpolated within an interval. The y driving variable corresponds to
the translational position of the Ruler (see Figure 2).

In[6]:= AnimateLinkageparabola, y  4.0, x  3.0, y  0,
Resolution 10, MaxIterations 500, AccuracyGoal 8,

LinkMarkers "Drawcar", MarkerSize 1,
TracePoints "Drawcar", 0, 0, 1, Axes  True,
FaceGrids 0, 0, 1, ViewPoint 0, 0, 10,
Ticks Automatic, Automatic, None

Out[6]=

‡ Spirograph
The spirograph is a very simple mechanism consisting of two rigid bodies that
are connected by a rolling constraint. The rolling constraint is a higher-order
constraint because the general constraint definition requires geometric data
of the kinematic pair (rolling curve definitions), unlike the lower-order con-
straints (e.g., a hinge or translational joint), where a marker’s location fully
defines the joint. However, if the rolling curves are circles, the higher-order joint
could be easily substituted with two rotational joints because the rolling
constraints between circles are very simple.

256 Gábor Erdos

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

Workbench

x
y
z

-10 -5 0 5 10

0

5

10

Figure 3. Spirograph mechanism.

In this example, a spirograph having an inner and outer planet wheels is built.
Both wheels have the same radius r and roll on the same ring of radius R. To sub-
stitute the rolling constraint, a virtual body is also introduced (called the Arm)
that is responsible for rotating the centers of the wheels on circles. This way the
rolling constraint is substituted with two rotational joints~the first rotates the
Arm around the origin of the Ring, while the second rotates the wheels attached
to the arms at distances R - r and R + r s from the origin. The joint variables rep-
resenting the two rotational joints are not independent because the rolling con-
straint makes them dependent on each other. This dependency is incorporated
into the mechanism during its definition. Because the definition of this mecha-
nism is very short, it is included below.

Create the LinkageData of the mechanism with two geometrical parameters.

In[7]:= spiro  CreateLinkage"spiro",
WorkbenchName  "Ring", SimpleParameters  R  10, r  5;

Define the rotational joint between Ring and the virtual link Arm.

In[8]:= DefineKinematicPairTospiro, "Rotational",

q, "Ring", MakeHomogeneousMatrix0, 0, 0,
"Arm", MakeHomogeneousMatrix0, 0, 0;

Define the rotational joint between Arm and OuterWheel.

In[9]:= DefineKinematicPairTospiro, "Rotational",

out, "Arm", MakeHomogeneousMatrixR  r, 0, 0,
"OuterWheel", MakeHomogeneousMatrix0, 0, 0;

Define the rotational joint between Arm and InnerWheel.

In[10]:= DefineKinematicPairTospiro, "Rotational",

in, "Arm", MakeHomogeneousMatrixR  r, 0, 0,
"InnerWheel", MakeHomogeneousMatrix0, 0, 0;

So far the mechanism has three degrees of freedom: the three independent joint
variables. The rolling constraint can be incorporated in such a way that the
rotational joint variables out and in depend on the radii of the Wheel and the
Ring, and the joint variables q of the hinge joint between Ring and Arm.
LinkageDesigner provides the function ReplaceDrivingVariables to allow such
transactions.

Substitutions and Replacements in Mechanism Prototyping 257

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

So far the mechanism has three degrees of freedom: the three independent joint
variables. The rolling constraint can be incorporated in such a way that the
rotational joint variables out and in depend on the radii of the Wheel and the
Ring, and the joint variables q of the hinge joint between Ring and Arm.
LinkageDesigner provides the function ReplaceDrivingVariables to allow such
transactions.

ReplaceDrivingVariables[linkage,new,old,opts] moves the old driving
variables into $DerivedParametersA and adds the new driving variables to
$DrivingVariables.

Introduce the rolling constraint of the mechanism.

In[11]:= spiro  ReplaceDrivingVariablesspiro,
  0, q  , out  Rr, in  Rr

ReplaceDrivingVariables::dofchg :
Warning The number of driving variables are changed from 3 to

1 This might cause error in the D.O.F. calculations

Out[11]= LinkageData,7

Attach geometry to the Ring, InnerWheel, and OuterWheel links.

In[12]:= spiro"$LinkGeometry", "Ring" 
Graphics3DOpacity0.5, Cylinder0, 0, 0, 0, 0, 1, R;

spiro"$LinkGeometry", "OuterWheel" 
Graphics3DSurfaceColorBlue, LinkShape0, r, r, 0.1;

spiro"$LinkGeometry", "InnerWheel" 
Graphics3DSurfaceColorYellow, LinkShape0, r, r, 0.1;

The spirograph mechanism is fully defined, having one degree of freedom, which
is represented in the  driving variable. The variables out and in became ex-
plicitly derived parameters as a result of the ReplaceDrivingVariables
function. The spirograph mechanism describes a family of similar mechanisms
differing only in the substitution value of the geometric parameters. To select
one mechanism from the family, set a new numerical value to the parameter that
will be substituted in the numerical calculations.
Set the radii of Ring and the Wheels with 8R Ø 2, r Ø 1<.

In[15]:= SetSimpleParametersTospiro, R  2, r  1,
MaxIterations  150, AccuracyGoal  8;

Animate the linkage.

258 Gábor Erdos

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In[16]:= AnimateLinkagespiro,   0,   2 , Resolution 30,

LinkMarkers "InnerWheel", MakeHomogeneousMatrixr, 0, 0,
MakeHomogeneousMatrixr, 0, 0,

"OuterWheel", MakeHomogeneousMatrixr, 0, 0,
MakeHomogeneousMatrixr, 0, 0,

MarkerSize 1,
TracePoints "InnerWheel", r, 0, 1, r, 0, 1,

"OuterWheel", r, 0, 1, r, 0, 1,
TraceStyle Thickness0.01, Red, ViewPoint  0, 0, 10,
Axes  True, FaceGrids 0, 0, 1,
Ticks Automatic, Automatic, None

Out[16]=

‡ Inverse Kinematics with Replacements
The solution of the IKP is one of the most challenging problems in manipulator
design. The problem is formulated as follows: given the desired position and
orientation of the tool relative to the reference coordinate frame, calculate the
set of joint angles that moves the tool into this posture. Numerous solution tech-
niques have been developed that range from numerical solutions to closed form
solutions. For a summary of the existing techniques, consult any standard text-
book on robotics [4, 5]. In this section, a shortcut solution will be presented that
enables the designer to quickly solve the inverse kinematic equation. This
solution is based on simple replacements of the driving variables and utilizes the
same ReplaceDrivingVariables function that was employed in the previous
section.

Substitutions and Replacements in Mechanism Prototyping 259

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

· Serial Manipulator

The 6R manipulator shown in Figure 4 is generated with the presented Denavit
and Hartenberg (D-H) parameters. The manipulator is an open chain
mechanism; therefore, the embedded method does not generate constraint
equations. The manipulator has six degrees of freedom that are represented by
the driving variables q1, q2, …. In the inverse problem, we would like to “drive”
the mechanism by commanding the tool with regard to the Cartesian reference
frame. This leads to the idea that if the position and orientation of the tool are
parameterized, these parameters could become the new driving values of the
mechanism and the old ones should be constrained with equations containing the
new driving variables. This way of setting the substitution value for the new
driving variables and then solving the constraint equations of the IKP would
result in the substitutional values of the joint variables, which in turn are
substituted into the homogeneous transformation, and the new posture of the
mechanism is calculated.
To follow this process, the mechanism definition is not presented here; the pre-
defined mechanism will be loaded, and only the replacement procedure is
discussed in detail.

a d A Q

1 a1 d1 90 ° Q1
2 a2 d2 180 ° Q2
3 0 d3 90 ° Q3
4 0 d4 90 ° Q4
5 0 0 90 ° Q5
6 0 d6 0 Q6

Figure 4. 6R manipulator.

Load the LinkageData of the 6R manipulator.

In[17]:= Get"manipulator.ld"
Out[17]= LinkageData,8

In order to solve the IKP, the equation should first be defined. In this example,
the local reference frame of link6 (see Figure 4) is considered as the tool frame.
This selection is arbitrary, but the method would work for any other tool frame.
The new driving variables are the position vector of the origin and the Euler an-
gles of the orientation of this frame, denoted by {x,y,z,,,}. To generate
the constraint equation, the homogeneous transformation matrix of link6 is cal-
culated with respect to the world reference frame Ground.

260 Gábor Erdos

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In order to solve the IKP, the equation should first be defined. In this example,
the local reference frame of link6 (see Figure 4) is considered as the tool frame.
This selection is arbitrary, but the method would work for any other tool frame.
The new driving variables are the position vector of the origin and the Euler an-
gles of the orientation of this frame, denoted by {x,y,z,,,}. To generate
the constraint equation, the homogeneous transformation matrix of link6 is cal-
culated with respect to the world reference frame Ground.

Retrieve the transformation matrix of LLRF6.

In[18]:= mx  GetLLRFMatrixmanipulator, "link6",
ReferenceFrame  "Ground", SubstituteParameters  False;

Extract the position vector of the origin from mx and make it equal to the
8x, z, y< vector.

In[19]:= eq1  MapThreadEqual, Dropmx.0, 0, 0, 1, 1, x, y, z;
The orientation of a frame is coded in the 3 µ 3 rotation matrix part of the homo-
geneous matrix. The rotation matrix is an orthonormal 3 µ 3 matrix that can be
represented with three independent parameters. In the literature there are many
rotation matrix representations such as Euler angles, Euler parameters,
Rodriguez parameters, and roll-yaw-pitch. These are equivalent representations;
therefore, we could pick any of them to use as driving variables in the IKP. From
a technical point of view, the Rodriguez parameters are the easiest to calculate
from a given rotation matrix. Therefore, the generation of the constraint equa-
tion for the orientation of the tool is done in three steps.

1. Select the rotation matrix representation (e.g., Euler angles) and define
the rotation matrix using the parameters of the selected representation.
This matrix is called rotmx1.

2. Extract the rotation matrix from the tool matrix. This matrix is called
rotmx2.

3. Extract the Rodriguez parameters from rotmx1 and rotmx2 and make
them equal.

Define the ExtractRodriguezParameters function.

In[20]:= ExtractRodriguezParametersAmx_?MatrixQ : ModuleVmx, ret,
Vmx  Amx  TransposeAmx;
ret  Vmx3, 2, Vmx1, 3, Vmx2, 1;
Returnret


Define the rotation matrix with the new driving variables 8f, q, y< based on the
Euler angles parametrization.
In[21]:= rotmx1  RotationMatrixLD0, 0, 1, .

RotationMatrixLD1, 0, 0, .RotationMatrixLD0, 0, 1, ;
Extract the rotation matrix from the LLRF6 homogeneous matrix.

In[22]:= rotmx2  ExtractRotationMatrixmx;
Create the constraint equation for the orientation of the tool.

In[23]:= eq2  ThreadExtractRodriguezParametersrotmx1
ExtractRodriguezParametersrotmx2;

Substitutions and Replacements in Mechanism Prototyping 261

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

Replace the old driving variables of the manipulator with the parameter, specify-
ing the position and orientation of the tool.

In[24]:= manipINV  Appendmanipulator,
"$DerivedParametersB", "inv", 1  0.2, 2  0.2, 3  1.57,

4  0.3, 5  0.1, 6  0.1, SimplifyJoineq1, eq2
manipINV"$DrivingVariables"  x  135., y  20,

z  800 ,   0. °,   0. °,   0. °
Out[24]= LinkageData,7

Out[25]= x  135., y  20, z  800,   0.,   0.,   0.
In[26]:= SetDrivingVariablesTomanipINV,

x   200, y  200, z  700,   90. °,   0. °,   0. °,
MaxIterations  1500, AccuracyGoal  3

Out[26]= LinkageData,7

Generate a substitution list for the manipulator’s parameter, as the IKP parame-
ters are interpolated along a path.

In[27]:= sub  GetLinkageRulesmanipINV, 
  0. °,   0. °,

  0. °, x   200., y  200., z  700.,
  0. °,   90. °,   0. °, x   200.,

y  200., z  700.,
  0. °,   90. °,   0. °, x  200.,
y  200., z  700.,

  90. °,   90. °,   0. °, x  200.,
y  200., z  700.,

  90. °,   90. °,   0. °, x  200.,

y  200., z  700.,
  90. °,   90. °,   90. °, x  200.,

y  200., z  700.,
  90. °,   90. °,   90. °, x  200.,

y  200., z  700.,
  90. °,   90. °,   90. °, x   200.,

y  200., z  700.,
Resolution  35, MaxIterations  5000,

SubstituteParameters  True, AccuracyGoal  3;
Plug in the calculated joint variables of the original (direct manipulator) to visu-
ally check the result of the calculation (to minimize the size of the notebook,
only every tenth interpolation point is used in the animation).

262 Gábor Erdos

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In[28]:= AnimateLinkagemanipulator, Partitionsub, 10All, 1,
Resolution None, LinkMarkers "Ground", "link6",
MarkerSize 150, TracePoints "link6",
FaceGrids 0, 1, 0, 1, 0, 0, 0, 0, 1, Axes  True

Out[28]=

Plot the axis interpolation as the tool follows the prescribed path.

Substitutions and Replacements in Mechanism Prototyping 263

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

link6

x

yz

x

y

z

-400
-200

0
200

400

-400

-200

0

200
400

0

200

400

600

800

In[29]:= ShowGraphicsArrayWith
ls  ListLinePlot . sub,

GridLines  Automatic,
PlotStyle  Thickness0.01, Hue0.1,
PlotLabel  ,
DisplayFunction  Identity & 

1, 2, 3, 4, 5, 6, Partitionls, 2




Out[29]=

50 100 150 200 250

-7
-6
-5
-4
-3

q1

50 100 150 200 250

4.00
4.05
4.10
4.15

q2

50 100 150 200 250

9.9

10.0

10.1
q3

50 100 150 200 250

-52
-51
-50
-49
-48
-47

q4

50 100 150 200 250

13.2
13.4
13.6
13.8
14.0
14.2
14.4

q5

50 100 150 200 250

66.0
66.5
67.0
67.5
68.0

q6

· Parallel Manipulator

Unlike serial manipulators, parallel manipulators contain loops in their kinematic
graph; therefore, during the modeling phase, constraint equations are created.
The process presented for the serial manipulator that quickly calculated the IKP
could be applied to this case in exactly the same way. The manipulator is
patented by NASA (U.S. Patent No. 5,816,105). The mechanism has three de-
grees of freedom with three loops in the kinematic graph (see Figure 5).

264 Gábor Erdos

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

Figure 5. NASA Parallel manipulator.

The mechanism definition is not presented here; the predefined mechanism will
be loaded and only the replacement procedure is discussed in detail.
In[30]:= Get"nasa.ld";
Here is the list of defined constraint equations.

In[31]:= TableFormRationalize
Simplifynasa"$DerivedParametersB"All, 2, 3

Out[31]//TableForm=

q1  1.57254
q3  701766.

CosA Cosq1 CosC SinA Sinq1
Cosq1 Cosq3 SinA 

CosA CosC Cosq3 Sinq1 
SinC Sinq1 Sinq3 1

q2  12.5664

q4  1.56905

CosA CosB Cosq4 SinB Sinq4
Cosq2 CosA Cosq4 SinB 

CosB Sinq4 1  Cosq4 SinA Sinq2
q5  669528.

q6  398590.

p61 Cosq6  p72 Cosq3  q4  q6
p61 Cosq3  q4  q5  q6

p72  p61 Sinq6  p72 Sinq3  q4  q6
p61 Sinq3  q4  q5  q6

Here are the simple geometric parameters of the mechanism.

In[32]:= nasa"$SimpleParameters"
Out[32]= r  10, p11  3, p12  6, p31  5, p32  5, p41  1, p42  5,

p51  1, p52  1, p61  10, p71  1, p72  4, p73  1, p91  15
The IKP in this case takes only the position of the end-effector as input because
the mechanism has only three degrees of freedom and cannot specify the position
and orientation together. The output of the IKP is the values of the independent
joint variables, which is the rotational joint defined on motor 3 of the Work-
bench link in Figure 5. To define the IKP, the homogeneous transformation ma-
trix of the tool marker should be calculated.
Get the homogeneous transformation matrix of EndEffector.

Substitutions and Replacements in Mechanism Prototyping 265

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In[33]:= mx  GetLLRFMatrixnasa, "EndEffector",
ReferenceFrame  "Ground", SubstituteParameters  False;

Unlike the serial manipulator, the parameters presented in the transformation
matrix are not all independent because some of them are already constrained by
the loop-closing constraint equations as listed in the $DerivedParametersB
record. Fortunately, this does not cause a problem because the ReplaceDriving
Variables function appends the constraint equations of the IKP to the
$DerivedParametersB record. In the case of changing independent parameters
(stored in the $DrivingVariables and $SimpleParameters records), the solver
lumps together all constraint equations and solves them. Thus all constraints
imposed either by loop-closing or IKP are satisfied.

Calculate the constraint equation of the IKP.

In[34]:= eq  ThreadExtractTranslationVectormx X, Y, Z;
Replace the driving variables with the parameters of the IKP (8X , Y , Z<).

In[35]:= nasaINV  nasa;

nasaINV"$DerivedParametersB" 
Appendnasa"$DerivedParametersB",
"inv", C  0.0017, B  0.0017, A  0.0017, eq;

nasaINV"$DrivingVariables"  X  10, Y  1.5, Z  10;
SetDrivingVariablesTonasaINV, X  10, Y  1.5, Z  10,
MaxIterations  150, AccuracyGoal  8

Out[38]= LinkageData,7

Generate a substitution list for the mechanism’s parameters as the IKP parame-
ters are interpolated along a path.

In[39]:= sub  GetLinkageRulesnasaINV,
X  0, Y  5., Z  10., X  10., Y  5., X  0,
Y  5., Z  20., X  10., Y  5., X  0., Z  10.,
X  10., Y  5, Resolution  20, MaxIterations  1500,

SubstituteParameters  True, AccuracyGoal  5;
Plug in the calculated joint variables of the original (direct mechanism) to visu-
ally check the result of the calculation (to minimize the size of the notebook,
only every tenth interpolation point is used in the animation).

266 Gábor Erdos

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In[40]:= AnimateLinkagelinkage, Partitionsub, 10All, 1,
Resolution None, LinkMarkers "1", "3", MarkerSize  2,
Boxed True, FaceGrids 0, 0, 1, 0, 1, 0, 1, 0, 0,
Axes  True, TracePoints "EndEffector", 0, 0, 0

Out[40]=

Plot the axis interpolation as EndEffector follows the prescribed path.

Substitutions and Replacements in Mechanism Prototyping 267

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

xyz
xy

z

-10
-5

0
5

10

-10

-5

0

5

10

0

10

20

In[41]:= ShowGraphicsArrayWith
ls  ListLinePlot . sub,

GridLines  Automatic,
PlotStyle  Thickness0.01, Hue0.1,
PlotLabel  ,
DisplayFunction  Identity &  A, B, C,

Partitionls, 1




Out[41]=

50 100 150 200

-0.6

-0.4

-0.2

0.2

A

50 100 150 200

0.2

0.4

0.6

0.8

1.0

B

50 100 150 200

-1.5

-1.0

-0.5

C

‡ Conclusion
The embedded method works with a minimal set of constraint equations that are
automatically generated. It represents the mechanism as a graph that enables
measuring the relative transformation of two arbitrary points or frames of the
mechanism. These two features make this method very attractive for use in mech-
anism prototyping because any design equation can be easily generated in a
parameterized form that could be further processed by Mathematica to arrive at

268 Gábor Erdos

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

The embedded method works with a minimal set of constraint equations that are
automatically generated. It represents the mechanism as a graph that enables
measuring the relative transformation of two arbitrary points or frames of the
mechanism. These two features make this method very attractive for use in mech-
anism prototyping because any design equation can be easily generated in a
parameterized form that could be further processed by Mathematica to arrive at
the optimized substitution values of the parameters. Once the design is defined
and optimized, the mathematical model of the resulting mechanism is defined as
a set of parameterized transformations and constraints and a list of substitution
values of the parameters.

‡ Acknowledgment
This research was partially funded by the VRL-KCIP (FP6-507487-2) European
project. This support is gratefully acknowledged.

‡ References
[1] E. J. Haug, Computer Aided Kinematics and Dynamics of Mechanical Systems (Allyn and

Bacon Series in Engineering), Englewood Cliffs, NJ: Prentice-Hall College Division, 1989.

[2] R. A. Wehage and E. J. Haug, “Generalized Coordinate Partitioning for Dimension
Reduction in Analysis of Constrained Dynamic Systems,” ASME Journal of Mechanical De-
sign, 104(1), 1982 pp. 247|255.

[3] B. Szoke, I. Lipka, G. Petrich, and G. Szoke, “Exchange of Views in Letters Concerning a
Construction Having the Principle of Parabola-Drawing Device,” KGM Bulletin of Ma-
chine Tools Works, 17(2), 1977 pp. 21|46.

[4] J. J. Craig, Introduction to Robotics: Mechanics and Control, 2nd ed., Reading, MA: Addi-
son-Wesley Publishing Company, 1989.

Substitutions and Replacements in Mechanism Prototyping 269

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

[5] R. P. Paul, Robot Manipulators: Mathematics, Programming, and Control (Artificial Intelli-
gence), Cambridge, MA: MIT Press, 1981.

G. Erdos, “Substitutions and Replacements in Mechanism Prototyping,” The Mathematica Jour-
nal, 2011. dx.doi.org/doi:10.3888/tmj.11.2–7.

About the Author
Dr. Gábor Erdos is a Senior Research Associate at the Computer and Automation Research
Institute. He received both his M.S. and Ph.D. degrees in mechanical engineering from Bu-
dapest University of Technology and Economics. He also has an M.S. in mechanical and
aerospace engineering from SUNY Buffalo. Dr. Erdos was a post-doctoral assistant for five
years at the Institute of Production and Robotics at EPF Lausanne in Switzerland. His main
research interests include computer-aided mechanism modeling, CAD-CAM-CNC integra-
tion, large-scale scheduling applications, modeling and optimization of production pro-
cesses, and digital manufacturing.

Gábor Erdos
Computer and Automation Research Institute
Hungarian Academy of Sciences
H-1518 Budapest Kende u 13-17. Hungary
gabor.erdos@sztaki.hu

