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The Buffon Needle Problem 
Revisited in a Pedagogical 
Perspective
Ivar G. Johannesen
Imagine a floor marked with many equally spaced parallel lines and a thin
stick  whose  length  exactly  equals  the  distance  L = 1  between  the  lines.
If  we  throw  the  stick  on  the  floor,  the  stick  may  or  may  not  cross  one
of  the  lines.  The  probability  for  a  hit  involves  p.  This  is  surprising  since
there are no circles involved; on the contrary, there are only straight lines.
If we repeat the experiment many times and keep track of the hits, we can
get  an  estimate  of  the  irrational  number  p.  (We  also  consider  sticks
of length L > 1.)

The  problem  can  easily  be  done  as  an  exercise  in  a  first  calculus  course,
where  the  students  are  challenged  to  consider  concepts  such  as  probabil-
ity,  definite  integration,  symmetry,  and  inverse  trigonometric  functions.
The solution to this problem therefore gives many applications in a variety
of fields in calculus.

We  continue  by  throwing  regular  polygons  of  different  sizes,  increasing
the number of edges, and at last reach the ultimate goal of throwing circu-
lar objects. This article illustrates the process of throwing sticks, polygons,
and  circles  analytically  and  graphically,  and  how  to  carry  out  calculations
for different n-gons. The result always involves the number p, except when
the circle is introduced! We also show the circle result as a limiting value
as n increases to infinity.

‡ Introduction
The  problem  of  throwing  sticks  on  a  set  of  parallel  equidistant  lines  was  first
raised by the French naturalist and mathematician Georges Louis Leclerc Comte
de Buffon in 1733 and later solved in 1777 by Buffon himself. Despite the appar-
ent linearity of the situation, the result gives us a method for computing the irra-
tional number p. For more than 250 years, scientists have been intrigued by this
puzzle, as can be seen by a quick search on the internet. Many authors have ex-
tended the exercise  to  throwing regular  polygons.  This  article  considers  regular
polygons with either even or odd n. When the number of vertices is even, oppo-
site  vertices  are  situated  on  the  diameter  of  the  circumscribed  circle.  There  are
no  diametrically  opposed  vertices  in  odd  regular  polygons;  therefore,  these  n-
gons are more challenging for students to handle. The length L of the stick is re-
placed by the diameter L  of  the circumscribed circle  when regular  polygons are
considered.

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.



The  problem  of  throwing  sticks  on  a  set  of  parallel  equidistant  lines  was  first
raised by the French naturalist and mathematician Georges Louis Leclerc Comte
de Buffon in 1733 and later solved in 1777 by Buffon himself. Despite the appar-
ent linearity of the situation, the result gives us a method for computing the irra-
tional number p. For more than 250 years, scientists have been intrigued by this
puzzle, as can be seen by a quick search on the internet. Many authors have ex-
tended the exercise  to  throwing regular  polygons.  This  article  considers  regular
polygons with either even or odd n. When the number of vertices is even, oppo-
site  vertices  are  situated  on  the  diameter  of  the  circumscribed  circle.  There  are
no  diametrically  opposed  vertices  in  odd  regular  polygons;  therefore,  these  n-
gons are more challenging for students to handle. The length L of the stick is re-
placed by the diameter L  of  the circumscribed circle  when regular  polygons are
considered.
This article illustrates the process of throwing sticks, polygons, and circles analyt-
ically and graphically, and how to carry out calculations for different n-gons. The
mathematics necessary are elementary and suitable for students in a first calculus
course.  The  students  will  solve  the  necessary  integrals  and  calculate  the  proba-
bilities by hand before invoking Mathematica. 
The introductory part of the lab considers sticks of length L = 1~the same unit
length as the distance between lines. The idea is described in [1, 2], including rel-
evant  Mathematica  code  for  illustrations.  Each  throw  can  be  fully  described  by
two  parameters:  the  distance  y  from  the  center  of  the  stick  to  the  nearest  line,
and the acute angle q that the stick makes with any parallel line (Figure 1).
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Figure 1. The stick hits the line if y §
1

2
sin q.

In the parameter space Hq, yL,  the graph of the function y = 1
2

sin q  is the border
line between the areas  representing hits  and misses.  Due to  symmetry,  we need
only consider 0 § y § 1

2
, 0 § q § p

2
(Figure 2). 
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Figure 2. The misses are drawn in gray and the hits in black.
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Relating to the main topic in this article, we regard the stick as a degenerate poly-
gon with two vertices and reformulate our function expression accordingly. 
The  probability  of  hitting  a  line  is  the  ratio  of  the  area  under  the  graph  to  the
area of the parameter space.

In[1]:= Phit 
0



2
1

2
Cos 

2
  


4

Out[1]=

2



This result is interesting because it suggests a way to estimate the number p. Let
a group of students draw parallel, equidistant lines on a large piece of paper and
throw a substantial number of sticks on it, keeping a record of the hits. If n nee-
dles hit a line out of t tries, then the students get an approximation 2 t

n
º p.

‡ Long Sticks
Let us look at sticks with arbitrary length L. When L § 1, the probability of hits
is directly proportional to L. When L > 1, large values of q always give hits. Here
is the situation for L = 2.

In[2]:= PlotCos
2
 , , 0,



3
, PlotRange  0, 

2
, 0, 1

2
,

Frame  True, FrameLabel  Style, Larger, Styley, Larger,
RotateLabel  False, PlotStyle  Thickness0.01,
FrameTicks  0, 

6
,


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,



2
, Automatic
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For  q ¥ p

6
,  the  stick  of  length  2  always  crosses  a  line  because  it  is  inclined  so

much. On the other hand, arbitrarily long sticks can avoid hitting a line if the in-
L
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For  q ¥ p

6
,  the  stick  of  length  2  always  crosses  a  line  because  it  is  inclined  so

much. On the other hand, arbitrarily long sticks can avoid hitting a line if the in-
clination is small enough. The probability for a stick of length L  is given by the
function probSticks.

In[3]:= probSticksL_  4


IfL  1, 

0



2
L

2
Sin ,

1

2



2
 ArcSin1

L
  

0

ArcSin 1

L
 L

2
Sin  ;

The expression is interesting for several reasons. First, we have a “real” situation
in which an inverse trigonometric function arises naturally.  Second, the definite
integral  that  makes  up  the  last  term  is  noteworthy  in  that  finding  an  an-
tiderivative is easy, while evaluating it at the integral’s endpoints requires a little
more work. The students are encouraged to simplify cosIarcsin 1

L
M and verify the

following simpler expression.

In[4]:= probSticksL_ : IfL  1,
2 L


,

2


L  L2  1  ArcCos1

L
 

The probabilities always involve the factor 1
p

. For L § 1, the graph is linear.

In[5]:= probSticks 1

Out[5]=

2



In[6]:= N
Out[6]= 0.63662

The results can be summarized for sticks of any length by plotting the probabil-
ity of hitting a line as a function of L. 

In[7]:= PlotprobSticksL, L, 0, 15,
PlotStyle  Thickness0.015, Epilog 
Blue, Dashing0.02, Line1, 0, 1, 1, AxesLabel 
TraditionalForm  Stylex, Larger, StylePx, Larger
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‡ Tossing Squares
We  start  our  investigation  of  regular  polygons  by  tossing  squares  on  the  ruled
floor.  Let  q  be  the  acute  angle  between  the  vertical  and  a  line  through  the
square's center and the midpoint of an edge (Figure 3). Other choices for the an-
gle are also possible. 

q

q = 0.

q

q = 0.5

q

q = 0.785398

Figure 3. Here are some configurations where the square just touches the line. 

The  graph  in  the  parameter  space  dividing  hits  and  misses  is  given  by
y = L

2
cosJ p

4
- qN, where L is the length of the square’s diagonal. This is the same

as the diameter of the circumscribed circle. Due to symmetry, it is enough to con-
sider 0 § q § p

4
.

For L § 1, we always have y § 1
2

. What about squares whose diameter is greater

than 1? Since the q  parameter is restricted to B0, p

4
F,  we must consider the limit

L = 2 . If L increases beyond that value, there are always hits with at least one
side  of  the  square.  Then the  curve  dividing  hits  and  misses  is  greater  than  1 ê 2
for  all  values  of  q,  and  the  plot  in  parameter  space  is  empty.  When  L > 1,  the
polygon  hits  a  line  if  L

2
cosJ p

4
- qN < 1

2
 and  q < p

4
.  This  means  that

q > p

4
- arccosI 1

L
M.
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In[8]:= ShowTablePlot1
2
L Cos

4
 , , 0, IfL  1,
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,
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,

PlotRange  0, 

4
, 0, 1

2
, Frame  True,

FrameLabel  Style, Larger, Styley, Larger,
RotateLabel  False, PlotStyle  Thickness0.01,
FrameTicks  0, 
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,



8
,



4
, Automatic,

DisplayFunction  Identity, L, 0.6, 1.4, 0.2,
DisplayFunction  $DisplayFunction
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The area in parameter space corresponding to hits is

‡
0
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- q „q = ‡
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for L § 1, and
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for 1 < L < 2 . This gives us the probability function
In[9]:= probSquareL_ :

8


PiecewiseL

2

0



4
Cos , 0  L  1,  1

2
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L
 

L

2

ArcCos 1

L




4
Cos  , 1  L  2 , 

8
, True
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In[10]:= probSquare1, probSquare 2 

Out[10]= 2 2


, 1

In[11]:= N
Out[11]= 0.900316, 1.

‡ Hexagons
Throwing hexagons follows the same outline as squares. Opposite vertices lie on
the diameter of the circumscribed circle, and so we have symmetry about q = p

6
.

q

q = 0.523599

q

q = 0.273599

q

q = 0.

Figure 4. Here are some hexagon configurations. 

For L > 1, the hexagon hits a line when q ¥ p

6
- arccos I 1

L
M. For L ¥ 2

3
, at least

one line is always hit (Figure 4).
In[12]:= probHexagonL_ :
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
PiecewiseL

2

0



6
Cos , 0  L  1,  1

2
ArcCos1

L
 

L

2

ArcCos 1

L




6
Cos  , 1  L 

2

3
,  

12
, True

In[13]:= probHexagon1, probHexagon 2

3


Out[13]= 3

, 1

‡ Octagons
We continue with octagons (Figure 5).
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q

q = 0.

q

q = 0.15

q

q = 0.392699

Figure 5. Here are some octogon configurations.

For L > 1, the octagon hits a line when q ¥ p

8
- arccos I 1

L
M. For L ¥ 1

cosJ
p

8
N
, at least

one line is always hit.
In[14]:= OffN::meprec
In[15]:= probOctagonL_ :
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
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2

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8
Cos , 0  L  1,  1

2
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L
 
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2

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L
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

8
Cos  , 1  L  4  2 2 ,  

16
, True

In[16]:= probOctagon1, probOctagon 1

Cos 
8



Out[16]= 
8 Sin 

8



, 1

In[17]:= probOctagon1 . Sinx_  1  Cos2 x
2

 Simplify

Out[17]=

4 2  2



In[18]:= N
Out[18]= 0.974495

‡ Dodecagons
Before treating the general 2 n-gon, here is the case of the dodecagon (Figure 6). 
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Figure 6. Here are some dodecagon configurations.

In[19]:= probDodecagonL_ :
24


PiecewiseL

2

0



12
Cos , 0  L  1,  1

2
ArcCos1

L
 

L

2

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L




12
Cos  , 1  L  2 2  3 ,  

24
, True

In[20]:= probDodecagon1, probDodecagon 1

Cos 
12



Out[20]= 
3 2 1  3 


, 1

In[21]:= N
Out[21]= 0.988616, 1.

‡ 2 n-gons
For higher-order n-gons where n is even, we encounter the same sort of symme-
try about q = p

n
 and always get a hit when L ¥ 1

cosJ
p

n
N
.

In[22]:= probNgonn_?EvenQ, L_ :
2 n


PiecewiseL

2

0



n
Cos , 0  L  1,

 1

2
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L
 

L

2

ArcCos 1

L




n
Cos  , 1  L 

1

Cos 
n

,

 

2 n
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In[23]:= probNgon20, 1, probNgon20, 1

Cos 
20

  icosagon 

Out[23]= 
20 Sin 

20



, 1

‡ Tossing Triangles
Next we look at equilateral triangles. In a regular odd polygon, the adjacent ver-
tices do not lie on the diameter of the circumscribed circle. This means that we
must take the full distance between lines into consideration.

q

q = 0.

q

q = 0.523599

q

q = 1.0472

Figure 7. Here are some triangle configurations.

Let y be the vertical distance from the top line to the center of the triangle. This
is where the medians cross; the medians are also the altitudes since the triangle is
regular. From Figure 7, we see that the border line between the hit and miss ar-
eas is y = L

2
cosJ p

3
- qN, where L is the diameter of the circumscribed circle. This

means that the altitudes (medians) have length 3 L
4

. For L > 4
3

, the triangle there-
fore has to cut one or more lines.
But there is another border line, as Figure 8 shows.

q

q = 0.

q

q = 0.523599

q

q = 1.0472

Figure 8. For y > 1 -
L

2
cosHqL, the triangles cut the lower line. 

Thus the hit area consists of two distinct parts in parameter space.
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In[24]:= Plot1
2
Cos

3
 , 1 

Cos
2

, , 0,


3
, Frame  True,

FrameLabel  Style, Larger, Styley, Larger,
RotateLabel  False, PlotStyle  Thickness0.01,
FrameTicks  

6
,



3
, Automatic, PlotRange  0, 1

Out[24]=
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The total hit area in parameter space is therefore:

‡
0

p

3 L

2
cos

p

3
- q „q + ‡

0

p

3
1 - 1 -

L

2
cos q „q =

‡
0

p

3 L

2
cos

p

3
- q „q + ‡

0

p

3 L

2
cos q „q = ‡

0

p

3
L cos q „q.

We can see that the two separate areas are equal, which simplifies the probability
calculation. 

In[25]:= probTriangle1  3



0



3
Cos 

Out[25]=

3 3

2 

In[26]:= N
Out[26]= 0.826993

In[27]:= yx_, L_ : L

2
Cos

3
 x  Cosx

In[28]:= Solvey
6
, L 1, L, Solvey

3
, L 1, L  Flatten

Out[28]= L  2

3
, L 

4

3


When 2

3
< L < 4

3
, the triangle cuts the line when q > q1, where q1  is the solu-

tion of the equation L
2
JcosJ p

3
- qN + cos q N = 1, given 0 < q < p

6
.  For L ¥ 4

3
,  the

triangle has to cross at least one line, since then q1 § 0. Note that 4
3
= J

2

3
N
2
.
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When 2

3
< L < 4

3
, the triangle cuts the line when q > q1, where q1  is the solu-

tion of the equation L
2
JcosJ p

3
- qN + cos q N = 1, given 0 < q < p

6
.  For L ¥ 4

3
,  the

triangle has to cross at least one line, since then q1 § 0. Note that 4
3
= J

2

3
N
2
.

In[29]:= probTriangleL_ : IfL  2

3
,

3



0



3
L Cos x x

In[30]:= probTriangle1, probTriangle 2

3


Out[30]= 3 3

2 
,

3




‡ Pentagons
The  calculations  for  other  odd-sided  polygons  follow  the  same  outline  as  for
triangles.

q

q = 0.628319

q

q = 0.378319

q

q = 0.

Figure 9. Here are some hexagon configurations. 

In[31]:= yx_, L_ : L

2
Cos

5
 x  Cosx

In[32]:= Solvey 

10
, L 1, L, Solvey0, L 1, L  Flatten

Out[32]= L  2
2

5  5
, L 

8

5  5


If L ¥ 8

5+ 5
, the pentagon has to cut one line. Again we see that this limit is the

square of the lower limit, as was the case with n = 3. For 8

5+ 5
< L < 8

5+ 5
,

there  are  always  hits  if  q > q1,  where  q1  is  the  solution  to  the  equation
L
2
JcosJ p

5
- qN + cos qN = 1, given 0 < q < p

10
.
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If L ¥ 8

5+ 5
, the pentagon has to cut one line. Again we see that this limit is the

square of the lower limit, as was the case with n = 3. For 8

5+ 5
< L < 8

5+ 5
,

there  are  always  hits  if  q > q1,  where  q1  is  the  solution  to  the  equation
L
2
JcosJ p

5
- qN + cos qN = 1, given 0 < q < p

10
.

In[33]:= probPentagonL_ : IfL  8

5  5
,

5



0



5
L Cosx x

In[34]:= ToRadicalsprobPentagon1, probPentagon 8

5  5


Out[34]= 
5

5

8
 5

8


,

5 1  5 
2 



‡ H2 n + 1L-gons
Define the function:

In[35]:= yx_, L_ : L

2
Cos

n
 x  Cosx

Here is  the value of  L,  where all  polygons in the most  symmetric  position hit  a
line.

In[36]:= Solvey 

2 n
, L 1, L

Out[36]= L  Sec 

2 n


Here is the value of L, where every polygon hits a line, independent of rotation.

In[37]:= Solvey0, L 1, L

Out[37]= L  2

1  Cos 
n



For  higher-order  n-gons  where  n  is  odd,  we  always  hit  a  line  when

L ¥ 2

1+cosJ
p

n
N
= 1

cosJ
p

2 n
N

2

. For L § 1

cosJ
p

2 n
N
, the probability is proportional to L, and

for  1

cosJ
p

2 n
N
§ L § 1

cosJ
p

2 n
N

2

,  there  is  always  a  hit  if  q ¥ q1,  where  q1  is  a  solution

of the equation L
2
IcosI p

n
- qM + cos qM = 1, given 0 < q < p

2 n
.
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‡ Tossing Coins
Suppose  a  penny  with  diameter  L  is  thrown  on  a  ruled  surface.  The  position
of  the  coin  is  independent  of  the  angle  q,  and  the  circle  hits  the  line  whenever
y § L

2
 (Figure 9).

Figure 10. The border line dividing hits from misses is the straight line y =
L

2
.

In this case the parameter space is one-dimensional, but we can define a random
value  qmax  and  create  a  rectangle  @0, qmaxDäA0, 1

2
E.  The  probability  for  hitting  a

line  is  therefore  L
2
í

1
2
= L  that  is  directly  proportional  to  L  when  L § 1.  The

next plot illustrates the situation when L = 3
4

. 

In[38]:= Plot3
8
, , 0,



2
, Frame  True,

FrameLabel  Style, Larger, Styley, Larger,
RotateLabel  False, PlotStyle  Thickness0.01,
PlotRange  0, 0.5, FrameTicks  0, 

2
, 0, 0.375, 0.5

Out[38]=

0 p

2

0

0.375

0.5
0

p

2

0

0.375

0.5

q

y

In[39]:= probCircleL_ : IfL  1, L, 1
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In[40]:= probCircle3
4
, probCircle1

Out[40]= 3
4
, 1

For the first time, when the circle actually appears on the scene, the result does
not involve p!

‡ Summary for the Case L = 1
In  this  article  we  extended  the  Buffon  needle  problem  to  include  polygons
thrown on a ruled floor and calculated the probabilities for hits for various values
of the diameter L of the circumscribed circle. Each time the answer involved the
irrational  number  p  and  therefore  indicated  a  simulation  to  estimate  the  value
of  this  famous  number.  Here  is  a  summary  of  the  results  for  L = 1  (the  stick
counts as a 2-gon).

n p N @pD

2
2

p
0.63662

3
3 3

p
0.82699

4
2 2

p
0.90032

5
5 1

2
K5 - 5 O

p
0.93549

6
3

p
0.95493

8
4 2 - 2

p
0.97450

12
3 2 I 3 - 1M

p
0.98862

¶ 1 1.00000

For each value of n, we find pHnL =
n sinJ

p

n
N

p
=

sinJ
p

n
N

p

n

, and therefore limnØ¶ pHnL = 1.

Taking the limit as the number of vertices in the regular polygon tends to infin-
ity, we therefore reach the result for tossing circles on the ruled floor.

For even n-gons we found the border line to be y = L
2

cosI p
n
- qM for 0 § q § 2 p

n
.

All n-gons would cut a line if L ¥ 1

cosJ
p

n
N
. As n Ø ¶, y Ø L

2
, which is independent

of q and always hits a line when L ¥ 1. This is in agreement with the circular case.

298 Ivar G. Johannesen

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.



For even n-gons we found the border line to be y = L
2

cosI p
n
- qM for 0 § q § 2 p

n
.

All n-gons would cut a line if L ¥ 1

cosJ
p

n
N
. As n Ø ¶, y Ø L

2
, which is independent

of q and always hits a line when L ¥ 1. This is in agreement with the circular case.

For odd n-gons, we found y = L
2
IcosI p

n
- qM + cos qM, 0 < q < p

n
. All n-gons would

cut a line when L ¥ 2

cos J
p

n
N+1

. As n Ø ¶, this again is in accordance with the circle

case.
Thus the result of throwing pennies is fully compatible with the limiting results
obtained by studying n-gons for large n. 
In the Mathematica code, we had to take into consideration the parity of n when
calculating the border line function, but the probability function for L = 1 could
be simplified to one formula for all n.

In[41]:= yn_?EvenQx_, L_ : L

2
Cos

n
 x ; 0  x 



n

In[42]:= yn_?OddQx_, L_ : L

2
Cos

n
 x  Cosx ; 0  x 



n

In[43]:= probNgonn_ : n



0



n
Cos 
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