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Computing Mixed-Design
(Split-Plot) ANOVA

Sylvain Chartier
Denis Cousineau

The mixed, within-between subjects ANOVA (also called a split-
plot ANOVA) is a statistical test of means commonly used in the
behavioral sciences. One approach to computing this analysis is
to use a corrected between-subjects ANOVA. A second approach
uses the general linear model by partitioning the sum of squares
and cross-product matrices. Both approaches are detailed in this
article. Finally, a package called MixedDesignANOVA is
introduced that runs mixed-design ANOVAs using the second
approach and displays summary statistics as well as a mean plot.

Introduction

The mixed, within-between subjects design (also called split-plot or randomized blocks
factorial) ANOVA is a technique that compares the means obtained by manipulating two
factors, one being a repeated-measure factor. Let g be the number of independent groups,
each representing one level of the between-subjects factor, let ¢ be the number of meas-
ures corresponding to the within-subjects factor, and let n; be the number of subjects in

the i group.
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The data is contained in a matrix X of the form:

I yin
I yix
1 ylnll
2y
2y
x=|:
2 y2n21
8 ygll
8 Yg2u
8 ygngl

First load the package. It is available from

Y112
Y122

yln12
Y212
Y222

Yan,2

Yg12
Yg22

ygngZ

Yiie
Y12¢

Yinyc
Y21c
Y22¢

Yon,e

Yglc
Yeg2c

Yen,c

Sylvain Chartier and Denis Cousineau

www.mathematica-journal.com/data/uploads/2011/10/Chartier.zip.

Needs [ "MixedDesignANOVA™ "]

An example taken from Howell [1] (p. 481) concerns data collected in a study by King
[2]. King investigated the effect of midazolam on the motor activity of rats. The rats were
measured at six different times (¢ = 6) and there were g = 3 equal groups of n; = 8 individ-

uals, i = 1..., g. Hence, the total number of rats measured was N = 24. The data is listed

in Table 1.
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Computing Mixed-Design (Split-Plot) ANOVA

WSLabels = {"Time", {"t;", "t,",
BSLabels = {"Group", {"Control", "Same", "Different"}};

X={

} /. {1 -> BSLabels[2, 1], 2 -> BSLabels[2, 2],
3 -> BSLabels[2, 3]};

{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{2,
{2,
{2,
{2,
{2,
{2,
{2,
{2,
{3,
{3,
{3,
{3,
{3,
{3,
{3,
{3,

150.,
335.,
149.,
159.,
159.,
292.,
297.,
170.,
346.,
426.,
359.,
272.,
200.,
366.,
371.,
497.,
362.,
338.,
282.,
317.,
263.,
138.,
329.,
292.,

TableForm[X,

TableHeadings -> {None, Join[{BSLabels[1]]}, WSLabels[2]]}

]

44., 71., 59., 132., 74.},
270., 156., 160., 118., 230.},
52., 91., 115., 43., 154.},
31., 127., 212., 71., 224.},
0., 35., 75., 71., 34.},

125., 184., 246., 225., 170.},
187., 66., 96., 209., 74.},
37., 42., 66., 114., 81.},
175., 177., 192., 239., 140.},
329., 236., 76., 102., 232.},
238., 183., 123., 183., 30.},
60., 82., 85., 101., 98.},
271., 263., 216., 241., 227.},
291., 263., 144., 220., 180.},
364., 270., 308., 219., 267.},
402., 294., 216., 284., 255.},
104., 144., 114., 115., 127.},
132., 91., 77., 108., 169.},
186., 225., 134., 189., 169.},
31., 85., 120., 131., 205.},
94., 141., 142., 120., 195.},
38., 16., 95., 39., 55.},

62., 62., 6., 93., 67.},

139., 104., 184., 193., 122.}
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4 Sylvain Chartier and Denis Cousineau

Group t t, t3 ty ts tg
Control 150. 44, 71. 59. 132. 74.
Control 335. 270. 156. 160. 118. 230.
Control 149. 52. 91. 115. 43. 154.
Control 159. 31. 127. 212. 71. 224.
Control 159. 0. 35. 75. 71. 34.
Control 292. 125. 184. 246. 225. 170.
Control 297. 187. 66. 96. 209. 74.
Control 170. 37. 42. 66. 114. 81.
Same 346. 175. 177. 192. 239. 140.
Same 426. 329. 236. 76. 102. 232.
Same 359. 238. 183. 123. 183. 30.
Same 272. 60. 82. 85. 101. 98.
Same 200. 271. 263. 216. 241. 227.
Same 366. 291. 263. 144. 220. 180.
Same 371. 364. 270. 308. 219. 267.
Same 497. 402. 294. 216. 284. 255.
Different 362. 104. 144. 114. 115. 127.
Different 338. 132. 91. 77. 108. 169.
Different 282. 186. 225. 134. 189. 169.
Different 317. 31. 85. 120. 131. 205.
Different 263. 94. 141. 142. 120. 195.
Different 138. 38. 16. 95. 39. 55.
Different 329. 62. 62. 6. 93. 67.
Different 292. 139. 104. 184. 193. 122.

A Table 1. Data from Howell (2003) of a 3x6 design (three groups, six repeated measures).

The plot of the means across conditions (Figure 1) shows evidence of a time effect, the re-
sults on the second time being generally smaller than those on the first time. In addition,
there is an interaction effect caused by the “same” group that does not follow this pattern.

MeanPlot /. MixedDesignANOVA[X,
Labels -> {WSLabels, BSLabels}, MeanPlot - True]

350¢

o 300
é 250 - . Control
n 200+
< 150 \/J o Same
L 100 - _
50¢ Different

Time

A Figure 1. lllustration of the example given in Table 1.
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Computing Mixed-Design (Split-Plot) ANOVA 5

Figure 2 shows variation partitioning for the subjects by condition design. The between-
subjects variation is decomposed into two parts: a source of variation due to the group
effect (area d) and a source of variation due to the measurement error (area f). Within-
subjects variation is decomposed into three areas: a source of variation for the repeated
measures effect (area a), a source of variation for the interaction between the repeated
measures and the group effect (area i), and a source of variation for error (area e). Conse-
quently, there will be three F ratios to compute: the group effect (the ratio f/d, Fg), the
repeated measure effect (the ratio a/ e, F¢) and the interaction effect (the ratio i / e, Fxg)-

Y Within
subjects
Between
subjects d,
O ora
C

G

Total variation

A/\

Between Within
subjects subjects

N N

G Error C CxG  Error
(Groups) (Condition)

A Figure 2. (top) Venn diagram for the subjects within groups by conditions design. G is the group ef-
fect, C is the repeated-measure effect and Cx G is the interaction effect between the two factors.
(bottom) Tree diagram showing the partitioning of the different sources of variation.

The total variation R? is 1 = a+d +e+ f +i . Each letter corresponds to a proportion of

variation (r-squared). The between-subjects proportions of variation are:

d= Rzy,G, X
f= RY~S_RY-G’
2

where R g represents the variation explained by the between-subjects source. By dividing
d and f by d + f, we get the mean effect, that is, the group effect:

d
=RZ |
d+f ¢
Lz R Rz?G
d+f d+f
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Sylvain Chartier and Denis Cousineau

Finally, the within-subjects proportions of variation are:

a= IQZ%/C’
i = Ry.cxo>
e=1-(d+f)—a—i=1-Ryg— Ry~ R} oG

The various F statistics are ratios of the following proportions of variation weighted by
their corresponding degrees of freedom:

d N-g Ry, V-

Fg=—X = 5 s
foe-1 1-R . 2g—l
Fe=SxN-g= Ry.c xN-—g,
¢ 1 =Ry = Ry.c — Rycxg
i N-g RY.cxG N-g
Fewg=— X = X .

e g-1 1-Rys—Ric—Rycwg &-1

m Computing a Split-Plot ANOVA from the Computations
Obtained by a Between-Subjects ANOVA

O Test of the Between-Subjects Effect

The group (between-subjects) effect (measured by d/ f in Figure 2) can be obtained by

averaging the repeated measures (so that information about the repeated measures is
discarded) and submitting them to a one-way ANOVA:

1 c
yij = — Zyijk,i: 1, ...,g,j = 1, ey NG
Ck:l

Using Mathematica, we need to set a few constants first, and for convenience, the labels
for the within- and between-subjects factors. The conditions are taken from the first col-
umn of X,

AllConditions = Union[X[All, 1]];
This computes the number of groups and repeated measures.

g = Length[AllConditions];
c = Length[X[1]] - 1;
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Computing Mixed-Design (Split-Plot) ANOVA 7

This computes the total number of participants and the number of participants per group.

Nrota1l = Length[X];

Table[
n; = Length[Select [X[[All, 1], # == AllConditions[i] &]],
{i, 1, g}1;

Finally, we define the labels.

WSLabels = {"Time", {"t,", "t", "t3", "t.", "ts", "te"}};
BSLabels = {"Group", {"Control", "Same", "Different"}};
WSVariable = Time;

BSVariable = Group;

To get the between-subjects effect, we aggregate the data over replicated measures.

1
Yo = Table[{X[j, 11, ~ Total[Drop[X[3l, 111}, {i, nrota}]s
C

Using this, a one-way ANOVA is computed.

Needs ["ANOVA™ "]

resGrp = ANOVA[Y;, {BSVariable}, {BSVariable},
CellMeans -» False]
ANOVA -

DF SumOfSq MeanSq FRatio Pvalue
Group 2 47635.8 23817.9 7.80059 0.00292823
Error 21 64120.3 3053.35
Total 23 111756.

In the following, we will need the between-subjects sum of squares, so we extract it from
the table. To take into account the ¢ repeated measures, the sum of squares must be multi-
plied by that number of measures.

SSpetween = € X resGrp[2, 1, 3, 2]

670537.
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8 Sylvain Chartier and Denis Cousineau

O Test of the Within-Subjects Effect

F ratios for the repeated-measure effect and the interaction effect are computed by first re-
coding the data matrix such that the repeated measures look like a second between-sub-
jects factor. Thus, the bulk of the analysis simplifies into a standard factorial ANOVA.
The following transforms the data.

Yexe = Flatten[Table[{X[j, 11, i, X[j, i+1]}, {i, c},
{Js Nrotar}l, 11;

Applying a standard between-factors ANOVA, the following summary table is obtained.

results = ANOVA [yc.e, {WSVariable, BSVariable, All},
{WSVariable, BSVariable}, CellMeans - False]

ANOVA -
DF SumOfSq MeanSq FRatio Pvalue
Time 2 285815. 142908. 27.0398 1.69471x 10710
Group 5 399 737. 79947.3 15.127 1.26463x 107!
Group Time 10 80820. 8082. 1.52921 0.136377
Error 126 665921. 5285.09
Total 143 1.43229 x10°

First, the results regarding the group effect are discarded since it has been analyzed in the
previous section. Next, the results regarding the repeated measure “time” and the inter-
action (group x time) must be modified to obtain the corrected F ratios. Specifically, infor-
mation regarding the error term is incorrect since it does not take into account the
estimation of the between-subjects error that we obtained in the previous subsection. The
corrected error sum of squares is given by

SSError = SSTotal - SSBetween - SSWithin - Ssinteraction-
The corrected error degrees of freedom (df) is given by
derror =(N- g) (c=1).

Using the results of the previous ANOVA, the sum of squares terms can be extracted and
the corrected error term computed.

SSrota1 = results[[2, 1, 5, 2];
SSyithin = results[2, 1, 2, 2];
SSinteraction = results[2, 1, 3, 2];

ssError = ssTotal - ssBetween - sswithin - ssInteraction;

derror = (n‘l‘otal - g) X (C - 1)

105
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Computing Mixed-Design (Split-Plot) ANOVA 9

From this, the error mean square (MS) can be computed.

SsError
MSgrror = ——

fError

2678.09

The within-subjects F ratios are summarized in the following table.

TableForm[ {
Join[results[2, 1, 2, {1, 2, 3}1,
{results[[2, 1, 2, 3] / MSgrror~s
1 - CDF [FRatioDistribution[results[[2, 1, 1, 1], dfgrror],
results[[2, 1, 1, 3] / MSgrrorl} ],
Join[results[2, 1, 3, {1, 2, 3}1,
{results[2, 1, 3, 3] / MSgrror~s
1 - CDF[FRatioDistribution[results[2, 1, 3, 1], dfgrror] s
results[[z, 1! 3! 3]] /MSError] }] 4
{derrorl SSErrorl MsError}
1,
TableHeadings -
{{WSLabels[1] , WSLabels[1] <> " x " <>BSLabels[1], "Error"},
{"DF", "SsS", "MS", "F", "P"}}

DF SS MS F P
Time 5 399737. 79947.3 29.8524 1.11022 x 10718
Time x Group 10 80820. 8082. 3.01782 0.00216428
Error 105 281199. 2678.09

m Computing a Split-Plot ANOVA Using the General Linear
Model Approaches

A different technique for computing a split-plot ANOVA is to use the general linear
model approaches [3, 4]. By using the general linear model, all ANOVAs (factorial,
repeated measures, etc.) are treated as a special case of regression analyses; the dependent
variables remain the same while the predictors are generated using binary codes. Then, the
various variability terms (error, within-subjects, between-subjects) can be estimated as
ratios of explained to unexplained variation.
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Test of the Between-Subjects Effect

For this effect, a coding matrix that identifies each subject within each group could be
used. However, as pointed out in [3] and detailed in [4], it is simpler to aggregate the
repeated measures as in the previous section to consider only the group effect. Hence, the
effect coding matrix for the groups (ECg) has g lines. Because the last group is entirely
determined by the other groups, it is not coded (otherwise the resulting matrix would be
singular), resulting in g — 1 columns.

Group CodedAs x; xp -+ Xg i

1 S 1 0 - 0
2 > 0 1 -« 0
g1 N 0 0 - 1
g L S|

Using the group coding vector for each subject and joining to it the dependent variable,
we get a matrix M that contains the predictor variables in the first columns and the depen-
dent variable in the last column.

With this matrix M, the sum of squares and cross-product (SSCP) matrix can be com-
puted by
SSCP=M"M-A"M)"1"M)/N, (1)

where 1 represents the N-dimensional vector composed of 1s. By partitioning the SSCP
matrix, the coefficient of determination R? is obtained. The SSCP must be partitioned into
four submatrices named SS,,, SS,;, SS;,, and SS;; (in which the subscript p stands for

predictors and d stands for dependent variable). These matrices represent, respectively,
the sum of squares of the predictors alone, the sum of cross-products between the predic-
tors and the dependent variable, the sum of cross-products between the dependent variable
and the predictors, and lastly the sum of squares of the dependent variable alone.

|

where the size of the SS,, matrix is (g —1)x (g —1) and the size of the SS;; matrix is

SSCP = [

1 x 1. Finally, we verify that SS,; = SS;,".

The coefficient of determination for the between-subjects effect (RZY ) can be obtained by

the matrix multiplication

2 -1 -1
R, = 5S4 SS;h SS,u Sz,
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Computing Mixed-Design (Split-Plot) ANOVA 11

Finally, the F value is the ratio between the explained variation and the unexplained varia-
tion, weighted by the degrees of freedom:

2
Ry 6 N-g
Fg = 5 X .
1-R; . g-1

All those operations are performed with the following commands. First we have the cod-
ing matrix.

ECg = Append[Table[AllConditions[[i]] » IdentityMatrix[g- 1][i],
{i, g-1}1,
AllcConditions[g] -» Table[-1, {g-1}]1;
TableForm[EC¢]

Control -» {1, 0}
Different -» {0, 1}
Same - {-1, -1}

The means for each group are then computed.

1
Yo = Table[{X[j, 11, = Total[Drop[X[il, 111}, {i, nrotar}
C

{{Control, 88.3333}, {Control, 211.5}, {Control, 100.667},
{Control, 137.333}, {Control, 62.3333}, {Control, 207.},
{Control, 154.833}, {Control, 85.}, {Same, 211.5},

{Same, 233.5}, {Same, 186.}, {Same, 116.333},

{Same, 236.333}, {Same, 244.}, {Same, 299.833},

{Same, 324.667}, {Different, 161.}, {Different, 152.5},
{Different, 197.5}, {Different, 148.167},

{Different, 159.167}, {Different, 63.5},

{Different, 103.167}, {Different, 172.333}}

Then the matrix M can be constructed.

M = Map [Flatten[{#[1] /. ECg, #[2]}] &, ¥¢]

({1, 0, 88.3333}, {1, 0, 211.5}, {1, 0, 100.667},

{1, 0, 137.333}, {1, 0, 62.3333}, {1, 0, 207.},

{1, 0, 154.833}, {1, 0, 85.}, {-1, -1, 211.5},

{-1, -1, 233.5}, {-1, -1, 186.}, {-1, -1, 116.333},
(-1, -1, 236.333}, {-1, -1, 244.}, {-1, -1, 299.833},
{-1, -1, 324.667}, {0, 1, 161.}, {0, 1, 152.5},

{0, 1, 197.5}, {0, 1, 148.167}, {0, 1, 159.167},

{0, 1, 63.5}, {0, 1, 103.167}, {0, 1, 172.333}}
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12 Sylvain Chartier and Denis Cousineau

From this matrix M, the SSCP matrix is easily obtained according to equation 1.

ones = Array[l &, {Length[M], 1}];
SSCP = Transpose[M] .M -
Transpose|[ (Transpose[ones] .M) ] . (Transpose[ones] .M) /
Length[M];

MatrixForm[SSCP]
16. 8. -805.167
8. 16. -694.833

-805.167 -694.833 111756.

This SSCP matrix can then be partitioned into the various sum of squares submatrices
needed to compute RZ? G

SS,p, = Take[SSCP, {1, g-1}, {1, g-1}];
SSpq = Take[SSCP, {1, g-1}, {g, g}];

SS4q = Take[SSCP, {g, g9}, {9, g}];
R2g ; = (Transpose [sspd] .Inverse [sspp] .SSpq.Inverse[SSaq] ) [

1, 1]
0.426248
Finally, the F ratio can be obtained.

R2g . Nrotal — 9
X

1-R2;, g-1

FG=

7.80059

And again, the total sum of squares of the between-subjects factor S27 is memorized for

later use (area f in Figure 2).

SSpetween = C X SSg47

O Test of the Within-Subjects Effects

As in the previous section, the within-subjects effects are computed by dropping the re-
peated measures. Therefore, the subjects are considered independent and the computation
is accomplished like a standard between-subjects ANOVA. However, the error term will
differ from a standard ANOVA since the between-subjects variability has been evaluated
and thus can be removed from the total error (Figure 2).
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The first step is to compute the proportion of variance accounted for by the repeated
measure effect R?. . To this end, we must create an effect coding matrix for the ¢ repeated
measures. This effect coding is created as in the previous section except that it is of size c.

ECc = Append [
Table[i -» IdentityMatrix[c-1][i], {i, c¢-1}],
c -» Table[-1, {c-1}]];

TableForm[EC.]

1-{1,0,0,0,0)}
2510, 1,0, 0,0}
30,0, 1,0, 0}
4-1{0,0,0,1, 0}
5 {0, 0, 0,0, 1)}
6>{-1, -1, -1, -1, -1}

The raw data is reorganized so that for each item, the replication number is available,
{j,y,-jk}, i=1,...,g8,j=1,...,c,and k = 1, ... n;. From it, the matrix M is computed in ex-
actly the same way as before.

Yc =F1atten[Tab1e[{i, x[[jl i+1]]}l {ir 11 c}l {jl 1"'1‘01:al}]l 1];
M = Map[Flatten[{#[1] /. ECc, H#[2]}] &, ycl;

Next, the SSCP matrix is computed exactly as before.

ones = Array[1l &, {Length[M], 1}];
SSCP = Transpose[M] .M -
Transpose|[ (Transpose[ones] .M) ] . (Transpose[ones] .M) /
Length[M];

MatrixForm[SSCP]
48. 24. 24. 24. 24. 3290.
24. 48. 24. 24. 24. 83.
24. 24. 48. 24. 24. -171.
24. 24. 24. 48. 24. -318.
24. 24. 24. 24. 48. -19.

3290. 83. -171. -318. -19. 1.43229x10°

Partitioning this matrix, the quantity R} can be obtained exactly as before.

SSpp = Take[SSCP, {1, ¢c-1}, {1, c-1}];

SSpa = Take[SSCP, {1, c-1}, {c, c}];

SSgq = Take[SSsCP, {c, c}, {c, c}];

R2y.c = (Transpose[sspd] .Inverse [sspp] +8SSpa.Inverse[SSyq] ) I
1, 1]

0.279089
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The same steps are repeated one last time for the interaction effect R%. .. The effect cod-
ing matrix for the interaction is defined for all the combinations of the between-subjects

factor and the repeated-measure factor. It is obtained with
ual effect coding.

ECce = Flatten]|
Table[{AllConditions[j], i} -»

the outer product of the individ-

Flatten[Transpose[{AllConditions[j] /. ECg}].

({1/° ECC})]I {JI 1, g}l {il 1, c}]l
1];

TableForm[ECc¢]
{Control, 1} -» {1, 0, 0, O, O, O, O, O, O, O}
{Control1, 2} - {0, 1, 0, O, O, O, O, O, O, O}
{Control, 3} - {0, 0, 1, O, O, O, O, O, O, O}
{Control, 4} - {0, 0, 0, 1, O, O, O, O, O, O}
{Control, 5} - {0, 0, 0, O, 1, O, O, O, O, O}
{Control, 6} » {-1, -1, -1, -1, -1, 0, O, O, O, O}
{Different, 1} » {0, 0, O, O, O, 1, 0, O, O, O}
{Different, 2} » {0, 0, 0, O, O, O, 1, 0, O, O}
{Different, 3} » {0, 0, 0, 0, 0, 0, 0, 1, 0O, O}
{Different, 4} » {0, 0, 0, O, O, O, O, O, 1, O}
{Different, 5} -» {0, 0, O, O, O, O, O, O, O, 1}
{Different, 6} » {0, 0, 0, 0, 0, -1, -1, -1, -1, -1}
{same, 1} » {-1, O, O, O, O, -1, O, O, O, O}
{same, 2} - {0, -1, O, O, O, O, -1, O, O, O}
{same, 3} - {0, O, -1, O, O, O, O, -1, O, O}
{same, 4} - {0, O, O, -1, O, O, O, O, -1, O}
{same, 5} -» {0, O, O, O, -1, O, O, O, O, -1}
{same, 6} > {1, 1, 1,1, 1,1, 1,1, 1, 1}
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Computing Mixed-Design (Split-Plot) ANOVA 15

The data matrix is reorganized one last time so that both the group and the number of the
repeated measures are available: {i, Js yijk}, i=1,...,8,j=1,...,c,and k=1, ...n;. The

M and SSCP matrices are then computed as usual.

YCG=Flatten[Table[{X[[jl 1]]! il x[[jl i+1]]}l {11 1! c}l

{Js nrotar}], 11;
M = Map[Flatten[{{#[1], #[2]} /. ECce, H[31}] &, Ycecl;

ones = Array[l &, {Length[M], 1}];
SSCP = Transpose[M] .M -
Transpose[ (Transpose[ones] .M) ] . (Transpose[ones] .M) /
Length[M];

MatrixForm[SSCP]

32. 16. 16. 16. 16. 16. 8. 8. 8. 8 -738.
16. 32. 16. 16. 16. 8. 16. 8. 8. 8 -996.
16. 16. 32. 16. 16. 8. 8. 16. 8. 8. -608.
16. 16. 16. 32. 16. 8. 8. 8. 16. 8. 57.
16. 16. 16. 16. 32. 8. 8. 8. 8. 16. -218.
16. 8. 8. 8. 8. 32. 16. 16. 16. 16. -196.
8. 16. 8. 8. 8. 16. 32. 16. 16. 16. -1024.
8. 8. 16. 8. 8. 16. 16. 32. 16. 16. -580.
8. 8. 8. 16. 8. 16. 16. 16. 32. 16. -168.
8. 8. 8. 8. 16. 16. 16. 16. 16. 32. -281.
-738. -996. -608. 57. -218. -196. -1024. -580. -168. -281. 1.43229x10°

Partitioning this last matrix, the quantity R, can be obtained.

SSpp = Take[SSCP, {1, (g-1) (c¢-1)}, {1, (g-1) (c-1)}1;

SS,q = Take[SSCP, {1, (g-1) (c-1)},
{(g-1) (¢-1)+1, (g-1) (c-1)+1}];

SSaq = Take[SSCP, {(g-1) (c-1) +1, (g-1) (c-1) +1},
{(g-1) (¢-1)+1, (g-1) (c-1)+1}];

R2y.cxg = (Transpose[sspd] .Inverse[sspp] .Sspd.Inverse[Sde]) I
1, 17

0.056427
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16 Sylvain Chartier and Denis Cousineau

Finally, the error proportion of variance can be estimated as the within-subjects variation
left unexplained:

Rlzirror =1- R%’S - R%’C - R%’~C><G’
in which R is given by

2
R2 _S_?
Y-S — 2’
Sy

where S27 is the between-factors sum of squares memorized in the previous subsection.

SsBetween
R2y.g = —[1, 1]
SSaa

0.468156

R2prror = 1 - R2y.5 - R2y.¢ - R2y.¢y¢

0.196328

The F ratios for the repeated-measure effect and the interaction effect can be computed
with the formulas:

Ry.c
Fe=—=x(N-g),
Error

R%/-CXG N-g
X—,
R% g-1

Error

Fexg =

which we compute.

R2y.¢

Fc = — (Drota1 - 9)
Rzli:rror

29.8524

R2y . cxe Nrotal - 9

Fee =
R2Error g- 1

3.01782

All the information required has been gathered; the ANOVA table can be produced just
like in the section Computing a Split-Plot ANOVA from the Computations Obtained by a
Between-Subjects ANOVA.
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m The MixedDesignANOVA Package

The MixedDesignANOVA package performs the different analyses using the procedures
outlined in the previous section. It works for equal as well as for unequal numbers of sub-
jects per group. To use it, first load the package (adapt the path if necessary) and load
some data. Optionally, you can define labels for the factors and the levels of the factors.

Needs [ "MixedDesignANOVA™ "]

X = {{Control, 150., 44., 71., 59., 132., 74.},
{Control, 335., 270., 156., 160., 118., 230.},
{Control, 149., 52., 91., 115., 43., 154.},
{Control, 159., 31., 127., 212., 71., 224.},
{Control, 159., 0., 35., 75., 71., 34.},

{Control, 292., 125., 184., 246., 225., 170.},
{Control, 297., 187., 66., 96., 209., 74.},
{Control, 170., 37., 42., 66., 114., 81.},
{same, 346., 175., 177., 192., 239., 140.},
{same, 426., 329., 236., 76., 102., 232.},
{Same, 359., 238., 183., 123., 183., 30.},
{Same, 272., 60., 82., 85., 101., 98.},
{Same, 200., 271., 263., 216., 241., 227.},
{Same, 366., 291., 263., 144., 220., 180.},
{Same, 371., 364., 270., 308., 219., 267.},
{Same, 497., 402., 294., 216., 284., 255.},
(Different, 282., 186., 225., 134., 189., 169.},
{pDifferent, 317., 31., 85., 120., 131., 205.},
{pDifferent, 362., 104., 144., 114., 115., 127.},
{Different, 338., 132., 91., 77., 108., 169.},
{Different, 263., 94., 141., 142., 120., 195.},
{Different, 138., 38., 16., 95., 39., 55.},
{pDifferent, 329., 62., 62., 6., 93., 67.},
{pDifferent, 292., 139., 104., 184., 193., 122.}};
WSLabels = {"times", {"t1", "t,", "t3", "ts", "ts", "te"}};
BSLabels = {"Group", {"Control", "Same", "Different"}};
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The command MixedDesignANOVA, with a data matrix respecting the input format X
defined in the first section, displays the ANOVA table only, with default names (B for the
between-subjects factor and A for the within-subjects factor).

ANOVATable /. MixedDesignANOVA [X]

SC dl CM F P
Between-Subjects
B 285815. 2 142908. 7.80059 0.00292823
Error 384722. 21 18320.1
Total 670537. 23
Within-Subjects
A 399737. 5 79947.3 29.8524 5.43708x 101!
A x B 80820. 10 8082. 3.01782 0.00216428
Error 281199. 105 2678.09
Total 761 756. 120
Total 1.43229x10° 143

The command has seven options, as listed below. The option Epsilons is used to
compute the Greenhouse—Geisser, the Huynh—Feldt and the lower-bound epsilons [5, 6].
The options MeanTable and MeanPlot show the mean across conditions and measures
under the form of a table or visually. The option VarCov returns the g X g variance-

covariance matrices for each group as well as the global variance-covariance matrix.

Finally, the option SummaryStatistics can be used to display summary statistics for
each cell of the design. Default summary statistics are None; Automatic returns the
mean, variance, standard deviation, length (i.e. the number of observations in the cell), un-
biased skewness, and unbiased kurtosis.

Options [MixedDesignANOVA]

{ANOVATable -» True, Epsilons - False,
Labels » Automatic, MeanPlot — False, MeanTable - False,
SummaryStatistics - None, VarCov — False}

The next command runs an analysis with all options turned on; the results are displayed
one at a time afterward.

analysis = MixedDesignANOVA[X, Labels » {WSLabels, BSLabels},
MeanPlot -» False, MeanTable -» True,
SummaryStatistics » {Mean, Total, Variance, Skewness},
Epsilons -» True, VarCov - True];
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SummaryStatistics /. analysis

Mean Total Variance Skewness
Control-t; 213.875 1711. 6274.41 0.57759
Control-t, 93.25 746. 8699.93 0.933113
Control-t; 96.5 772. 2927.14 0.452598
Control-t, 128.625 1029. 4943.98 0.638305
Control-tjs 122.875 983. 4256.41 0.503268
Control-tg 130.125 1041. 5557.27 0.199142
Control 130.875 6282. 6490.66 0.614616
Same-t; 354.625 2837. 8084.55 -0.211362
Same-t, 266.25 2130. 12031.4 -0.677922
Same-t3 221. 1768. 4883.43 -0.969977
Same-t, 170. 1360. 6100.86 0.406149
Same-ts 198.625 1589. 4385.41 -0.554247
Same-tg 178.625 1429. 6987.98 -0.644123
Same 231.521 11113. 10434.2 0.213016
Different-t; 290.125 2321. 4805.55 -1.36696
Different-t, 98.25 786. 2859.64 0.21114
Different-t; 108.5 868. 3926.57 0.465401
Different-t, 109. 872. 2759.14 -0.688462
Different-tjs 123.5 988. 2510.29 -0.0230334
Different-tg 138.625 1109. 3137.7 -0.374307
Different 144.667 6944. 7468.31 0.83978
Grand total 169.021 24 339. 10016. 0.63334
MeanTable /. analysis
| t; t, t3 ty ts tg Mean
Control 213.875 93.25 96.5 128.625 122.875 130.125 130.875
Same 354.625 266.25 221. 170. 198.625 178.625 231.521
Different 290.125 98.25 108.5 109. 123.5 138.625 144.667
Mean 286.208 152.583 142. 135.875 148.333 149.125 169.021

Epsilons /. analysis

Greenhouse-Geisser |0.656945
0.867425

Huynh-Feldt
Lower Bound

0.2
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VarCov /. analysis

{

Variance/Covariance matrices (one per group)

4

6274.41 6929.32 2512.21 2386.38 3604.13 2123.16

6929.32 8699.93 2688.57 1933.96 3123.75 3045.68

{ 2512.21 2688.57 2927.14 3462.36 1188.21 3413.64
2386.38 1933.96 3462.36 4943.98 1212.8 4183.63 |’

3604.13 3123.75 1188.21 1212.8 4256.41 -444.982

2123.16 3045.68 3413.64 4183.63 -444.982 5557.27

8084.55 6094.11 2564. 188.429 990.411 2144.41
6094.11 12031.4 7233.86 4323.14 3591.54 6710.25
2564. 7233.86 4883.43 3169. 2978. 4478.57
188.429 4323.14 3169. 6100.86 3876.57 3695.71 |
990.411 3591.54 2978. 3876.57 4385.41 1982.41
2144.41 6710.25 4478.57 3695.71 1982.41 6987.98

4805.55 1065.25 1644.21 -529.857 1458.64 1504.63
1065.25 2859.64 2622. 1128. 1959.29 839.679
1644.21 2622. 3926.57 1458.71 2318.86 2001.07
-529.857 1128. 1458.71 2759.14 1656.43 1374.43 }'
1458.64 1959.29 2318.86 1656.43 2510.29 1430.5
1504.63 839.679 2001.07 1374.43 1430.5 3137.7

Variance/Covariance common matrix

6388.17 4696.23 2240.14 681.649 2017.73 1924.07
4696.23 7863.64 4181.48 2461.7 2891.52 3531.87
2240.14 4181.48 3912.38 2696.69 2161.69 3297.76
681.649 2461.7 2696.69 4601.33 2248.6 3084.59 |’
2017.73 2891.52 2161.69 2248.6 3717.37 989.31
1924.07 3531.87 3297.76 3084.59 989.31 5227.65

Variance ratio Max/Min = , 2.11538}
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The two unbiased functions are available as SkewnessU[list]

sisU[1list] following the formulas given in [7].

The package MixedDesignANOVA works in Mathematica 4.0 and higher. It is available

?? SkewnessU

SkewnessUl[list] computes the unbiased skewness over the list.

and Kurto-

_ Vn (n-1) Skewness[list]

SkewnessU[list ] : s

/. n- Length[list]

?? KurtosisU

KurtosisU[list] computes the unbiased kurtosis excess over the list.

KurtosisU[list ] :=
((n-1) (n+1)) Kurtosis[list] 3 (n-1)2
(n-2) (n-3) (n-2) (n-3)

/. n—- Length[list]

with this article or can be found at

www.mapageweb.umontreal.ca/cousined/home/Others/MixedDesignAnova/Index.html.
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