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Betting Two Patterns against 
Each Other
Jan Vrbik

We present a technique for computing the probability that a 
specific pattern of successes and failures is generated randomly 
before another such pattern, thus winning the corresponding 
game. The program we build for this purpose finds the mean 
and standard deviation of the number of trials needed to 
complete one round of such a game. It can be used to maximize 
the probability of winning a game by choosing the best possible 
pattern, and also by adjusting the probability of a success. 
Finally, we verify our theoretical results by a Monte Carlo 
simulation.

‡ Generating a Single Pattern
We consider an experiment (such as flipping a coin or rolling a die) in which each trial re-
sults in either a success S (obtaining a head, a six, etc.) or a failure F, with probability p
and q = 1- p,  respectively.  The  trials  are  independently  repeated  until  a  specific  pattern
(such as FSFSF) is generated for the first time.

· Starting from Scratch

Following [1],  we introduce gn  to  be the probability  that  the  pattern has  been completed
for the first time in the nth trial. Similarly, un is the probability of completing the pattern in
the  nth  trial,  but  this  may now be  its  kth  occurrence,  where  k  is  any  positive  integer  (we
also set g0 = 0 and u0 = 1). Note that the gn probabilities must add up to 1, whereas the un
probabilities  have  an  infinite  sum,  since  un Ø u¶ > 0.  In  the  definition  of  un,  it  is
important  to  stipulate  that  consecutive  occurrences  of  the  pattern  are  not  allowed  to
overlap—once the pattern is generated, none of its parts can be used to help build its next
occurrence. Thus, for example, the sequence FSFSFSFSF contains only one completion of
FSFSF, not three.
To find the probabilities un, we assume that n trials of the experiment have just been com-
pleted. The probability of the last five of these trials resulting in FSFSF (it is easier to ex-
plain the procedure using an example) can be expanded using the formula of total probabil-
ity as follows:
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To find the probabilities un, we assume that n trials of the experiment have just been com-

plain the procedure using an example) can be expanded using the formula of total probabil-
ity as follows:

(1)p2 q3 = un + un-2 p q+ un-4 p2 q2.

Here, the left-hand side is the simple probability of generating FSFSF; the right-hand side
partitions the sample space according to where (during the last five trials) the correspond-
ing  pattern  has  been  actually  completed  (in  terms  of  our  example,  this  could  have  hap-
pened at the last trial, but also either two or four trials earlier).
To make sure not to miss any such possibility, one should slide the pattern past itself, ob-
taining a term for each perfect match, thus:

FSFSF FSFSF† FSFSF†† FSFSF††† FSFSF††††
FSFSF †FSFSF ††FSFSF †††FSFSF ††††FSFSF

yes no yes no yes

Multiplying (1)  by sn  and summing over  n,  from 5 to  ¶  (the  equation is  incorrect  when
n § 4), one obtains

p2 q3 s5

1- s
= HUHsL- 1L I1+ p q s2 + p2 q2 s4M,

where UHsL is the generating function of the un  sequence. We had to subtract 1 from UHsL
to account for the missing u0 = 1 term (u1 = u2 = u3 = u4 = 0).

From [1], we know that the probability generating function of the gn sequence is given by

(2)G HsL =
UHsL- 1

UHsL
=

1

1+ 1
UHsL-1

=
1

1+ H1- sL QHsL
,

where

Q HsL =
1+ p q s2 + p2 q2 s4

p2 q3 s5
.

The numerator of QHsL  is  obtained from the right-hand side of (1) after replacing un-i  by
si, while the denominator equals the left-hand side of (1) multiplied by sN  (where N  is the
total length of the pattern). 
The computation of GHsL is done by the following program.

PGF@b_D := ModuleB8n, a = conv@bD, h = 0<, n = Length@aD;

Do@
h = h + If@Drop@a, i - 1D == Drop@a, 1 - iD,

poly@Drop@a, n + 1 - iDD, 0D, 8i, n<D;
1

1 + H1 - sL h
poly@aD

F

The  first  line  converts  the  argument  from  a  string,  say  "FSFSF",  to  a  binary  list
80, 1, 0, 1, 0<, sets n to be the corresponding length, and initializes h to 0. The second line
slides the list past itself by i - 1 symbols (where i ranges from 1 to n) and, whenever a
full match results, adds the product of the corresponding powers of p and q to h. The last
line converts the resulting h to GHsL.
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The  first  line  converts  the  argument  from  a  string,  say  "FSFSF",  to  a  binary  list
80, 1, 0, 1, 0<, sets n to be the corresponding length, and initializes h to 0. The second line
slides the list past itself by i - 1 symbols (where i ranges from 1 to n) and, whenever a
full match results, adds the product of the corresponding powers of p and q to h. The last
line converts the resulting h to GHsL.
The program uses conv to convert a string to a binary list and poly to convert a binary
list to the probability of generating that string, further multiplied by sn.

conv@a_D := Map@If@Ò == "S", 1, 0D &, Characters@aDD

poly@a_D := ModuleA8n = Length@aD, i = Total@aD<, pi H1 - pLn-i snE

Here is an example. The result of PGF@"FSFSF"D returns the result quoted in [2].

conv@"FSFSF"D

80, 1, 0, 1, 0<

poly@80, 1, 0, 1, 0<D

H1 - pL3 p2 s5

PGF@"FSFSF"D

1

1 +
H1-sL H1+H1-pL p s2+H1-pL2 p2 s4L

H1-pL3 p2 s5

Based  on  the  probability  generating  function  GHsL,  we  can  easily  find  the  corresponding
mean of the number of trials required to generate the pattern for the first time (see [3]) by

m = G ' H1L = QH1L,

and the variance by

s² = G '' H1L+ m - m² = 2 Q ' H1L+ m²+ m.

In  the  case  of  SFSFS,  one  gets  m = 42  and  s = 37.87  for  p = 1
2 ,  and  m = 72.05  and

s = 67.72 for p = 1
6 .

· Head-Start Distributions

In  the  next  section,  we  will  also  need  the  conditional  version  of  the  distribution  of  the
number  of  trials  to  obtain  a  specific  pattern  of  length  N,  given  that  the  first  k  of  its
symbols  have  already  been  generated  (where  0 § k § N).  Let  gnHkL  be  the  corresponding
conditional  probability,  namely that  exactly n  extra  trials  will  be needed to complete  the
pattern  (see  [4]).  Based  on  what  happens  in  the  next  trial  (after  the  first  k  symbols  are
already there), and using the formula of total probability, one can derive the following set
of equations for gnHkL (again, using the FSFSF pattern as our example):
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In  the  next  section,  we  will  also  need  the  conditional  version  of  the  distribution  of  the
number  of  trials  to  obtain  a  specific  pattern  of  length  N,  given  that  the  first  k  of  its
symbols  have  already  been  generated  (where  0 § k § N).  Let  gnHkL  be  the  corresponding
conditional  probability,  namely that  exactly n  extra  trials  will  be needed to complete  the
pattern  (see  [4]).  Based  on  what  happens  in  the  next  trial  (after  the  first  k  symbols  are
already there), and using the formula of total probability, one can derive the following set
of equations for gnHkL (again, using the FSFSF pattern as our example):

(3)

gnH0L = p gn-1H0L + q gn-1H1L,
gnH1L = p gn-1H2L + q gn-1H1L,
gnH2L = p gn-1H0L + q gn-1H3L,
gnH3L = p gn-1H4L + q gn-1H1L,
gnH4L = p gn-1H0L + q gn-1H5L.

The only  nontrivial  task  to  set  these  up is  to  establish  the  subscripts  of  both  gn-1  on  the
right-hand side of each equation. This is done as follows: to the existing k symbols we ap-
pend  first  an  extra  S  (to  find  the  first  subscript)  and  then  an  extra  F  (to  find  the  second
one). Then, for each of the two strings thus created, we must figure out how many of its
symbols  (at  most)  can  be  used  to  build  the  whole  pattern.  Clearly,  when  appending  the
“correct” symbol, the answer is k + 1, for the “incorrect” one, it can be anywhere from 0
to k. The following table may help:

+S +F
F+ S F+ F

FS+ S FS+ F
FSF+ S FSF+ F

FSFS+ S FSFS+ F

Note  that  gnH0L  is  the  old  gn  and  that  g0H5L = 1  (the  full  pattern  has  already  been  com-
pleted—no extra trials are needed).

Multiplying each equation in (3) by sn and summing over n from 1 to ¶, we obtain the fol-
lowing  set  of  linear  equations  for  the  corresponding  probability  generating  functions
GH0LHsL, …, GH4LHsL:

(4)

GH0LHsL = s p GH0LHsL+ s q GH1LHsL,
GH1LHsL = s p GH2LHsL+ s q GH1LHsL,
GH2LHsL = s p GH0LHsL+ s q GH3LHsL,
GH3LHsL = s p GH4LHsL+ s q GH1LHsL,
GH4LHsL = s p GH0LHsL+ s q,

since GH5LHsL = 1 (as g0H5L = 1 and gnH5L = 0 for n > 1). After solving these, one can verify
(as a way of checking) that GH0LHsL agrees with the old GHsL.

4 Jan Vrbik

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.



Again, the whole task can be delegated to the following program.

Gset@b_D := ModuleA8a = conv@bD, eq = 8<, n<, n = Length@aD;

DoA

eq = AppendAeq,

Gi == s p Govlp@Append@Take@a,iD,1D,aD +

s H1 - pL Govlp@Append@Take@a,iD,0D,aDE, 8i, 0, n - 1<E;

Solve@eq ê. Gn -> 1, Table@Gi, 8i, 0, n - 1<DD@@1DD êê SimplifyE

The first  line is  self-explanatory (compare it  with the first  line of  PGF).  The second and
third  lines  build  the  corresponding set  of  n  equations  for  the  unknown GHiL HsL—now de-
noted Gi—and the last line solves them.
The critical ingredient is the following program for establishing how deeply one string can
penetrate another, while fully matching the overlapping symbols.

ovlp@a_, b_D := Module@8n = Min@Length@aD, Length@bDD, A<,
A = Take@a, -nD; While@Take@A, -nD != Take@b, nD, n = n - 1D;
nD

The  first  line  initializes  n  to  its  largest  potential  value  (the  length  of  the  shorter  string).
The second line matches the last n elements of the first string to the first n elements of the
second string. If a perfect match is found, n is returned; otherwise, n is reduced by 1 and
the process is repeated until a perfect match is achieved (when no perfect match ever re-
sults,  n  returns  the  value  of  0).  Thus,  for  example,  the  following  command  returns  the
value of 2.

ovlp@80, 0, 1<, 80, 1, 0, 1<D

2

This illustrates the use of Gset.

D@G3 ê. Gset@"FSFSF"D, sD ê. 8s -> 1, p -> 1 ê 2<

32

It tells us that, with the FSF head start, generating the FSFSF pattern takes 32 extra flips,
on average.

This is the number of flips needed on average for p = 1
6 .

D@G3 ê. Gset@"FSFSF"D, sD ê. 8s -> 1, p -> 1 ê 6.<

62.208
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‡ Competing Patterns
Suppose that each of two players selects a specific pattern and bets that, in a series of inde-
pendent  Bernoulli  trials,  the  pattern  appears  sooner  than the  pattern  chosen by his  oppo-
nent, as investigated in [5]. We want to compute the probability of winning this game for
each of the two players, the game’s expected duration in terms of the number of trials, and
the corresponding standard deviation. 

To achieve this, we assume that n  trials of the experiment have just been completed, and
define the following:

Ë x1, n  to  be  the  probability  that  the  first  of  the  two patterns  has  been  completed  at
the  nth  trial  for  the  first  time  without  being  preceded  by  the  second  pattern  (and
thus winning the game); we take x1, 0 to be equal to 0

Ë x2, n, similarly, to be the probability of the second pattern winning the game at the
nth trial

We also need the g1, n, the probability of the first pattern being completed for the first time
at the nth  trial—ignoring the second pattern (this is the old gn) and g2, n  (vice versa),  and
the following modification of these.

Let g̀1, n  be the conditional probability that the first pattern requires an extra n trials to be
generated for the first time, given that the second pattern has just occurred (this time, the
first pattern is allowed to “get help” from any portion of the second pattern). It is obvious
that  these probabilities  equal  one of  the gnHkL  of  the previous section (constructed for  the
first  pattern),  where k  is  determined by sliding the second pattern past  the first  one until
the longest perfect match is found. Thus, for example, when the first pattern is FSFSF and
the  second  one  is  FFFFSF,  k  is  equal  to  3;  we  can  get  the  answer  by  typing
ovlp@80, 0, 0, 0, 1, 0<, 80, 1, 0, 1, 0<D.

Similarly (in the same vice versa manner) we define g̀2, n. 

· Probability of Winning

Partitioning the sample space (of n trials) according to the trial at which the second pattern
first occurred (including the possibility that it has not occurred yet—the last event of this
partition), the formula of total probability yields

g1, n = x2, 0 g̀1, n + x2,1 g̀1, n-1 + x2, 2 g̀1, n-2 +…+ x2, n g̀1, 0 + x1, n.

The left-hand side is the simple probability of the first pattern having been completed for
the first time at trial n.  On the right-hand side, this probability is broken down according
to the first occurrence of the second pattern at trial 0, 1, 2, …, n. When the second pattern
is completed at trial k,  it  wins, explaining the x2, k  factor. This factor is multiplied by the
conditional  probability  of  completing  the  first  pattern  for  the  first  time  after  the  occur-
rence of  the  second pattern,  in  exactly  n- k  trials,  that  is,  g̀1, n-k.  The last  term accounts
for the remaining possibility of the second pattern not having occurred yet and thus letting
the first pattern win, which has probability x1, n.

6 Jan Vrbik

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.



The left-hand side is the simple probability of the first pattern having been completed for
the first time at trial n.  On the right-hand side, this probability is broken down according
to the first occurrence of the second pattern at trial 0, 1, 2, …, n. When the second pattern
is completed at trial k,  it  wins, explaining the x2, k  factor. This factor is multiplied by the
conditional  probability  of  completing  the  first  pattern  for  the  first  time  after  the  occur-
rence of  the  second pattern,  in  exactly  n- k  trials,  that  is,  g̀1, n-k.  The last  term accounts
for the remaining possibility of the second pattern not having occurred yet and thus letting
the first pattern win, which has probability x1, n.

Multiplying the previous equation by sn and summing over n from 0 to ¶ results in

G1 HsL = X2HsL G
`
1HsL+ X1HsL.

To understand why, recall that

YHsL ZHsL = y0 z0 + Hy0 z1 + y1 z0L s+
Hy0 z2 + y1 z1 + y2 z0L s2 + Hy0 z3 + y1 z2 + y2 z`1 + y3 z0L s3 +….

The vice versa argument similarly yields

G2 HsL = X1HsL G
`
2HsL+ X2HsL.

These two linear equations for X1HsL and X2HsL can be easily solved.

SolveA9G1 ã X2 G
`
1 + X1, G2 ã X1 G

`
2 + X2=, 8X1, X2<E@@1DD

:X1 Ø -
G1 - G2 G

`
1

-1 + G
`
1 G
`
2

, X2 Ø -
G2 - G1 G

`
2

-1 + G
`
1 G
`
2

>

:X1 Ø -
G1 - G2 G

`
1

-1 + G
`
1 G
`
2

, X2 Ø -
G2 - G1 G

`
2

-1 + G
`
1 G
`
2

>

The  probability  that  the  first  pattern  wins  the  game  is  clearly  given  by
x1, 2 + x1, 2 + x1, 3 +… = X1H1L.  Unfortunately,  substituting  s = 1  into  the  right-hand  sides
of

(5)
X1 HsL =

G1HsL-G
`
1HsLG2HsL

1-G
`
1HsLG

`
2HsL

,

X2 HsL =
G2HsL-G

`
2HsLG1HsL

1-G
`
1HsLG

`
2HsL

results in 00 , so we use l’Hôpital’s rule to find the answer,

X1 H1L ª P1 =
m̀1 + m2 - m1

m̀1 + m̀2
,

where m denotes the mean corresponding to GHsL, that is, m = G ' H1L.

Similarly

X2 H1L ª P2 =
m̀2 + m1 - m2

m̀1 + m̀2
.

One can verify that P1 + P2 = 1.
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When the two patterns are “incompatible” (no matching overlaps, for example, in a run of
successes played against a run of failures), the two formulas reduce to

P1 =
m2

m1 + m2
,

P2 =
m1

m1 + m2
,

since  all  capped  quantities  are  now  equal  to  their  uncapped  counterparts  (getting  “help”
from the other pattern is the same as starting from scratch).

Example: playing the SFFSS pattern against FFSSF.

We first get, by the technique of the previous section,

m1 =
1+ p2 q2

p3 q2
,

m̀1 = m1
H2L =

1- p3 q

p3 q2
,

m2 =
1+ p2 q2

p2 q3
,

m̀2 = m2
H4L =

1+ p q2

p q3
.

The probability of SFFSS winning over FFSSF is thus

pI1- p q3M

p2 + q
.

When p = 1
2 , this yields a rather surprising value of 62.5%.
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More easily, the same result can be found with the help of the following program.

game@A_, B_D := ModuleB

8a = conv@AD, b = conv@BD, k1, k2, Ga, cGa, Gb, cGb, h<,
k1 = ovlp@b, aD;
k2 = ovlp@a, bD;
h = Gset@AD; Ga = G0 ê. h; cGa = Gk1 ê. h;
h = Gset@BD; Gb = G0 ê. h; cGb = Gk2 ê. h;

LimitB
Ga - cGa Gb

1 - cGa cGb
, s Ø 1F êê Simplify

F

game@"SFFSS", "FFSSF"D ê.p Ø 0.5

0.625

· Selecting the Optimal Pattern

The program game can also help us find the pattern that maximizes our chances of beat-
ing  an  opponent,  assuming that  we know the  pattern  that  the  opponent  chose,  and given
that both patterns must be of the same length. The easiest way of doing this is to go over
all possibilities and see which one results in the highest probability of winning.

In  this  manner,  we  find  that  when  p = 1
2 ,  the  best  chance  of  beating  SFFSS  is  to  select

FSFFS (that way, our probability of winning is 65.38%), and similarly to beat FFSSF we
should select  FFFSS (yielding a 23  chance of  winning).  It  appears that  we should always
drop  the  last  symbol  of  the  opponent’s  choice,  and  attach  the  opposite  symbol  in  front.
But this is only a conjecture which needs to be investigated more systematically (and is cer-
tainly not true for other values of p).

Similarly, when adding the condition that the two patterns must contain the same number
of  symbols  of  each  type  (for  example,  SFFFS and FSFFS),  we  may like  to  know which
value of  p  gives  the  first  pattern  the  highest  chance of  beating the  second one (and vice
versa). This can be done by the following two commands.

FindMaximum@8game@"SFFFS", "FFSSF"D, 0 < p < 1<, 8p, .5<D

80.548612, 8p Ø 0.667978<<

FindMaximum@8game@"FFSSF", "SFFFS"D, 0 < p < 1<, 8p, .5<D

80.515401, 8p Ø 0.131633<<

Have fun exploring some of the other possibilities!
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· Gameʼs Duration

Clearly

H HsL ª X1 HsL+ X2 HsL =
G1HsL+G2HsL-G

`
1HsL G2HsL-G

`
2HsL G1HsL

1-G
`
1HsL G

`
2HsL

is the probability generating function of the number of trials required to finish the game.

To find the corresponding expected value H ' H1L, we need to differentiate

(6)HHsL J1-G
`
1HsL G

`
2HsLN = G1HsL+G2 HsL-G

`
1HsL G2HsL-G

`
2HsL G1HsL,

twice, substituting s = 1 at the end. This yields the following result.

DAH@sD I1 - G
`
1@sD G

`
2@sDM - G1@sD - G2@sD + G

`
1@sD G2@sD + G

`
2@sD G1@sD,

8s, 2<E ê. 9q_''@sD Ø q''@1D, q_'@sD Ø mq, q_@sD Ø 1= êê

Simplify;
Solve@% ã 0, mHD@@1DD

:mH Ø
mG2 mG

`
1
+ mG1 mG

`
2
- m

G
`
1
m
G
`
2

m
G
`
1
+ m

G
`
2

>

This implies that (divide both the numerator and denominator by mG` 1 mG` 2 ª m̀1 m̀2):

(7)H ' H1L ª M =

m1

m
`
1
+

m2

m
`
2
- 1

1
m
`
1
+ 1

m
`
2

.

For the two patterns of the previous example, this equals

1

p2 + q
1+ p2 q2 +

1

p2 q2
,

which evaluates to 22.75 when p = 1
2 .
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The same result can be obtained by modifying the last line of game.

game2@A_, B_D := ModuleB

8a = conv@AD, b = conv@BD, k1, k2, Ga, cGa, Gb, cGb, h<,
k1 = ovlp@b, aD;
k2 = ovlp@a, bD;
h = Gset@AD; Ga = G0 ê. h; cGa = Gk1 ê. h;
h = Gset@BD; Gb = G0 ê. h; cGb = Gk2 ê. h;

h =
Ga + Gb - cGa Gb - Ga cGb

1 - cGa cGb
;

Limit@D@h, sD, s Ø 1D êê Simplify

F

game2@"SFFSS", "FFSSF"D ê.p Ø 0.5

22.75

In the “incompatible” case (no possible overlap between the two patterns), (7) simplifies to

M =
1

1
m1

+ 1
m2

,

which is half of the harmonic mean of m1 and m2.

Similarly,  by  differentiating  (6)  three  times,  we  can  find  H '' H1L;  this  can  be  easily  con-
verted to the following variance of the number of trials:

(8)
m̀2

m̀1 + m̀2
Is1

2 - P2 s̀1
2M+

m̀1

m̀1 + m̀2
Is2

2 - P1 s̀2
2M- m̀1 m̀2 P1 P2,

where  si
2  and  s̀i

2  are  the  respective  variances  of  the  GiHsL  and  G
`
iHsL  distributions

Hi = 1, 2L.

Using  the  previous  example  with  p = 1
2 ,  this  variance  is  336.1875  as  m1 = m2 = 34,

s12 = s22 = 866, m̀1 = 30, m̀2 = 18, s̀1
2 = 862, s̀2

2 = 722; the corresponding standard de-
viation is thus 18.34.
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Again, the same computation can be achieved much more easily by modifying the last line
of game. This then returns both the expected value and standard deviation of the game’s
duration.

game3@A_, B_D := ModuleB

8a = conv@AD, b = conv@BD, k1, k2, Ga, cGa, Gb, cGb, h, m<,
k1 = ovlp@b, aD;
k2 = ovlp@a, bD;
h = Gset@AD; Ga = G0 ê. h; cGa = Gk1 ê. h;
h = Gset@BD; Gb = G0 ê. h; cGb = Gk2 ê. h;

h =
Ga + Gb - cGa Gb - Ga cGb

1 - cGa cGb
;

m = Limit@D@h, sD, s -> 1D;

:m, Limit@D@h, s, sD, s -> 1D + m - m2 > êê Simplify

F

game3@"SFFSS", "FFSSF"D ê.p Ø 0.5

822.75, 18.3354<

In the “incompatible” case, (8) reduces to a much simpler form,

P12 s12 + P22 s22 - M2.

· Monte Carlo Simulation

The correctness of  all  these formulas can be easily confirmed by the following program,
whose four arguments are the two strings, the value of p, and the number of rounds of this
game to be randomly generated.

MC@a_, b_, p_, n_D :=

ModuleB8A = conv@aD, B = conv@bD, m1, m2, q, i = 0, j = 0,

k, L = 0<,
m1 = Length@AD; m2 = Length@BD;

DoAq = Table@-1, 8Max@m1, m2D<D; k = 0;

While@Take@q, -m1D =!= A && Take@q, -m2D =!= B,
q = Append@Drop@q, 1D,

If@Random@D < p, 1, 0DD; k = k + 1D;
i = i + If@Take@q, -m1D == A, 1, 0D;

j = j + k; L = L + k2, 8n<E; :
i

n
,
j

n
,

L

n
-
j2

n2
> êê NF

The program returns the resulting proportion of wins for the first string, the average length
of the game, and the corresponding standard deviation.
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The program returns the resulting proportion of wins for the first string, the average length
of the game, and the corresponding standard deviation.
This example is in good agreement with our theoretical results.

MCB"SFFSS", "FFSSF",
1

2
, 100 000F

80.62212, 22.7245, 18.3041<
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