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Concerning Random Walks 
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Two problems involving random walks on graphs are studied. 
First, the starting point from which a random walk on Z2 is most 
likely to hit a given point before another given point is determined. 
Second, the slowest mixing initial distribution under a random 
walk on a given finite graph is found.

‡ Introduction
This  article  describes  my  investigation  into  several  basic  problems  regarding  random
walks on graphs. On several occasions, I asked myself questions which my intuition failed
to  answer.  I  guessed at  an  answer,  and spent  some time in  a  fruitless  attempt  at  proving
that  it  was  correct.  Out  of  frustration  I  turned  to  computer  simulations,  only  to  discover
that  my  guesses  were  faulty.  Once  I  had  the  correct  answer,  I  was  able  to  supply  the
proofs.  As  every  mathematician  knows,  it  is  much  easier  to  solve  a  problem  when  you
know the right answer ahead of time. This presentation is deliberately informal, as it repre-
sents  the record of  an actual  investigation that  took place,  rather  than a crafted paper.  In
fact, the notebook that I used to run my experiments has become the paper, with explana-
tory text added and unnecessary debris removed.

‡ Probability That a Random Walk Hits One Point before 
Another
A graph G is a set of vertices V  and a set of pairs of vertices E, known as edges. We will
assume throughout that G is an undirected, simple graph. That is, no edges are of the form
8i, i<,  the edge 8i, j<  is  the same as the edge 8 j, i<,  and the set  of  edges E  contains no re-
peated elements. The degree d  of a vertex v of a graph is the number of edges containing
v. A random walk on G is the random movement of a particle from vertex to vertex, where
at  each step a  particle  at  any vertex moves to  an adjacent  vertex,  with the probability  of
moving to  each adjacent  vertex given by the reciprocal  of  the  degree of  the  vertex.  This
movement is memoryless, in the sense that each step is independent of earlier steps.
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A graph G is a set of vertices V  and a set of pairs of vertices E, known as edges. We will
assume throughout that G is an undirected, simple graph. That is, no edges are of the form
8i, i<,  the edge 8i, j<  is  the same as the edge 8 j, i<,  and the set  of  edges E  contains no re-
peated elements. The degree d  of a vertex v of a graph is the number of edges containing
v. A random walk on G is the random movement of a particle from vertex to vertex, where
at  each step a  particle  at  any vertex moves to  an adjacent  vertex,  with the probability  of
moving to  each adjacent  vertex given by the reciprocal  of  the  degree of  the  vertex.  This
movement is memoryless, in the sense that each step is independent of earlier steps.
One of the most interesting and fundamental questions in this field is the question of recur-
rence and transience in the integer lattice of dimension n. The basic and well-known result
is that a random walk on Zn  is recurrent (returns infinitely often to any point) if and only
if  n < 3.  See  [1]  for  a  beautiful  proof  of  this  involving  resistance  in  electric  circuits,  as
well  as  a  more elementary proof.  I  have recently  asked myself  a  related question.  Given
two fixed points a, b and a variable point x, let us find PxHb before aL, the probability that
a random walk starting at x hits b before hitting a. In one dimension this question is quite
easy, but in two dimensions, as far as I have been able to ascertain, no closed form for the
solution  is  known.  To  circumvent  the  difficulty  of  this  question,  however,  we  can  ask  a
simpler  one.  Namely,  given  a  and  b,  let  us  determine  the  point  x  that  maximizes
PxHb before aL. I spent some time working in vain on this problem, before I realized that it
would help to know what  the answer is  before attempting a proof.  I  wrote the following
program.

q@0D = 880, 0<<;
q@n_D := Module@8tmp<,

tmp = 8<;
Do@tmp = Join@tmp, 88n, 0< + i 8-1, 1<<D, 8i, 0, n<D;
tmp = Join@tmp, 81, -1< * Ò & êü tmp,

8-1, 1< * Ò & êü HReverse êü tmpL,
8-1, -1< * Ò & êü HReverse êü tmpLD;

DeleteDuplicates@tmpDD

f@n_Integer, zeropt_List, onept_ListD :=
Module@8range, fun, tmprange, j, t<,
range = Join üü Hq êü Range@0, nDL;
fun@8_, _<D := .5;
Hfun@ÒD = 0L & êü zeropt;
Hfun@ÒD = 1L & êü onept;
j = 0;
While@j < 300,
tmprange = range;
While@Length@tmprangeD > 0,
t = First@tmprangeD;
If@FreeQ@zeropt, tD && FreeQ@onept, tD,
fun@tD =
.25 Hfun@t + 81, 0<D + fun@t + 8-1, 0<D + fun@t + 80, 1<D +

fun@t + 80, -1<DL
D;
tmprange = Rest@tmprangeD;

D;
j = j + 1

D;

;
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range = Complement@range, Join@onept, zeroptDD;
Graphics@
Join@Tooltip@Point@ÒD, Text@ToString@fun@ÒDDDD & êü range,
Tooltip@8PointSize -> Large, Blue, Point@ÒD<,

Text@ToString@fun@ÒDDDD & êü zeropt,
Tooltip@8PointSize -> Large, Red, Point@ÒD<,

Text@ToString@fun@ÒDDDD & êü oneptDD
D

The function q is used to generate the correct range of points, a diamond-shaped region of
radius n, and place the points in the right order. Here is an example.

q@3D

883, 0<, 82, 1<, 81, 2<, 80, 3<, 82, -1<, 81, -2<,
80, -3<, 8-1, 2<, 8-2, 1<, 8-3, 0<, 8-1, -2<, 8-2, -1<<

Graphics@Pointüq@3DD
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This nests the diamonds to create a square lattice.

Join üü Hq êü Range@0, 3DL

880, 0<, 81, 0<, 80, 1<, 80, -1<, 8-1, 0<, 82, 0<, 81, 1<,
80, 2<, 81, -1<, 80, -2<, 8-1, 1<, 8-2, 0<, 8-1, -1<,
83, 0<, 82, 1<, 81, 2<, 80, 3<, 82, -1<, 81, -2<,
80, -3<, 8-1, 2<, 8-2, 1<, 8-3, 0<, 8-1, -2<, 8-2, -1<<

Graphics@Pointü%D

To  understand  the  function  f  one  must  understand  a  bit  of  the  mathematics  of  random
walks.  Due  to  the  memoryless  property  of  random walks,  gHxL = PxHb before aL  is  a  har-
monic function. That is, g is the average of its surrounding values,

gHxL =
1

4
‚gHyL =

1

4
HgHx + H0, 1LL+ g Hx + H0, -1LL+ g Hx + H-1, 0LL+ g Hx + H1, 0LLL,

for all x in Z2 - 8a, b< and the sum is over all y adjacent to x. In fact, it is easy to see that g
is  the  unique  function  harmonic  on  Z2 - 8a, b<,  such  that  gHbL = 1,  gHaL = 0,  and
g HxL Ø 1 ê 2 as x Ø ¶ (see [1]). The program f begins by setting funHbL = 1, funHaL = 0,
and funHxL = 1 ê 2 for all  other x.  In each iteration through the While  loop, the value of
the function at each point is set to the average of the neighboring values. In this way the
function fun  becomes more and more nearly harmonic, and as a result closer to the val-
ues of our desired function gHxL. This process is described in [1], and just to check that f
is working correctly I tested it on an example that appears in [1].
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f@3, 880, -1<, 81, -1<, 82, 0<<,
882, 1<, 81, 2<, 80, 2<, 8-1, 1<, 8-2, 0<, 8-1, -1<<D

This  exactly  matches  the  values  given  in  [1].  Confident  that  my  function  works  well,  I
tested it on an example.

f@15, 880, 0<<, 881, 1<<D

And here we see the value of numerical experimentation. Lacking what I now know to be
the proper intuition, I was foolishly confident that the maximum would occur at the point
H2, 2L, since this seems to be the point most “separated” from a by b. However, the simula-
tion above clearly shows that this is not the case, and that in fact H2, 1L and H1, 2L are the
maximal values. After playing with several other examples, which readers are encouraged
to do on their own, I realized that the maximal point is always one adjacent to b. Once that
is realized, it is clear that it must be the point or points “farthest” from a,  in some sense.
One can define farthest in terms of the Euclidean metric, but it is actually more natural to
define it in the way given in the statement of theorem 1.
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H2, 2L, since this seems to be the point most “separated” from a by b. However, the simula-
tion above clearly shows that this is not the case, and that in fact H2, 1L and H1, 2L are the
maximal values. After playing with several other examples, which readers are encouraged
to do on their own, I realized that the maximal point is always one adjacent to b. Once that
is realized, it is clear that it must be the point or points “farthest” from a,  in some sense.
One can define farthest in terms of the Euclidean metric, but it is actually more natural to
define it in the way given in the statement of theorem 1.

Theorem 1

The function g is maximized at one of the points adjacent to b. In order to determine
the correct point, draw two lines l and m of slopes 1 and -1 through b. This creates four
half-planes.  The  point  a  lies  in  two  of  these  half-planes,  unless  it  lies  on  one  of  l  or  m,
in  which  case  a  lies  in  only  one  half-plane.  In  case  a  lies  in  two half-planes,  g  is  maxi-
mized at the unique point adjacent to b that does not share a half-plane with a. In case a
lies  in  only  one  half-plane,  g  is  maximized  at  the  two  points  that  do  not  lie  in  the  half-
plane containing a.

Proof

Here is a sample situation.

qrange = Join üü Hq êü Range@0, 3DL;
Graphics@Join@Point@ÒD & êü qrange,

8PointSize -> Large, Blue, Point@8-1, -1<D<,
8PointSize -> Large, Red, Point@81, 0<D<,
8Dashed, Thickness@MediumD, Line@88-1, 2<, 82, -1<<D<,
8Dashed, Line@882, 1<, 8-1, -2<<D<DD

The statement of the theorem is that the maximum occurs at H2, 0L, since that is the point
adjacent to H1, 0L that does not lie in a half-plane with H-1, -1L. First let us prove that the
maximum occurs at a point adjacent to b.  Let U  be the set of points adjacent to b.  Then,
for any x not in U,
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PxHb before aL = ‚
y inU

PxHy before a and U - 8y<L PyHb before aL.

Thus,  PxHb before aL  is  seen  to  be  a  weighted  average  over  U  of  the  quantities
9PyHa before bL=yœU with weights 8PxHy before a and U - 8y<L<yœU. Since

‚
y inU

PxHy before a and U - 8y<L < 1,

it follows that 

PxHb before aL < maxyœU PyHb before aL,

so that the maximum is obtained on U. Now, to determine at which point it is obtained, let
us  first  define  a  reflection  in  this  context.  The  reflection  of  a  point  x  in  the  line  l  is  the
unique point x£  such that x x£  is a line perpendicular to l with its midpoint on l. So, for in-
stance,  in  the  graphic  above  the  reflection  of  H1, 2L  over  l  is  the  point  H-1, 0L.  If
P = p1 p2 … pn  is a sequence of points in Z2  such that pi  is adjacent to pi+1  for all i, then
we call P a path. The reflection of a path p1 p2 … pn  in l is the path p '1 p '2 … p 'n, where
each p 'i is the reflection of pi. So, in the graphic below, the blue path is a reflection in l of
the green path.

qrange = Join üü Hq êü Range@0, 3DL;
Graphics@Join@Point@ÒD & êü qrange,

8PointSize -> Large, Blue, Point@8-1, -1<D<,
8PointSize -> Large, Red, Point@81, 0<D<,
8Thick, Blue, Line@882, 0<, 82, 1<, 81, 1<, 80, 1<<D<,
8Thick, Green, Line@881, -1<, 80, -1<, 80, 0<, 80, 1<<D<,
8Red, Thickness@MediumD, Dashed, Line@88-1, 2<, 82, -1<<D<,
8Dashed, Line@882, 1<, 8-1, -2<<D<DD
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Now, 

PyHb before aL =

limnØ¶

8number of distinct paths starting at y of length n that hit b before a<

8number of distinct paths starting at y of length n<
.

Suppose  that  a  lies  in  one  of  the  half-planes  formed  by  the  line  l  and  that  y  is  a  point
adjacent to b that also lies in this half-plane. Let P = p1 … pn be any path starting at y that
hits b before a. This path must hit l at some point, possibly at b. Let i be the smallest value
such that pi œ l. Then we set Po = p '1 … p 'i-1 pi pi+1 … pn. That is, Po  is the reflection of
P  up  until  P  and  P '  both  hit  l,  from  which  point  P  and  Po  coincide.  Po  is  then  a  path,
beginning at  y ',  that  must  hit  b  before a  (note that  for  j < i,  p j  lies  in  the half-plane not
containing a).  The map P Ø Po  is  an injective map from the set  of  paths starting from y
that hit b before a to the set of paths starting from y ' that hit b before a. Thus, the number
of  distinct  paths  starting  at  y  of  length  n  that  hit  b  before  a  is  less  than  or  equal  to  the
number of distinct paths starting at y ' of length n that hit b before a. It is in fact easy to see
that  this  inequality  is  strict,  since  there  are  paths  starting  at  y '  that  hit  b  before  a,  but
whose reflections hit a  before b.  It follows that PyHb before aL < Py'Hb before aL.  Thus, the
maximum occurs at the point or points adjacent to x that do not share a half-plane with a,
and the theorem follows. ð▮

‡ Slowest Mixing Distribution
Suppose now that G is a finite graph. The question of hitting probabilities of points can be
handled  in  a  similar  way  to  the  above  argument,  where  we  still  must  look  for  harmonic
functions on the graph. However, there is a related question that is a bit different, but quite
interesting.  Suppose,  rather  than  a  sole  walker,  we  have  a  large  number  of  random
walkers, all moving at the same time. The object of interest will be the fraction of walkers
that are at each vertex at any given time. Suppose G has n vertices, numbered from 1 to n.
A  distribution  vector  is  a  vector  in  @0, 1Dn  whose  components  sum  to  1,  representing  a
distribution of random walkers on the graph. Form an nµ n matrix whose elements satisfy
ai j = 0  unless  vertices  i  and  j  are  adjacent,  in  which  case  ai j = 1.  This  is  known  as  the
adjacency matrix. We will suppose below that the matrix is regular (every vertex has the
same  degree)  and  not  bipartite  (bipartite  means  that  the  vertices  of  the  graph  can  be
divided into two sets A and B, such that every vertex in A is adjacent only to vertices in B,
and vice versa).  Let P  denote the probability matrix  obtained by dividing all  elements in
the  adjacency  matrix  by  the  degree  of  each  vertex.  If  at  time  0  the  walkers  have  distri-
bution v0,  then v1 = P v0  is  the  distribution at  time 1,  followed by v2 = P v1 = P2 v0,  etc.
The  distribution  vector  H1 ê n, 1 ê n, …, 1 ê nL  gives  the  stationary  distribution,  the  distri-
bution  that  is  unchanged  (since  each  row  of  P  sums  to  1)  when  the  random  walk
undergoes a step.  The key question is,  when we start  with an arbitrary distribution, what
happens?  Do  the  walkers  somehow  approach  the  stationary  distribution,  or  do  they  stay
disordered  forever?  It  is  a  consequence  of  the  Perron–Frobenius  theorem  that  all  eigen-
values  of  P  are  real  and  lie  in  the  interval  @-1, 1D,  and  that  the  eigenvectors  v1, … , vn
form an orthogonal basis of Rn.  The largest  eigenvalue ln  is  simple and equal to 1,  with
the  stationary  distribution  vn = H1 ê n, 1 ê n, …, 1 ê nL  as  an  eigenvector.  Any  function  v
on  the  vertices  of  the  graph  can  be  expressed  uniquely  as  v = a1 v1 +…+ an vn,  and
P v = l1 a1 v1 +…+ ln-1 an-1 vn-1 + an vn,  P2 v = l1

2 v1 +…+ ln-1
2 an-1 vn-1 + an vn,

and  so  on.  If  v  is  a  distribution  vector,  then  an = 1,  since  the  basis  of  eigenvectors  is
orthogonal and the sum of the components of any vector orthogonal to vn  must be 0. We
know that v1, …, vn-1 œ @-1, 1D. Let us assume that none of v1, …, vn-1  are equal to -1
(in  case  one  of  them  is,  it  can  be  shown  that  the  graph  is  bipartite).  In  that  case,  an
arbitrary  distribution  will  converge  geometrically  to  the  stationary  distribution,  since
li
m Ø 0 as m Ø ¶. Thus, we see that the largest magnitude of the eigenvectors other than

vn determines the slowest possible rate of convergence of any distribution to the stationary
one.  This  is  all  standard and well  known in this  field  (see [2]).  I  was interested in  using
Mathematica  to  understand  these  theorems  better,  so  I  decided  to  try  to  determine  the
“slowest  mixing”  distribution,  given  any  graph.  Again,  my  intuition  failed  me,  as
I  imagined  that  the  slowest  mixing  distribution  was  likely  to  be  complicated  and
difficult  to  obtain.  The  slowest  mixing  distribution  will  be  the  distribution  vector
v = a1 v1 +…+ an-1 vn-1 + vn where a1 is maximized, where l1 is chosen to be the largest
eigenvalue  (in  magnitude)  other  than  ln.  If  we  define  f : Rn-1 Ø Rn  by
Ha1, … , an-1L Ø a1 v1 +…+ an-1 vn-1 + vn,  then we seek to find the maximal value of a1
that lies in f -1H@0, 1DnL.  Let us use GraphData  to find interesting examples with which
to work.

8 Greg Markowsky

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.



Suppose now that G is a finite graph. The question of hitting probabilities of points can be
handled  in  a  similar  way  to  the  above  argument,  where  we  still  must  look  for  harmonic
functions on the graph. However, there is a related question that is a bit different, but quite
interesting.  Suppose,  rather  than  a  sole  walker,  we  have  a  large  number  of  random
walkers, all moving at the same time. The object of interest will be the fraction of walkers
that are at each vertex at any given time. Suppose G has n vertices, numbered from 1 to n.
A  distribution  vector  is  a  vector  in  @0, 1Dn  whose  components  sum  to  1,  representing  a
distribution of random walkers on the graph. Form an nµ n matrix whose elements satisfy
ai j = 0  unless  vertices  i  and  j  are  adjacent,  in  which  case  ai j = 1.  This  is  known  as  the
adjacency matrix. We will suppose below that the matrix is regular (every vertex has the
same  degree)  and  not  bipartite  (bipartite  means  that  the  vertices  of  the  graph  can  be
divided into two sets A and B, such that every vertex in A is adjacent only to vertices in B,
and vice versa).  Let P  denote the probability matrix  obtained by dividing all  elements in
the  adjacency  matrix  by  the  degree  of  each  vertex.  If  at  time  0  the  walkers  have  distri-
bution v0,  then v1 = P v0  is  the  distribution at  time 1,  followed by v2 = P v1 = P2 v0,  etc.
The  distribution  vector  H1 ê n, 1 ê n, …, 1 ê nL  gives  the  stationary  distribution,  the  distri-
bution  that  is  unchanged  (since  each  row  of  P  sums  to  1)  when  the  random  walk
undergoes a step.  The key question is,  when we start  with an arbitrary distribution, what

disordered  forever?  It  is  a  consequence  of  the  Perron–Frobenius  theorem  that  all  eigen-
values  of  P  are  real  and  lie  in  the  interval  @-1, 1D,  and  that  the  eigenvectors  v1, … , vn
form an orthogonal basis of Rn.  The largest  eigenvalue ln  is  simple and equal to 1,  with
the  stationary  distribution  vn = H1 ê n, 1 ê n, …, 1 ê nL  as  an  eigenvector.  Any  function  v
on  the  vertices  of  the  graph  can  be  expressed  uniquely  as  v = a1 v1 +…+ an vn,  and
P v = l1 a1 v1 +…+ ln-1 an-1 vn-1 + an vn,  P2 v = l1

2 v1 +…+ ln-1
2 an-1 vn-1 + an vn,

and  so  on.  If  v  is  a  distribution  vector,  then  an = 1,  since  the  basis  of  eigenvectors  is
orthogonal and the sum of the components of any vector orthogonal to vn  must be 0. We
know that v1, …, vn-1 œ @-1, 1D. Let us assume that none of v1, …, vn-1  are equal to -1
(in  case  one  of  them  is,  it  can  be  shown  that  the  graph  is  bipartite).  In  that  case,  an
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vn determines the slowest possible rate of convergence of any distribution to the stationary
one.  This  is  all  standard and well  known in this  field  (see [2]).  I  was interested in  using
Mathematica  to  understand  these  theorems  better,  so  I  decided  to  try  to  determine  the
“slowest  mixing”  distribution,  given  any  graph.  Again,  my  intuition  failed  me,  as
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difficult  to  obtain.  The  slowest  mixing  distribution  will  be  the  distribution  vector
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to work.
We  only  want  regular  graphs,  and  let  us  consider  a  number  of  vertices  that  is  small
enough with which to calculate but still large enough to be interesting; nine seems reason-
able. Let us also take only graphs of degree four.

m = Select@GraphData@"Regular"D,
GraphData@Ò, "VertexCount"D ã 9 &&

GraphData@Ò, "EdgeCount"D ã 18 &D

88Circulant, 89, 81, 2<<<, 8Circulant, 89, 81, 3<<<,
8GeneralizedQuadrangle, 82, 1<<, 8Quartic, 89, 1<<,
8Quartic, 89, 2<<, 8Quartic, 89, 3<<, 8Quartic, 89, 4<<,
8Quartic, 89, 5<<, 8Quartic, 89, 7<<, 8Quartic, 89, 8<<,
8Quartic, 89, 9<<, 8Quartic, 89, 10<<, 8Quartic, 89, 11<<,
8Quartic, 89, 12<<, 8Quartic, 89, 13<<, 8Quartic, 89, 15<<<
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We get rid of the bipartite and disconnected graphs.

m =
Select@m,
! GraphData@Ò, "Bipartite"D && GraphData@Ò, "Connected"D &D

88Circulant, 89, 81, 2<<<, 8Circulant, 89, 81, 3<<<,
8GeneralizedQuadrangle, 82, 1<<, 8Quartic, 89, 1<<,
8Quartic, 89, 2<<, 8Quartic, 89, 3<<, 8Quartic, 89, 4<<,
8Quartic, 89, 5<<, 8Quartic, 89, 7<<, 8Quartic, 89, 8<<,
8Quartic, 89, 9<<, 8Quartic, 89, 10<<, 8Quartic, 89, 11<<,
8Quartic, 89, 12<<, 8Quartic, 89, 13<<, 8Quartic, 89, 15<<<

Here are the graphs.

Partition@GraphData@Ò, "Image"D & êü m, 3D êê Grid
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Here are the spectrums,  the sets  of  eigenvalues of  adjacency matrices.  They all  have de-
gree  four  as  their  largest  eigenvalue,  as  they  should,  and  all  other  eigenvalues  lie  in
H-4, 4L.

spec = N êü GraphData@Ò, "Spectrum"D & êü m

88-2., -2., -1.53209, -1.53209, -0.347296,
-0.347296, 1.87939, 1.87939, 4.<, 8-2.87939, -2.87939,
-0.652704, -0.652704, 0.532089, 0.532089, 1., 1., 4.<,

8-2., -2., -2., -2., 1., 1., 1., 1., 4.<,
8-2., -2., -1.56155, -1., -1., 0., 1., 2.56155, 4.<,
8-3., -2., -1., -1., 0., 0., 1., 2., 4.<,
8-2.74796, -1.80194, -1.57018, -1., -0.445042, 0.353984,
1.24698, 1.96416, 4.<, 8-2.61803, -1.61803, -1.61803,
-1.30278, -0.381966, 0.618034, 0.618034, 2.30278, 4.<,

8-2., -2., -2., -1., -1., 1., 1., 2., 4.<,
8-2.59615, -2., -1.53209, -1.18264, -0.347296,
0.515722, 1.26308, 1.87939, 4.<, 8-2.84224, -2.,
-1.50694, -1., 0., 0.506942, 1., 1.84224, 4.<,

8-2.96416, -2.24698, -1.35398, -0.554958, 0., 0.570181,
0.801938, 1.74796, 4.<, 8-2.87939, -2.26308, -1.51572,
-0.652704, 0.182644, 0.532089, 1., 1.59615, 4.<,

8-2.56155, -2., -2., -1., 0., 1., 1., 1.56155, 4.<,
8-3.30278, -1.61803, -1.61803, -0.618034,
0.302776, 0.618034, 0.618034, 1.61803, 4.<,

8-3.56155, -2., -1., 0., 0., 0.561553, 1., 1., 4.<,
8-3., -2., -2., 0., 0., 1., 1., 1., 4.<<
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Just as a check, let us make sure that all spectrums sum to 0. This is because the sum of
the eigenvalues of a matrix is equal to the trace, and the trace of the adjacency matrix is 0.

Chop@Total êü specD

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<

The sum of the squares of the eigenvalues gives twice the number of edges.

HTotal@Ò^2D & êü specL ê 2

818., 18., 18., 18., 18., 18., 18.,
18., 18., 18., 18., 18., 18., 18., 18., 18.<

The  sum  of  the  cubes  of  the  eigenvalues  gives  six  times  the  number  of  triangles  in  the
graph.

ChopüHTotal@Ò^3D & êü specL ê 6

89., 3., 6., 10., 6., 7., 8., 8., 7., 6., 5., 5., 6., 4., 2., 4.<

See  [3]  for  a  proof  of  the  preceding  facts.  We  see  that  the  fourth  graph  in  our  list  has
many triangles, while the next to last has hardly any. It may be guessed that this property
has  something  to  do  with  how  rapidly  a  distribution  gets  mixed  on  a  graph,  so  let  us
closely consider these two graphs.

tri = m@@4DD

8Quartic, 89, 1<<

notri = m@@-2DD

8Quartic, 89, 13<<

Here is what they look like.

Row@GraphData@Ò, "Image"D & êü 8tri, notri<D

Recall that we are trying to find the distribution that converges most slowly to the uniform
one. The probability matrix is defined to be the adjacency matrix divided by the degree, in
this case four. In the context of random walks on regular graphs, the probability matrix is
more relevant than the adjacency matrix, as it represents the transition probabilities to the
neighboring  states  of  each  step  of  the  walk.  Here  are  the  all-important  eigenvalues  and
eigenvectors for the probability matrix of the graph with many triangles.
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Recall that we are trying to find the distribution that converges most slowly to the uniform
one. The probability matrix is defined to be the adjacency matrix divided by the degree, in

more relevant than the adjacency matrix, as it represents the transition probabilities to the
neighboring  states  of  each  step  of  the  walk.  Here  are  the  all-important  eigenvalues  and
eigenvectors for the probability matrix of the graph with many triangles.

Transpose@NüEigensystem@GraphData@tri, "AdjacencyMatrix"DD ê

4D êê Grid

1. 80.25, 0.25, 0.25, 0.25,
0.25, 0.25, 0.25, 0.25, 0.25<

0.640388 8-0.25, -0.25, -0.195194, -0.195194,
0., 0.195194, 0.195194, 0.25, 0.25<

-0.5 80.25, 0.25, 0., -0.25,
-0.5, -0.25, 0., 0.25, 0.25<

-0.5 80., 0., 0.25, -0.25, 0., -0.25, 0.25, 0., 0.<
-0.390388 8-0.25, -0.25, 0.320194, 0.320194,

0., -0.320194, -0.320194, 0.25, 0.25<
-0.25 80., 0., 0., 0., 0., 0., 0., -0.25, 0.25<
-0.25 8-0.25, 0.25, 0., 0., 0., 0., 0., 0., 0.<
0.25 80.25, 0.25, -0.5, -0.5,

1., -0.5, -0.5, 0.25, 0.25<
0. 80., 0., -0.25, 0.25, 0., -0.25, 0.25, 0., 0.<

We define v@1D, …, v@9D to be the eigenvectors.

8v@1D, v@2D, v@3D, v@4D, v@5D, v@6D, v@7D, v@8D, v@9D< =
HNüEigensystem@GraphData@tri, "AdjacencyMatrix"DD ê 4L@@2DD

880.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25<,
8-0.25, -0.25, -0.195194, -0.195194,
0., 0.195194, 0.195194, 0.25, 0.25<,

80.25, 0.25, 0., -0.25, -0.5, -0.25, 0., 0.25, 0.25<,
80., 0., 0.25, -0.25, 0., -0.25, 0.25, 0., 0.<,
8-0.25, -0.25, 0.320194, 0.320194, 0., -0.320194, -0.320194,
0.25, 0.25<, 80., 0., 0., 0., 0., 0., 0., -0.25, 0.25<,

8-0.25, 0.25, 0., 0., 0., 0., 0., 0., 0.<,
80.25, 0.25, -0.5, -0.5, 1., -0.5, -0.5, 0.25, 0.25<,
80., 0., -0.25, 0.25, 0., -0.25, 0.25, 0., 0.<<

Now, if the theory is correct, this should be an orthogonal basis of R9, so that for any vec-
tor w we should have

w = ‚
i=1

9 w ÿ vi

vi 2
vi.
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This is a standard result from linear algebra, and holds in the much more general context
of Hilbert spaces (see [4]). Let us verify it with the vector w = H1, 2, 3, 4, 5, 6, 7, 8, 9L.

w = 81, 2, 3, 4, 5, 6, 7, 8, 9<;
Sum@HDot@w, v@iDD ê Norm@v@iDD^2L v@iD, 8i, 1, 9<D

81., 2., 3., 4., 5., 6., 7., 8., 9.<

In order to find the slowest mixing distribution, then, we need to maximize the coefficient
of v2  in the representation of any distribution vector w in @0, 1D9. A distribution vector is a
vector  w  such  that  w ÿ H1, 1, 1, 1, 1, 1, 1, 1, 1L = 1.  Thus,  we  are  led  to  ask  Mathematica
the following.

NMaximize@8Dot@8v1, v2, v3, v4, v5, v6, v7, v8, v9<, v@2DD,
Dot@8v1, v2, v3, v4, v5, v6, v7, v8, v9<,

81, 1, 1, 1, 1, 1, 1, 1, 1<D ã 1, 0 § v1 § 1, 0 § v2 § 1,
0 § v3 § 1, 0 § v4 § 1, 0 § v5 § 1, 0 § v6 § 1, 0 § v7 § 1,
0 § v8 § 1, 0 § v9 § 1<, 8v1, v2, v3, v4, v5, v6, v7, v8, v9<D

80.25, 8v1 Ø 0., v2 Ø 0., v3 Ø 0., v4 Ø 0.,
v5 Ø 0., v6 Ø 0., v7 Ø 0., v8 Ø 1., v9 Ø 0.<<

Interestingly enough, the slowest mixing distribution occurs when we concentrate the en-
tire mass of walkers on vertex 8. But which is vertex 8? Here is the graph with the vertices
labeled.

GraphData@tri, "LabeledImage"D

1

2

3
4

5

6

7

8

9
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There  does  not  seem  to  be  anything  too  special  about  vertex  8,  and  considering  that
v2 = 8-0.25, -0.25, -0.195194, -0.195194, 0., 0.195194, 0.195194, 0.25, 0.25<,  we  see
that vertices 1, 2, and 9 would have fared equally well. 

v@2D

8-0.25, -0.25, -0.195194, -0.195194,
0., 0.195194, 0.195194, 0.25, 0.25<

Let us now see how the other graph works.

Transpose@
NüEigensystem@GraphData@notri, "AdjacencyMatrix"D ê 4DD êê

Grid

1. 81., 1., 1., 1., 1., 1., 1., 1., 1.<
-0.890388 80., 0.780776, -0.780776,

0.780776, -0.780776, -1., -1., 1., 1.<
-0.5 84., -2., -2., -2., -2., 1., 1., 1., 1.<
-0.25 80., 1., -1., -1., 1., 0., 0., 0., 0.<
0.25 8-2., -1., -1., 0., 0., 1., 1., 1., 1.<
0.25 80., -1., -1., 1., 1., 0., 0., 0., 0.<

0.140388 80., -1.28078, 1.28078,
-1.28078, 1.28078, -1., -1., 1., 1.<

0. 80., 0., 0., 0., 0., 0., 0., -1., 1.<
0. 80., 0., 0., 0., 0., -1., 1., 0., 0.<

8v@1D, v@2D, v@3D, v@4D, v@5D, v@6D, v@7D, v@8D, v@9D< =
HNüEigensystem@GraphData@notri, "AdjacencyMatrix"DD ê 4L@@
2DD

880.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25<,
80., 0.195194, -0.195194, 0.195194,
-0.195194, -0.25, -0.25, 0.25, 0.25<,

81., -0.5, -0.5, -0.5, -0.5, 0.25, 0.25, 0.25, 0.25<,
80., 0.25, -0.25, -0.25, 0.25, 0., 0., 0., 0.<,
8-0.5, -0.25, -0.25, 0., 0., 0.25, 0.25, 0.25, 0.25<,
80., -0.25, -0.25, 0.25, 0.25, 0., 0., 0., 0.<,
80., -0.320194, 0.320194, -0.320194, 0.320194, -0.25, -0.25,
0.25, 0.25<, 80., 0., 0., 0., 0., 0., 0., -0.25, 0.25<,

80., 0., 0., 0., 0., -0.25, 0.25, 0., 0.<<
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NMaximize@8Dot@8v1, v2, v3, v4, v5, v6, v7, v8, v9<, v@2DD,
Dot@8v1, v2, v3, v4, v5, v6, v7, v8, v9<,

81, 1, 1, 1, 1, 1, 1, 1, 1<D ã 1, 0 § v1 § 1, 0 § v2 § 1,
0 § v3 § 1, 0 § v4 § 1, 0 § v5 § 1, 0 § v6 § 1, 0 § v7 § 1,
0 § v8 § 1, 0 § v9 § 1<, 8v1, v2, v3, v4, v5, v6, v7, v8, v9<D

80.25, 8v1 Ø 0., v2 Ø 0., v3 Ø 0., v4 Ø 0.,
v5 Ø 0., v6 Ø 0., v7 Ø 0., v8 Ø 1., v9 Ø 0.<<

Here,  vH2L = 80., 0.195194, -0.195194, 0.195194, -0.195194, -0.25, -0.25, 0.25, 0.25<,
so  we see  that  vertices  6,  7,  and  9  would  have  worked equally  well.  Here  is  the  labeled
graph.
GraphData@notri, "LabeledImage"D

1

2

3

4

5

67

89

Having worked through all of this, it is now clear which is the slowest mixing distribution.
One can simply take the maximal component of v2  and place all of the mass on that ver-
tex.  One  could  also  distribute  the  mass  over  several  vertices  with  maximal  size  and  the
same sign, for instance over vertices 8 and 9 in the notri graph. We are led once again
to the correct theorem.
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Theorem 2

Given  the  conditions  as  above,  the  slowest  mixing  distribution  on  the  vertices  of  a
graph is the one obtained by putting a unit mass on one of the vertices that corresponds to
a maximal component of the eigenvector associated with the second largest eigenvalue (in
absolute value) of the probability matrix of the graph. This distribution is not necessarily
unique, as there may be more than one maximal distribution, and an equally slow distribu-
tion can be obtained by distributing the unit mass in any way over a set of maximal compo-
nents of the same sign.
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