
The Mathematica® Journal

Betting Two Patterns against
Each Other
Jan Vrbik

We present a technique for computing the probability that a
specific pattern of successes and failures is generated randomly
before another such pattern, thus winning the corresponding
game. The program we build for this purpose finds the mean
and standard deviation of the number of trials needed to
complete one round of such a game. It can be used to maximize
the probability of winning a game by choosing the best possible
pattern, and also by adjusting the probability of a success.
Finally, we verify our theoretical results by a Monte Carlo
simulation.

‡ Generating a Single Pattern
We consider an experiment (such as flipping a coin or rolling a die) in which each trial re-
sults in either a success S (obtaining a head, a six, etc.) or a failure F, with probability p
and q = 1- p, respectively. The trials are independently repeated until a specific pattern
(such as FSFSF) is generated for the first time.

· Starting from Scratch

Following [1], we introduce gn to be the probability that the pattern has been completed
for the first time in the nth trial. Similarly, un is the probability of completing the pattern in
the nth trial, but this may now be its kth occurrence, where k is any positive integer (we
also set g0 = 0 and u0 = 1). Note that the gn probabilities must add up to 1, whereas the un
probabilities have an infinite sum, since un Ø u¶ > 0. In the definition of un, it is
important to stipulate that consecutive occurrences of the pattern are not allowed to
overlap—once the pattern is generated, none of its parts can be used to help build its next
occurrence. Thus, for example, the sequence FSFSFSFSF contains only one completion of
FSFSF, not three.
To find the probabilities un, we assume that n trials of the experiment have just been com-
pleted. The probability of the last five of these trials resulting in FSFSF (it is easier to ex-
plain the procedure using an example) can be expanded using the formula of total probabil-
ity as follows:

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

To find the probabilities un, we assume that n trials of the experiment have just been com-

plain the procedure using an example) can be expanded using the formula of total probabil-
ity as follows:

(1)p2 q3 = un + un-2 p q+ un-4 p2 q2.

Here, the left-hand side is the simple probability of generating FSFSF; the right-hand side
partitions the sample space according to where (during the last five trials) the correspond-
ing pattern has been actually completed (in terms of our example, this could have hap-
pened at the last trial, but also either two or four trials earlier).
To make sure not to miss any such possibility, one should slide the pattern past itself, ob-
taining a term for each perfect match, thus:

FSFSF FSFSF† FSFSF†† FSFSF††† FSFSF††††
FSFSF †FSFSF ††FSFSF †††FSFSF ††††FSFSF

yes no yes no yes

Multiplying (1) by sn and summing over n, from 5 to ¶ (the equation is incorrect when
n § 4), one obtains

p2 q3 s5

1- s
= HUHsL- 1L I1+ p q s2 + p2 q2 s4M,

where UHsL is the generating function of the un sequence. We had to subtract 1 from UHsL
to account for the missing u0 = 1 term (u1 = u2 = u3 = u4 = 0).

From [1], we know that the probability generating function of the gn sequence is given by

(2)G HsL =
UHsL- 1

UHsL
=

1

1+ 1
UHsL-1

=
1

1+ H1- sL QHsL
,

where

Q HsL =
1+ p q s2 + p2 q2 s4

p2 q3 s5
.

The numerator of QHsL is obtained from the right-hand side of (1) after replacing un-i by
si, while the denominator equals the left-hand side of (1) multiplied by sN (where N is the
total length of the pattern).
The computation of GHsL is done by the following program.

PGF@b_D := ModuleB8n, a = conv@bD, h = 0<, n = Length@aD;

Do@
h = h + If@Drop@a, i - 1D == Drop@a, 1 - iD,

poly@Drop@a, n + 1 - iDD, 0D, 8i, n<D;
1

1 + H1 - sL h
poly@aD

F

The first line converts the argument from a string, say "FSFSF", to a binary list
80, 1, 0, 1, 0<, sets n to be the corresponding length, and initializes h to 0. The second line
slides the list past itself by i - 1 symbols (where i ranges from 1 to n) and, whenever a
full match results, adds the product of the corresponding powers of p and q to h. The last
line converts the resulting h to GHsL.

2 Jan Vrbik

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

The first line converts the argument from a string, say "FSFSF", to a binary list
80, 1, 0, 1, 0<, sets n to be the corresponding length, and initializes h to 0. The second line
slides the list past itself by i - 1 symbols (where i ranges from 1 to n) and, whenever a
full match results, adds the product of the corresponding powers of p and q to h. The last
line converts the resulting h to GHsL.
The program uses conv to convert a string to a binary list and poly to convert a binary
list to the probability of generating that string, further multiplied by sn.

conv@a_D := Map@If@Ò == "S", 1, 0D &, Characters@aDD

poly@a_D := ModuleA8n = Length@aD, i = Total@aD<, pi H1 - pLn-i snE

Here is an example. The result of PGF@"FSFSF"D returns the result quoted in [2].

conv@"FSFSF"D

80, 1, 0, 1, 0<

poly@80, 1, 0, 1, 0<D

H1 - pL3 p2 s5

PGF@"FSFSF"D

1

1 +
H1-sL H1+H1-pL p s2+H1-pL2 p2 s4L

H1-pL3 p2 s5

Based on the probability generating function GHsL, we can easily find the corresponding
mean of the number of trials required to generate the pattern for the first time (see [3]) by

m = G ' H1L = QH1L,

and the variance by

s² = G '' H1L+ m - m² = 2 Q ' H1L+ m²+ m.

In the case of SFSFS, one gets m = 42 and s = 37.87 for p = 1
2 , and m = 72.05 and

s = 67.72 for p = 1
6 .

· Head-Start Distributions

In the next section, we will also need the conditional version of the distribution of the
number of trials to obtain a specific pattern of length N, given that the first k of its
symbols have already been generated (where 0 § k § N). Let gnHkL be the corresponding
conditional probability, namely that exactly n extra trials will be needed to complete the
pattern (see [4]). Based on what happens in the next trial (after the first k symbols are
already there), and using the formula of total probability, one can derive the following set
of equations for gnHkL (again, using the FSFSF pattern as our example):

Betting Two Patterns against Each Other 3

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

In the next section, we will also need the conditional version of the distribution of the
number of trials to obtain a specific pattern of length N, given that the first k of its
symbols have already been generated (where 0 § k § N). Let gnHkL be the corresponding
conditional probability, namely that exactly n extra trials will be needed to complete the
pattern (see [4]). Based on what happens in the next trial (after the first k symbols are
already there), and using the formula of total probability, one can derive the following set
of equations for gnHkL (again, using the FSFSF pattern as our example):

(3)

gnH0L = p gn-1H0L + q gn-1H1L,
gnH1L = p gn-1H2L + q gn-1H1L,
gnH2L = p gn-1H0L + q gn-1H3L,
gnH3L = p gn-1H4L + q gn-1H1L,
gnH4L = p gn-1H0L + q gn-1H5L.

The only nontrivial task to set these up is to establish the subscripts of both gn-1 on the
right-hand side of each equation. This is done as follows: to the existing k symbols we ap-
pend first an extra S (to find the first subscript) and then an extra F (to find the second
one). Then, for each of the two strings thus created, we must figure out how many of its
symbols (at most) can be used to build the whole pattern. Clearly, when appending the
“correct” symbol, the answer is k + 1, for the “incorrect” one, it can be anywhere from 0
to k. The following table may help:

+S +F
F+ S F+ F

FS+ S FS+ F
FSF+ S FSF+ F

FSFS+ S FSFS+ F

Note that gnH0L is the old gn and that g0H5L = 1 (the full pattern has already been com-
pleted—no extra trials are needed).

Multiplying each equation in (3) by sn and summing over n from 1 to ¶, we obtain the fol-
lowing set of linear equations for the corresponding probability generating functions
GH0LHsL, …, GH4LHsL:

(4)

GH0LHsL = s p GH0LHsL+ s q GH1LHsL,
GH1LHsL = s p GH2LHsL+ s q GH1LHsL,
GH2LHsL = s p GH0LHsL+ s q GH3LHsL,
GH3LHsL = s p GH4LHsL+ s q GH1LHsL,
GH4LHsL = s p GH0LHsL+ s q,

since GH5LHsL = 1 (as g0H5L = 1 and gnH5L = 0 for n > 1). After solving these, one can verify
(as a way of checking) that GH0LHsL agrees with the old GHsL.

4 Jan Vrbik

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Again, the whole task can be delegated to the following program.

Gset@b_D := ModuleA8a = conv@bD, eq = 8<, n<, n = Length@aD;

DoA

eq = AppendAeq,

Gi == s p Govlp@Append@Take@a,iD,1D,aD +

s H1 - pL Govlp@Append@Take@a,iD,0D,aDE, 8i, 0, n - 1<E;

Solve@eq ê. Gn -> 1, Table@Gi, 8i, 0, n - 1<DD@@1DD êê SimplifyE

The first line is self-explanatory (compare it with the first line of PGF). The second and
third lines build the corresponding set of n equations for the unknown GHiL HsL—now de-
noted Gi—and the last line solves them.
The critical ingredient is the following program for establishing how deeply one string can
penetrate another, while fully matching the overlapping symbols.

ovlp@a_, b_D := Module@8n = Min@Length@aD, Length@bDD, A<,
A = Take@a, -nD; While@Take@A, -nD != Take@b, nD, n = n - 1D;
nD

The first line initializes n to its largest potential value (the length of the shorter string).
The second line matches the last n elements of the first string to the first n elements of the
second string. If a perfect match is found, n is returned; otherwise, n is reduced by 1 and
the process is repeated until a perfect match is achieved (when no perfect match ever re-
sults, n returns the value of 0). Thus, for example, the following command returns the
value of 2.

ovlp@80, 0, 1<, 80, 1, 0, 1<D

2

This illustrates the use of Gset.

D@G3 ê. Gset@"FSFSF"D, sD ê. 8s -> 1, p -> 1 ê 2<

32

It tells us that, with the FSF head start, generating the FSFSF pattern takes 32 extra flips,
on average.

This is the number of flips needed on average for p = 1
6 .

D@G3 ê. Gset@"FSFSF"D, sD ê. 8s -> 1, p -> 1 ê 6.<

62.208

Betting Two Patterns against Each Other 5

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

‡ Competing Patterns
Suppose that each of two players selects a specific pattern and bets that, in a series of inde-
pendent Bernoulli trials, the pattern appears sooner than the pattern chosen by his oppo-
nent, as investigated in [5]. We want to compute the probability of winning this game for
each of the two players, the game’s expected duration in terms of the number of trials, and
the corresponding standard deviation.

To achieve this, we assume that n trials of the experiment have just been completed, and
define the following:

Ë x1, n to be the probability that the first of the two patterns has been completed at
the nth trial for the first time without being preceded by the second pattern (and
thus winning the game); we take x1, 0 to be equal to 0

Ë x2, n, similarly, to be the probability of the second pattern winning the game at the
nth trial

We also need the g1, n, the probability of the first pattern being completed for the first time
at the nth trial—ignoring the second pattern (this is the old gn) and g2, n (vice versa), and
the following modification of these.

Let g̀1, n be the conditional probability that the first pattern requires an extra n trials to be
generated for the first time, given that the second pattern has just occurred (this time, the
first pattern is allowed to “get help” from any portion of the second pattern). It is obvious
that these probabilities equal one of the gnHkL of the previous section (constructed for the
first pattern), where k is determined by sliding the second pattern past the first one until
the longest perfect match is found. Thus, for example, when the first pattern is FSFSF and
the second one is FFFFSF, k is equal to 3; we can get the answer by typing
ovlp@80, 0, 0, 0, 1, 0<, 80, 1, 0, 1, 0<D.

Similarly (in the same vice versa manner) we define g̀2, n.

· Probability of Winning

Partitioning the sample space (of n trials) according to the trial at which the second pattern
first occurred (including the possibility that it has not occurred yet—the last event of this
partition), the formula of total probability yields

g1, n = x2, 0 g̀1, n + x2,1 g̀1, n-1 + x2, 2 g̀1, n-2 +…+ x2, n g̀1, 0 + x1, n.

The left-hand side is the simple probability of the first pattern having been completed for
the first time at trial n. On the right-hand side, this probability is broken down according
to the first occurrence of the second pattern at trial 0, 1, 2, …, n. When the second pattern
is completed at trial k, it wins, explaining the x2, k factor. This factor is multiplied by the
conditional probability of completing the first pattern for the first time after the occur-
rence of the second pattern, in exactly n- k trials, that is, g̀1, n-k. The last term accounts
for the remaining possibility of the second pattern not having occurred yet and thus letting
the first pattern win, which has probability x1, n.

6 Jan Vrbik

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

The left-hand side is the simple probability of the first pattern having been completed for
the first time at trial n. On the right-hand side, this probability is broken down according
to the first occurrence of the second pattern at trial 0, 1, 2, …, n. When the second pattern
is completed at trial k, it wins, explaining the x2, k factor. This factor is multiplied by the
conditional probability of completing the first pattern for the first time after the occur-
rence of the second pattern, in exactly n- k trials, that is, g̀1, n-k. The last term accounts
for the remaining possibility of the second pattern not having occurred yet and thus letting
the first pattern win, which has probability x1, n.

Multiplying the previous equation by sn and summing over n from 0 to ¶ results in

G1 HsL = X2HsL G
`
1HsL+ X1HsL.

To understand why, recall that

YHsL ZHsL = y0 z0 + Hy0 z1 + y1 z0L s+
Hy0 z2 + y1 z1 + y2 z0L s2 + Hy0 z3 + y1 z2 + y2 z`1 + y3 z0L s3 +….

The vice versa argument similarly yields

G2 HsL = X1HsL G
`
2HsL+ X2HsL.

These two linear equations for X1HsL and X2HsL can be easily solved.

SolveA9G1 ã X2 G
`
1 + X1, G2 ã X1 G

`
2 + X2=, 8X1, X2<E@@1DD

:X1 Ø -
G1 - G2 G

`
1

-1 + G
`
1 G
`
2

, X2 Ø -
G2 - G1 G

`
2

-1 + G
`
1 G
`
2

>

:X1 Ø -
G1 - G2 G

`
1

-1 + G
`
1 G
`
2

, X2 Ø -
G2 - G1 G

`
2

-1 + G
`
1 G
`
2

>

The probability that the first pattern wins the game is clearly given by
x1, 2 + x1, 2 + x1, 3 +… = X1H1L. Unfortunately, substituting s = 1 into the right-hand sides
of

(5)
X1 HsL =

G1HsL-G
`
1HsLG2HsL

1-G
`
1HsLG

`
2HsL

,

X2 HsL =
G2HsL-G

`
2HsLG1HsL

1-G
`
1HsLG

`
2HsL

results in 00 , so we use l’Hôpital’s rule to find the answer,

X1 H1L ª P1 =
m̀1 + m2 - m1

m̀1 + m̀2
,

where m denotes the mean corresponding to GHsL, that is, m = G ' H1L.

Similarly

X2 H1L ª P2 =
m̀2 + m1 - m2

m̀1 + m̀2
.

One can verify that P1 + P2 = 1.

Betting Two Patterns against Each Other 7

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

When the two patterns are “incompatible” (no matching overlaps, for example, in a run of
successes played against a run of failures), the two formulas reduce to

P1 =
m2

m1 + m2
,

P2 =
m1

m1 + m2
,

since all capped quantities are now equal to their uncapped counterparts (getting “help”
from the other pattern is the same as starting from scratch).

Example: playing the SFFSS pattern against FFSSF.

We first get, by the technique of the previous section,

m1 =
1+ p2 q2

p3 q2
,

m̀1 = m1
H2L =

1- p3 q

p3 q2
,

m2 =
1+ p2 q2

p2 q3
,

m̀2 = m2
H4L =

1+ p q2

p q3
.

The probability of SFFSS winning over FFSSF is thus

pI1- p q3M

p2 + q
.

When p = 1
2 , this yields a rather surprising value of 62.5%.

8 Jan Vrbik

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

More easily, the same result can be found with the help of the following program.

game@A_, B_D := ModuleB

8a = conv@AD, b = conv@BD, k1, k2, Ga, cGa, Gb, cGb, h<,
k1 = ovlp@b, aD;
k2 = ovlp@a, bD;
h = Gset@AD; Ga = G0 ê. h; cGa = Gk1 ê. h;
h = Gset@BD; Gb = G0 ê. h; cGb = Gk2 ê. h;

LimitB
Ga - cGa Gb

1 - cGa cGb
, s Ø 1F êê Simplify

F

game@"SFFSS", "FFSSF"D ê.p Ø 0.5

0.625

· Selecting the Optimal Pattern

The program game can also help us find the pattern that maximizes our chances of beat-
ing an opponent, assuming that we know the pattern that the opponent chose, and given
that both patterns must be of the same length. The easiest way of doing this is to go over
all possibilities and see which one results in the highest probability of winning.

In this manner, we find that when p = 1
2 , the best chance of beating SFFSS is to select

FSFFS (that way, our probability of winning is 65.38%), and similarly to beat FFSSF we
should select FFFSS (yielding a 23 chance of winning). It appears that we should always
drop the last symbol of the opponent’s choice, and attach the opposite symbol in front.
But this is only a conjecture which needs to be investigated more systematically (and is cer-
tainly not true for other values of p).

Similarly, when adding the condition that the two patterns must contain the same number
of symbols of each type (for example, SFFFS and FSFFS), we may like to know which
value of p gives the first pattern the highest chance of beating the second one (and vice
versa). This can be done by the following two commands.

FindMaximum@8game@"SFFFS", "FFSSF"D, 0 < p < 1<, 8p, .5<D

80.548612, 8p Ø 0.667978<<

FindMaximum@8game@"FFSSF", "SFFFS"D, 0 < p < 1<, 8p, .5<D

80.515401, 8p Ø 0.131633<<

Have fun exploring some of the other possibilities!

Betting Two Patterns against Each Other 9

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

· Gameʼs Duration

Clearly

H HsL ª X1 HsL+ X2 HsL =
G1HsL+G2HsL-G

`
1HsL G2HsL-G

`
2HsL G1HsL

1-G
`
1HsL G

`
2HsL

is the probability generating function of the number of trials required to finish the game.

To find the corresponding expected value H ' H1L, we need to differentiate

(6)HHsL J1-G
`
1HsL G

`
2HsLN = G1HsL+G2 HsL-G

`
1HsL G2HsL-G

`
2HsL G1HsL,

twice, substituting s = 1 at the end. This yields the following result.

DAH@sD I1 - G
`
1@sD G

`
2@sDM - G1@sD - G2@sD + G

`
1@sD G2@sD + G

`
2@sD G1@sD,

8s, 2<E ê. 9q_''@sD Ø q''@1D, q_'@sD Ø mq, q_@sD Ø 1= êê

Simplify;
Solve@% ã 0, mHD@@1DD

:mH Ø
mG2 mG

`
1
+ mG1 mG

`
2
- m

G
`
1
m
G
`
2

m
G
`
1
+ m

G
`
2

>

This implies that (divide both the numerator and denominator by mG` 1 mG` 2 ª m̀1 m̀2):

(7)H ' H1L ª M =

m1

m
`
1
+

m2

m
`
2
- 1

1
m
`
1
+ 1

m
`
2

.

For the two patterns of the previous example, this equals

1

p2 + q
1+ p2 q2 +

1

p2 q2
,

which evaluates to 22.75 when p = 1
2 .

10 Jan Vrbik

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

The same result can be obtained by modifying the last line of game.

game2@A_, B_D := ModuleB

8a = conv@AD, b = conv@BD, k1, k2, Ga, cGa, Gb, cGb, h<,
k1 = ovlp@b, aD;
k2 = ovlp@a, bD;
h = Gset@AD; Ga = G0 ê. h; cGa = Gk1 ê. h;
h = Gset@BD; Gb = G0 ê. h; cGb = Gk2 ê. h;

h =
Ga + Gb - cGa Gb - Ga cGb

1 - cGa cGb
;

Limit@D@h, sD, s Ø 1D êê Simplify

F

game2@"SFFSS", "FFSSF"D ê.p Ø 0.5

22.75

In the “incompatible” case (no possible overlap between the two patterns), (7) simplifies to

M =
1

1
m1

+ 1
m2

,

which is half of the harmonic mean of m1 and m2.

Similarly, by differentiating (6) three times, we can find H '' H1L; this can be easily con-
verted to the following variance of the number of trials:

(8)
m̀2

m̀1 + m̀2
Is1

2 - P2 s̀1
2M+

m̀1

m̀1 + m̀2
Is2

2 - P1 s̀2
2M- m̀1 m̀2 P1 P2,

where si
2 and s̀i

2 are the respective variances of the GiHsL and G
`
iHsL distributions

Hi = 1, 2L.

Using the previous example with p = 1
2 , this variance is 336.1875 as m1 = m2 = 34,

s12 = s22 = 866, m̀1 = 30, m̀2 = 18, s̀1
2 = 862, s̀2

2 = 722; the corresponding standard de-
viation is thus 18.34.

Betting Two Patterns against Each Other 11

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Again, the same computation can be achieved much more easily by modifying the last line
of game. This then returns both the expected value and standard deviation of the game’s
duration.

game3@A_, B_D := ModuleB

8a = conv@AD, b = conv@BD, k1, k2, Ga, cGa, Gb, cGb, h, m<,
k1 = ovlp@b, aD;
k2 = ovlp@a, bD;
h = Gset@AD; Ga = G0 ê. h; cGa = Gk1 ê. h;
h = Gset@BD; Gb = G0 ê. h; cGb = Gk2 ê. h;

h =
Ga + Gb - cGa Gb - Ga cGb

1 - cGa cGb
;

m = Limit@D@h, sD, s -> 1D;

:m, Limit@D@h, s, sD, s -> 1D + m - m2 > êê Simplify

F

game3@"SFFSS", "FFSSF"D ê.p Ø 0.5

822.75, 18.3354<

In the “incompatible” case, (8) reduces to a much simpler form,

P12 s12 + P22 s22 - M2.

· Monte Carlo Simulation

The correctness of all these formulas can be easily confirmed by the following program,
whose four arguments are the two strings, the value of p, and the number of rounds of this
game to be randomly generated.

MC@a_, b_, p_, n_D :=

ModuleB8A = conv@aD, B = conv@bD, m1, m2, q, i = 0, j = 0,

k, L = 0<,
m1 = Length@AD; m2 = Length@BD;

DoAq = Table@-1, 8Max@m1, m2D<D; k = 0;

While@Take@q, -m1D =!= A && Take@q, -m2D =!= B,
q = Append@Drop@q, 1D,

If@Random@D < p, 1, 0DD; k = k + 1D;
i = i + If@Take@q, -m1D == A, 1, 0D;

j = j + k; L = L + k2, 8n<E; :
i

n
,
j

n
,

L

n
-
j2

n2
> êê NF

The program returns the resulting proportion of wins for the first string, the average length
of the game, and the corresponding standard deviation.

12 Jan Vrbik

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

The program returns the resulting proportion of wins for the first string, the average length
of the game, and the corresponding standard deviation.
This example is in good agreement with our theoretical results.

MCB"SFFSS", "FFSSF",
1

2
, 100 000F

80.62212, 22.7245, 18.3041<

‡ References
[1] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I, 3rd ed., New

York: John Wiley & Sons, 1968.

[2] G. Blom and D. Thorburn, “How Many Random Digits Are Required Until Given Sequences
Are Obtained?,” Journal of Applied Probability, 19(3), 1982 pp. 518–531.
www.jstor.org/pss/3213511.

[3] S. R. Li, “A Martingale Approach to the Study of Occurrence of Sequence Patterns in Re-
peated Experiments,” Annals of Probability, 8(6), 1980 pp. 1171–1176.
projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aop/
1176994578.

[4] L. J. Guibas and A. M. Odlyzko, “String Overlaps, Pattern Matching, and Nontransitive
Games,” Journal of Combinatorial Theory A, 30(2), 1981 pp. 183–208.
www.sciencedirect.com/science/article/pii/0097316581900054.

[5] E. Pegg Jr. “Coin Flips” from the Wolfram Demonstrations Project—A Wolfram Web Re-
source. www.demonstrations.wolfram.com/CoinFlips.

J. Vrbik, “Betting Two Patterns against Each Other,” The Mathematica Journal, 2011.
dx.doi.org/doi:10.3888/tmj.13–15.

About the Author

Jan Vrbik
Department of Mathematics, Brock University
500 Glenridge Ave., St. Catharines,
Ontario, Canada, L2S 3A1
jvrbik@brocku.ca

Betting Two Patterns against Each Other 13

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

